JP2012040489A - Method and device for generating electrolytic ion water - Google Patents

Method and device for generating electrolytic ion water Download PDF

Info

Publication number
JP2012040489A
JP2012040489A JP2010182952A JP2010182952A JP2012040489A JP 2012040489 A JP2012040489 A JP 2012040489A JP 2010182952 A JP2010182952 A JP 2010182952A JP 2010182952 A JP2010182952 A JP 2010182952A JP 2012040489 A JP2012040489 A JP 2012040489A
Authority
JP
Japan
Prior art keywords
tank
electrolyte
water
electrolytic
raw water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010182952A
Other languages
Japanese (ja)
Other versions
JP4967050B2 (en
Inventor
Tamio Matsuzawa
民男 松澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
E-PLAN Ltd
PLAN Ltd E
Original Assignee
E-PLAN Ltd
PLAN Ltd E
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by E-PLAN Ltd, PLAN Ltd E filed Critical E-PLAN Ltd
Priority to JP2010182952A priority Critical patent/JP4967050B2/en
Priority to CN201110091726.7A priority patent/CN102372341B/en
Publication of JP2012040489A publication Critical patent/JP2012040489A/en
Application granted granted Critical
Publication of JP4967050B2 publication Critical patent/JP4967050B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and device for generating electrolytic ion water, capable of efficiently generating an alkaline electrolytic water having a desired pH value at low cost.SOLUTION: The device for generating the electrolytic ion water includes a generation tank capable of storing a raw water, an electrolyte tank provided with an electrolyte-storing chamber capable of storing an aqueous electrolyte solution, an ion-exchange membrane, and the anode and cathode plates sandwiching the ion exchange membrane. The electrolyte tank can be immersed into the raw water in the generation tank, and the ion exchange membrane partitions the raw water in the generation tank and the electrolyte solution in the electrolyte storing chamber of the electrolyte tank. The anode plate is arranged at the side of the electrolyte storing chamber to enable contact with the electrolyte solution in the electrolyte storing chamber, and the cathode plate is arranged at a raw water side to enable contact with the raw water in the generation tank, thus isolating the generation tank from the electrolyte tank immersed in the raw water.

Description

本願発明は、電解イオン水(アルカリイオン水、アルカリ性電解水)生成方法とその生成装置に関する。   The present invention relates to a method for producing electrolytic ionic water (alkali ion water, alkaline electrolyzed water) and a production apparatus therefor.

電解イオン水は洗浄効果に優れており、飲料水としても適することが知られており、排水されても地球環境に悪影響を与えない洗浄水或いは飲料水として注目されている。   Electrolytic ion water is known to be excellent in cleaning effect and suitable as drinking water, and has attracted attention as cleaning water or drinking water that does not adversely affect the global environment even if drained.

電解イオン水生成装置の一つとして電解イオン水生成装置(特許文献1)がある。この電解イオン水生成装置は図3に示すように電解槽Aがイオン交換膜Bで陰極室Cと陽極室Fに仕切られ、陰極室Cに陰極板Eが、陽極室Fに陽極板Dが配設され、陰極板Eに直流電源Gのマイナスが、陽極板Dに直流電源Gのプラスが接続されている。陰極室Cには流量調整弁Hを介して外部から原水(例えば純水や水道水)が連続して供給され、陽極室FにはタンクI内の電解質水溶液(例えば、炭酸カリウム水溶液や炭酸ナトリウム水容液)が循環ポンプPによって連続して供給されると、電気分解により生成されるカリウムイオンが前記イオン交換膜Bを透過して陰極室C側に入り、陰極室C内にアルカリ性電解水が生成され、生成されたアルカリ性電解水は陰極室Cに設けられた出口配管Jから排出される。一方、陽極室Fを通過してオーバーフローした電解質水溶液は、陽極室Fに設けられた戻り配管Kから電解質水溶液タンクIに戻る。   As one of the electrolytic ionic water generators, there is an electrolytic ionic water generator (Patent Document 1). As shown in FIG. 3, the electrolytic ionic water generating apparatus has an electrolytic cell A partitioned by an ion exchange membrane B into a cathode chamber C and an anode chamber F, a cathode plate E in the cathode chamber C, and an anode plate D in the anode chamber F. The negative plate of the direct current power source G is connected to the cathode plate E, and the positive plate of the direct current power source G is connected to the anode plate D. Raw water (for example, pure water or tap water) is continuously supplied from the outside to the cathode chamber C via the flow rate adjusting valve H, and the electrolyte solution (for example, potassium carbonate aqueous solution or sodium carbonate) in the tank I is supplied to the anode chamber F. When the aqueous solution is continuously supplied by the circulation pump P, potassium ions generated by electrolysis pass through the ion exchange membrane B and enter the cathode chamber C, and the alkaline electrolyzed water enters the cathode chamber C. Is generated, and the generated alkaline electrolyzed water is discharged from an outlet pipe J provided in the cathode chamber C. On the other hand, the electrolyte aqueous solution overflowing through the anode chamber F returns to the electrolyte aqueous solution tank I from the return pipe K provided in the anode chamber F.

特開2004−42025号公報JP 2004-42025 A

通常、イオン交換膜Bは図4のようにその両面に絶縁材製のメッシュ状のスペーサSが配置され、その外側に陰極板Eと陽極板Dが配置され、その両外側から保持板Lで保持され、陰極板Eに接続されているマイナス電極T1に直流電源のマイナスが、陽極板Dのプラス電極T2にプラス電位が印加されるようにしてある。供給される原水はイオン交換膜BとスペーサSと陰極板Eの間の隙間を通過し、電解質水溶液はイオン交換膜Bと陽極板DとスペーサSの間の隙間を通過する。   Usually, as shown in FIG. 4, the ion-exchange membrane B is provided with mesh-like spacers S made of an insulating material on both sides thereof, and a cathode plate E and an anode plate D are arranged on the outside thereof. The minus of the direct current power source is applied to the minus electrode T1 held and connected to the cathode plate E, and the plus potential is applied to the plus electrode T2 of the anode plate D. The supplied raw water passes through the gap between the ion exchange membrane B, the spacer S, and the cathode plate E, and the aqueous electrolyte solution passes through the gap between the ion exchange membrane B, the anode plate D, and the spacer S.

原水として水道水を使用した場合、水道水にはカルシウムやマグネシウムといった不純物が含まれているため、これら不純物が前記イオン交換膜B、スペーサS、陰極板Eに付着して固化し、それらの間の隙間が詰まって原水が通りにくくなり、通水量が減少するとか、これら固形物の影響で電極への通電が不十分になって、所望pH値の電解イオン水が得られないという難点がある。また、陽極側には生成中に酸素ガスが発生し、それが微細な気泡となって電解質水溶液中に溶存し、その気泡が電解質水溶液と共に狭い隙間に流れ込むため電気分解が阻害され、電解効率が低下し、電解イオン水の生成効率が低下するという難点もあった。また、陰極側には水素ガスが微細な気泡となって、イオン交換膜Bと陰極板EとスペーサSの隙間に発生するため電気分解が阻害され、電解効率が低下する。   When tap water is used as raw water, since tap water contains impurities such as calcium and magnesium, these impurities adhere to the ion exchange membrane B, spacer S, and cathode plate E and are solidified. There is a problem that the raw water cannot pass through due to clogging of the gap, and the amount of water flow decreases, or the current is not sufficiently energized to the electrode due to the influence of these solid substances, and electrolytic ionic water having a desired pH value cannot be obtained. . Also, oxygen gas is generated on the anode side during generation, which becomes fine bubbles and dissolves in the electrolyte aqueous solution, and the bubbles flow into the narrow gap together with the electrolyte aqueous solution, so that electrolysis is inhibited and electrolysis efficiency is improved. There also existed a difficulty that the production efficiency of electrolytic ion water fell. Moreover, since hydrogen gas becomes fine bubbles on the cathode side and is generated in the gaps between the ion exchange membrane B, the cathode plate E, and the spacer S, electrolysis is hindered and electrolysis efficiency is lowered.

水道水の代わりに純水を使用する場合、水道水を純水にする作業が必要になるため、時間、コストがかかるといった難点があった。   In the case of using pure water instead of tap water, it is necessary to make tap water pure water, and there is a problem that it takes time and cost.

本願発明の解決課題は、所望pH値のアルカリ性電解水を、効率良く、低コストで生成することのできる電解イオン水生成方法とその生成装置を提供することにある。   The problem to be solved by the present invention is to provide an electrolytic ion water generation method and an apparatus for generating the same, which can efficiently generate alkaline electrolyzed water having a desired pH value at low cost.

本願発明の電解イオン水生成方法は、生成タンク内に原水を貯留し、生成タンク内の原水内に電解液タンクを絶縁状態で浸漬し、電解液タンク内に電解質水溶液を貯留し、陰極板と陽極板に挟まれたイオン交換膜を生成タンク内に配置して生成タンク内の原水と電解液タンク内の電解質水溶液を区画し、陰極板側を生成タンク内の原水と接触させ、陽極板側を電解液タンク内の電解質水溶液と接触させ、陰極板に直流電源のマイナス側を陽極板に直流電源のプラス側を接続して、両電極間に直流電圧を印加して前記原水と電解質水溶液を電気分解し、その電気分解により陽極側(電解液タンク内)に生成される陽イオンが前記イオン交換膜を透過して陰極側(生成タンク内)に透過して、生成タンク内に電解イオン水を生成させ、生成タンク内に生成された電解イオン水を生成タンクから取り出し、その後に生成タンク内に新たに原水を貯留して、前記電気分解を行うことにより、生成タンク内に電解イオン水を繰返し生成できるようにしたものである。   In the electrolytic ionic water production method of the present invention, raw water is stored in the production tank, the electrolytic solution tank is immersed in the raw water in the production tank in an insulated state, the aqueous electrolyte solution is stored in the electrolytic solution tank, and the cathode plate An ion exchange membrane sandwiched between anode plates is placed in the production tank to partition the raw water in the production tank and the electrolyte aqueous solution in the electrolyte tank, and the cathode plate side is brought into contact with the raw water in the production tank. The negative electrode of the DC power source is connected to the cathode plate and the positive side of the DC power source is connected to the anode plate, and a DC voltage is applied between both electrodes to connect the raw water and the electrolyte aqueous solution. The cations generated by electrolysis and produced on the anode side (in the electrolyte tank) permeate the ion exchange membrane and permeate the cathode side (in the production tank). Produce and produce tank The electrolytic ionic water produced in the above is taken out from the production tank, and then the raw water is newly stored in the production tank, and the electrolysis is performed so that the electrolytic ionic water can be repeatedly produced in the production tank. It is.

本願発明の電解イオン水生成装置は、原水を貯留できる生成タンクと、電解質水溶液を貯留できる電解液貯留室を備えた電解液タンクと、イオン交換膜と、イオン交換膜を挟んだ陽極板と陰極板を備え、前記電解液タンクは前記生成タンク内の原水内に浸漬でき、前記イオン交換膜は生成タンク内の原水と電解液タンクの電解液貯留室内の電解質水溶液を区画でき、前記陽極板は電解液貯留室内の電解質水溶液と接触できるように電解液貯留室側に配置され、前記陰極板は生成タンク内の原水と接触できるように原水側に配置され、前記生成タンクとその原水内に浸漬される電解液タンクが絶縁されたものである。   The electrolytic ionic water generating device of the present invention includes a generation tank capable of storing raw water, an electrolytic solution tank including an electrolytic solution storage chamber capable of storing an aqueous electrolyte solution, an ion exchange membrane, an anode plate and a cathode sandwiching the ion exchange membrane The electrolyte tank can be immersed in the raw water in the production tank, the ion exchange membrane can partition the raw water in the production tank and the aqueous electrolyte solution in the electrolyte storage chamber of the electrolyte tank, and the anode plate Arranged on the electrolyte storage chamber side so as to be in contact with the electrolyte aqueous solution in the electrolyte storage chamber, the cathode plate is disposed on the raw water side so as to be in contact with the raw water in the generation tank, and immersed in the generation tank and the raw water The electrolyte tank to be insulated is insulated.

本願発明の電解イオン水生成装置は、前記電解イオン水生成装置の生成タンクと電解液タンクの双方または一方を絶縁材製にして、生成タンクとその原水内に浸漬される電解液タンクを絶縁状態にすることができる。   The electrolytic ionic water generating device of the present invention is an insulating state in which both the generation tank and the electrolytic solution tank of the electrolytic ionic water generating device are made of an insulating material, and the electrolytic solution tank immersed in the raw water is in an insulating state. Can be.

本願発明の電解イオン水生成装置は、前記電解イオン水生成装置のイオン交換膜と、イオン交換膜を挟んだ陽極板と陰極板を電解液タンクに取付け、陽極板を電解液タンクの内面側に、陰極板を電解液タンクの外面側に配置することができる。   The electrolytic ionic water generating device of the present invention comprises an ion exchange membrane of the electrolytic ionic water generating device, an anode plate and a cathode plate sandwiching the ion exchange membrane attached to an electrolyte tank, and the anode plate on the inner surface side of the electrolyte tank. The cathode plate can be disposed on the outer surface side of the electrolyte tank.

本願発明の電解イオン水生成装置は、前記電解イオン水生成装置のイオン交換膜と陽極板と陰極板を一つに組み立てられたカートリッジ式部品にして、電解液タンクに脱着可能とすることもできる。   The electrolytic ionic water generating device of the present invention can be made detachable from the electrolytic solution tank by making the ion exchange membrane, the anode plate and the cathode plate of the electrolytic ionic water generating device into a cartridge-type component assembled into one. .

本願発明の電解イオン水生成方法は次のような効果がある。
(1)原水を生成タンク内に、電解質水溶液を生成タンク内の電解液タンク内に貯留して電気分解するので、電解イオン水を生成タンク内に必要量だけバッチ式で生成することができるので、生成タンク内の原水量と、電解液タンク内の電解質水溶液の濃度が一定の場合、電気分解の時間を調節するだけで所望pHのアルカリ性電解水を生成することができる。
(2)原水も電解質水溶液も貯留させた状態で電気分解するので、イオン交換膜と電極の間の隙間を、原水と電解質水溶液を連続供給する連続式生成方法の場合よりも広くすることができ、原水も電解質水溶液も隙間を通過し易く、原水にカルシウムやマグネシウムなどが含まれている水道水であっても、電極やイオン交換膜にカルシウムやマグネシウムが付着しにくい。このため、電気分解の時間経過により電気分解効率が低下しにくい。また、前記隙間を広くすることにより、酸素ガスが陽極側に、水素ガスが陰極側に夫々気泡となって発生しても、それらが隙間から拡散するので気泡で閉塞されにくくなる。このため、電解イオン水の生産性が連続式に比して向上する。
(3)カルシウムやマグネシウムなどが付着しにくいので、定期掃除の期間を長くすることができ、メンテナンスが容易であり、定期掃除により頻繁に生成が中断されないので、電解イオン水の生産性も低下しない。
The electrolytic ionic water production method of the present invention has the following effects.
(1) Since raw water is stored in the production tank and the aqueous electrolyte solution is stored in the electrolytic solution tank in the production tank and electrolyzed, electrolytic ionic water can be produced in batches in the production tank in the required amount. When the amount of raw water in the production tank and the concentration of the aqueous electrolyte solution in the electrolytic solution tank are constant, alkaline electrolytic water having a desired pH can be produced simply by adjusting the electrolysis time.
(2) Since electrolysis is performed with both raw water and aqueous electrolyte solution stored, the gap between the ion exchange membrane and the electrode can be made wider than in the continuous production method in which raw water and aqueous electrolyte solution are continuously supplied. Both raw water and electrolyte aqueous solution easily pass through the gap, and even tap water in which calcium or magnesium is contained in the raw water hardly adheres to the electrode or ion exchange membrane. For this reason, electrolysis efficiency is unlikely to decrease with the passage of time of electrolysis. Further, by widening the gap, even if oxygen gas is generated as bubbles on the anode side and hydrogen gas is generated on the cathode side, they are diffused from the gap, so that they are not easily blocked by bubbles. For this reason, productivity of electrolytic ion water improves compared with a continuous type.
(3) Since calcium, magnesium, etc. are difficult to adhere, the period of regular cleaning can be extended, maintenance is easy, and production is not interrupted frequently by regular cleaning, so the productivity of electrolytic ionic water does not decrease .

本願発明の電解イオン水生成装置には次のような効果がある。
(1)原水を貯留できる生成タンクと、電解質水溶液を貯留できる電解液タンクと、生成タンク内の原水と、その原水に浸漬した電解液タンクの電解質水溶液を区画できるイオン交換膜を備えているので、所望pHのアルカリ性電解水を必要な量だけ、バッチ式で生成することができる。
(2)生成タンクに原水を貯留し、電解液タンクに電解質水溶液を貯留して、電解イオン水を生成できるので、イオン交換膜と陰極板の隙間、イオン交換膜と陽極板の隙間を、広くして原水、電解質水溶液がそれら隙間を通過し易くすることができ、単位時間当たりの液体通過量が多くなり、両電極に接触する原水や電解質水溶液の総量が多くなるので、所望pHのアルカリ性電解水を、連続生成方式に比して短時間で生成でき、生成の生産性が高い。
(3)前記隙間を広くすることができるので、原水にカルシウムやマグネシウムなどが含まれていても、カルシウムやマグネシウムが電極や陽イオン交換膜に付着しにくくなり、隙間が閉塞し難くなり、電気分解効率を長時間維持することができ、アルカリ性電解水の生成効率の向上に資する。また、カルシウムやマグネシウムなどが付着しても、掃除やメンテナンスが容易であり、酸性水などで洗浄することで付着物を容易に取り除くことができる。定期清掃の期間を長くすることができ、メンテナンスが容易である。頻繁に定期点検する場合は、その都度、アルカリ性電解水の生成が一時的に停止されるが、その頻度が少なくなるため生産性も低下しない。更には、陽極側に酸素ガスの気泡、陰極側に水素ガスの気泡が発生しても、それら気泡で前記隙間が閉塞されにくくなるので、前記隙間を通過する電解質水溶液が遮断されにくくなり、電解イオン水の生産性が低下しにくい。
(4)電解イオン水をバッチ式で生成できるため、電圧値と電流値を一定にし、電解質水溶液の濃度を一定にすれば、通電時間を調節するだけで、所望のpH値のアルカリ性電解水を生成することができる。
(5)前記電解イオン水生成装置の生成タンクと電解液タンクの双方または一方を絶縁材製にしたので、生成タンクとその原水内に浸漬される電解液タンクを確実に絶縁することができる。
(6)電解イオン水生成装置のイオン交換膜と、イオン交換膜を挟んだ陽極板と陰極板を電解液タンクに取付け、陽極板を電解液タンクの内面側に、陰極板を電解液タンクの外面側に配置すれば、イオン交換膜を電解液タンクごと交換することができる。
(7)イオン交換膜と陽極板と陰極板を一つに組み立てられたカートリッジ式部品にして、電解液タンクに脱着可能としてあるので、イオン交換膜の交換が容易になる。
The electrolytic ionic water generator of the present invention has the following effects.
(1) Since the production tank that can store the raw water, the electrolytic solution tank that can store the aqueous electrolyte solution, the raw water in the production tank, and the ion exchange membrane that can partition the electrolytic aqueous solution in the electrolytic solution tank immersed in the raw water A necessary amount of alkaline electrolyzed water having a desired pH can be produced batchwise.
(2) Since raw water is stored in the production tank and the electrolytic aqueous solution is stored in the electrolytic solution tank to generate electrolytic ionic water, the gap between the ion exchange membrane and the cathode plate and the gap between the ion exchange membrane and the anode plate are widened. As a result, the raw water and aqueous electrolyte solution can easily pass through these gaps, the amount of liquid passing per unit time increases, and the total amount of raw water and aqueous electrolyte solution that contacts both electrodes increases. Water can be generated in a short time compared to the continuous production method, and the production productivity is high.
(3) Since the gap can be widened, even if calcium or magnesium is contained in the raw water, calcium or magnesium is less likely to adhere to the electrode or cation exchange membrane, and the gap is difficult to close. The decomposition efficiency can be maintained for a long time, which contributes to the improvement of the production efficiency of alkaline electrolyzed water. Moreover, even if calcium, magnesium, or the like adheres, cleaning and maintenance are easy, and the adhered matter can be easily removed by washing with acidic water or the like. Periodic cleaning can be extended and maintenance is easy. In the case of frequent periodic inspections, the production of alkaline electrolyzed water is temporarily stopped each time, but the frequency is reduced and productivity is not lowered. Further, even if oxygen gas bubbles are generated on the anode side and hydrogen gas bubbles are generated on the cathode side, the gap is not easily blocked by the bubbles, so that the aqueous electrolyte solution passing through the gap is not easily blocked. Ion water productivity is unlikely to decrease.
(4) Since electrolytic ionic water can be produced in a batch system, if the voltage value and current value are kept constant and the concentration of the aqueous electrolyte solution is kept constant, alkaline electrolyzed water having a desired pH value can be obtained simply by adjusting the energization time. Can be generated.
(5) Since both or one of the production tank and the electrolytic solution tank of the electrolytic ionic water production device is made of an insulating material, the production tank and the electrolytic solution tank immersed in the raw water can be reliably insulated.
(6) The ion exchange membrane of the electrolytic ion water generator, the anode plate and the cathode plate sandwiching the ion exchange membrane are attached to the electrolyte tank, the anode plate is on the inner surface of the electrolyte tank, and the cathode plate is on the electrolyte tank. If arranged on the outer surface side, the ion exchange membrane can be exchanged together with the electrolyte tank.
(7) Since the ion exchange membrane, the anode plate, and the cathode plate are assembled into a cartridge type part and can be detached from the electrolyte tank, the exchange of the ion exchange membrane is facilitated.

本願発明の電解イオン水生成装置の一例を示す説明図。Explanatory drawing which shows an example of the electrolytic ion water production | generation apparatus of this invention. 図1のイオン交換膜部分の詳細図。FIG. 2 is a detailed view of the ion exchange membrane portion of FIG. 1. 従来の電解イオン水生成装置の一例を示す説明図。Explanatory drawing which shows an example of the conventional electrolytic ion water production | generation apparatus. 従来の電解イオン水生成装置に使用されるイオン交換膜の一例を示す説明図。Explanatory drawing which shows an example of the ion exchange membrane used for the conventional electrolytic ion water production | generation apparatus.

(電解イオン水生成装置の実施形態)
本願発明の電解イオン水生成装置の実施形態の一例について、図1、図2を参照しながら説明する。この実施形態の電解イオン水生成装置は、原水1を貯留できる生成タンク2と、生成タンク2とは別体の電解液タンク3とを備えるものである。電解質タンク3は電解質水溶液を貯留できる電解液貯留室4を備えている。原水1は純水、水道水、地下水等のいずれでもよい。
(Embodiment of electrolytic ion water generator)
An example of an embodiment of the electrolytic ionic water generating apparatus of the present invention will be described with reference to FIGS. The electrolytic ionic water generator of this embodiment includes a generation tank 2 that can store raw water 1 and an electrolyte tank 3 that is separate from the generation tank 2. The electrolyte tank 3 includes an electrolyte storage chamber 4 that can store an aqueous electrolyte solution. The raw water 1 may be pure water, tap water, ground water or the like.

前記生成タンク2は上面開口の箱型ケースであり、内部に原水1を貯留することができる。生成タンク2の上面5は開口している。生成タンク2の底面には生成された電解イオン水を抜き出すためのドレイン6が設けられている。生成タンク2には水量の上限及び下限が分かるようにリミットスケール(LS)が表示されている。この場合、水量がLSに達したことを知らせるための報知手段(図示しない)を設けることもできる。図1に示す生成タンク2は、10リットル用のものであるが、その容量は10リットルより多くても少なくてもよい。生成タンク2は絶縁材製のものが好ましい。生成タンク2は内部が視認できるように、透明のものとすることもできる。   The generation tank 2 is a box-shaped case having an upper opening, and can store raw water 1 therein. The upper surface 5 of the production tank 2 is open. A drain 6 for extracting generated electrolytic ion water is provided on the bottom surface of the generation tank 2. A limit scale (LS) is displayed in the generation tank 2 so that the upper limit and the lower limit of the amount of water can be understood. In this case, notifying means (not shown) for notifying that the amount of water has reached LS can be provided. The production tank 2 shown in FIG. 1 is for 10 liters, but the capacity may be more or less than 10 liters. The production tank 2 is preferably made of an insulating material. The generation tank 2 may be transparent so that the inside can be visually confirmed.

電解質タンク3はZ字状であり、上端と側面が開口しており、その側面開口部に陽イオン交換膜(イオン交換膜)7が取付けられている。この電解液タンク3はその周壁とイオン交換膜7により囲われた電解液貯留室4が形成されている。電解質タンク3も絶縁材製のものが好ましい。また、内部の状態を視認可能な透明のものとすることもできる。図1に示す電解液タンク3の形状は一例であり、これ以外の形状であってもよい。電解質タンク3の形状、サイズは任意に変更することができる。   The electrolyte tank 3 is Z-shaped and has an upper end and a side opening, and a cation exchange membrane (ion exchange membrane) 7 is attached to the side opening. The electrolytic solution tank 3 is formed with an electrolytic solution storage chamber 4 surrounded by a peripheral wall thereof and an ion exchange membrane 7. The electrolyte tank 3 is also preferably made of an insulating material. Moreover, it can also be a transparent thing which can visually recognize an internal state. The shape of the electrolytic solution tank 3 shown in FIG. 1 is an example, and other shapes may be used. The shape and size of the electrolyte tank 3 can be arbitrarily changed.

陽イオン交換膜7には既存のものとか新たなものを使用することができる。イオン交換膜7は前記生成タンク2と電解液タンク3の電解液貯留室4とを区画するものであり、水は通さず陽イオンのみを通す性質を有する交換膜である。イオン交換膜7には既存のもの又は新規のものを使用することができ、例えば、旭硝子株式会社製の「セレミオン」(登録商標)や、デュポン株式会社製の交換膜等を使用することができる。   As the cation exchange membrane 7, an existing one or a new one can be used. The ion exchange membrane 7 separates the production tank 2 and the electrolyte storage chamber 4 of the electrolyte solution tank 3 and is an exchange membrane having a property of allowing only water to pass through without passing water. As the ion exchange membrane 7, an existing one or a new one can be used. For example, “Celemion” (registered trademark) manufactured by Asahi Glass Co., Ltd. or an exchange membrane manufactured by DuPont Co., Ltd. can be used. .

イオン交換膜7は図2のように、その両面に絶縁材製のメッシュ状のスペーサSが配置され、その外側に陰極板Eと陽極板Dが配置され、陰極板Eと陽極板Dの上端部が二つの保持具8a、8bで挟まれそれら保持具8a、8bと電解質タンク3の上方取付け部9がボルトB1とナットN1で締め付けられて電解質タンク3の上方取付け部9に固定され、陰極板Eと陽極板Dの下端部が二つの保持具10a、10bで挟まれ、それら保持具10a、10bと電解質タンク3の下方取付け部12がボルトB2とナットN2で締め付けられて電解質タンク3の下方取付け部12に固定されている。前記陰極板Eには螺子式の陰極ターミナルT1が、陽極板Dには螺子式の陽極ターミナルT2が取付けられている。前記イオン交換膜7と陰極板Eの間にはスペーサSによって陰極側隙間G1が形成され、前記イオン交換膜7と陽極板Dの間にはスペーサSによって陽極側隙間G2が形成されており、陰極側隙間G1内を原水が、陽極側隙間G2内を電解質水溶液が通過できるようにしてある。保持具8a、8b、10a、10bはABS樹脂製、それ以外の樹脂製とすることができる。   As shown in FIG. 2, the ion-exchange membrane 7 has insulating mesh mesh spacers S disposed on both sides thereof, a cathode plate E and an anode plate D disposed on the outer sides thereof, and upper ends of the cathode plate E and the anode plate D. The part is sandwiched between two holders 8a and 8b, and the upper attachment part 9 of the holders 8a and 8b and the electrolyte tank 3 is fastened with bolts B1 and nuts N1 and fixed to the upper attachment part 9 of the electrolyte tank 3, and the cathode The lower end portions of the plate E and the anode plate D are sandwiched between two holders 10a and 10b, and the lower mounting portions 12 of the holders 10a and 10b and the electrolyte tank 3 are tightened with bolts B2 and nuts N2, and the electrolyte tank 3 It is fixed to the lower mounting portion 12. A screw type cathode terminal T1 is attached to the cathode plate E, and a screw type anode terminal T2 is attached to the anode plate D. A cathode-side gap G1 is formed by a spacer S between the ion exchange membrane 7 and the cathode plate E, and an anode-side gap G2 is formed by the spacer S between the ion-exchange membrane 7 and the anode plate D. The raw water can pass through the cathode side gap G1, and the aqueous electrolyte solution can pass through the anode side gap G2. The holders 8a, 8b, 10a, and 10b can be made of ABS resin and other resins.

イオン交換膜7の両面に設けられたスペーサSは前記隙間G1、G2を確保すると共に、陰極板E、陽極板Dが直にイオン交換膜7に接触して、通電時にイオン交換膜7が焦げるのを防止するためのものでもある。図1に示すスペーサSにはナイロン製の5mm角のネットをはじめとして、各種絶縁材製で、各種網目サイズのものを使用することができる。ネット以外のものであってもよい。   The spacers S provided on both surfaces of the ion exchange membrane 7 ensure the gaps G1 and G2, and the cathode plate E and the anode plate D are in direct contact with the ion exchange membrane 7 so that the ion exchange membrane 7 is burned when energized. It is also intended to prevent this. The spacer S shown in FIG. 1 may be made of various insulating materials such as nylon 5 mm square nets and various mesh sizes. It may be something other than the net.

陰極板E、陽極板Dはチタン製のエキスパンドメタル(通孔がある)の表面を白金メッキしたものが適するが、これ以外の材質、構造のものであってもよい。前記ターミナルT1はボルトを陰極板Eに、前記ターミナルT2はボルトを陽極板T2に夫々溶接固定されており、それらに螺合したナット13によりリード線を接続できるようにしてある。   The cathode plate E and anode plate D are suitably platinum-plated surfaces of titanium expanded metal (having through holes), but may be of other materials and structures. The terminal T1 is bolted to the cathode plate E and the terminal T2 is welded and fixed to the anode plate T2. The lead wire can be connected by a nut 13 screwed to the terminal T1.

(電解イオン水生成方法の実施形態)
本願発明の電解イオン水生成装置を使用して、電解イオン水生成するには次のようにすることができる。
(1)図1に示すように電解液タンク3を生成タンク2内に収容する。この場合、電解液タンク3は任意の固定具(図示しない)を使って生成タンク2の上周縁に係止するなどして固定する。
(2)生成タンク2内に原水(水道水)1を供給する。原水1が生成タンク2上方に表示されたLS付近まで達したら停止する。このとき、原水1の水面がイオン交換膜7の上端よりも高い位置にあることを確認する。原水1には純水、水道水、その他の液体を使用することができる。
(3)電解液タンク3の電解液貯留室4内に炭酸カリウム水溶液(電解質水溶液14)を供給する。このとき、炭酸カリウム水溶液の水面が、生成タンク2内の原水1の水面よりも高い位置にあることを確認する。また、電解液タンク3に取付けてある陰極板Eが生成タンク2内の原水1に接触(浸漬)するようにして、陰極板Eを原水1に、陽極板Dを電解液タンク3内の電解質水溶液に接触(浸漬)させる。前記イオン交換膜7は水を通さない性質のものであるため、電解液タンク3を生成タンク2内の原水1に浸漬しても電解質水溶液14と原水1は混ざることはない。電解質水溶液14には、炭酸カリウム水溶液、炭酸ナトリウム水溶液、炭酸水素ナトリウム水溶液、炭酸水素カリウム水溶液、重曹アルカリ塩などを溶解した水溶液等を使用することができる。
(4)図1の直流電源のマイナス極をターミナルT1を介して陰極板Eに、プラス極をターミナルT2を介して陽極板Dに接続する。
(5)前記接続状態で電源スイッチを入れて、陰極板E、陽極板D間に直流電流を供給する。直流電流が供給されると電気分解により電解液貯留室4内に生成されるカリウムイオンが前記イオン交換膜7を透過して生成タンク2側に入り、生成タンク2内に電解イオン水が生成される。
(6)生成された電解イオン水は生成タンク2に設けられたドレイン6から外部のタンクや容器等に取り出すことができる。
(7)電解イオン水を取り出した後の生成タンク2には新たに原水を入れる。電解液タンク3には必要に応じて電解質水溶液14を補給する。この状態で前記(4)〜(6)の作業を繰返して、バッチ方式で電解イオン水は生成することができる。
(Embodiment of electrolytic ion water generation method)
The electrolytic ionic water generation using the electrolytic ionic water generating apparatus of the present invention can be performed as follows.
(1) The electrolytic solution tank 3 is accommodated in the production tank 2 as shown in FIG. In this case, the electrolyte tank 3 is fixed by, for example, engaging the upper peripheral edge of the generation tank 2 using an arbitrary fixing tool (not shown).
(2) Supply raw water (tap water) 1 into the production tank 2. When the raw water 1 reaches the vicinity of the LS displayed above the generation tank 2, the operation is stopped. At this time, it is confirmed that the water surface of the raw water 1 is higher than the upper end of the ion exchange membrane 7. The raw water 1 can be pure water, tap water, or other liquid.
(3) A potassium carbonate aqueous solution (electrolyte aqueous solution 14) is supplied into the electrolytic solution storage chamber 4 of the electrolytic solution tank 3. At this time, it confirms that the water surface of potassium carbonate aqueous solution exists in the position higher than the water surface of the raw | natural water 1 in the production | generation tank 2. FIG. Further, the cathode plate E attached to the electrolyte tank 3 contacts (immerses) the raw water 1 in the production tank 2 so that the cathode plate E is in the raw water 1 and the anode plate D is the electrolyte in the electrolyte tank 3. Contact (immerse) in aqueous solution. Since the ion exchange membrane 7 does not allow water to pass through, the electrolyte aqueous solution 14 and the raw water 1 are not mixed even if the electrolytic solution tank 3 is immersed in the raw water 1 in the production tank 2. As the electrolyte aqueous solution 14, an aqueous solution in which a potassium carbonate aqueous solution, a sodium carbonate aqueous solution, a sodium hydrogen carbonate aqueous solution, a potassium hydrogen carbonate aqueous solution, a sodium bicarbonate alkali salt, or the like is dissolved can be used.
(4) Connect the negative pole of the DC power source of FIG. 1 to the cathode plate E via the terminal T1, and connect the positive pole to the anode plate D via the terminal T2.
(5) A power switch is turned on in the connected state, and a direct current is supplied between the cathode plate E and the anode plate D. When a direct current is supplied, potassium ions generated in the electrolytic solution storage chamber 4 by electrolysis pass through the ion exchange membrane 7 and enter the generation tank 2, and electrolytic ionic water is generated in the generation tank 2. The
(6) The generated electrolytic ionic water can be taken out from the drain 6 provided in the generation tank 2 to an external tank or container.
(7) Raw water is newly added to the production tank 2 after the electrolytic ion water is taken out. The electrolyte solution tank 3 is replenished with an aqueous electrolyte solution 14 as necessary. In this state, the operations of (4) to (6) can be repeated to generate electrolytic ionic water in a batch manner.

本願発明の電解イオン水生成装置は、環境を汚染しない洗浄水として、機械加工後の部品洗浄や農作物の農薬洗浄、室内の清掃、身体の洗浄などに広く用いられるが、特に各種機械の冷却水、塗装ブースの水洗水などに使用された汚れた水(pH値が酸性になり悪臭が発生した汚水)を原水として取り入れ、直接電気分解することによって、当該汚水のpH値を10〜12程度まで還元することができる。還元した水を洗浄機、各種機械、塗装ブース等の元のタンクに戻すことで、元のタンク内の水がpH5の酸性からpH10以上のアルカリ性に還元される。これにより、バクテリアが死滅してタンクの腐敗した環境が、悪臭が発生しないクリーンな環境に改善される。また、液交換の回数も減り、産業廃棄物量を大幅に削減することができる。   The electrolytic ionic water generating apparatus of the present invention is widely used as washing water that does not pollute the environment, such as washing parts after machining, pesticide washing of agricultural products, indoor cleaning, body washing, etc. Dirty water used for washing water in painting booths (sewage whose pH value became acidic and foul odor) was taken as raw water and directly electrolyzed. Can be reduced. By returning the reduced water to the original tank of a washing machine, various machines, a painting booth, etc., the water in the original tank is reduced from acidic at pH 5 to alkaline at pH 10 or higher. As a result, the environment where the bacteria are killed and the tank is rotted is improved to a clean environment where no bad odor is generated. In addition, the number of liquid exchanges is reduced, and the amount of industrial waste can be greatly reduced.

1 原水
2 生成タンク
3 電解液タンク
4 電解液貯留室
5 上面
6 ドレイン
7 イオン交換膜
8a、8b 保持具
9 上方取付け部
10a、10b 保持具
12 下方取付け部
13 ナット
14 電解質水溶液
A 電解槽
B イオン交換膜
B1、B2 ボルト
C 陰極室
D 陽極板
E 陰極板
F 陽極室
G 直流電源
G1、G2 隙間
H 流量調整弁
I タンク
J 出口配管
K 配管
L 保持板
N1、N2 ナット
P 循環ポンプ
S スペーサ
T1、T2 電極ターミナル
DESCRIPTION OF SYMBOLS 1 Raw water 2 Generation tank 3 Electrolyte tank 4 Electrolyte storage chamber 5 Upper surface 6 Drain 7 Ion exchange membrane 8a, 8b Holder 9 Upper attachment part 10a, 10b Holder 12 Lower attachment part 13 Nut 14 Electrolyte aqueous solution A Electrolysis tank B Ion Exchange membrane B1, B2 Bolt C Cathode chamber D Anode plate E Cathode plate F Anode chamber G DC power supply G1, G2 Gap H Flow rate adjusting valve I Tank J Outlet piping K Piping L Holding plate N1, N2 Nut P Circulation pump S Spacer T1, T2 electrode terminal

本願発明は、電解イオン水(アルカリイオン水、アルカリ性電解水)生成方法とその生成装置に関する。   The present invention relates to a method for producing electrolytic ionic water (alkali ion water, alkaline electrolyzed water) and a production apparatus therefor.

電解イオン水は洗浄効果に優れており、飲料水としても適することが知られており、排水されても地球環境に悪影響を与えない洗浄水或いは飲料水として注目されている。   Electrolytic ion water is known to be excellent in cleaning effect and suitable as drinking water, and has attracted attention as cleaning water or drinking water that does not adversely affect the global environment even if drained.

電解イオン水生成装置の一つとして電解イオン水生成装置(特許文献1)がある。この電解イオン水生成装置は図3に示すように電解槽Aがイオン交換膜Bで陰極室Cと陽極室Fに仕切られ、陰極室Cに陰極板Eが、陽極室Fに陽極板Dが配設され、陰極板Eに直流電源Gのマイナスが、陽極板Dに直流電源Gのプラスが接続されている。陰極室Cには流量調整弁Hを介して外部から原水(例えば純水や水道水)が連続して供給され、陽極室FにはタンクI内の電解質水溶液(例えば、炭酸カリウム水溶液や炭酸ナトリウム水容液)が循環ポンプPによって連続して供給されると、電気分解により生成されるカリウムイオンが前記イオン交換膜Bを透過して陰極室C側に入り、陰極室C内にアルカリ性電解水が生成され、生成されたアルカリ性電解水は陰極室Cに設けられた出口配管Jから排出される。一方、陽極室Fを通過してオーバーフローした電解質水溶液は、陽極室Fに設けられた戻り配管Kから電解質水溶液タンクIに戻る。   As one of the electrolytic ionic water generators, there is an electrolytic ionic water generator (Patent Document 1). As shown in FIG. 3, the electrolytic ionic water generating apparatus has an electrolytic cell A partitioned by an ion exchange membrane B into a cathode chamber C and an anode chamber F, a cathode plate E in the cathode chamber C, and an anode plate D in the anode chamber F. The negative plate of the direct current power source G is connected to the cathode plate E, and the positive plate of the direct current power source G is connected to the anode plate D. Raw water (for example, pure water or tap water) is continuously supplied from the outside to the cathode chamber C via the flow rate adjusting valve H, and the electrolyte solution (for example, potassium carbonate aqueous solution or sodium carbonate) in the tank I is supplied to the anode chamber F. When the aqueous solution is continuously supplied by the circulation pump P, potassium ions generated by electrolysis pass through the ion exchange membrane B and enter the cathode chamber C, and the alkaline electrolyzed water enters the cathode chamber C. Is generated, and the generated alkaline electrolyzed water is discharged from an outlet pipe J provided in the cathode chamber C. On the other hand, the electrolyte aqueous solution overflowing through the anode chamber F returns to the electrolyte aqueous solution tank I from the return pipe K provided in the anode chamber F.

特開2004−42025号公報JP 2004-42025 A

通常、イオン交換膜Bは図4のようにその両面に絶縁材製のメッシュ状のスペーサSが配置され、その外側に陰極板Eと陽極板Dが配置され、その両外側から保持板Lで保持され、陰極板Eに接続されているマイナス電極T1に直流電源のマイナスが、陽極板Dのプラス電極T2にプラス電位が印加されるようにしてある。供給される原水はイオン交換膜BとスペーサSと陰極板Eの間の隙間を通過し、電解質水溶液はイオン交換膜Bと陽極板DとスペーサSの間の隙間を通過する。   Usually, as shown in FIG. 4, the ion-exchange membrane B is provided with mesh-like spacers S made of an insulating material on both sides thereof, and a cathode plate E and an anode plate D are arranged on the outside thereof. The minus of the direct current power source is applied to the minus electrode T1 held and connected to the cathode plate E, and the plus potential is applied to the plus electrode T2 of the anode plate D. The supplied raw water passes through the gap between the ion exchange membrane B, the spacer S, and the cathode plate E, and the aqueous electrolyte solution passes through the gap between the ion exchange membrane B, the anode plate D, and the spacer S.

原水として水道水を使用した場合、水道水にはカルシウムやマグネシウムといった不純物が含まれているため、これら不純物が前記イオン交換膜B、スペーサS、陰極板Eに付着して固化し、それらの間の隙間が詰まって原水が通りにくくなり、通水量が減少するとか、これら固形物の影響で電極への通電が不十分になって、所望pH値の電解イオン水が得られないという難点がある。また、陽極側には生成中に酸素ガスが発生し、それが微細な気泡となって電解質水溶液中に溶存し、その気泡が電解質水溶液と共に狭い隙間に流れ込むため電気分解が阻害され、電解効率が低下し、電解イオン水の生成効率が低下するという難点もあった。また、陰極側には水素ガスが微細な気泡となって、イオン交換膜Bと陰極板EとスペーサSの隙間に発生するため電気分解が阻害され、電解効率が低下する。   When tap water is used as raw water, since tap water contains impurities such as calcium and magnesium, these impurities adhere to the ion exchange membrane B, spacer S, and cathode plate E and are solidified. There is a problem that the raw water cannot pass through due to clogging of the gap, and the amount of water flow decreases, or the current is not sufficiently energized to the electrode due to the influence of these solid substances, and electrolytic ionic water having a desired pH value cannot be obtained. . Also, oxygen gas is generated on the anode side during generation, which becomes fine bubbles and dissolves in the electrolyte aqueous solution, and the bubbles flow into the narrow gap together with the electrolyte aqueous solution, so that electrolysis is inhibited and electrolysis efficiency is improved. There also existed a difficulty that the production efficiency of electrolytic ion water fell. Moreover, since hydrogen gas becomes fine bubbles on the cathode side and is generated in the gaps between the ion exchange membrane B, the cathode plate E, and the spacer S, electrolysis is hindered and electrolysis efficiency is lowered.

水道水の代わりに純水を使用する場合、水道水を純水にする作業が必要になるため、時間、コストがかかるといった難点があった。   In the case of using pure water instead of tap water, it is necessary to make tap water pure water, and there is a problem that it takes time and cost.

本願発明の解決課題は、所望pH値のアルカリ性電解水を、効率良く、低コストで生成することのできる電解イオン水生成方法とその生成装置を提供することにある。   The problem to be solved by the present invention is to provide an electrolytic ion water generation method and an apparatus for generating the same, which can efficiently generate alkaline electrolyzed water having a desired pH value at low cost.

本願発明の電解イオン水生成方法は、生成タンク内に原水を貯留し、生成タンク内の原水内にイオン交換膜を備えた電解タンクを絶縁状態で浸漬し、電解タンク内に電解質水溶液を貯留し、前記イオン交換膜はその両面にメッシュ状のスペーサが配置され、夫々のスペーサの外側に、通孔が全面又はほぼ全面に開口された陰極板と陽極板が配置されて、スペーサと陰極板の間に陰極側隙間が形成され、スペーサと陽極板の間に陽極側隙間が形成され、そのイオン交換膜を電解質タンクに取付けることにより、前記イオン交換膜により前記生成タンク内の原水と電解タンク内の電解質水溶液を区画し、陰極板側を生成タンク内の原水と接触させて、前記原水が前記陰極板の通孔を通して前記陰極側隙間を通過し、電解質水溶液が前記陽極板の通孔を通して前記陽極側隙間を通過するようにし、前記陰極板に直流電源のマイナス側を、陽極板に直流電源のプラス側を接続して、両電極間に直流電圧を印加して前記原水と電解質水溶液を電気分解し、その電気分解により陽極側(電解タンク内)に生成される陽イオンが前記イオン交換膜を透過して陰極側(生成タンク内)に透過して、生成タンク内に電解イオン水を生成させ、生成タンク内に生成された電解イオン水を生成タンクから取り出し、その後に生成タンク内に新たに原水を貯留して、前記電気分解を行うことにより、生成タンク内に電解イオン水を繰返し生成できるようにしたものである。 Electrolytic ionized water production method of the present invention, the raw water reserved in generating tank, an electrolyte tank with an ion-exchange membrane in the raw water produced in the tank and immersed in an insulated state, the electrolyte solution in the electrolyte tank The ion-exchange membrane has mesh-like spacers disposed on both sides thereof, and a cathode plate and an anode plate having through holes opened on the entire surface or almost the entire surface are disposed on the outer sides of the spacers. cathode-side gap is formed between the plates, the spacers and the anode-side gap is formed on the anode plates, by mounting the ion exchange membrane to the electrolyte tank, by the ion exchange membrane of the raw water and the electrolyte in the tank of the product tank the electrolyte solution was partitioned, in contact with raw water in the product tank of the cathode plate side, the raw water is passed through the cathode-side gap through the through hole of said cathode plate, the electrolyte solution is the anode And through the hole to pass through the anode-side gap, the negative side of the DC power to the cathode plate, connect the positive side of the DC power supply to the anode plate, the raw water by applying a DC voltage between the electrodes an electrolyte solution electrolysis of, and transmitted to the electrolysis by anodic side (electrolyte tank) cations that are generated by passing through the ion exchange membrane on the cathode side (the product tank), generating tank The electrolytic ionic water is generated in the production tank, the electrolytic ionic water produced in the production tank is taken out from the production tank, and then the raw water is newly stored in the production tank, and the electrolysis is performed in the production tank. The electrolytic ion water can be repeatedly generated.

本願発明の電解イオン水生成装置は、原水を貯留できる生成タンクと、電解質水溶液を貯留できる電解液貯留室と、イオン交換膜を備えた電解タンクを備え、前記イオン交換膜の両面にメッシュ状の絶縁性のスペーサが配置され、夫々のスペーサの外側に通孔が開口された陰極板と陽極板が配置され、前記陽極板は電解液貯留室内の電解質水溶液と接触できるように電解液貯留室側に配置され、前記陰極板は生成タンク内の原水と接触できるように原水側に配置され、前記スペーサと陰極板の間に陰極側隙間が形成され、スペーサと陽極板の間に陽極側隙間が形成され、前記陰極板と陽極板の上端部が上側保持具で挟まれて電解質タンクに固定され、陰極板と陽極板の下端部が下側保持具で挟まれ電解質タンクに固定され、前記電解質タンクが前記生成タンク内原水内に絶縁状態で浸漬されて、前記生成タンク内の原水と電解質タンクの電解液貯留室内の電解質水溶液が前記イオン交換膜により区画され、前記原水が前記陰極板の通孔を通して前記陰極側隙間を通過でき、電解質水溶液が前記陽極板の通孔を通して前記陽極側隙間を通過でき、前記陰極板に直流電源のマイナス側を、陽極板に直流電源のプラス側を接続して、両電極間に直流電圧を印加することにより前記原水と電解質水溶液が電気分解され、その電気分解により陽極側(電解質タンク内)に生成される陽イオンが前記イオン交換膜を透過して陰極側(生成タンク内)に透過して、生成タンク内に電解イオン水を生成させることができ、前記生成タンク内に生成された電解イオン水を生成タンクから取り出し、その後に生成タンク内に新たに原水を貯留して前記電気分解を行うことにより、生成タンク内に電解イオン水を繰返し生成できるようにしたものである。 Electrolytic ion water generation apparatus of the present invention, a generating tank that can store the raw water, the electrolyte reservoir capable of storing an electrolyte solution comprising an electrolyte tank with an ion exchange membrane, a mesh-like on both surfaces of the ion-exchange membrane Insulating spacers are arranged, and a cathode plate and an anode plate having through holes are arranged outside the spacers, and the anode plate is in contact with the aqueous electrolyte solution in the electrolyte storage chamber. The cathode plate is arranged on the raw water side so as to be in contact with the raw water in the production tank, a cathode side gap is formed between the spacer and the cathode plate, and an anode side gap is formed between the spacer and the anode plate, The cathode plate and the anode plate are sandwiched between upper holders and fixed to the electrolyte tank, and the cathode and anode plates are sandwiched between lower holders and fixed to the electrolyte tank. Passing There are immersed in an insulated state in the raw water of the product tank, the electrolyte solution of the electrolyte solution storage chamber of the raw water and the electrolyte tank of the product tank is partitioned by the ion-exchange membrane, the raw water of the cathode plate The cathode side gap can be passed through the hole, and the aqueous electrolyte solution can pass through the anode side gap through the anode plate through hole. The negative side of the DC power source is connected to the cathode plate, and the positive side of the DC power source is connected to the anode plate. Then, by applying a DC voltage between both electrodes, the raw water and the electrolyte aqueous solution are electrolyzed, and the cation generated on the anode side (in the electrolyte tank) by the electrolysis permeates the ion exchange membrane and becomes the cathode. The electrolytic ionic water can be generated in the production tank through the side (in the production tank), and the electrolytic ionic water produced in the production tank is taken out from the production tank. By performing the electrolysis after newly to store the raw water to produce the tank is obtained by allowing repeatedly generating electrolytic ion water generation tank.

本願発明の電解イオン水生成装置は、前記電解イオン水生成装置の生成タンクと電解タンクの双方または一方を絶縁材製にして、生成タンクとその原水内に浸漬される電解タンクを絶縁状態にすることができる。 Electrolytic ionic water generator of the present invention, the generation tank of the electrolytic ion water generator and either or both of the electrolyte tank and the made of insulating material, the electrolyte tank insulated to be immersed in the product tank and the raw water in the Can be.

本願発明の電解イオン水生成装置は、前記電解イオン水生成装置において、電解イオン水生成装置のイオン交換膜と、そのイオン交換膜の両外側に配置されたスペーサと、それらスペーサの両外側に配置して当該イオン交換膜及びスペーサを挟んだ陽極板と陰極板一つに組み立てられたカートリッジ式部品であり、そのカートリッジ式部品が電解タンクに脱着可能とすることができる。 The electrolytic ionic water generating device of the present invention is the electrolytic ionic water generating device, wherein the electrolytic ionic water generating device includes an ion exchange membrane , spacers disposed on both outer sides of the ion exchange membrane , and disposed on both outer sides of the spacers. the ion-exchange membrane and the anode plate and the cathode plate sandwiching a spacer with are cartridge type component assembled together, it is possible that the cartridge-type parts are detachable to the electrolyte tank.

本願発明の電解イオン水生成装置は、前記電解イオン水生成装置において、電解質タンクがZ字状又はほぼZ字状であり、その上部が開口し、下端部側面に請求項4記載のカートリッジ式部品が縦向きに取付けられ、電解質タンクが生成タンク内の原水内に絶縁状態で浸漬されると、前記生成タンク内の原水と電解質タンクの電解液貯留室内の電解質水溶液が前記イオン交換膜により区画され、前記原水が前記陰極板の通孔を通して前記陰極側隙間を通過でき、電解質水溶液が前記陽極板の通孔を通して前記陽極側隙間を通過できるものとすることもできる。 The electrolytic ionic water generating apparatus according to the present invention is the cartridge type component according to claim 4 , wherein the electrolytic tank is Z-shaped or substantially Z-shaped in the electrolytic ionic water generating apparatus . Is installed vertically and the electrolyte tank is immersed in the raw water in the production tank in an insulated state, the raw water in the production tank and the aqueous electrolyte solution in the electrolyte storage chamber of the electrolyte tank are partitioned by the ion exchange membrane. The raw water can pass through the cathode side gap through the through hole of the cathode plate, and the electrolyte aqueous solution can pass through the anode side gap through the through hole of the anode plate .

本願発明の電解イオン水生成方法は次のような効果がある。
(1)原水を生成タンク内に、電解質水溶液を生成タンク内の電解タンク内に貯留して電気分解するので、電解イオン水を生成タンク内に必要量だけバッチ式で生成することができるので、生成タンク内の原水量と、電解タンク内の電解質水溶液の濃度が一定の場合、電気分解の時間を調節するだけで所望pHのアルカリ性電解水を生成することができる。
(2)原水も電解質水溶液も貯留させた状態で電気分解するので、イオン交換膜と電極の間の隙間を、原水と電解質水溶液を連続供給する連続式生成方法の場合よりも広くすることができ、原水も電解質水溶液も隙間を通過し易く、原水にカルシウムやマグネシウムなどが含まれている水道水であっても、電極やイオン交換膜にカルシウムやマグネシウムが付着しにくい。このため、電気分解の時間経過により電気分解効率が低下しにくい。また、前記隙間を広くすることにより、酸素ガスが陽極側に、水素ガスが陰極側に夫々気泡となって発生しても、それらが隙間から拡散するので気泡で閉塞されにくくなる。このため、電解イオン水の生産性が連続式に比して向上する。
(3)カルシウムやマグネシウムなどが付着しにくいので、定期掃除の期間を長くすることができ、メンテナンスが容易であり、定期掃除により頻繁に生成が中断されないので、電解イオン水の生産性も低下しない。
The electrolytic ionic water production method of the present invention has the following effects.
(1) to generate the tank raw water, since the electrolysis storing the electrolyte solution in the electrolyte tank in generating tank, can be generated in a batch only the amount required in the generation tank electrolytic ion water , the original amount of water produced in the tank, it is possible concentration of the electrolyte solution in the electrolyte tank to produce alkaline electrolytic water of a desired pH by simply adjusting the case of a constant, the electrolysis time.
(2) Since electrolysis is performed with both raw water and aqueous electrolyte solution stored, the gap between the ion exchange membrane and the electrode can be made wider than in the continuous production method in which raw water and aqueous electrolyte solution are continuously supplied. Both raw water and electrolyte aqueous solution easily pass through the gap, and even tap water in which calcium or magnesium is contained in the raw water hardly adheres to the electrode or ion exchange membrane. For this reason, electrolysis efficiency is unlikely to decrease with the passage of time of electrolysis. Further, by widening the gap, even if oxygen gas is generated as bubbles on the anode side and hydrogen gas is generated on the cathode side, they are diffused from the gap, so that they are not easily blocked by bubbles. For this reason, productivity of electrolytic ion water improves compared with a continuous type.
(3) Since calcium, magnesium, etc. are difficult to adhere, the period of regular cleaning can be extended, maintenance is easy, and production is not interrupted frequently by regular cleaning, so the productivity of electrolytic ionic water does not decrease .

本願発明の電解イオン水生成装置には次のような効果がある。
(1)原水を貯留できる生成タンクと、電解質水溶液を貯留できる電解タンクと、生成タンク内の原水と、その原水に浸漬した電解タンクの電解質水溶液を区画できるイオン交換膜を備えているので、所望pHのアルカリ性電解水を必要な量だけ、バッチ式で生成することができる。
(2)生成タンクに原水を貯留し、電解タンクに電解質水溶液を貯留して、電解イオン水を生成できるので、イオン交換膜と陰極板の隙間、イオン交換膜と陽極板の隙間を、広くして原水、電解質水溶液がそれら隙間を通過し易くすることができ、単位時間当たりの液体通過量が多くなり、両電極に接触する原水や電解質水溶液の総量が多くなるので、所望pHのアルカリ性電解水を、連続生成方式に比して短時間で生成でき、生成の生産性が高い。
(3)前記隙間を広くすることができるので、原水にカルシウムやマグネシウムなどが含まれていても、カルシウムやマグネシウムが電極や陽イオン交換膜に付着しにくくなり、隙間が閉塞し難くなり、電気分解効率を長時間維持することができ、アルカリ性電解水の生成効率の向上に資する。また、カルシウムやマグネシウムなどが付着しても、掃除やメンテナンスが容易であり、酸性水などで洗浄することで付着物を容易に取り除くことができる。定期清掃の期間を長くすることができ、メンテナンスが容易である。頻繁に定期点検する場合は、その都度、アルカリ性電解水の生成が一時的に停止されるが、その頻度が少なくなるため生産性も低下しない。更には、陽極側に酸素ガスの気泡、陰極側に水素ガスの気泡が発生しても、それら気泡で前記隙間が閉塞されにくくなるので、前記隙間を通過する電解質水溶液が遮断されにくくなり、電解イオン水の生産性が低下しにくい。
(4)電解イオン水をバッチ式で生成できるため、電圧値と電流値を一定にし、電解質水溶液の濃度を一定にすれば、通電時間を調節するだけで、所望のpH値のアルカリ性電解水を生成することができる。
(5)前記電解イオン水生成装置の生成タンクと電解タンクの双方または一方を絶縁材製にしたので、生成タンクとその原水内に浸漬される電解タンクを確実に絶縁することができる。
(6)電解イオン水生成装置のイオン交換膜と、イオン交換膜を挟んだ陽極板と陰極板を電解タンクに取付け、陽極板を電解タンクの内面側に、陰極板を電解タンクの外面側に配置すれば、イオン交換膜を電解タンクごと交換することができる。
(7)イオン交換膜と陽極板と陰極板を一つに組み立てられたカートリッジ式部品にして、電解タンクに脱着可能としてあるので、イオン交換膜の交換が容易になる。
The electrolytic ionic water generator of the present invention has the following effects.
(1) and generating a tank capable of storing raw water, an electrolyte tank that can store the electrolyte solution, and the raw water produced in the tank is provided with the ion-exchange membrane capable of partitioning the electrolyte solution of the electrolyte tank immersed in the raw water A necessary amount of alkaline electrolyzed water having a desired pH can be produced batchwise.
(2) storing the raw water to produce tanks, an electrolyte solution and stored in an electrolyte tank, it is possible to generate electrolytic ion water, ion-exchange membrane and the cathode plate of the gap, the gap between the ion exchange membrane and the anode plate, widely As a result, the raw water and aqueous electrolyte solution can easily pass through these gaps, the amount of liquid passing per unit time increases, and the total amount of raw water and aqueous electrolyte solution that contacts both electrodes increases. Water can be generated in a short time compared to the continuous production method, and the production productivity is high.
(3) Since the gap can be widened, even if calcium or magnesium is contained in the raw water, calcium or magnesium is less likely to adhere to the electrode or cation exchange membrane, and the gap is difficult to close. The decomposition efficiency can be maintained for a long time, which contributes to the improvement of the production efficiency of alkaline electrolyzed water. Moreover, even if calcium, magnesium, or the like adheres, cleaning and maintenance are easy, and the adhered matter can be easily removed by washing with acidic water or the like. Periodic cleaning can be extended and maintenance is easy. In the case of frequent periodic inspections, the production of alkaline electrolyzed water is temporarily stopped each time, but the frequency is reduced and productivity is not lowered. Further, even if oxygen gas bubbles are generated on the anode side and hydrogen gas bubbles are generated on the cathode side, the gap is not easily blocked by the bubbles, so that the aqueous electrolyte solution passing through the gap is not easily blocked. Ion water productivity is unlikely to decrease.
(4) Since electrolytic ionic water can be produced in a batch system, if the voltage value and current value are kept constant and the concentration of the aqueous electrolyte solution is kept constant, alkaline electrolyzed water having a desired pH value can be obtained simply by adjusting the energization time. Can be generated.
(5) the so produced tank of the electrolytic ion water generator and either or both of the electrolyte tank was made of insulating material, an electrolyte tank immersed generated tank and its raw water inside can be surely insulated.
(6) and the ion exchange membrane electrolytic ion water generator, attach the sandwiching cathode and anode plates of the ion exchange membrane to the electrolyte tank, the inner surface of the electrolyte tank anode plate, the electrolyte tank of the cathode plate by arranging the outer side, it can be replaced by an electrolyte tank ion exchange membrane.
(7) in the cartridge-type components assembled into one ion exchange membrane and the anode plate and the cathode plate, so are the detachable to the electrolyte tank, it facilitates the replacement of the ion exchange membrane.

本願発明の電解イオン水生成装置の一例を示す説明図。Explanatory drawing which shows an example of the electrolytic ion water production | generation apparatus of this invention. 図1のイオン交換膜部分の詳細図。FIG. 2 is a detailed view of the ion exchange membrane portion of FIG. 1. 従来の電解イオン水生成装置の一例を示す説明図。Explanatory drawing which shows an example of the conventional electrolytic ion water production | generation apparatus. 従来の電解イオン水生成装置に使用されるイオン交換膜の一例を示す説明図。Explanatory drawing which shows an example of the ion exchange membrane used for the conventional electrolytic ion water production | generation apparatus.

(電解イオン水生成装置の実施形態)
本願発明の電解イオン水生成装置の実施形態の一例について、図1、図2を参照しながら説明する。この実施形態の電解イオン水生成装置は、原水1を貯留できる生成タンク2と、生成タンク2とは別体の電解質タンク(電解液タンク3とを備えるものである。電解質タンク3は電解質水溶液を貯留できる電解液貯留室4を備えている。原水1は純水、水道水、地下水等のいずれでもよい。
(Embodiment of electrolytic ion water generator)
An example of an embodiment of the electrolytic ionic water generating apparatus of the present invention will be described with reference to FIGS. The electrolytic ionic water generator of this embodiment includes a generation tank 2 that can store raw water 1 and an electrolyte tank ( electrolyte tank ) 3 that is separate from the generation tank 2. The electrolyte tank 3 includes an electrolyte storage chamber 4 that can store an aqueous electrolyte solution. The raw water 1 may be pure water, tap water, ground water or the like.

前記生成タンク2は上面開口の箱型ケースであり、内部に原水1を貯留することができる。生成タンク2の上面5は開口している。生成タンク2の底面には生成された電解イオン水を抜き出すためのドレイン6が設けられている。生成タンク2には水量の上限及び下限が分かるようにリミットスケール(LS)が表示されている。この場合、水量がLSに達したことを知らせるための報知手段(図示しない)を設けることもできる。図1に示す生成タンク2は、10リットル用のものであるが、その容量は10リットルより多くても少なくてもよい。生成タンク2は絶縁材製のものが好ましい。生成タンク2は内部が視認できるように、透明のものとすることもできる。   The generation tank 2 is a box-shaped case having an upper opening, and can store raw water 1 therein. The upper surface 5 of the production tank 2 is open. A drain 6 for extracting generated electrolytic ion water is provided on the bottom surface of the generation tank 2. A limit scale (LS) is displayed in the generation tank 2 so that the upper limit and the lower limit of the amount of water can be understood. In this case, notifying means (not shown) for notifying that the amount of water has reached LS can be provided. The production tank 2 shown in FIG. 1 is for 10 liters, but the capacity may be more or less than 10 liters. The production tank 2 is preferably made of an insulating material. The generation tank 2 may be transparent so that the inside can be visually confirmed.

電解質タンク3はZ字状であり、上端と側面が開口しており、その側面開口部に陽イオン交換膜(イオン交換膜)7が取付けられている。この電解タンク3はその周壁とイオン交換膜7により囲われた電解液貯留室4が形成されている。電解質タンク3も絶縁材製のものが好ましい。また、内部の状態を視認可能な透明のものとすることもできる。図1に示す電解タンク3の形状は一例であり、これ以外の形状であってもよい。電解質タンク3の形状、サイズは任意に変更することができる。 The electrolyte tank 3 is Z-shaped and has an upper end and a side opening, and a cation exchange membrane (ion exchange membrane) 7 is attached to the side opening. The electrolyte tank 3 electrolyte reservoir 4 surrounded by the peripheral wall and the ion exchange membrane 7 is formed. The electrolyte tank 3 is also preferably made of an insulating material. Moreover, it can also be a transparent thing which can visually recognize an internal state. The shape of the electrolyte tank 3 shown in FIG. 1 is an example, it may be other shapes. The shape and size of the electrolyte tank 3 can be arbitrarily changed.

陽イオン交換膜7には既存のものとか新たなものを使用することができる。イオン交換膜7は前記生成タンク2と電解タンク3の電解液貯留室4とを区画するものであり、水は通さず陽イオンのみを通す性質を有する交換膜である。イオン交換膜7には既存のもの又は新規のものを使用することができ、例えば、旭硝子株式会社製の「セレミオン」(登録商標)や、デュポン株式会社製の交換膜等を使用することができる。 As the cation exchange membrane 7, an existing one or a new one can be used. Ion-exchange membrane 7 is intended to partition the electrolytic solution storage chamber 4 of the product tank 2 and the electrolyte tank 3, water is exchange membrane having a property of passing only cations not through. As the ion exchange membrane 7, an existing one or a new one can be used. For example, “Celemion” (registered trademark) manufactured by Asahi Glass Co., Ltd. or an exchange membrane manufactured by DuPont Co., Ltd. can be used. .

イオン交換膜7は図2のように、その両面に絶縁材製のメッシュ状のスペーサSが配置され、その外側に陰極板Eと陽極板Dが配置され、陰極板Eと陽極板Dの上端部が二つの保持具8a、8bで挟まれそれら保持具8a、8bと電解質タンク3の上方取付け部9がボルトB1とナットN1で締め付けられて電解質タンク3の上方取付け部9に固定され、陰極板Eと陽極板Dの下端部が二つの保持具10a、10bで挟まれ、それら保持具10a、10bと電解質タンク3の下方取付け部12がボルトB2とナットN2で締め付けられて電解質タンク3の下方取付け部12に固定されている。前記陰極板Eには螺子式の陰極ターミナルT1が、陽極板Dには螺子式の陽極ターミナルT2が取付けられている。前記イオン交換膜7と陰極板Eの間にはスペーサSによって陰極側隙間G1が形成され、前記イオン交換膜7と陽極板Dの間にはスペーサSによって陽極側隙間G2が形成されており、陰極側隙間G1内を原水が、陽極側隙間G2内を電解質水溶液が通過できるようにしてある。保持具8a、8b、10a、10bはABS樹脂製、それ以外の樹脂製とすることができる。   As shown in FIG. 2, the ion-exchange membrane 7 has insulating mesh mesh spacers S disposed on both sides thereof, a cathode plate E and an anode plate D disposed on the outer sides thereof, and upper ends of the cathode plate E and the anode plate D. The part is sandwiched between two holders 8a and 8b, and the upper attachment part 9 of the holders 8a and 8b and the electrolyte tank 3 is fastened with bolts B1 and nuts N1 and fixed to the upper attachment part 9 of the electrolyte tank 3, and the cathode The lower end portions of the plate E and the anode plate D are sandwiched between two holders 10a and 10b, and the lower mounting portions 12 of the holders 10a and 10b and the electrolyte tank 3 are tightened with bolts B2 and nuts N2, and the electrolyte tank 3 It is fixed to the lower mounting portion 12. A screw type cathode terminal T1 is attached to the cathode plate E, and a screw type anode terminal T2 is attached to the anode plate D. A cathode-side gap G1 is formed by a spacer S between the ion exchange membrane 7 and the cathode plate E, and an anode-side gap G2 is formed by the spacer S between the ion-exchange membrane 7 and the anode plate D. The raw water can pass through the cathode side gap G1, and the aqueous electrolyte solution can pass through the anode side gap G2. The holders 8a, 8b, 10a, and 10b can be made of ABS resin and other resins.

イオン交換膜7の両面に設けられたスペーサSは前記隙間G1、G2を確保すると共に、陰極板E、陽極板Dが直にイオン交換膜7に接触して、通電時にイオン交換膜7が焦げるのを防止するためのものでもある。図1に示すスペーサSにはナイロン製の5mm角のネットをはじめとして、各種絶縁材製で、各種網目サイズのものを使用することができる。ネット以外のものであってもよい。   The spacers S provided on both surfaces of the ion exchange membrane 7 ensure the gaps G1 and G2, and the cathode plate E and the anode plate D are in direct contact with the ion exchange membrane 7 so that the ion exchange membrane 7 is burned when energized. It is also intended to prevent this. The spacer S shown in FIG. 1 may be made of various insulating materials such as nylon 5 mm square nets and various mesh sizes. It may be something other than the net.

陰極板E、陽極板Dはチタン製のエキスパンドメタル(通孔がある)の表面を白金メッキしたものが適するが、これ以外の材質、構造のものであってもよい。前記ターミナルT1はボルトを陰極板Eに、前記ターミナルT2はボルトを陽極板T2に夫々溶接固定されており、それらに螺合したナット13によりリード線を接続できるようにしてある。   The cathode plate E and anode plate D are suitably platinum-plated surfaces of titanium expanded metal (having through holes), but may be of other materials and structures. The terminal T1 is bolted to the cathode plate E and the terminal T2 is welded and fixed to the anode plate T2. The lead wire can be connected by a nut 13 screwed to the terminal T1.

(電解イオン水生成方法の実施形態)
本願発明の電解イオン水生成装置を使用して、電解イオン水生成するには次のようにすることができる。
(1)図1に示すように電解タンク3を生成タンク2内に収容する。この場合、電解タンク3は任意の固定具(図示しない)を使って生成タンク2の上周縁に係止するなどして固定する。
(2)生成タンク2内に原水(水道水)1を供給する。原水1が生成タンク2上方に表示されたLS付近まで達したら停止する。このとき、原水1の水面がイオン交換膜7の上端よりも高い位置にあることを確認する。原水1には純水、水道水、その他の液体を使用することができる。
(3)電解タンク3の電解液貯留室4内に炭酸カリウム水溶液(電解質水溶液14)を供給する。このとき、炭酸カリウム水溶液の水面が、生成タンク2内の原水1の水面よりも高い位置にあることを確認する。また、電解タンク3に取付けてある陰極板Eが生成タンク2内の原水1に接触(浸漬)するようにして、陰極板Eを原水1に、陽極板Dを電解タンク3内の電解質水溶液に接触(浸漬)させる。前記イオン交換膜7は水を通さない性質のものであるため、電解タンク3を生成タンク2内の原水1に浸漬しても電解質水溶液14と原水1は混ざることはない。電解質水溶液14には、炭酸カリウム水溶液、炭酸ナトリウム水溶液、炭酸水素ナトリウム水溶液、炭酸水素カリウム水溶液、重曹アルカリ塩などを溶解した水溶液等を使用することができる。
(4)図1の直流電源のマイナス極をターミナルT1を介して陰極板Eに、プラス極をターミナルT2を介して陽極板Dに接続する。
(5)前記接続状態で電源スイッチを入れて、陰極板E、陽極板D間に直流電流を供給する。直流電流が供給されると電気分解により電解液貯留室4内に生成されるカリウムイオンが前記イオン交換膜7を透過して生成タンク2側に入り、生成タンク2内に電解イオン水が生成される。
(6)生成された電解イオン水は生成タンク2に設けられたドレイン6から外部のタンクや容器等に取り出すことができる。
(7)電解イオン水を取り出した後の生成タンク2には新たに原水を入れる。電解タンク3には必要に応じて電解質水溶液14を補給する。この状態で前記(4)〜(6)の作業を繰返して、バッチ方式で電解イオン水は生成することができる。
(Embodiment of Electrolytic Ionized Water Generation Method)
The electrolytic ionic water generation using the electrolytic ionic water generating apparatus of the present invention can be performed as follows.
(1) accommodated in the generating tank 2 electrolyte tank 3 as shown in FIG. In this case, the electrolyte tank 3 is fixed, such as by engaging the periphery on the product tank 2 with any of the fixture (not shown).
(2) Supply raw water (tap water) 1 into the production tank 2. When the raw water 1 reaches the vicinity of the LS displayed above the generation tank 2, the operation is stopped. At this time, it is confirmed that the water surface of the raw water 1 is higher than the upper end of the ion exchange membrane 7. The raw water 1 can be pure water, tap water, or other liquid.
(3) supplying an aqueous potassium carbonate solution (electrolyte solution 14) in the electrolyte storage chamber 4 of the electrolyte tank 3. At this time, it confirms that the water surface of potassium carbonate aqueous solution exists in the position higher than the water surface of the raw | natural water 1 in the production | generation tank 2. FIG. The electrolyte tank 3 mounted Aru cathode plate E is in contact with the raw water 1 in the product tank 2 so as to (immersion), a cathode plate E in the raw water 1, the electrolyte of the anode plate D electrolyte tank 3 Contact (immerse) in aqueous solution. The ion exchange membrane 7 because it is of a nature that water impervious, electrolyte solution 14 and the raw water 1 be immersed in the raw water 1 in generating tank 2 electrolyte tank 3 will not be mixed. As the electrolyte aqueous solution 14, an aqueous solution in which a potassium carbonate aqueous solution, a sodium carbonate aqueous solution, a sodium hydrogen carbonate aqueous solution, a potassium hydrogen carbonate aqueous solution, a sodium bicarbonate alkali salt, or the like is dissolved can be used.
(4) Connect the negative pole of the DC power source of FIG. 1 to the cathode plate E via the terminal T1, and connect the positive pole to the anode plate D via the terminal T2.
(5) A power switch is turned on in the connected state, and a direct current is supplied between the cathode plate E and the anode plate D. When a direct current is supplied, potassium ions generated in the electrolytic solution storage chamber 4 by electrolysis pass through the ion exchange membrane 7 and enter the generation tank 2, and electrolytic ionic water is generated in the generation tank 2. The
(6) The generated electrolytic ionic water can be taken out from the drain 6 provided in the generation tank 2 to an external tank or container.
(7) Raw water is newly added to the production tank 2 after the electrolytic ion water is taken out. To replenish the electrolyte solution 14 if necessary to the electrolyte tank 3. In this state, the operations of (4) to (6) can be repeated to generate electrolytic ionic water in a batch manner.

本願発明の電解イオン水生成装置は、環境を汚染しない洗浄水として、機械加工後の部品洗浄や農作物の農薬洗浄、室内の清掃、身体の洗浄などに広く用いられるが、特に各種機械の冷却水、塗装ブースの水洗水などに使用された汚れた水(pH値が酸性になり悪臭が発生した汚水)を原水として取り入れ、直接電気分解することによって、当該汚水のpH値を10〜12程度まで還元することができる。還元した水を洗浄機、各種機械、塗装ブース等の元のタンクに戻すことで、元のタンク内の水がpH5の酸性からpH10以上のアルカリ性に還元される。これにより、バクテリアが死滅してタンクの腐敗した環境が、悪臭が発生しないクリーンな環境に改善される。また、液交換の回数も減り、産業廃棄物量を大幅に削減することができる。   The electrolytic ionic water generating apparatus of the present invention is widely used as washing water that does not pollute the environment, such as washing parts after machining, pesticide washing of agricultural products, indoor cleaning, body washing, etc. Dirty water used for washing water in painting booths (sewage whose pH value became acidic and foul odor) was taken as raw water and directly electrolyzed. Can be reduced. By returning the reduced water to the original tank of a washing machine, various machines, a painting booth, etc., the water in the original tank is reduced from acidic at pH 5 to alkaline at pH 10 or higher. As a result, the environment where the bacteria are killed and the tank is rotted is improved to a clean environment where no bad odor is generated. In addition, the number of liquid exchanges is reduced, and the amount of industrial waste can be greatly reduced.

1 原水
2 生成タンク
3 電解タンク
4 電解液貯留室
5 上面
6 ドレイン
7 イオン交換膜
8a、8b 保持具
9 上方取付け部
10a、10b 保持具
12 下方取付け部
13 ナット
14 電解質水溶液
A 電解槽
B イオン交換膜
B1、B2 ボルト
C 陰極室
D 陽極板
E 陰極板
F 陽極室
G 直流電源
G1、G2 隙間
H 流量調整弁
I タンク
J 出口配管
K 配管
L 保持板
N1、N2 ナット
P 循環ポンプ
S スペーサ
T1、T2 電極ターミナル
1 raw water 2 generation tank 3 electrolyte tank 4 electrolyte reservoir 5 top 6 drain 7 ion exchange membrane 8a, 8b holder 9 upper mounting portion 10a, 10b holder 12 lower mounting portion 13 nut 14 electrolyte solution A electrolytic cell B ions Exchange membrane B1, B2 Bolt C Cathode chamber D Anode plate E Cathode plate F Anode chamber G DC power supply G1, G2 Gap H Flow rate adjusting valve I Tank J Outlet piping K Piping L Holding plate N1, N2 Nut P Circulation pump S Spacer T1, T2 electrode terminal

Claims (5)

生成タンク内に原水を貯留し、生成タンク内の原水内に電解液タンクを絶縁状態で浸漬し、電解液タンク内に電解質水溶液を貯留し、陰極板と陽極板に挟まれたイオン交換膜を生成タンク内に配置して生成タンク内の原水と電解液タンク内の電解質水溶液を区画し、陰極板側を生成タンク内の原水と接触させ、陽極板側を電解液タンク内の電解質水溶液と接触させ、陰極板に直流電源のマイナス側を陽極板に直流電源のプラス側を接続して、両電極間に直流電圧を印加して前記原水と電解質水溶液を電気分解し、その電気分解により陽極側(電解液タンク内)に生成される陽イオンが前記イオン交換膜を透過して陰極側(生成タンク内)に透過して、生成タンク内に電解イオン水を生成させ、生成タンク内に生成された電解イオン水を生成タンクから取り出し、その後に生成タンク内に新たに原水を貯留して、前記電気分解を行うことにより、生成タンク内に電解イオン水を繰返し生成できるようにしたことを特徴とする電解イオン水生成方法。   The raw water is stored in the production tank, the electrolyte tank is immersed in the raw water in the production tank in an insulated state, the aqueous electrolyte solution is stored in the electrolytic tank, and an ion exchange membrane sandwiched between the cathode plate and the anode plate is provided. Place in the production tank to partition the raw water in the production tank and the electrolyte aqueous solution in the electrolyte tank, contact the cathode plate side with the raw water in the production tank, and contact the anode plate side with the aqueous electrolyte solution in the electrolyte tank The negative side of the DC power source is connected to the cathode plate and the positive side of the DC power source is connected to the anode plate, and a DC voltage is applied between the electrodes to electrolyze the raw water and the aqueous electrolyte solution. The cations generated in the electrolyte tank permeate the ion exchange membrane and permeate the cathode side (in the production tank) to produce electrolytic ionic water in the production tank and are produced in the production tank. Electrolytic ionic water produced The electrolytic ionic water generation method is characterized in that after the raw water is newly stored in the production tank and then electrolyzed, the electrolytic ionic water can be repeatedly produced in the production tank. . 原水を貯留できる生成タンクと、電解質水溶液を貯留できる電解液貯留室を備えた電解液タンクと、イオン交換膜と、イオン交換膜を挟んだ陽極板と陰極板を備え、前記電解液タンクは前記生成タンク内の原水内に浸漬でき、前記イオン交換膜は生成タンク内の原水と電解液タンクの電解液貯留室内の電解質水溶液を区画でき、前記陽極板は電解液貯留室内の電解質水溶液と接触できるように電解液貯留室側に配置され、前記陰極板は生成タンク内の原水と接触できるように原水側に配置され、前記生成タンクとその原水内に浸漬される電解液タンクが絶縁されたことを特徴とする電解イオン水生成装置。   A production tank capable of storing raw water, an electrolyte tank including an electrolyte storage chamber capable of storing an aqueous electrolyte solution, an ion exchange membrane, an anode plate and a cathode plate sandwiching the ion exchange membrane, and the electrolyte tank includes It can be immersed in the raw water in the production tank, the ion exchange membrane can partition the raw water in the production tank and the aqueous electrolyte solution in the electrolytic solution storage chamber, and the anode plate can be in contact with the electrolytic aqueous solution in the electrolytic solution storage chamber The cathode plate is arranged on the raw water side so as to be in contact with the raw water in the production tank, and the production tank and the electrolytic solution tank immersed in the raw water are insulated. An electrolytic ionic water generator characterized by the above. 請求項2記載の電解イオン水生成装置において、生成タンクと電解液タンクの双方または一方を絶縁材製にして、生成タンクとその原水内に浸漬される電解液タンクを絶縁できるようにしたことを特徴とする電解イオン水生成装置。   The electrolytic ionic water generator according to claim 2, wherein both or one of the production tank and the electrolytic solution tank is made of an insulating material so that the production tank and the electrolytic solution tank immersed in the raw water can be insulated. Electrolytic ionic water generator characterized by the above. 請求項2又は請求項3記載の電解イオン水生成装置において、電解イオン水生成装置のイオン交換膜と、イオン交換膜を挟んだ陽極板と陰極板を電解液タンクに取付け、陽極板を電解液タンクの内面側に、陰極板を電解液タンクの外面側に配置したことを特徴とする電解イオン水生成装置。   4. The electrolytic ionic water generator according to claim 2 or 3, wherein the ion exchange membrane of the electrolytic ionic water generator, an anode plate and a cathode plate sandwiching the ion exchange membrane are attached to an electrolyte tank, and the anode plate is an electrolyte solution. An electrolytic ionic water generating apparatus, wherein a cathode plate is disposed on an outer surface side of an electrolyte solution tank on an inner surface side of the tank. 請求項2乃至請求項4のいずれかに記載の電解イオン水生成装置において、電解イオン水生成装置のイオン交換膜と陽極板と陰極板を一つに組み立てられたカートリッジ式部品にして、電解液タンクに脱着可能としたことを特徴とする電解イオン水生成装置。   5. The electrolytic ionic water generating device according to claim 2, wherein an ion exchange membrane, an anode plate, and a cathode plate of the electrolytic ionic water generating device are combined into a cartridge type part, and the electrolytic solution An electrolytic ionic water generating device characterized by being detachable from a tank.
JP2010182952A 2010-08-18 2010-08-18 Electrolytic ion water generator Active JP4967050B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010182952A JP4967050B2 (en) 2010-08-18 2010-08-18 Electrolytic ion water generator
CN201110091726.7A CN102372341B (en) 2010-08-18 2011-04-13 Device for generating electrolytic ionized water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010182952A JP4967050B2 (en) 2010-08-18 2010-08-18 Electrolytic ion water generator

Publications (2)

Publication Number Publication Date
JP2012040489A true JP2012040489A (en) 2012-03-01
JP4967050B2 JP4967050B2 (en) 2012-07-04

Family

ID=45791654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010182952A Active JP4967050B2 (en) 2010-08-18 2010-08-18 Electrolytic ion water generator

Country Status (2)

Country Link
JP (1) JP4967050B2 (en)
CN (1) CN102372341B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016114372A1 (en) * 2015-01-14 2016-07-21 株式会社 東芝 Electrolyzed water generating device, electrode unit, and electrolyzed water generating method
JP6448043B1 (en) * 2018-06-26 2019-01-09 株式会社Eプラン Electrolytic ionic water generation method and electrolytic ionic water generation apparatus
KR20190067281A (en) * 2016-08-31 2019-06-17 나노플러스 엘티디. Apparatus for generating nano electrolytic ionized water
JP7097652B1 (en) * 2021-07-12 2022-07-08 株式会社Eプラン Inactivating agent for SARS-CoV-2 and method of inactivating SARS-CoV-2

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6057267B2 (en) 2014-07-29 2017-01-11 株式会社Eプラン Electrolytic ionic water generation method and electrolytic ionic water generation device
CN111035956A (en) * 2018-10-15 2020-04-21 内蒙古伊利实业集团股份有限公司 Plant extract and preparation method thereof
CN109455797A (en) * 2018-12-29 2019-03-12 东莞职业技术学院 A kind of non-preparation facilities and preparation method thereof for drinking strong basicity electrolytic ionic water
EP3918129B1 (en) 2019-01-31 2024-04-24 Ecolab USA Inc. Controlling water levels and detergent concentration in a wash cycle
US11459692B2 (en) 2019-01-31 2022-10-04 Ecolab Usa Inc. Laundry machine kit to enable control of water levels, recirculation, and spray of chemistry
WO2020160429A1 (en) 2019-01-31 2020-08-06 Ecolab Usa Inc. Controller for a rinse water reuse system and methods of use
CN117800538A (en) * 2024-01-24 2024-04-02 南京洪荒工业智能装备研究院有限公司 Special water generating device for ship surface treatment and working method thereof

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59147529U (en) * 1983-03-24 1984-10-02 株式会社サンシヨ− Multipurpose ion generator
JPS61101296A (en) * 1984-10-20 1986-05-20 Tatsuo Okazaki Apparatus for sterilizing potable water
JPH03224680A (en) * 1990-01-31 1991-10-03 Kyoei Kogyo Kk Electrolytic magnetization method of water and device therefor
JPH1043764A (en) * 1996-08-06 1998-02-17 First Ocean Kk Electrode for electrolizing water and sterilizing method of water using the same
JPH11100688A (en) * 1997-09-26 1999-04-13 First Ocean Kk Water electrolysis apparatus and water electrolysis method
JP2000093966A (en) * 1998-07-21 2000-04-04 Toto Ltd Electrolytic apparatus
JP2003034889A (en) * 2001-07-24 2003-02-07 Chemicoat & Co Ltd Method for electrolysis in device for generating strong- electrolyzed water
JP2003053344A (en) * 2001-08-10 2003-02-25 Miura Denshi Kk Electrolyzed water forming device for empty bottle and method of manufacturing electrolyzed water for empty bottle
JP2005152867A (en) * 2003-11-25 2005-06-16 Mututry:Kk Electrolytic water manufacturing means
JP2006068719A (en) * 2004-09-03 2006-03-16 Mututry:Kk Electrode unit in electrolytic bath
JP2006322053A (en) * 2005-05-20 2006-11-30 Yoichi Sano Electrode for water electrolysis
JP2006346672A (en) * 2005-05-20 2006-12-28 Yoichi Sano Batch-type apparatus for producing acidic electrolytic water and method using the same
WO2011096503A1 (en) * 2010-02-08 2011-08-11 Ishii Yoshihisa Electrode structure for device for yielding aqueous solution of hypochlorous acid or the like

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1097560C (en) * 1995-12-27 2003-01-01 日本恩迪克股份有限公司 Device for producing electrolytic water
CN1272256C (en) * 2004-10-11 2006-08-30 哈尔滨工业大学 Electroplating wastewater on-line retracting device for realizing clean production
JP4249693B2 (en) * 2004-11-25 2009-04-02 本田技研工業株式会社 Electrolyzer for electrolyzed water generator
KR100687789B1 (en) * 2005-04-27 2007-03-02 위니아만도 주식회사 Electrolytic cell, ion water purifier employing the same, and method for cleaning electrolytic cell
KR101471667B1 (en) * 2008-04-29 2014-12-10 코웨이 주식회사 A Soft Water Apparatus

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59147529U (en) * 1983-03-24 1984-10-02 株式会社サンシヨ− Multipurpose ion generator
JPS61101296A (en) * 1984-10-20 1986-05-20 Tatsuo Okazaki Apparatus for sterilizing potable water
JPH03224680A (en) * 1990-01-31 1991-10-03 Kyoei Kogyo Kk Electrolytic magnetization method of water and device therefor
JPH1043764A (en) * 1996-08-06 1998-02-17 First Ocean Kk Electrode for electrolizing water and sterilizing method of water using the same
JPH11100688A (en) * 1997-09-26 1999-04-13 First Ocean Kk Water electrolysis apparatus and water electrolysis method
JP2000093966A (en) * 1998-07-21 2000-04-04 Toto Ltd Electrolytic apparatus
JP2003034889A (en) * 2001-07-24 2003-02-07 Chemicoat & Co Ltd Method for electrolysis in device for generating strong- electrolyzed water
JP2003053344A (en) * 2001-08-10 2003-02-25 Miura Denshi Kk Electrolyzed water forming device for empty bottle and method of manufacturing electrolyzed water for empty bottle
JP2005152867A (en) * 2003-11-25 2005-06-16 Mututry:Kk Electrolytic water manufacturing means
JP2006068719A (en) * 2004-09-03 2006-03-16 Mututry:Kk Electrode unit in electrolytic bath
JP2006322053A (en) * 2005-05-20 2006-11-30 Yoichi Sano Electrode for water electrolysis
JP2006346672A (en) * 2005-05-20 2006-12-28 Yoichi Sano Batch-type apparatus for producing acidic electrolytic water and method using the same
WO2011096503A1 (en) * 2010-02-08 2011-08-11 Ishii Yoshihisa Electrode structure for device for yielding aqueous solution of hypochlorous acid or the like

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016114372A1 (en) * 2015-01-14 2016-07-21 株式会社 東芝 Electrolyzed water generating device, electrode unit, and electrolyzed water generating method
KR20190067281A (en) * 2016-08-31 2019-06-17 나노플러스 엘티디. Apparatus for generating nano electrolytic ionized water
KR101990526B1 (en) * 2016-08-31 2019-06-18 나노플러스 엘티디. Apparatus for generating nano electrolytic ionized water
JP6448043B1 (en) * 2018-06-26 2019-01-09 株式会社Eプラン Electrolytic ionic water generation method and electrolytic ionic water generation apparatus
WO2020003654A1 (en) 2018-06-26 2020-01-02 株式会社Eプラン Electrolytic ion water generation method, and electrolytic ion water generating apparatus
JP2020000973A (en) * 2018-06-26 2020-01-09 株式会社Eプラン Method of producing electrolytic ionic water, and device of producing electrolytic ionic water
JP7097652B1 (en) * 2021-07-12 2022-07-08 株式会社Eプラン Inactivating agent for SARS-CoV-2 and method of inactivating SARS-CoV-2
WO2023286128A1 (en) * 2021-07-12 2023-01-19 株式会社Eプラン Virus inactivating agent and virus inactivation method

Also Published As

Publication number Publication date
CN102372341A (en) 2012-03-14
JP4967050B2 (en) 2012-07-04
CN102372341B (en) 2014-02-26

Similar Documents

Publication Publication Date Title
JP4967050B2 (en) Electrolytic ion water generator
EP2245693B1 (en) Device and method for performing a reverse electrodialysis process
JP6057267B2 (en) Electrolytic ionic water generation method and electrolytic ionic water generation device
JP2012081448A (en) Sterilized water making apparatus, and method for making sterilized water
CN101472846A (en) Device for electrochemical water preparation
KR20130110359A (en) Seawater electrolytic apparatus
JP2010125353A (en) Water softening method and water softener
JP4394941B2 (en) Electrolytic ozonizer
RU153346U1 (en) ELECTROLYTIC PLANT FOR PRODUCING A GAS MIXTURE OF HYDROGEN AND OXYGEN
JP6448043B1 (en) Electrolytic ionic water generation method and electrolytic ionic water generation apparatus
JP2001137850A (en) Electrolysis method of water and produced water
CN214734714U (en) Electrolytic tank and device for preparing metal ion-free EOW
CN214936280U (en) Sterilization device of water treatment equipment and water treatment equipment with sterilization device
CN205061633U (en) Ion water degerming disinfection formula water dispenser
JP4685838B2 (en) Electrolyzed water production apparatus, electrolyzed water production method, and electrolyzed water
CN101479197B (en) Method of purifying water and apparatus therefor
JP6675112B2 (en) Electrolysis raw water storage type electrolyzer
CN202440350U (en) Device for separating tap water by electrolysis
JPS6283485A (en) Diaphragmless direct electrolysis method for fresh water
KR200309987Y1 (en) Electrolysis apparatus
JP2001246381A (en) Method and device for manufacturing alkaline ionized water
CN213171879U (en) Integrated sodium hypochlorite disinfection equipment
JP2016007603A (en) Generator of electrolytic water
KR20100073230A (en) Electrolyzor for generating ion water
KR20130116351A (en) Cooling water circulation device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120402

R150 Certificate of patent or registration of utility model

Ref document number: 4967050

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250