JP2012039011A - Electrostatic chuck and manufacturing method of the same - Google Patents
Electrostatic chuck and manufacturing method of the same Download PDFInfo
- Publication number
- JP2012039011A JP2012039011A JP2010179685A JP2010179685A JP2012039011A JP 2012039011 A JP2012039011 A JP 2012039011A JP 2010179685 A JP2010179685 A JP 2010179685A JP 2010179685 A JP2010179685 A JP 2010179685A JP 2012039011 A JP2012039011 A JP 2012039011A
- Authority
- JP
- Japan
- Prior art keywords
- power supply
- supply terminal
- terminal
- electrostatic chuck
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 21
- 229910052751 metal Inorganic materials 0.000 claims abstract description 21
- 239000002184 metal Substances 0.000 claims abstract description 20
- 230000002093 peripheral effect Effects 0.000 claims abstract description 4
- 239000000463 material Substances 0.000 claims description 53
- 239000011810 insulating material Substances 0.000 claims description 18
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 17
- 238000001179 sorption measurement Methods 0.000 claims description 8
- 239000007769 metal material Substances 0.000 claims description 4
- 238000000034 method Methods 0.000 abstract description 20
- 238000010521 absorption reaction Methods 0.000 abstract 1
- 239000012774 insulation material Substances 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 104
- 238000010586 diagram Methods 0.000 description 7
- 239000004065 semiconductor Substances 0.000 description 6
- 230000005611 electricity Effects 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 230000000644 propagated effect Effects 0.000 description 4
- 238000005219 brazing Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 238000005304 joining Methods 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- 229910052582 BN Inorganic materials 0.000 description 2
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- 239000002156 adsorbate Substances 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000012777 electrically insulating material Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000007751 thermal spraying Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
Landscapes
- Jigs For Machine Tools (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
Abstract
Description
本発明は、例えば、半導体製造装置において各種電気絶縁性基板を静電吸着する用途に用いられる静電チャックとその製造方法に関する。 The present invention relates to an electrostatic chuck used for, for example, an electrostatic chucking of various electrically insulating substrates in a semiconductor manufacturing apparatus and a manufacturing method thereof.
半導体製造装置用のパターニング用マスクやLEDなどの絶縁材料を加工するプロセスにおいて、これら絶縁材料を固定する方法として、例えば、静電チャックの吸着面上に対して、不均一な電界を形成させることにより発生するグラディエント(Gradient)力を利用する方法がある。 In a process of processing an insulating material such as a patterning mask for a semiconductor manufacturing apparatus or an LED, as a method for fixing these insulating materials, for example, an uneven electric field is formed on the adsorption surface of the electrostatic chuck. There is a method of using a gradient force generated by the above.
この静電チャックの基本的な構造は、土台となる基材部と、その上に吸着力を発生させる電極と、さらにその上に吸着物を保持する誘電体層とからなる。このうち、電極に電流を印加するため、基材部に孔を開け、給電用の金属等の端子を挿入して、電極に印加する給電端子部の構造として、いくつかの方法がある。 The basic structure of the electrostatic chuck is composed of a base material portion serving as a base, an electrode for generating an adsorption force thereon, and a dielectric layer for holding an adsorbate thereon. Among these, there are several methods as the structure of the power supply terminal portion that is applied to the electrode by opening a hole in the base material portion and inserting a terminal such as a power supply metal in order to apply a current to the electrode.
例えば、特許文献1には、内部電極が埋設されているセラミック部品において、熱サイクルに曝露される環境下でも、給電端子の脱落や内部電極との導通不良が発生しないセラミック部品用の給電端子の接合構造として、給電端子が表面にニッケル被覆膜を備えたモリブデンまたはタングステンからなり、かつ、給電端子が内部電極に対してロウ付けにより接合されているという技術が開示されている。 For example, Patent Document 1 discloses a power supply terminal for a ceramic component in which an internal electrode is embedded and the power supply terminal does not drop out or fail to be electrically connected to the internal electrode even in an environment exposed to a thermal cycle. As a joining structure, a technique is disclosed in which a power feeding terminal is made of molybdenum or tungsten having a nickel coating film on the surface, and the power feeding terminal is joined to an internal electrode by brazing.
特許文献2には、下部絶縁層、電極層及び表面絶縁誘電層にひび割れが発生し難い静電チャックの給電構造として、金属基盤の上下面間を貫通する貫通孔と、この貫通孔内に配設され金属基盤の下面側から供給された電圧を上面側に積層された電極層に供給する給電端子と、電気絶縁性材料で形成され上記貫通孔の内壁と給電端子との間を絶縁すると共に、上記給電端子を保持する絶縁保持部材と、から構成され、この給電端子が、金属基盤の上面側に突出する給電側端部を有し、この給電側端部の先端が上記電極層と下部絶縁層との界面より電極層側で上記電極層と表面絶縁誘電層との界面以下に位置する、という技術が開示されている。 In Patent Document 2, as a power feeding structure for an electrostatic chuck that is unlikely to crack in a lower insulating layer, an electrode layer, and a surface insulating dielectric layer, a through hole that penetrates between the upper and lower surfaces of a metal substrate, and a wiring disposed in the through hole are disclosed. A power supply terminal for supplying a voltage supplied from the lower surface side of the metal substrate to the electrode layer laminated on the upper surface side, and insulating between the inner wall of the through hole and the power supply terminal formed of an electrically insulating material And an insulating holding member for holding the power supply terminal, the power supply terminal having a power supply side end protruding to the upper surface side of the metal substrate, and the tip of the power supply side end is located below the electrode layer and the lower part A technique is disclosed in which the electrode layer is located below the interface between the electrode layer and the surface insulating dielectric layer on the electrode layer side from the interface with the insulating layer.
特許文献3には、表裏を有する板状ガラスの内部に金属層が埋設され、金属層が電極であり、金属層からガラス表面までの距離が短い側が誘電層、金属層からガラス表面までの距離が長い側が基材層であり、誘電層の厚さが40μm以上300μm以下であるガラス製静電チャックにおいて、少なくとも誘電層がシリカガラスからなる基材に加工した給電端子用穴内に、導電ペーストを用いて、金属層に導線を固定するという給電方法が開示されている。 In Patent Document 3, a metal layer is embedded in a plate-like glass having front and back surfaces, the metal layer is an electrode, the short distance from the metal layer to the glass surface is the dielectric layer, and the distance from the metal layer to the glass surface In the glass electrostatic chuck in which the long side is the base material layer and the thickness of the dielectric layer is 40 μm or more and 300 μm or less, the conductive paste is placed in the hole for the feeding terminal processed into the base material having at least the dielectric layer made of silica glass. A power feeding method is disclosed in which a conductive wire is fixed to a metal layer.
特許文献1の技術は、電極と端子の接合にロウ付けを用いているが、この方法では、ロウ付け時800℃から1000℃に加熱、その後冷却するので、異なる基材の熱膨張係数の差で基材内部に応力が残留し、電極と端子の接合部付近にクラックが発生するという不具合があった。 The technique of Patent Document 1 uses brazing for joining electrodes and terminals. In this method, heating is performed from 800 ° C. to 1000 ° C. at the time of brazing, and then cooling is performed. Thus, there is a problem that stress remains in the base material and cracks are generated near the joint between the electrode and the terminal.
特許文献2の技術は、給電端子の給電側端部を、先端に所定の面積を持つ頂面を有すると共に、先端に向かって漸次縮径する突起状に形成することで、下部絶縁層にかかる応力の分散が可能になる。そのため、給電構造の熱勾配による熱負荷や、熱サイクルによる熱負荷による表面絶縁誘電層、電極層及び下部絶縁層でのひび割れが抑制できる。よって、静電チャックの温度特性の局部的劣化やパーティクルの発生等の問題を、可及的に回避できる点が特徴であるといえる。しかしながら、特許文献2では、溶射という方法を用いているので、製造の難易度が高く、また製造コストも増加するという問題があった。 In the technique of Patent Document 2, the power supply side end portion of the power supply terminal has a top surface having a predetermined area at the tip, and is formed in a protrusion shape that gradually decreases in diameter toward the tip. Dispersion of stress becomes possible. Therefore, cracks in the surface insulating dielectric layer, the electrode layer, and the lower insulating layer due to the thermal load due to the thermal gradient of the power feeding structure and the thermal load due to the thermal cycle can be suppressed. Therefore, it can be said that it is a feature that problems such as local deterioration of temperature characteristics of the electrostatic chuck and generation of particles can be avoided as much as possible. However, in Patent Document 2, since a method called thermal spraying is used, there is a problem that manufacturing difficulty is high and manufacturing cost increases.
特許文献3の技術は、石英製の静電チャックにおける電極と給電端子の接合方法として、導電ペーストを用いて金属層に導線を固定するものである。しかしこの方法では、給電端子用の孔を開けた基材層に電極と誘電層を形成したのち、誘電層を所定の厚さである40μmまで研削する工程において、電極が孔に面している箇所に局所的に応力が集中し、クラックが発生するという問題があった。これは、誘電層が薄いことにより起こる問題である。 The technique of patent document 3 fixes a conducting wire to a metal layer using an electrically conductive paste as a joining method of the electrode and electric power feeding terminal in an electrostatic chuck made from quartz. However, in this method, the electrode faces the hole in the step of grinding the dielectric layer to a predetermined thickness of 40 μm after forming the electrode and the dielectric layer on the base material layer having the holes for the feeding terminals. There was a problem that stress was locally concentrated at the location and cracks were generated. This is a problem caused by a thin dielectric layer.
吸着力向上の要求に伴い、静電チャックの誘電層の厚さは、さらに薄くすることが求められている。しかし、特にシリカガラスのような非常に脆い材料の静電チャックにおいて、誘電層を薄くした静電チャックを製造することが、従来は困難であった。 Along with the demand for improving the attractive force, it is required to further reduce the thickness of the dielectric layer of the electrostatic chuck. However, it has been difficult in the past to manufacture an electrostatic chuck with a thin dielectric layer, particularly in an electrostatic chuck made of a very brittle material such as silica glass.
本発明は、かかる課題を鑑みてなされたもので、特に誘電層の厚さが薄い静電チャックにおいて、静電チャックの給電端子付近の電極や誘電層において、応力や負荷が軽減されてクラックの発生が抑えられた、高品質の静電チャックとその製造方法を提供するものである。 The present invention has been made in view of such problems. Particularly in an electrostatic chuck having a thin dielectric layer, stress and load are reduced in an electrode and a dielectric layer in the vicinity of the power supply terminal of the electrostatic chuck, and cracks are generated. The present invention provides a high-quality electrostatic chuck with reduced generation and a method for manufacturing the same.
本発明に係る静電チャックは、金属層からなる電極が板状の絶縁材料の中に埋設された静電チャックであって、一表面は吸着面であり、その裏面には前記電極に達する端子を挿入するための端子孔が形成されており、前記端子孔には前記電極に接する給電端子Aと、前記給電端子Aと空間部を設けて位置する給電端子Bが配置されており、給電端子Aおよび給電端子Bの外周面を一体の導電性ペーストで囲繞し前記端子孔との間を満たしており、給電端子Bの給電端子Aと対向しない側の面の面積が、給電端子Aの給電端子Bに対向した側の面積よりも大きいことを特徴とする。このような構成をとることで、誘電層の厚さが薄い静電チャックにおいて、給電端子とその付近の誘電層にかかる応力や負荷を低減することが可能となる。 An electrostatic chuck according to the present invention is an electrostatic chuck in which an electrode made of a metal layer is embedded in a plate-shaped insulating material, one surface being an attracting surface, and a terminal reaching the electrode on the back surface The terminal hole is formed with a power supply terminal A that contacts the electrode, and a power supply terminal B that is positioned to provide a space with the power supply terminal A. The outer peripheral surfaces of A and the power supply terminal B are surrounded by an integral conductive paste so as to fill the space between the terminal holes, and the area of the surface of the power supply terminal B that does not face the power supply terminal A is the power supply of the power supply terminal A. It is characterized by being larger than the area on the side facing the terminal B. By adopting such a configuration, in an electrostatic chuck having a thin dielectric layer, it is possible to reduce stress and load applied to the power supply terminal and the nearby dielectric layer.
また、本発明に係る静電チャックは、前記吸着面に対して鉛直方向における前記空間部の間隔は、10μm以上1000μm以下であることが好ましい。このような構成をとることで、誘電層の厚さが薄い静電チャックにおいて給電端子とその付近の誘電層にかかる応力や負荷に対する強度を、より効果的に高めることが可能となる。 In the electrostatic chuck according to the present invention, it is preferable that an interval between the space portions in a vertical direction with respect to the attracting surface is 10 μm or more and 1000 μm or less. By adopting such a configuration, it is possible to more effectively increase the strength against stress and load applied to the power supply terminal and the dielectric layer in the vicinity thereof in an electrostatic chuck having a thin dielectric layer.
本発明に係る静電チャックは、前記誘電層および前記基材層が、いずれもシリカガラスからなることが好ましい。このような構成をとることで、特に半導体製造装置に好適に用いることが可能なシリカガラスを適用する場合においても、誘電層の厚さが薄い静電チャックの製造時において、給電端子付近の誘電層にかかる応力や負荷を低減することが可能となる。 In the electrostatic chuck according to the present invention, it is preferable that both the dielectric layer and the base material layer are made of silica glass. By adopting such a configuration, even when silica glass that can be suitably used for a semiconductor manufacturing apparatus is applied, the dielectric in the vicinity of the power supply terminal can be used when manufacturing an electrostatic chuck with a thin dielectric layer. It becomes possible to reduce the stress and load applied to the layer.
そして、本発明に係る静電チャックの製造方法は、誘電層を形成する板状の絶縁材料の一面または基材部を形成する他の板状の絶縁材料の一面のいずれかに金属材料による電極パターンを形成して誘電層を作製する工程と、前記他の板状の絶縁材料に対して端子孔を形成して前記基材部を作製する工程と、前記誘電層と前記基材部を貼り合わせて静電チャック本体を作製する工程と、前記静電チャック本体の前記端子孔に導電性ペーストと給電端子を挿入し前記給電端子を固定する工程と、からなることを特徴とする。このような構成をとることで、特に半導体製造装置に好適に用いることができるシリカガラスからなる静電チャックを、効率よく製造することが可能となる。 And the manufacturing method of the electrostatic chuck according to the present invention includes an electrode made of a metal material on either one surface of a plate-like insulating material forming a dielectric layer or one surface of another plate-like insulating material forming a base portion. Forming a pattern to form a dielectric layer; forming a terminal hole in the other plate-shaped insulating material to produce the base portion; and bonding the dielectric layer and the base portion. In addition, the method includes a step of manufacturing an electrostatic chuck main body and a step of inserting a conductive paste and a power supply terminal into the terminal hole of the electrostatic chuck main body to fix the power supply terminal. By adopting such a configuration, it is possible to efficiently manufacture an electrostatic chuck made of silica glass that can be suitably used particularly for a semiconductor manufacturing apparatus.
本発明によれば、誘電層の厚さが薄い静電チャック、好適にはシリカガラスからなる誘電層の厚さが10μmから200μmの静電チャックにおいて、給電端子とその付近の誘電層にかかる応力や負荷を低減できる、静電チャックとその製造方法を提供することが可能となる。 According to the present invention, in an electrostatic chuck with a thin dielectric layer, preferably an electrostatic chuck with a dielectric layer made of silica glass having a thickness of 10 μm to 200 μm, the stress applied to the feeding terminal and the nearby dielectric layer It is possible to provide an electrostatic chuck and a method for manufacturing the same that can reduce the load.
以下、図面をもとに本発明の詳細な内容を説明する。図1は、本発明の一実施形態に係る、静電チャックの給電端子部とその周辺の形状を断面方向から示す概念図である。なお、図1は、本発明の各構成要件を説明する為の概念図であるので、実際の静電チャックにおける寸法比とは異なる。 The detailed contents of the present invention will be described below with reference to the drawings. FIG. 1 is a conceptual diagram showing a shape of a power feeding terminal portion of an electrostatic chuck and its periphery from a cross-sectional direction according to an embodiment of the present invention. Note that FIG. 1 is a conceptual diagram for explaining each constituent element of the present invention, and is different from the dimensional ratio in an actual electrostatic chuck.
本発明に係る静電チャックは、金属層からなる電極3が板状の絶縁材料の中に埋設された静電チャックであって、一表面は吸着面21であり、その裏面22には前記電極3に達する端子を挿入するための端子孔4が形成されており、端子孔4には電極3に接する給電端子A(図1では51)と、給電端子Aと空間部7を設けて位置する給電端子B(図1では52)が配置されており、給電端子Aおよび給電端子Bの外周面を一体の導電性ペースト6で囲繞して端子孔4との間を満たしており、給電端子Bの給電端子Aと対向しない側の面の面積が、給電端子Aの給電端子Bに対向した側の面積よりも大きい。 The electrostatic chuck according to the present invention is an electrostatic chuck in which an electrode 3 made of a metal layer is embedded in a plate-shaped insulating material, and one surface is an adsorption surface 21, and the back surface 22 has the electrode on the back surface 22. A terminal hole 4 for inserting a terminal reaching 3 is formed, and the terminal hole 4 is provided with a power supply terminal A (51 in FIG. 1) in contact with the electrode 3, a power supply terminal A, and a space portion 7. The power supply terminal B (52 in FIG. 1) is disposed, and the outer peripheral surfaces of the power supply terminal A and the power supply terminal B are surrounded by the integral conductive paste 6 so as to fill the space between the terminal hole 4 and the power supply terminal B. The area of the surface not facing the power supply terminal A is larger than the area of the power supply terminal A facing the power supply terminal B.
本発明に係る静電チャックを、図1に示すように断面から見ると、静電チャック本体1が、絶縁材料からなる誘電層11と、この誘電層を支持するために設けられ絶縁材料からなる基材層12とから構成されている。ここで、誘電層側の主面が吸着面21、基材層側の主面が裏面22である。そして、誘電層11と基材層12の間に形成され、電気を印加することで吸着面に吸引力を発生させる金属層の電極3が埋設されている。また、電極3に電気を供給する給電端子5と、この給電端子5を挿入するために基材部12に設けられた端子孔4が形成されている。 When the electrostatic chuck according to the present invention is viewed from a cross section as shown in FIG. 1, the electrostatic chuck body 1 is provided with a dielectric layer 11 made of an insulating material and an insulating material provided to support the dielectric layer. It is comprised from the base material layer 12. FIG. Here, the main surface on the dielectric layer side is the adsorption surface 21, and the main surface on the base material layer side is the back surface 22. And the electrode 3 of the metal layer which is formed between the dielectric layer 11 and the base material layer 12, and generate | occur | produces attraction | suction force by applying electricity is embed | buried. In addition, a power supply terminal 5 for supplying electricity to the electrode 3 and a terminal hole 4 provided in the base member 12 for inserting the power supply terminal 5 are formed.
誘電層11は、絶縁材料から構成され、静電チャックに用いることのできる各種公知の材料が適用できる。例えば、窒化アルミニウム、アルミナ、窒化ケイ素、窒化ホウ素、シリカガラスなどが挙げられる。使用環境等の要因で、高純度部材であることを要求される場合は、高純度のシリカガラスが好適に用いられる。 The dielectric layer 11 is made of an insulating material, and various known materials that can be used for an electrostatic chuck can be applied. Examples thereof include aluminum nitride, alumina, silicon nitride, boron nitride, and silica glass. When it is required to be a high-purity member due to factors such as usage environment, high-purity silica glass is preferably used.
基材層12は、同じく絶縁材料から構成され、静電チャックに用いることのできる各種公知の材料が適用できる。例えば、窒化アルミニウム、アルミナ、窒化ケイ素、窒化ホウ素が挙げられ、好適には、高純度のシリカガラスが用いられる。また、通常は、基材層12と誘電層11には同じ材料を適用するが、異なる材料であっても差し支えない。特にシリカガラスを適用する場合は、各種添加物を適量添加してその物性を変化させ、誘電層11と基材層12のそれぞれの部位で要求される物性に応じた材料にしてもよい。 The base material layer 12 is also made of an insulating material, and various known materials that can be used for an electrostatic chuck can be applied. Examples thereof include aluminum nitride, alumina, silicon nitride, and boron nitride, and high-purity silica glass is preferably used. Usually, the same material is applied to the base material layer 12 and the dielectric layer 11, but different materials may be used. In particular, when silica glass is applied, appropriate amounts of various additives may be added to change the physical properties thereof, so that materials corresponding to the physical properties required at the respective portions of the dielectric layer 11 and the base material layer 12 may be used.
電極3は、静電チャックに対して、吸着力としてクーロン力、ジョンソン・ラーベック力、もしくはグラディエント力を発生させるために形成されている。電極3は、吸着面21に対して所定の幅と、吸着面21の深さ方向に対して所定の厚さを有した帯状または箔状の金属材料からなる。そして、この電極3同士が平面方向に対して一定の間隔で配置された各種パターン形状となっており、広い面積で吸着物を強力に吸着保持できる。この電極3の幅、厚さ、間隔は、要求される静電チャックの仕様に応じて、適時設計することができる。なお、誘電層11の厚さとは、この電極3のパターン全体を包含する平面を仮想し、この平面の吸着面側の面から吸着面21までの平均間隔を示す。平均間隔は特に限定されないが、一例として、中心部と外周10mm内側4点からなる面内5点の平均値で示すことが出来る。 The electrode 3 is formed to generate a Coulomb force, a Johnson-Rahbek force, or a gradient force as an attracting force with respect to the electrostatic chuck. The electrode 3 is made of a band-like or foil-like metal material having a predetermined width with respect to the suction surface 21 and a predetermined thickness with respect to the depth direction of the suction surface 21. The electrodes 3 have various pattern shapes arranged at regular intervals with respect to the plane direction, and the adsorbate can be strongly adsorbed and held in a wide area. The width, thickness, and interval of the electrodes 3 can be designed in a timely manner according to the required electrostatic chuck specifications. Note that the thickness of the dielectric layer 11 is an imaginary plane including the entire pattern of the electrode 3 and indicates an average distance from the surface on the suction surface side to the suction surface 21 of this plane. Although an average space | interval is not specifically limited, As an example, it can show by the average value of 5 points in a plane which consists of a center part and 4 points inside 10 mm of outer periphery.
電極3の材料には、静電チャックに適用が可能な公知の材料が用いられる。一例としてNi、Mo、W、PtおよびTiのうちの、いずれか一つからなる単一層、または、これらのうちの2種以上の合金からなる単一層があるが、さらには、2種以上の金属からなる多層構造でもよい。 A known material that can be applied to an electrostatic chuck is used as the material of the electrode 3. As an example, there is a single layer made of any one of Ni, Mo, W, Pt and Ti, or a single layer made of two or more of these alloys. A multilayer structure made of metal may be used.
基材層12には、電極3に達する給電端子5を挿入する端子孔4が形成されている。端子孔4は、裏面22から電極3の一表面まで開口した状態のものであるが、ここで、開口するとは、基材層12の裏面側に孔が空けられ、基材層12の厚さ方向にほぼ垂直に開口部が形成されていることを示すものとする。端子孔4の形状は、後述する給電端子5の外形状にほぼ準じた内面形状を有している。また、やはり後述する導電ペースト6が、端子孔4の内面と給電端子5の外表面に満たされて、端子孔4と給電端子5が接着,固定された状態となっている。 In the base material layer 12, a terminal hole 4 for inserting the power supply terminal 5 reaching the electrode 3 is formed. The terminal hole 4 is in a state of being opened from the back surface 22 to one surface of the electrode 3. Here, opening means that a hole is formed on the back surface side of the base material layer 12, and the thickness of the base material layer 12. It is shown that the opening is formed substantially perpendicular to the direction. The shape of the terminal hole 4 has an inner surface shape substantially conforming to the outer shape of the power supply terminal 5 described later. Also, the conductive paste 6 described later is filled in the inner surface of the terminal hole 4 and the outer surface of the power supply terminal 5 so that the terminal hole 4 and the power supply terminal 5 are bonded and fixed.
そして、端子孔4は、電極3と接する側と裏面22側とで吸着面21方向に対する断面積が異なるように設計された端子孔41と端子孔42とからなる。このとき、端子孔41は、平面方向に対して電極3の一表面で完全に覆われている、すなわち端子孔41の開口面積が、電極3との接触面積より小さいことが好ましい。端子孔41の開口面積が電極3の接触面積より大きいと、あらかじめ空けられた端子孔41と電極3とを圧着する際に、電極3の一部が剥離し、電極3と給電端子Aとの電気的導通が取れなくなるおそれがあるので、好ましくない。 And the terminal hole 4 consists of the terminal hole 41 and the terminal hole 42 which were designed so that the cross-sectional area with respect to the adsorption surface 21 direction might differ by the side which contact | connects the electrode 3, and the back surface 22 side. At this time, it is preferable that the terminal hole 41 is completely covered with one surface of the electrode 3 with respect to the plane direction, that is, the opening area of the terminal hole 41 is smaller than the contact area with the electrode 3. If the opening area of the terminal hole 41 is larger than the contact area of the electrode 3, a part of the electrode 3 is peeled off when the terminal hole 41 and the electrode 3 vacated in advance are bonded, and the electrode 3 and the feeding terminal A are Since there is a possibility that electrical continuity cannot be obtained, it is not preferable.
ここで、端子孔4を吸着面21の平面方向からみた形状は、加工のしやすさから、円形状が好適に用いられる。しかしながら、必ずしもいわゆる完全な円である必要はなく、例えば、楕円形状、もしくは角の取れた多角形でもよい。 Here, the shape of the terminal hole 4 viewed from the plane direction of the suction surface 21 is preferably a circular shape because of ease of processing. However, it is not necessarily a so-called perfect circle, and may be, for example, an elliptical shape or a polygon with a corner.
この端子孔4には、電極3に電気を供給する給電端子5が配置されており、その給電端子5は、給電端子A(図1では51)と空間部7を設けて位置する給電端子B(図1では52)から構成されている。そして、この給電端子5の外表面を一体の導電性ペースト6で囲繞し端子孔4との間を満たしている。このような構造をとることで、電極3の一表面と給電端子Aの一端面が接し、導電ペースト6と給電端子Bを介して、給電用導線8から電極3に電流が印加される。 The terminal hole 4 is provided with a power supply terminal 5 for supplying electricity to the electrode 3, and the power supply terminal 5 is provided with a power supply terminal A (51 in FIG. 1) and a space portion 7 to be located. (52 in FIG. 1). The outer surface of the power supply terminal 5 is surrounded by an integral conductive paste 6 so as to fill the space between the terminal holes 4. By adopting such a structure, one surface of the electrode 3 and one end face of the power supply terminal A are in contact with each other, and a current is applied to the electrode 3 from the power supply lead 8 via the conductive paste 6 and the power supply terminal B.
給電端子5の材料は、静電チャックに適用が可能な公知の材料が用いられ、Ni、Mo、W、PtおよびTiのうちの、いずれか一つ、または、これらのうちの2種以上の合金、さらには、2種以上の金属からなる複合構造でもよい。なお、給電端子Aと給電端子Bは、同じ材料である必要はなく、異なる材料であってもよい。 As the material of the power supply terminal 5, a known material that can be applied to the electrostatic chuck is used, and any one of Ni, Mo, W, Pt, and Ti, or two or more of these are used. An alloy or a composite structure composed of two or more metals may be used. The power supply terminal A and the power supply terminal B do not need to be made of the same material, and may be made of different materials.
さらに、給電端子Aと給電端子Bとの間には、空間部7が形成されている。すなわち、給電端子Aと給電端子Bの対向する端面とほぼ同じ形状、面積を有するとともに、吸着面21に対して鉛直方向においてほぼ一定の間隔をもった空間部7が形成されている。これは、給電端子Aと給電端子Bを一旦接した状態からわずかに離して、いわゆるギャップ、隙間が形成された、というイメージに近いものといえる。 Further, a space portion 7 is formed between the power supply terminal A and the power supply terminal B. That is, a space 7 having substantially the same shape and area as the opposing end surfaces of the power supply terminal A and the power supply terminal B and having a substantially constant interval in the vertical direction with respect to the suction surface 21 is formed. It can be said that this is close to the image that a so-called gap or gap is formed slightly away from the state where the feeding terminal A and the feeding terminal B are once in contact with each other.
本発明におけるこの空間部7は、給電端子Bから吸着面21に対して鉛直方向に加えられた負荷が、給電端子Aへ伝播するのを防止する作用を有する。図2はその応力の伝播する様子を模式的に示した概念図である。図2に示すように、給電端子Bから吸着面21に対して鉛直方向に加えられた負荷101は、給電端子Aと給電端子Bが離れているので、給電端子Aには伝播しない。この負荷101により給電端子B内に発生する応力102は、基材部12にのみ伝播する。また、給電端子Bが押し上げられて若干上方に移動したとしても、この空間部7の存在により、給電端子Bと給電端子Aとが接触せず、応力102はやはり給電端子Aには伝播しない。 The space 7 in the present invention has an effect of preventing the load applied in the vertical direction from the power supply terminal B to the suction surface 21 from propagating to the power supply terminal A. FIG. 2 is a conceptual diagram schematically showing how the stress propagates. As shown in FIG. 2, the load 101 applied in the vertical direction from the power supply terminal B to the suction surface 21 does not propagate to the power supply terminal A because the power supply terminal A and the power supply terminal B are separated. The stress 102 generated in the power supply terminal B by the load 101 propagates only to the base material portion 12. Even if the power supply terminal B is pushed up and moves slightly upward, the power supply terminal B and the power supply terminal A do not come into contact with each other due to the presence of the space 7, and the stress 102 does not propagate to the power supply terminal A.
そして、端子孔4と給電端子5との隙間には、導電性ペースト6が充填されている。導電性ペースト6は、給電端子5と電極3の間における通電の確保と、給電端子5と基材部12とを固定する機能をもつ。なお、給電端子Aと給電端子B間の通電も、導電ペースト6で確保されているので、給電端子Aと給電端子Bが直接接していなくても、この点で特に問題はない。 A conductive paste 6 is filled in the gap between the terminal hole 4 and the power supply terminal 5. The conductive paste 6 has a function of securing energization between the power supply terminal 5 and the electrode 3 and fixing the power supply terminal 5 and the base material portion 12. In addition, since electricity supply between the power supply terminal A and the power supply terminal B is ensured by the conductive paste 6, there is no particular problem in this respect even if the power supply terminal A and the power supply terminal B are not in direct contact.
導電性ペースト6には、例えば、樹脂に金属等の導電性材料を混合したものが挙げられるが、格別限定されるわけではなく、公知の材料を広く適用できる。 Examples of the conductive paste 6 include a mixture of a resin and a conductive material such as a metal. However, the conductive paste 6 is not particularly limited, and widely known materials can be applied.
給電端子Aと給電端子Bは、給電端子Bの給電端子Aと対向しない側の面の面積が、給電端子Aの給電端子Bに対向した側の面積よりも大きい。これにより、給電端子Bにかかる負荷による応力を、給電端子Aにではなく基材層12へ伝播させることができる。 The area of the surface of the power supply terminal A and the power supply terminal B that does not face the power supply terminal A of the power supply terminal B is larger than the area of the surface of the power supply terminal A that faces the power supply terminal B. Thereby, the stress due to the load applied to the power supply terminal B can be propagated not to the power supply terminal A but to the base material layer 12.
図2において、吸着面21に対して鉛直方向の力101が、給電端子Bに加えられると、給電端子B内を応力102が伝播し、端子孔41と端子孔42の吸着面の平面方向における境界面103において、給電端子Bが押し上げられて、基材層12の端子孔41より広い箇所と接するので、応力102は基材層12へのみ伝播される。すなわち、給電端子Bの給電端子Aと対向しない側の面の面積が、給電端子Aの給電端子Bに対向した側の面積よりも大きいという構成は、面積の大小関係を規定することで、このように応力が伝播する状態を作り出すものである。 In FIG. 2, when a force 101 in the vertical direction with respect to the suction surface 21 is applied to the power supply terminal B, the stress 102 propagates in the power supply terminal B, and in the plane direction of the suction surfaces of the terminal holes 41 and 42. At the boundary surface 103, the power supply terminal B is pushed up and comes into contact with a portion wider than the terminal hole 41 of the base material layer 12, so that the stress 102 is propagated only to the base material layer 12. That is, the configuration in which the area of the surface of the power supply terminal B that does not face the power supply terminal A is larger than the area of the surface of the power supply terminal A that faces the power supply terminal B is defined by defining the size relationship. Thus, a state in which stress propagates is created.
これにより、給電端子Aにかかる負荷が原因で発生していた、電極3の破損、さらには電極3から伝播される応力による誘電層11への亀裂発生が回避される。特に、誘電層11が非常に薄い場合は、電極3と誘電層11との界面に発生する応力の影響が非常に大きいので、本発明により、この応力の発生を極めて効果的に抑制できる。 As a result, the electrode 3 is prevented from being damaged due to the load applied to the power supply terminal A, and further, the occurrence of cracks in the dielectric layer 11 due to the stress propagated from the electrode 3 is avoided. In particular, when the dielectric layer 11 is very thin, the influence of the stress generated at the interface between the electrode 3 and the dielectric layer 11 is very large. Therefore, according to the present invention, the generation of this stress can be suppressed extremely effectively.
なお、給電端子Aと給電端子Bの端面の面積の比を、図1で示す51a:52aでみたとき、1:5〜1:225の範囲が好ましく、1:5〜1:150がさらに好ましい。この比が小さすぎると、給電端子Bと基材層12との接触面積が少なくなり、この部位における単位面積当たりの応力が高くなり、過大な負荷が印加されたとき基材部12に損傷が発生する懸念がある。しかし、この比が大きすぎると、本発明の効果にほとんど寄与しない一方で、コスト高や静電チャックの設計自由度の制限が厳しくなる、あるいは設計難易度が上がることが懸念されるので、こちらも好ましくない。 In addition, when the ratio of the area of the end surfaces of the power supply terminal A and the power supply terminal B is 51a: 52a shown in FIG. 1, the range of 1: 5 to 1: 225 is preferable, and 1: 5 to 1: 150 is more preferable. . If this ratio is too small, the contact area between the power supply terminal B and the base material layer 12 is reduced, the stress per unit area at this part is increased, and the base material portion 12 is damaged when an excessive load is applied. There are concerns that arise. However, if this ratio is too large, it will hardly contribute to the effect of the present invention, but there is a concern that the cost and the design freedom of the electrostatic chuck will be severely limited or the design difficulty will increase. Is also not preferred.
本発明に係る端子孔4と給電端子5の形態は、その一態様として図1に示すような、断面形状が1つの段差からなる形状を例示したが、特にその形状は限定されない。例えば、図3(1)に示すような多段形状、図3(2)に示すような連続した曲面で形成された形状、図3(3)に示すような直線形状でもよい。また、給電端子Aの断面形状も、特に限定されるものではなく、例えば、図3(4)に示すような、給電端子Aの上下の端面の面積が異なっていてもよい。もちろん、給電端子Aの断面形状が給電端子Bの他の例で明示したような、曲線形状であってもよい。 Although the terminal hole 4 and the power supply terminal 5 according to the present invention have exemplified the shape of the cross-sectional shape having one step as shown in FIG. 1 as one aspect thereof, the shape is not particularly limited. For example, a multi-stage shape as shown in FIG. 3 (1), a shape formed with a continuous curved surface as shown in FIG. 3 (2), or a linear shape as shown in FIG. 3 (3) may be used. Further, the cross-sectional shape of the power supply terminal A is not particularly limited, and for example, the areas of the upper and lower end surfaces of the power supply terminal A may be different as shown in FIG. Of course, the cross-sectional shape of the power supply terminal A may be a curved shape as clearly shown in another example of the power supply terminal B.
なお、給電端子Bには、空間部7と裏面22側が開空間になるように、貫通孔9を設けることもできる。この貫通孔9は、電極3付近に残る隙間に溜っているガスを静電チャック1の外部に逃がす役割をもつ。ガスが溜ると、特に真空下で静電チャックを使用した場合において、静電チャック1の外部との圧力差が発生して、滞留ガスが膨張して基材層12への亀裂発生や電極3の剥離の原因になるので、好ましいものではない。 In addition, the feed terminal B can be provided with a through hole 9 so that the space 7 and the back surface 22 side are open. The through-hole 9 has a role of letting gas accumulated in a gap remaining near the electrode 3 to the outside of the electrostatic chuck 1. When the gas accumulates, particularly when an electrostatic chuck is used under vacuum, a pressure difference from the outside of the electrostatic chuck 1 is generated, and the staying gas expands to cause cracks in the base material layer 12 and the electrode 3. This is not preferable because it causes peeling.
また、本発明に係る静電チャックにおいて、前記吸着面21に対して鉛直方向における前記空間部7の間隔は、10μm以上1000μm以下であることが好ましい。10μm未満では、導電ペースト6が介在して応力が伝播される影響が懸念されるほどに間隔が狭く、必ずしも好ましいものとはいえない。しかし、1000μmを越えると、本発明の効果には影響ない一方で、空間部7の側壁に塗布した導電性ペースト6を介して給電端子Aと給電端子Bとの電気的導通が損なわれるおそれがあり、これも好ましくない。 In the electrostatic chuck according to the present invention, it is preferable that an interval between the space portions 7 in the vertical direction with respect to the attracting surface 21 is 10 μm or more and 1000 μm or less. If it is less than 10 μm, the interval is so narrow that there is a concern that the stress is propagated through the conductive paste 6, which is not necessarily preferable. However, if it exceeds 1000 μm, the effect of the present invention is not affected, but the electrical continuity between the power supply terminal A and the power supply terminal B may be impaired through the conductive paste 6 applied to the side wall of the space portion 7. Yes, this is also not preferable.
また、本発明に係る静電チャックは、前記誘電層11および前記基材層12が、いずれもシリカガラスからなることが好ましい。シリカガラスは高純度のものが作製でき、加工性にも優れているので、特に半導体製造装置への適用により好適である。あるいは、使用目的に応じて、シリカガラスに各種金属元素を適時添加したものを用いてもよい。 In the electrostatic chuck according to the present invention, it is preferable that both the dielectric layer 11 and the base material layer 12 are made of silica glass. Since silica glass can be produced with high purity and is excellent in workability, it is particularly suitable for application to a semiconductor manufacturing apparatus. Or you may use what added various metal elements to silica glass timely according to the intended purpose.
本発明に係る静電チャックの製造方法の一形態は、誘電層を形成する板状の絶縁材料の一面または基材部を形成する他の板状の絶縁材料の一面のいずれかに金属材料による電極パターンを形成して誘電層を作製する工程と、前記他の板状の絶縁材料に対して端子孔を形成して前記基材部を作製する工程と、前記誘電層と前記基材部を貼り合わせて静電チャック本体を作製する工程と、前記静電チャック本体の前記端子孔に導電性ペーストと給電端子を挿入し前記給電端子を固定する工程と、からなる。なお、これらの各工程は、格別特殊な方法を必要とするものではなく、使用する材料や使用目的に応じて、広く公知の方法が適用できる。 One form of the manufacturing method of the electrostatic chuck which concerns on this invention is based on the metal material in either one surface of the plate-shaped insulating material which forms a dielectric layer, or one surface of the other plate-shaped insulating material which forms a base-material part. Forming a dielectric layer by forming an electrode pattern, forming a terminal hole by forming a terminal hole in the other plate-shaped insulating material, and forming the dielectric layer and the base material portion. The electrostatic chuck main body is manufactured by pasting together, and the step of fixing the power supply terminal by inserting a conductive paste and a power supply terminal into the terminal hole of the electrostatic chuck main body. Each of these steps does not require a special method, and widely known methods can be applied depending on the material to be used and the purpose of use.
以上のとおり、本発明に係る静電チャックは、給電端子とその付近の誘電層にかかる応力や負荷が軽減されることで、誘電層から基材層へ伝わる負荷を抑えることができる。これにより、基材層のクラック発生も低減される。また、特に誘電層の厚さが薄い場合において、クラックや亀裂の発生が抑制された静電チャックを提供することが可能となる。 As described above, the electrostatic chuck according to the present invention can suppress the load transmitted from the dielectric layer to the base material layer by reducing the stress and load applied to the power supply terminal and the dielectric layer in the vicinity thereof. Thereby, the crack generation of a base material layer is also reduced. Further, particularly when the dielectric layer is thin, it is possible to provide an electrostatic chuck in which generation of cracks and cracks is suppressed.
以下、本発明の好ましい実施形態を、図1を用いて説明するが、本発明はこの実施例により限定されるものではない。
(実験1)
Hereinafter, a preferred embodiment of the present invention will be described with reference to FIG. 1, but the present invention is not limited to this example.
(Experiment 1)
誘電層11として、直径150mm、平均厚さ5mmのシリカガラス板を用意し、この上面の直径148mmの範囲に対して、Mo金属膜を用い、円形状のくし型パターンの双極型の電極3を真空蒸着法により形成した。電極3のパターンを上面から見た図を図4に示す。電極3の膜厚は、平均で0.3μm、電極3の幅は平均で2mm、電極3間の間隔は平均で0.5mmである。次に、基材層12として、直径150mm、平均厚さ5mmのシリカガラス板を用意した。電極パターンの最外部の電極部に相当する2箇所に、真円の端子孔4を形成した。そして、裏面22に直径5.1mmの端子孔42と、裏面22から鉛直方向4mmの位置において、直径1.1mmの端子孔41からなる端子孔4のサンプル(実施例1)と、裏面22側から鉛直方向の全域において、直径5.1mmの端子孔4のみからなるサンプル(比較例1)を、それぞれ作製した。 A silica glass plate having a diameter of 150 mm and an average thickness of 5 mm is prepared as the dielectric layer 11, and a bipolar metal electrode 3 having a circular comb pattern is formed using a Mo metal film with respect to a range of 148 mm in diameter on the upper surface. It formed by the vacuum evaporation method. A view of the pattern of the electrode 3 as viewed from above is shown in FIG. The film thickness of the electrode 3 is 0.3 μm on average, the width of the electrode 3 is 2 mm on average, and the distance between the electrodes 3 is 0.5 mm on average. Next, a silica glass plate having a diameter of 150 mm and an average thickness of 5 mm was prepared as the base material layer 12. Round terminal holes 4 were formed at two locations corresponding to the outermost electrode portions of the electrode pattern. Then, a sample (Example 1) of a terminal hole 4 comprising a terminal hole 42 having a diameter of 5.1 mm on the back surface 22 and a terminal hole 41 having a diameter of 1.1 mm at a position 4 mm from the back surface 22 in the vertical direction, and the back surface 22 side. Samples (Comparative Example 1) each consisting only of a terminal hole 4 having a diameter of 5.1 mm were produced in the entire vertical direction.
次に、電極パターンを形成した誘電層11と基材層12を重ね合わせ、10Paの減圧下で、1300℃、20MPaの加圧融着を実施し、一体化させることで電極が埋設された静電チャックの母体を得た。そして、この静電チャックの母体の誘電層11の平均厚さが150μmになるように研削、研磨を行った。そして、端子孔4の形状に合わせて加工された直径1mm、長さ0.95mmのMo製の円柱状の給電端子Aと、中心に直径1mmの貫通孔を付した直径5mm、長さ5mmのMo製の給電端子Bをそれぞれ準備し、端子孔4の内壁面と端子孔4に露出した電極3の一面に対して、ドータイト D-753(藤倉化成)の導電ペーストを塗布してから、空間部7の間隔が10μmとなるように、給電端子Aと給電端子Bを続けて挿入し、固定した。このようにして実施例1の静電チャックを得た。また、中心に直径1mmの貫通孔を付した端子孔の形状に合わせて加工された直径5mm、長さ6mmのMo製の円柱状の給電端子を準備し、これ以外の条件、方法は実施例1と同じにして、比較例1の静電チャックを得た。 Next, the dielectric layer 11 on which the electrode pattern is formed and the base material layer 12 are overlapped, and pressure fusion at 1300 ° C. and 20 MPa is performed under a reduced pressure of 10 Pa. An electric chuck base was obtained. Then, grinding and polishing were performed so that the average thickness of the dielectric layer 11 of the base of the electrostatic chuck was 150 μm. Then, a cylindrical power supply terminal A made of Mo having a diameter of 1 mm and a length of 0.95 mm processed according to the shape of the terminal hole 4 and a diameter of 5 mm and a length of 5 mm with a through hole having a diameter of 1 mm at the center. After preparing the power feeding terminals B made of Mo and applying the conductive paste of Dortite D-753 (Fujikura Kasei) to the inner wall surface of the terminal hole 4 and one surface of the electrode 3 exposed to the terminal hole 4, the space The feeding terminal A and the feeding terminal B were continuously inserted and fixed so that the interval between the portions 7 was 10 μm. Thus, the electrostatic chuck of Example 1 was obtained. In addition, a cylindrical power supply terminal made of Mo having a diameter of 5 mm and a length of 6 mm was prepared in accordance with the shape of the terminal hole having a through hole having a diameter of 1 mm at the center. The electrostatic chuck of Comparative Example 1 was obtained in the same manner as in Example 1.
評価方法は、裏面22からはみ出した各サンプルの給電端子Bに対して、裏面22の鉛直方向に0.53kg/mm2の負荷を印加した。具体的には、給電端子Bに板を介して10kgの重しを載せた。その後、各サンプルの給電端子5とその近辺(約5mm径の範囲)について、暗視野スポット灯下にて、上面、および下面から目視で観察し、誘電層11または基材層12へのクラック発生の有無、および電極3への亀裂発生の有無を確認した。 In the evaluation method, a load of 0.53 kg / mm 2 was applied in the vertical direction of the back surface 22 to the power supply terminal B of each sample protruding from the back surface 22. Specifically, a weight of 10 kg was placed on the power supply terminal B through a plate. Thereafter, the power supply terminal 5 of each sample and the vicinity thereof (about 5 mm diameter range) are visually observed from the upper and lower surfaces under a dark field spot lamp, and cracks are generated in the dielectric layer 11 or the base material layer 12. The presence or absence of cracks and the presence or absence of cracks in the electrode 3 were confirmed.
評価の結果、実施例1では、誘電層、基材層へのクラック発生、亀裂発生のいずれも見られなかったが、比較例1では、クラック発生、亀裂発生の両方が確認された。
(実験2)
As a result of the evaluation, in Example 1, neither crack generation nor crack generation in the dielectric layer and the base material layer was observed, but in Comparative Example 1, both crack generation and crack generation were confirmed.
(Experiment 2)
実施例1と同様にして誘電層11を作製した。次に、基材層12として、実施例1と同様のものを準備し、裏面22から鉛直方向4mmの位置において、直径1.1mmの端子孔41からなる端子孔4と直径1mmの給電端子Aという条件は固定し、裏面22に位置する端子孔42と、給電端子Bの直径を数種類振ったサンプルを作製した。その内容を表1に示す。なお、表1に示した条件以外の製造条件、および評価方法は、すべて実施例1に準拠した。 A dielectric layer 11 was produced in the same manner as in Example 1. Next, as the base material layer 12, the same material as in Example 1 was prepared, and the terminal hole 4 consisting of the terminal hole 41 having a diameter of 1.1 mm and the power supply terminal A having a diameter of 1 mm at the position 4 mm in the vertical direction from the back surface 22. These conditions were fixed, and a sample in which several types of diameters of the terminal hole 42 located on the back surface 22 and the power supply terminal B were shaken was produced. The contents are shown in Table 1. The manufacturing conditions other than the conditions shown in Table 1 and the evaluation method were all in accordance with Example 1.
表1の結果から、本発明の実施範囲においては、一部を除いて、誘電層、基材層へのクラック発生、電極への亀裂発生のいずれも見られず、実施例1と同等の結果が得られた。しかしながら、給電端子の端面の面積比1:5を外れた場合、すなわち1:2の場合は、実施例1に比べると、軽微ながら誘電層へのクラック発生が確認された。また、面積比1:225を外れた場合、すなわち1:300と1:500のものは、誘電層、基材層へのクラック発生、電極への亀裂発生のいずれも見られなかったものの、電極の設計が困難である点が懸念された。従って、本発明のより好ましい実施範囲のものに比べると、これらはやや見劣りするものであった。
(実験3)
From the results shown in Table 1, in the scope of the present invention, except for a part, no cracks were generated in the dielectric layer and the base material layer, and no cracks were generated in the electrodes. was gotten. However, when the area ratio of the end face of the power supply terminal is out of 1: 5, that is, 1: 2, the occurrence of cracks in the dielectric layer was confirmed although it was slight compared with Example 1. Further, when the area ratio was outside 1: 225, that is, 1: 300 and 1: 500, neither the dielectric layer or the base layer was cracked nor the electrode was cracked. There was concern about the difficulty of designing. Therefore, these were somewhat inferior to those of the more preferred embodiment of the present invention.
(Experiment 3)
実施例1のサンプルの作製条件を用いて、給電端子Aの長さを変更することで、空間部7の間隔を表2の内容で変更したサンプルを作製し、実験1と同様にして、静電チャックの製造と評価を行った。 Using the sample preparation conditions of Example 1, by changing the length of the power supply terminal A, a sample in which the spacing of the space portion 7 was changed according to the contents of Table 2 was prepared. An electric chuck was manufactured and evaluated.
表2の結果から、本発明の好ましい実施範囲では、実施例1と同等の結果が得られた。しかしながら、空間部7の間隔が10μmを下回るもの、すなわち5μmのものでは、電極3に程度の軽い亀裂がみられた。また、空間部7の間隔が1000μmを超えるもの、すなわち2000μmのものでは、空間の側壁に塗布した導電性ペーストを介して給電端子Aと給電端子Bとの電気的導通を損なうおそれがあった。これらは、本発明のより好ましい実施範囲と比較すると、やや見劣りするものであった。 From the results shown in Table 2, the same results as in Example 1 were obtained within the preferred range of the present invention. However, in the case where the space 7 has an interval of less than 10 μm, that is, 5 μm, a slight crack was observed in the electrode 3. Further, when the space 7 has an interval of more than 1000 μm, that is, 2000 μm, there is a possibility that the electrical continuity between the power supply terminal A and the power supply terminal B is impaired through the conductive paste applied to the side wall of the space. These were somewhat inferior when compared with the more preferable implementation range of the present invention.
以上、本発明にかかる静電チャックにおいては、特に誘電層の厚さが薄い静電チャックにおいて、給電端子とその付近の誘電層にかかる応力や負荷を効率的に分散させることでき、薄い誘電層を安定して得られる静電チャックとその製造方法を提供することが可能なる。 As described above, in the electrostatic chuck according to the present invention, particularly in an electrostatic chuck having a thin dielectric layer, the stress and load applied to the power supply terminal and the dielectric layer in the vicinity thereof can be efficiently dispersed. It is possible to provide an electrostatic chuck and a method of manufacturing the same that can be stably obtained.
本発明に係る静電チャックは、例えば半導体製造装置において、各種電気絶縁性基板を静電吸着する用途に好適に用いられる。また、本発明に係る静電チャックの給電端子部の構造は、絶縁物の内部に電気を供給するための給電部を設ける構造のもの、例えばヒーター、センサーなどにも、好適に用いることができる。 The electrostatic chuck according to the present invention is suitably used for, for example, a semiconductor manufacturing apparatus for electrostatic adsorption of various electrically insulating substrates. Further, the structure of the power supply terminal portion of the electrostatic chuck according to the present invention can be suitably used for a structure in which a power supply portion for supplying electricity to the inside of the insulator is provided, for example, a heater or a sensor. .
1…静電チャック本体、11…誘電層、12…基材層、21…吸着面、22…裏面、3…電極、4…端子孔、41…端子孔1、42…端子孔2、5…給電端子、51…給電端子A、52…給電端子B、51a…給電端子Aの給電端子Bと対向した側の端面部、52a…給電端子Bの給電端子Aと対向しない側の端面部、6…導電性ペースト、7…空間部、8…給電用導線、9…貫通孔。 DESCRIPTION OF SYMBOLS 1 ... Electrostatic chuck body, 11 ... Dielectric layer, 12 ... Base material layer, 21 ... Adsorption surface, 22 ... Back surface, 3 ... Electrode, 4 ... Terminal hole, 41 ... Terminal hole 1, 42 ... Terminal hole 2, 5 ... Power feeding terminal, 51 ... Power feeding terminal A, 52 ... Power feeding terminal B, 51a ... End surface portion of the power feeding terminal A facing the power feeding terminal B, 52a ... End surface portion of the power feeding terminal B on the side not facing the power feeding terminal A, 6 ... conductive paste, 7 ... space, 8 ... power supply lead, 9 ... through hole.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010179685A JP5674192B2 (en) | 2010-08-10 | 2010-08-10 | Electrostatic chuck and manufacturing method thereof. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010179685A JP5674192B2 (en) | 2010-08-10 | 2010-08-10 | Electrostatic chuck and manufacturing method thereof. |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012039011A true JP2012039011A (en) | 2012-02-23 |
JP5674192B2 JP5674192B2 (en) | 2015-02-25 |
Family
ID=45850648
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010179685A Active JP5674192B2 (en) | 2010-08-10 | 2010-08-10 | Electrostatic chuck and manufacturing method thereof. |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5674192B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20210065895A (en) | 2018-09-27 | 2021-06-04 | 스미토모 오사카 세멘토 가부시키가이샤 | electrostatic chuck device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001345372A (en) * | 2000-05-31 | 2001-12-14 | Kyocera Corp | Wafer supporting member and method of manufacturing the same |
JP2008135737A (en) * | 2006-11-01 | 2008-06-12 | Ngk Insulators Ltd | Electrostatic chuck, and manufacturing method of electrostatic chuck |
JP2008198975A (en) * | 2007-01-17 | 2008-08-28 | Tokyo Electron Ltd | Mounting table structure and processing apparatus |
JP2010103321A (en) * | 2008-10-24 | 2010-05-06 | Ngk Spark Plug Co Ltd | Electrostatic chuck device |
-
2010
- 2010-08-10 JP JP2010179685A patent/JP5674192B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001345372A (en) * | 2000-05-31 | 2001-12-14 | Kyocera Corp | Wafer supporting member and method of manufacturing the same |
JP2008135737A (en) * | 2006-11-01 | 2008-06-12 | Ngk Insulators Ltd | Electrostatic chuck, and manufacturing method of electrostatic chuck |
JP2008198975A (en) * | 2007-01-17 | 2008-08-28 | Tokyo Electron Ltd | Mounting table structure and processing apparatus |
JP2010103321A (en) * | 2008-10-24 | 2010-05-06 | Ngk Spark Plug Co Ltd | Electrostatic chuck device |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20210065895A (en) | 2018-09-27 | 2021-06-04 | 스미토모 오사카 세멘토 가부시키가이샤 | electrostatic chuck device |
US11318572B2 (en) | 2018-09-27 | 2022-05-03 | Sumitomo Osaka Cement Co., Ltd. | Electrostatic chuck device |
Also Published As
Publication number | Publication date |
---|---|
JP5674192B2 (en) | 2015-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6463938B2 (en) | Electrostatic chuck | |
KR102501916B1 (en) | wafer retainer | |
TWI299539B (en) | Wafer support member and semiconductor manufacturing system using the same | |
US6756132B2 (en) | Joined structures of metal terminals and ceramic members, joined structures of metal members and ceramic members, and adhesive materials | |
JP5117146B2 (en) | Heating device | |
JP6718318B2 (en) | Heating member and electrostatic chuck | |
JP6786439B2 (en) | Holding device and manufacturing method of holding device | |
JP5591627B2 (en) | Ceramic member and manufacturing method thereof | |
JP4858319B2 (en) | Wafer holder electrode connection structure | |
JP4331983B2 (en) | Wafer support member and manufacturing method thereof | |
JP2010114351A (en) | Electrostatic chuck apparatus | |
JP5674192B2 (en) | Electrostatic chuck and manufacturing method thereof. | |
JP5281480B2 (en) | Electrostatic chuck | |
JP4436575B2 (en) | Wafer support member and manufacturing method thereof | |
JP6703907B2 (en) | Electrostatic chuck and method of manufacturing electrostatic chuck | |
JP2005245106A (en) | Electrostatic chuck | |
JP2012138440A (en) | Electrostatic chuck and method of manufacturing the same | |
JP2013026312A (en) | Electrode structure consisting of ceramics electrode and wafer holder including the same | |
JP5950409B2 (en) | Electrode-embedded quartz member and manufacturing method thereof | |
JP2018006393A (en) | Holding device | |
JP3854145B2 (en) | Wafer support member | |
JP2008153701A (en) | Electrostatic chuck | |
JP6483533B2 (en) | Sample holder and plasma etching apparatus using the same | |
WO2024058183A1 (en) | Attractive-adhesion substrate | |
JP7489940B2 (en) | Sample holder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130207 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140123 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140127 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140318 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140626 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140630 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20141201 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20141217 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20141219 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5674192 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |