JP2012038982A - Method of manufacturing electric double layer capacitor electrode and electric double layer capacitor electrode - Google Patents

Method of manufacturing electric double layer capacitor electrode and electric double layer capacitor electrode Download PDF

Info

Publication number
JP2012038982A
JP2012038982A JP2010179084A JP2010179084A JP2012038982A JP 2012038982 A JP2012038982 A JP 2012038982A JP 2010179084 A JP2010179084 A JP 2010179084A JP 2010179084 A JP2010179084 A JP 2010179084A JP 2012038982 A JP2012038982 A JP 2012038982A
Authority
JP
Japan
Prior art keywords
double layer
layer capacitor
electric double
potential
capacitor electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010179084A
Other languages
Japanese (ja)
Inventor
Nobuaki Oguri
延章 大栗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2010179084A priority Critical patent/JP2012038982A/en
Publication of JP2012038982A publication Critical patent/JP2012038982A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing the electrode of an electric double layer capacitor having a high capacity in a short time.SOLUTION: In an electrolytic solution of phosphoric acid or sulphuric acid, a rectangular wave having a lower limit potential from 0.0 V to +0.3 V for a reversible hydrogen electrode used as a reference electrode and an upper limit potential in the range from +0.5 V to +0.7 V is applied to a carbon substrate, i.e. the electrode body of an electric double layer capacitor, for 10-60 sec of the upper limit potential holding time until a charge amount of 3,800-120,000C flows per 1 mol of carbon contained in the carbon substrate.

Description

本発明は、電気二重層キャパシタ電極の製造方法および電気二重層キャパシタ電極に関する。   The present invention relates to a method for producing an electric double layer capacitor electrode and an electric double layer capacitor electrode.

電気二重層キャパシタは、多孔質導電材料からなる電極の表面にイオンを吸脱着させることで電気を充放電する蓄電装置であり、短時間で充電でき、大電流で充放電できて高出力であり、充放電の繰り返し回数の寿命が長いといった優れた性能を備える。   An electric double layer capacitor is a power storage device that charges and discharges electricity by adsorbing and desorbing ions on the surface of an electrode made of a porous conductive material. It can be charged in a short time, charged and discharged with a large current, and has high output. Excellent performance such as long life of charge / discharge cycles.

近年、電気二重層キャパシタは用途拡大のため、さらなる高性能化、特に、電極の単位体積当たりの大容量化が望まれている。従来、電極としては、炭素繊維や樹脂などを高温で焼き、さらに高温のまま二酸化炭素やアルカリ等で賦活処理をして、細孔を形成することで比表面積を高めた活性炭が用いられてきたが、細孔を増加させることによる大容量化には限界があった。これは、細孔を増加しすぎると体積当たりのキャパシタンスが逆に減少するからである。実際、1500m/g程度の活性炭を用いるのが一般的であった。 In recent years, electric double layer capacitors have been desired to have higher performance, in particular, higher capacity per unit volume of electrodes in order to expand applications. Conventionally, as an electrode, activated carbon whose specific surface area has been increased by forming pores by baking carbon fiber or resin at a high temperature and further activating with carbon dioxide or alkali at a high temperature has been used. However, there is a limit to increasing the capacity by increasing the pores. This is because the capacitance per volume decreases conversely when the number of pores is increased too much. In fact, it was common to use activated carbon of about 1500 m 2 / g.

そこで、電解賦活法が提案された。例えば特許文献1には、易黒鉛化性炭素材料を、炭酸アルカリ塩と質量基準混合比1:1〜1:8で混合し、温度700〜1000℃で熱処理して得られる多孔質炭素材を電極材料に用いて電極を形成した後、セル組み立て後に電解賦活することを特徴とする電気二重層キャパシタの製造方法が記載されており、このような製造方法によれば、体積当たりの静電容量が高く、かつ歩留まりの高い電気二重層キャパシタが容易かつ安価に工業的に製造できると記載されている。   Therefore, an electrolytic activation method has been proposed. For example, Patent Document 1 discloses a porous carbon material obtained by mixing an easily graphitizable carbon material with an alkali carbonate at a mass-based mixing ratio of 1: 1 to 1: 8 and heat-treating at a temperature of 700 to 1000 ° C. A method for manufacturing an electric double layer capacitor is described in which an electrode is formed using an electrode material, and is then subjected to electrolytic activation after cell assembly. According to such a manufacturing method, the capacitance per volume is described. It is described that an electric double layer capacitor having a high yield and a high yield can be easily and inexpensively manufactured industrially.

また、特許文献2には、黒鉛類似の微結晶炭素を有する非多孔性炭素質電極が、有機電解液に浸漬されてなる電気二重層キャパシタを得る工程;該電気二重層キャパシタを、電極間電圧が静電容量発現電圧以上定格電圧未満の所定の電圧に達するまで定電流充電する工程;該所定の電圧で有機電解液における溶質のイオンが微結晶炭素の表面に均一に吸着されると考えられる所定の時間定電圧充電する工程;電極間電圧が定格電圧以上電解液の分解電圧以下の所定の電圧に達するまで定電流充電する工程;及び該所定の電圧で有機電解液における溶質のイオンが微結晶炭素の層間に均一に挿入されると考えられる所定の時間定電圧充電する工程;を包含する、電気二重層キャパシタの電界賦活方法が記載されており、このような方法によれば、同種の炭素質電極を用いた場合であっても、静電容量密度を向上とともに内部抵抗の低下が図られるという顕著な効果が得られると記載されている。   Patent Document 2 discloses a step of obtaining an electric double layer capacitor in which a nonporous carbonaceous electrode having microcrystalline carbon similar to graphite is immersed in an organic electrolytic solution; A step of charging at a constant current until the voltage reaches a predetermined voltage that is equal to or higher than the capacitance expression voltage and lower than the rated voltage; it is considered that solute ions in the organic electrolyte are uniformly adsorbed on the surface of the microcrystalline carbon at the predetermined voltage. A step of charging at a constant voltage for a predetermined time; a step of charging at a constant current until the voltage between the electrodes reaches a predetermined voltage not lower than the rated voltage and not higher than the decomposition voltage of the electrolytic solution; and the solute ions in the organic electrolytic solution are minute at the predetermined voltage. A method of activating an electric double layer capacitor, which includes a step of charging at a constant voltage for a predetermined time which is considered to be uniformly inserted between layers of crystalline carbon. According to such a method, Even in the case of using a carbonaceous electrode of the same type, it has been described as remarkable effect that reduction of the internal resistance with improved capacitance density can be achieved.

特開2006−278588号公報JP 2006-278588 A 特許第3884060号公報Japanese Patent No. 3884060

しかしながら、特許文献1または2に記載の方法のように、セル組み後に電解賦活を行うと、電解液の分解物が電解液内に放出され、吸着イオンの拡散抵抗が増加する可能性がある。また、これを避けるためにセル組みの前に電解賦活を行うためには、水分の混入を避けて有機電解液を使用するために、当該電解賦活を露点−60℃以下の雰囲気で行う必要があり、ドライルーム等の大掛かりな設備が必要となる。   However, if electrolytic activation is performed after assembling the cells as in the method described in Patent Document 1 or 2, a decomposition product of the electrolytic solution may be released into the electrolytic solution, which may increase the diffusion resistance of adsorbed ions. Also, in order to avoid this, in order to perform electrolytic activation before assembling the cells, it is necessary to perform the electrolytic activation in an atmosphere having a dew point of −60 ° C. or lower in order to use an organic electrolytic solution while avoiding mixing of moisture. There are large facilities such as a dry room.

したがって、本発明の目的は、従来と比較して静電容量が高い電気二重層キャパシタ電極を得る方法を提供することである。また、電解液の分解物が電解液内に放出されて吸着イオンの拡散抵抗が増加することはなく、また、水分の混入を避けるためにドライルーム等の大掛かりな設備を用いる必要もなく、さらに短時間印加するだけで、炭素基材の静電容量を高めることができる電気二重層キャパシタ電極の製造方法を提供することである。   Therefore, an object of the present invention is to provide a method for obtaining an electric double layer capacitor electrode having a higher capacitance than the conventional one. In addition, the decomposition product of the electrolytic solution is not released into the electrolytic solution and the diffusion resistance of the adsorbed ions does not increase, and it is not necessary to use a large facility such as a dry room in order to avoid the mixing of moisture. It is an object of the present invention to provide a method for producing an electric double layer capacitor electrode that can increase the capacitance of a carbon substrate only by applying for a short time.

本発明者は上記課題を解決するため鋭意検討し、本発明を完成させた。
本発明は以下の(1)〜(9)である。
(1)電解液中で炭素基材に矩形波をなす電位を印加する工程を備える、電気二重層キャパシタ電極の製造方法。
(2)150〜220℃の前記電解液中で、前記炭素基材に前記電圧を印加する、上記(1)に記載の電気二重層キャパシタ電極の製造方法。
(3)前記電解液がリン酸または硫酸である、上記(1)または(2)に記載の電気二重層キャパシタ電極の製造方法。
(4)前記矩形波をなす電位の下限電位が、参照極として用いる可逆水素電極に対して0.0〜+0.3Vである、上記(1)〜(3)のいずれかに記載の電気二重層キャパシタ電極の製造方法。
(5)前記矩形波をなす電位の上限電位が、参照極として用いる可逆水素電極に対して+0.5〜+0.7Vである、上記(1)〜(4)のいずれかに記載の電気二重層キャパシタ電極の製造方法。
(6)前記炭素基材に含まれる炭素1mol当たり3,800〜120,000Cの電荷量が流れるまで印加する、上記(1)〜(5)のいずれかに記載の電位二重層キャパシタ電極の製造方法。
(7)前記矩形波をなす電位の上限電位の保持時間が10〜60秒である、上記(1)〜(6)のいずれかに記載の電気二重層キャパシタ電極の製造方法。
(8)上記(1)〜(7)のいずれかに記載の電気二重層キャパシタ電極の製造方法によって得られる、電気二重層キャパシタ電極。
(9)上記(8)に記載の電気二重層キャパシタ電極を有する、電気二重層キャパシタ。
The inventor has intensively studied to solve the above-mentioned problems, and has completed the present invention.
The present invention includes the following (1) to (9).
(1) A method for producing an electric double layer capacitor electrode, comprising a step of applying a potential that forms a rectangular wave to a carbon substrate in an electrolytic solution.
(2) The method for producing an electric double layer capacitor electrode according to (1), wherein the voltage is applied to the carbon substrate in the electrolytic solution at 150 to 220 ° C.
(3) The method for producing an electric double layer capacitor electrode according to (1) or (2), wherein the electrolytic solution is phosphoric acid or sulfuric acid.
(4) The electric secondary electrode according to any one of (1) to (3), wherein a lower limit potential of the potential forming the rectangular wave is 0.0 to +0.3 V with respect to the reversible hydrogen electrode used as a reference electrode. Manufacturing method of multilayer capacitor electrode.
(5) The upper limit potential of the potential that forms the rectangular wave is +0.5 to +0.7 V with respect to the reversible hydrogen electrode used as a reference electrode, according to any one of (1) to (4) above Manufacturing method of multilayer capacitor electrode.
(6) Manufacture of the potential double layer capacitor electrode according to any one of (1) to (5), wherein the charge is applied until a charge amount of 3,800 to 120,000 C flows per mol of carbon contained in the carbon substrate. Method.
(7) The method for producing an electric double layer capacitor electrode according to any one of (1) to (6), wherein the holding time of the upper limit potential of the potential forming the rectangular wave is 10 to 60 seconds.
(8) An electric double layer capacitor electrode obtained by the method for producing an electric double layer capacitor electrode according to any one of (1) to (7).
(9) An electric double layer capacitor having the electric double layer capacitor electrode according to (8) above.

本発明によれば、従来と比較して静電容量が高い電気二重層キャパシタ電極を得ることができる。また、本発明の製造方法は、電極に用いる炭素基材の形状を選ばず、粉末の炭素原料をバインダーで成形したものや、粉状ではないカーボン材にも適用することができる。   According to the present invention, it is possible to obtain an electric double layer capacitor electrode having a higher capacitance than conventional ones. In addition, the production method of the present invention can be applied to a powdery carbon raw material formed with a binder or a carbon material that is not powdery, regardless of the shape of the carbon substrate used for the electrode.

また、本発明は、100℃以上、好ましくは150〜220℃の前記電解液中で炭素基材に矩形波をなす電位を印加する工程を備える電気二重層キャパシタ電極の製造方法であることが好ましく、このような好ましい本発明の製造方法によれば、セル組み前に電位を印加するので、電解液の分解物が電解液内に放出されて吸着イオンの拡散抵抗が増加することはなく、また、水分の混入を避けるためにドライルーム等の大掛かりな設備を用いる必要もなく、さらに短時間印加するだけで、炭素基材の静電容量を高めることができる。   Further, the present invention is preferably a method for producing an electric double layer capacitor electrode comprising a step of applying a potential forming a rectangular wave to a carbon substrate in the electrolyte at 100 ° C. or higher, preferably 150 to 220 ° C. According to such a preferable production method of the present invention, since the potential is applied before assembling the cell, the decomposition product of the electrolytic solution is not released into the electrolytic solution and the diffusion resistance of the adsorbed ions does not increase. In addition, it is not necessary to use a large facility such as a dry room in order to avoid the mixing of moisture, and the capacitance of the carbon substrate can be increased only by applying for a short time.

図1は、本発明における印加工程において炭素基材に印加する矩形波をなす電位の実例を示した図である。FIG. 1 is a diagram showing an example of a potential forming a rectangular wave applied to a carbon base material in the applying step according to the present invention. 図2は、矩形波をなす電位を炭素基材に印加するために用いることができる装置の具体例を示した概略断面図である。FIG. 2 is a schematic cross-sectional view showing a specific example of an apparatus that can be used to apply a rectangular wave potential to a carbon substrate. 図3は、電気二重層キャパシタの断面形状を例示した図である。FIG. 3 is a diagram illustrating a cross-sectional shape of the electric double layer capacitor. 図4は、実施例および比較例における多孔質炭素基材の嵩密度と静電容量との関係を示した図である。FIG. 4 is a diagram showing the relationship between the bulk density of the porous carbon substrate and the capacitance in Examples and Comparative Examples. 図5は、実施例における上限電位または下限電位と静電容量との関係を示した図である。FIG. 5 is a diagram showing the relationship between the upper limit potential or the lower limit potential and the capacitance in the example. 図6は、実施例における多孔質炭素基材の電荷量(単位時間当たりの積算電荷量増加率)の変化を示した図である。FIG. 6 is a graph showing changes in the charge amount (accumulated charge amount increase rate per unit time) of the porous carbon substrate in the example. 図7は、実施例における荷電量と嵩密度との関係を示した図である。FIG. 7 is a diagram showing the relationship between the charge amount and the bulk density in the example.

本発明について説明する。
本発明は、電解液中で炭素基材に矩形波をなす電位を印加する工程を備える、電気二重層キャパシタ電極の製造方法である。
本発明における、電解液中で炭素基材に矩形波をなす電位を印加する工程を、以下では印加工程ともいう。
The present invention will be described.
The present invention is a method for producing an electric double layer capacitor electrode, comprising a step of applying a rectangular wave potential to a carbon substrate in an electrolytic solution.
In the present invention, the step of applying a rectangular wave potential to the carbon substrate in the electrolytic solution is also referred to as an application step below.

初めに、前記印加工程における矩形波をなす電位について説明する。
前記印加工程において矩形波をなす電位とは、時間を横軸、電位を縦軸としてグラフに示した場合に2レベルの電位の間を規則的かつ瞬間的に変化する矩形の波状の電位を意味し、例えば図1に示すようなものである。図1は、前記印加工程において炭素基材に印加する矩形波をなす電位の実例を示した図であり、図1において横軸は時間、縦軸は可逆水素電極に対する電位(RHE)(単位はV)である。
First, the potential that forms a rectangular wave in the application step will be described.
The potential that forms a rectangular wave in the applying step means a rectangular wave-like potential that changes regularly and instantaneously between two levels of potential when the time is plotted on the horizontal axis and the potential is plotted on the vertical axis. For example, as shown in FIG. FIG. 1 is a diagram showing an example of a potential forming a rectangular wave applied to a carbon substrate in the application step, in which the horizontal axis is time and the vertical axis is a potential (RHE) with respect to a reversible hydrogen electrode (unit: V).

また、図1に示すように、矩形波をなす電位における高レベル側の電位を上限電位、低レベル側の電位を下限電位とする。ここで、上限電位または下限電位は、常に一定でなくてもよい。すなわち、図1において、上限電位は参照極である可逆水素電極に対して+0.7Vで一定であり、下限電位は+0.1Vで一定であるが、例えば+0.7Vの上限電位から+0.1Vの下限電位へ変化した後、+0.5Vの上限電位へ変化し、さらに+0.2Vの下限電位へ変化してもよい。   Further, as shown in FIG. 1, a high-level potential in a rectangular wave potential is defined as an upper limit potential, and a low-level potential is defined as a lower limit potential. Here, the upper limit potential or the lower limit potential may not always be constant. That is, in FIG. 1, the upper limit potential is constant at +0.7 V with respect to the reversible hydrogen electrode as the reference electrode, and the lower limit potential is constant at +0.1 V. For example, from the upper limit potential of +0.7 V to +0.1 V After changing to the lower limit potential, it may be changed to the upper limit potential of + 0.5V, and further to the lower limit potential of + 0.2V.

なお、上限電位および下限電位は、いずれも参照極である可逆水素電極に対する電位であることが好ましい。この場合、本発明において矩形波をなす電位を印加する際は、可逆水素電極を参照極として電解液中に浸漬して用いることとなる。   In addition, it is preferable that both the upper limit potential and the lower limit potential are potentials with respect to the reversible hydrogen electrode which is a reference electrode. In this case, when applying a rectangular wave potential in the present invention, the reversible hydrogen electrode is used as a reference electrode soaked in the electrolyte.

また、前記上限電位が、参照極として用いる可逆水素電極に対して+0.5〜+0.7Vであることが好ましく、+0.6〜+0.7Vであることがさらに好ましい。このような上限電位であると、矩形波をなす電位を印加した炭素基材の静電容量がより増大するからである。   Moreover, it is preferable that the said upper limit electric potential is + 0.5- + 0.7V with respect to the reversible hydrogen electrode used as a reference electrode, and it is further more preferable that it is + 0.6- + 0.7V. This is because the capacitance of the carbon base material to which the potential forming the rectangular wave is applied is further increased when the upper limit potential is such.

また、前記下限電位が、参照極として用いる可逆水素電極に対して0.0〜+0.3Vであることが好ましく、0.0〜+0.2Vであることがより好ましく、0.0〜+0.1Vであることがさらに好ましい。このような上限電位であると、矩形波をなす電位を印加した炭素基材の静電容量がより増大するからである。   The lower limit potential is preferably 0.0 to +0.3 V, more preferably 0.0 to +0.2 V, and more preferably 0.0 to +0. More preferably, it is 1V. This is because the capacitance of the carbon base material to which the potential forming the rectangular wave is applied is further increased when the upper limit potential is such.

さらに、前記上限電位が、参照極として用いる可逆水素電極に対して+0.5〜+0.7Vであり、かつ、前記下限電位が、参照極として用いる可逆水素電極に対して0.0〜+0.3Vであることが好ましい。このような上限電位であり、かつ下限電位であると、矩形波をなす電位を印加した炭素基材の静電容量がより増大するからである。   Further, the upper limit potential is +0.5 to +0.7 V for a reversible hydrogen electrode used as a reference electrode, and the lower limit potential is 0.0 to +0. 3V is preferred. This is because the capacitance of the carbon base material to which a rectangular wave potential is applied is further increased when the upper limit potential and the lower limit potential are satisfied.

また、図1に示すように、上限電位を継続している時間を上限電位保持時間、下限電位を継続している時間を下限電位保持時間とする。ここで、上限電位保持時間および下限電位保持時間についても、常に一定でなくてよい。   As shown in FIG. 1, the time during which the upper limit potential is continued is defined as the upper limit potential holding time, and the time during which the lower limit potential is maintained is defined as the lower limit potential holding time. Here, the upper limit potential holding time and the lower limit potential holding time may not always be constant.

また、前記上限電位保持時間は特に限定されないものの、10〜60秒であることが好ましく、20〜50秒であることがより好ましく、30〜45秒であることがより好ましく、35〜40秒であることがさらに好ましい。このような上限電位保持時間であると、炭素基材の電荷量が充分になるからである。   The upper limit potential holding time is not particularly limited, but is preferably 10 to 60 seconds, more preferably 20 to 50 seconds, more preferably 30 to 45 seconds, and 35 to 40 seconds. More preferably it is. This is because the charge amount of the carbon base material is sufficient when it is such an upper limit potential holding time.

また、前記下限電位保持時間は特に限定されないものの、10〜60秒であることが好ましく、20〜50秒であることがより好ましく、30〜45秒であることがより好ましく、35〜40秒であることがさらに好ましい。このような下限電位保持時間であると、炭素基材の電荷量が充分になるからである。   The lower limit potential holding time is not particularly limited, but is preferably 10 to 60 seconds, more preferably 20 to 50 seconds, more preferably 30 to 45 seconds, and 35 to 40 seconds. More preferably it is. This is because the charge amount of the carbon substrate is sufficient when the lower limit potential is maintained.

また、前記炭素基材に含まれる炭素1mol当たり、好ましくは3,800〜120,000C、より好ましくは20,000〜60,000C、より好ましくは30,000〜46,000C、さらに好ましくは38,000C程度の電荷量が流れるまで印加する。印加する電荷量を増加すると、炭素基材の表面が酸化され、一部がCOとなるので密度が低くなり、強度が低下して電極として構造を保つことが難しくなる傾向があるが、このような電荷量が流れるまで印加しても、強度の低下幅が小さいからである。 Further, per 1 mol of carbon contained in the carbon base material, preferably 3,800 to 120,000 C, more preferably 20,000 to 60,000 C, more preferably 30,000 to 46,000 C, still more preferably 38, Apply until a charge amount of about 000 C flows. Increasing the amount of charge to be applied oxidizes the surface of the carbon substrate, and part of it becomes CO 2 , resulting in lower density and lower strength, making it difficult to maintain the structure as an electrode. Even if it is applied until such a charge amount flows, the decrease in strength is small.

次に、図1を用いて説明したような矩形波をなす電位を、炭素基材に印加する方法について、図2を用いて説明する。上記のような矩形波をなす電位を電解液中において炭素基材に印加する方法は特に限定されないものの、次に具体例として示す装置を用いて行うことが好ましい。
図2は、矩形波をなす電位を炭素基材に印加するために用いることができる装置の具体例を示した概略断面図である。
図2において、炭素基材10は、作用極20が有するポケット内に収容されている。そして、作用極20と、対極22と、可逆水素電極24とは、容器5に貯められた電解液15に浸漬されており、各々はポテンシオスタット26へ繋げられている。ここで作用極20は、炭素基材10を収容したポケットの部分の全てが電解液15に浸漬するように配置されている。また、作用極20と対極22とに流れる電流が変わらないように、各極の距離が調整されている。矩形波をなす電位を炭素基材に印加している間に各極の距離が変わるとイオン抵抗が変化し電流が変わるので、電極を固定し、距離を一定に調整する。
そして、ポテンシオスタット26によって、作用極20と可逆水素電極24との間の電位が所望の矩形波をなす電位となるように、作用極20と対極22とに流れる電流を制御することができる。
Next, a method of applying a rectangular wave potential as described with reference to FIG. 1 to the carbon substrate will be described with reference to FIG. Although the method of applying the rectangular wave potential as described above to the carbon substrate in the electrolyte is not particularly limited, it is preferably performed using a device shown as a specific example.
FIG. 2 is a schematic cross-sectional view showing a specific example of an apparatus that can be used to apply a rectangular wave potential to a carbon substrate.
In FIG. 2, the carbon substrate 10 is accommodated in a pocket of the working electrode 20. The working electrode 20, the counter electrode 22, and the reversible hydrogen electrode 24 are immersed in the electrolytic solution 15 stored in the container 5, and each is connected to a potentiostat 26. Here, the working electrode 20 is disposed so that all of the pocket portions containing the carbon substrate 10 are immersed in the electrolytic solution 15. Further, the distance between the electrodes is adjusted so that the current flowing through the working electrode 20 and the counter electrode 22 does not change. If the distance between the poles changes while applying a rectangular wave potential to the carbon substrate, the ionic resistance changes and the current changes. Therefore, the electrodes are fixed and the distance is adjusted to be constant.
The current flowing between the working electrode 20 and the counter electrode 22 can be controlled by the potentiostat 26 so that the potential between the working electrode 20 and the reversible hydrogen electrode 24 becomes a potential forming a desired rectangular wave. .

次に、前記印加工程における電解液について説明する。前記印加工程では、次に説明する電解液の中で、上記の矩形波をなす電位を炭素基材に印加する。
前記印加工程において電解液は特に限定されず、実質的に水を含まないものが好ましく、100℃以上において安定であって、かつ分解電圧が印加時の電圧よりも大きいものが好ましい。ここで分解電圧とは、試料極と参照極との間の電流が増大し、電解液の電気化学的分解が開始される電圧を言う。
また、印加工程では、電解液を100℃以上、好ましくは150〜220℃、より好ましくは160〜190℃とした状態で炭素基材に上記の矩形波をなす電位を印加することが好ましい。電解液中から水分を除去することができるからである。また、セル組み前に電位を印加するので、電解液の分解物が電解液内に放出されて吸着イオンの拡散抵抗が増加することはなく、また、水分の混入を避けるためにドライルーム等の大掛かりな設備やグローブボックスなどを用いた高度な湿度管理が必要なく、さらに短時間印加するだけで、炭素基材の静電容量を高めることができるからである。リン酸または硫酸は100℃以上において安定であり、かつ分解電圧が賦活時の印加電圧よりも大きいので、電解液として好ましく用いることができる。
Next, the electrolytic solution in the application step will be described. In the applying step, a potential that forms the rectangular wave is applied to the carbon base material in an electrolytic solution described below.
In the application step, the electrolytic solution is not particularly limited, and is preferably substantially free of water, preferably stable at 100 ° C. or higher and having a decomposition voltage larger than the voltage at the time of application. Here, the decomposition voltage refers to a voltage at which the current between the sample electrode and the reference electrode increases and the electrochemical decomposition of the electrolytic solution is started.
Further, in the applying step, it is preferable to apply a potential that forms the rectangular wave to the carbon base material in a state where the electrolytic solution is 100 ° C. or higher, preferably 150 to 220 ° C., more preferably 160 to 190 ° C. This is because moisture can be removed from the electrolytic solution. In addition, since the potential is applied before assembling the cell, the decomposition product of the electrolytic solution is not released into the electrolytic solution and the diffusion resistance of the adsorbed ions does not increase. This is because there is no need for advanced humidity management using large-scale equipment or a glove box, and the capacitance of the carbon base material can be increased only by applying for a short time. Phosphoric acid or sulfuric acid is stable at 100 ° C. or higher, and the decomposition voltage is higher than the applied voltage at the time of activation, so that it can be preferably used as an electrolyte.

次に、前記印加工程における炭素基材について説明する。
前記印加工程において炭素基材は、炭素を主成分とする材料であれば特に限定されない。形状についても限定されず、粉末の炭素原料をバインダーで成形したものや、粉状ではない塊状のカーボン材を用いることができる。
炭素基材としては、例えば、活性炭、炭素繊維、パルプ、樹脂、石炭系または石油系ピッチコークス、メソフェーズピッチ系炭素繊維、メソカーボンマイクロビーズ、ニードルコークス、カーボンブラック、不融化した塩化ビニル、カーボンナノチューブなどを炭素基材として用いることができる。ここで、炭素繊維は捲縮処理が施されたものであると、熱処理後にほとんど収縮せず細孔容量が増加する傾向があるので好ましく用いることができる。また、ここでパルプとしては、広葉樹晒クラフトパルプ(LBKP)、広葉樹未晒クラフトパルプ(LUKP)、針葉樹晒クラフトパルプ(NBKP)、針葉樹未晒クラフトパルプ(NUKP)、綿パルプ、麻パルプなどが挙げられる。また、ここで樹脂としては、フェノール樹脂、フラン樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、ポリイミド樹脂、ユリア樹脂、メラミン樹脂などが挙げられる。
Next, the carbon substrate in the application step will be described.
In the application step, the carbon substrate is not particularly limited as long as it is a material mainly composed of carbon. The shape is not limited, and a powdery carbon raw material formed with a binder or a lump-like carbon material that is not powdery can be used.
Examples of the carbon substrate include activated carbon, carbon fiber, pulp, resin, coal-based or petroleum-based pitch coke, mesophase pitch-based carbon fiber, mesocarbon microbead, needle coke, carbon black, infusible vinyl chloride, and carbon nanotube. Etc. can be used as the carbon substrate. Here, if the carbon fiber is crimped, it can be preferably used because it hardly shrinks after heat treatment and the pore volume tends to increase. Examples of the pulp include hardwood bleached kraft pulp (LBKP), hardwood unbleached kraft pulp (LUKP), softwood bleached kraft pulp (NBKP), softwood unbleached kraft pulp (NUKP), cotton pulp, hemp pulp and the like. It is done. Examples of the resin herein include phenol resin, furan resin, epoxy resin, unsaturated polyester resin, polyimide resin, urea resin, and melamine resin.

また、前記炭素基材は、複数種類を混合して用いることもできる。例えば捲縮処理が施された炭素繊維とパルプとを混合してなる炭素基材は、強度が高くなるので形状保持性に優れ好ましい。特に、パルプとして麻パルプを用いると形状保持性により優れる。他にも、例えば、カーボンブラックや活性炭と、四弗化ポリエチレンやポリフッ化ビニリデンとを混合したものを混合したものを炭素基材として用いることができる。   Moreover, the said carbon base material can also be used in mixture of multiple types. For example, a carbon base material obtained by mixing carbon fiber subjected to crimping treatment with pulp is preferable because it has high strength and has high shape retention. In particular, when hemp pulp is used as the pulp, the shape retention is excellent. In addition, for example, a mixture of carbon black or activated carbon and a mixture of polyethylene tetrafluoride or polyvinylidene fluoride can be used as the carbon substrate.

また、前記炭素基材は活性炭などの多孔質のものであることが好ましい。例えば、捲縮処理が施された炭素繊維とパルプとを混合し、乾燥して成形体とした後、樹脂を(好ましくは炭素繊維が10〜30質量%、パルプが40〜85質量%、樹脂が40〜85質量%となるように)含浸させ、その後、不活性ガス雰囲気下、400〜1200℃、好ましくは900℃程度の温度で焼成すると、多孔質な炭素基材を得ることができる。
なお、本発明において多孔質な炭素基材(以下では「多孔質炭素基材」ともいう)とは、体積と質量とを測定して算出した嵩密度が0.4〜0.9g/cmである炭素基材を意味するものとする。また、ここで体積はノギスとマイクロメーターとを用いて測定する。
The carbon substrate is preferably a porous material such as activated carbon. For example, carbon fiber and pulp subjected to crimping treatment are mixed and dried to form a molded body, and then resin (preferably 10 to 30% by mass of carbon fiber, 40 to 85% by mass of pulp, resin) Porous carbon base material can be obtained by impregnation, and then firing at a temperature of about 400 to 1200 ° C., preferably about 900 ° C. in an inert gas atmosphere.
In the present invention, the porous carbon substrate (hereinafter also referred to as “porous carbon substrate”) has a bulk density of 0.4 to 0.9 g / cm 3 calculated by measuring volume and mass. The carbon base material is meant. Here, the volume is measured using a caliper and a micrometer.

本発明における印加工程は、上記のような電解液中で、上記のような炭素基材に、上記のような矩形波をなす電位を印加する工程である。
このような印加工程を備える本発明によって静電容量が高い電気二重層キャパシタ電極が得られる理由は明らかではないが、本発明者は、上記のような印加工程によって炭素基材の表面のヒドロキシル基を増加させることができ、それによって静電容量が増加すると推定している。
The applying step in the present invention is a step of applying a potential that forms a rectangular wave as described above to the carbon substrate as described above in the above-described electrolytic solution.
The reason why an electric double layer capacitor electrode having a high capacitance can be obtained by the present invention including such an application step is not clear, but the present inventor has determined that the hydroxyl group on the surface of the carbon substrate by the above application step. It is estimated that the capacitance can be increased.

また、本発明では、前記印加工程に供した後の炭素基材を用いて、通常の方法で電気二重層キャパシタ電極を製造することができる。例えば、シート電極法やスラリー電極法を適用して製造することができる。具体的には、ポリテトラフルオロエチレン、ポリビニリデンフルオロライド、PVA等の結合材と、ケッチェンブラック、アセチレンブラック、天然黒鉛、人工黒煙などの導電性助剤とを前記印加工程に供した後の炭素基材と混合して、電気二重層キャパシタ電極を製造することができる。前記印加工程に供した後の炭素基材と、結合材と、導電性助剤との混合比率は特に限定されないが、50〜95質量部:1〜25質量部:1〜25質量部であることが好ましい。
また、例えば、通常のカレンダーロール法により、例えば所定量のポリテトラフルオロエチレンと前記印加工程に供した後の炭素基材とが含有された厚さ0.5mmのカーボンシートを作製し、そのカーボンシートを、例えば外径16mm,面積2cmの大きさに2枚打ち抜き、それぞれに所定の電解液を含浸させることによって、電気二重層キャパシタ電極を製造することができる。
Moreover, in this invention, an electrical double layer capacitor electrode can be manufactured by a normal method using the carbon base material after using the said application process. For example, it can be manufactured by applying a sheet electrode method or a slurry electrode method. Specifically, after subjecting a binder such as polytetrafluoroethylene, polyvinylidene fluoride, and PVA, and a conductive aid such as ketjen black, acetylene black, natural graphite, and artificial black smoke to the application step An electric double layer capacitor electrode can be manufactured by mixing with a carbon substrate. The mixing ratio of the carbon base material subjected to the application step, the binder, and the conductive auxiliary agent is not particularly limited, but is 50 to 95 parts by mass: 1 to 25 parts by mass: 1 to 25 parts by mass. It is preferable.
Further, for example, a carbon sheet having a thickness of 0.5 mm containing, for example, a predetermined amount of polytetrafluoroethylene and a carbon substrate after being subjected to the application step is prepared by a normal calender roll method, and the carbon An electric double layer capacitor electrode can be manufactured by punching out two sheets of, for example, an outer diameter of 16 mm and an area of 2 cm 2 and impregnating each sheet with a predetermined electrolyte.

上記のような本発明によれば、従来と比較して静電容量が高い電気二重層キャパシタ電極を得ることができる。また、電極に用いる炭素基材の形状を選ばず、粉末の炭素原料をバインダーで成形したものや、粉状ではないカーボン材にも適用することができる。   According to the present invention as described above, it is possible to obtain an electric double layer capacitor electrode having a higher capacitance than the conventional one. Moreover, it can apply also to what formed the carbon raw material of a powder with the binder, and the carbon material which is not powdery, without choosing the shape of the carbon base material used for an electrode.

上記のような本発明によって得られる電気二重層キャパシタ電極を用いて、例えば次のような電気二重層キャパシタを製造することができる。
図3は、電気二重層キャパシタの断面形状を例示した図である。図3において電気二重層キャパシタ30は、電気二重層キャパシタ電極32と、電気二重層キャパシタ電極32を中央部分で分離するセパレータ33と、電気二重層キャパシタ電極32の両端に設けられた集電板34と、集電板34に接続された電極リード線35と、絶縁セル枠36とにより構成される。より具体的には、電気二重層キャパシタ30は、例えば外径17mmに打ち抜いた厚さ0.3mmの電子絶縁性の多孔質なパルプ紙からなるセパレータ33を用いて、電気二重層キャパシタ電極32を中央部分で分離することによって構成される。
For example, the following electric double layer capacitor can be produced using the electric double layer capacitor electrode obtained by the present invention as described above.
FIG. 3 is a diagram illustrating a cross-sectional shape of the electric double layer capacitor. In FIG. 3, an electric double layer capacitor 30 includes an electric double layer capacitor electrode 32, a separator 33 that separates the electric double layer capacitor electrode 32 at a central portion, and current collector plates 34 provided at both ends of the electric double layer capacitor electrode 32. And an electrode lead wire 35 connected to the current collector plate 34 and an insulating cell frame 36. More specifically, the electric double layer capacitor 30 is formed by using, for example, a separator 33 made of electronically insulating porous pulp paper having a thickness of 0.3 mm punched to an outer diameter of 17 mm to Composed by separating at the central part.

なお、集電体については特に制限はなく従来公知のものを用いることができる。例えば、表面エッチングしたアルミ箔、ステンレス箔などを用いることができる。
また、セパレータは、製造プロセス、用途から求まる耐薬品性、耐熱性等の要件を満たせば特に限定されない。例えばポリエチレン多孔膜、ポリプロピレン製不織布、ガラス繊維性不織布、セルロース性特殊紙等の公知の材料が使用可能である。
また、電気二重層キャパシタのセル形状は、特に制限はなく、コイン型、角型、円筒型等のいずれの方式も採用できる。
In addition, there is no restriction | limiting in particular about a collector, A conventionally well-known thing can be used. For example, surface-etched aluminum foil, stainless steel foil, or the like can be used.
Moreover, a separator will not be specifically limited if the requirements, such as chemical resistance and heat resistance which are calculated | required from a manufacturing process and a use, are satisfy | filled. For example, known materials such as polyethylene porous film, polypropylene nonwoven fabric, glass fiber nonwoven fabric, and cellulosic special paper can be used.
The cell shape of the electric double layer capacitor is not particularly limited, and any system such as a coin type, a square type, and a cylindrical type can be adopted.

<実施例1>
針葉樹未晒クラフトパルプ(NUKP)80質量%と、捲縮処理が施された炭素繊維(商品名:ドナカーボ・Sチョップ、ドナック社製)20質量%とを混合してスラリー状の組成物を得た。
次に、得られたスラリーを、板紙抄紙マシーンを用いて脱水し、150℃で乾燥して厚さ6mmの成形体を得た。そして、成形体:フェノール樹脂=100:80の質量比で、得られた成形体にフェノール樹脂(商品名:SP260、旭有機材工業社製)を含浸させた後、120℃で20分間温風乾燥して樹脂を硬化させ、さらに、不活性ガス雰囲気下、900℃で焼成を行って多孔質炭素基材を得た。
<Example 1>
A slurry-like composition is obtained by mixing 80% by mass of unbleached kraft pulp (NUKP) with 20% by mass of crimped carbon fiber (trade name: Donakabo S-chop, manufactured by Donac). It was.
Next, the obtained slurry was dehydrated using a paperboard machine and dried at 150 ° C. to obtain a molded body having a thickness of 6 mm. And after impregnating the obtained molded object with a phenol resin (trade name: SP260, manufactured by Asahi Organic Materials Co., Ltd.) at a mass ratio of the molded object: phenolic resin = 100: 80, warm air at 120 ° C. for 20 minutes The resin was cured by drying, and further fired at 900 ° C. in an inert gas atmosphere to obtain a porous carbon substrate.

得られた多孔質炭素基材は、パルプやフェノール樹脂が炭化され、タール等の余分な成分が除去されていた。また、多孔質炭素基材の嵩密度は0.79g/cm、1M硫酸中での静電容量は3F/gであった。
ここで多孔質炭素基材の嵩密度は、体積と質量とを測定して算出した値である。また、この体積はノギスとマイクロメーターとを用いて測定した。
また、静電容量は、電解液として1Mの硫酸を用い、試料をポケットに収容可能な白金メッシュ(白金金網:PT−358055、ニラコ社製)を作用極とし、白金板を対極極とし、これらと可逆水素電極とをポテンシオスタットに繋げた3電極法によるサイクリックボルタンメトリーによって測定した。なお、静電容量の測定時の電解液の温度は25℃であり、電極面積は1cmであり、可逆水素電位に対し1mV/sの電位掃引速度で0から1Vまで掃引して、0.6Vの電流値から静電容量を算出した。
In the obtained porous carbon base material, pulp and phenol resin were carbonized, and extra components such as tar were removed. Further, the bulk density of the porous carbon substrate was 0.79 g / cm 3 , and the capacitance in 1M sulfuric acid was 3 F / g.
Here, the bulk density of the porous carbon substrate is a value calculated by measuring volume and mass. The volume was measured using a caliper and a micrometer.
In addition, the capacitance is 1M sulfuric acid as an electrolytic solution, a platinum mesh (platinum wire mesh: PT-358055, manufactured by Niraco) capable of accommodating a sample in a pocket is used as a working electrode, and a platinum plate is used as a counter electrode. And a reversible hydrogen electrode were measured by cyclic voltammetry using a three-electrode method in which a potentiostat was connected. In addition, the temperature of the electrolytic solution at the time of measuring the capacitance was 25 ° C., the electrode area was 1 cm 2 , and the potential was swept from 0 to 1 V at a potential sweep rate of 1 mV / s with respect to the reversible hydrogen potential. The capacitance was calculated from the current value of 6V.

次に、得られた多孔質炭素基材を円盤状に切り出し、白金メッシュ(白金金網:PT−358055、ニラコ社製)が備える試料ポケットに入れた。そして、図2に示すように、これを作用極としてPTFE製ビーカーに入れた170℃のリン酸へ浸漬させ、さらに、対極として白金板および参照極として可逆水素電極を浸漬させ、作用極と対極と参照極とをポテンシオスタットに繋げ、矩形波をなす電位を多孔質炭素基材へ印加した。ここで、作用極と対極とに流れる電流が変わらないように、各極の距離を調整した。
本実施例では、図1に示すような、矩形波をなす電位の上限電位を+0.7V、下限電位を+0.1V、上限電位保持時間を30秒、下限電位保持時間を1秒とし、多孔質炭素基材に含有される炭素1mol当たり38,000Cの電荷量が流れるまで印加した。また、ポテンシオスタットを用いて、多孔質炭素基材の電極と対極との間の電圧が設定した上限電圧または下限電圧となるように調整した。なお、実施例において、上限電位および下限電位は、いずれも参照極である可逆水素電位に対する電位を意味するものとする。
Next, the obtained porous carbon base material was cut out into a disk shape and placed in a sample pocket provided in a platinum mesh (platinum wire mesh: PT-358055, manufactured by Niraco). Then, as shown in FIG. 2, this was immersed in a phosphoric acid at 170 ° C. placed in a PTFE beaker as a working electrode, and further, a platinum plate as a counter electrode and a reversible hydrogen electrode as a reference electrode were immersed in the working electrode and the counter electrode. And a reference electrode were connected to a potentiostat, and a rectangular wave potential was applied to the porous carbon substrate. Here, the distance between each electrode was adjusted so that the current flowing between the working electrode and the counter electrode did not change.
In this example, as shown in FIG. 1, the upper limit potential of a rectangular wave is +0.7 V, the lower limit potential is +0.1 V, the upper limit potential holding time is 30 seconds, the lower limit potential holding time is 1 second, It was applied until a charge amount of 38,000 C per 1 mol of carbon contained in the carbonaceous substrate flowed. Moreover, it adjusted so that the voltage between the electrode of a porous carbon base material and a counter electrode might become the set upper limit voltage or lower limit voltage using the potentiostat. In the examples, the upper limit potential and the lower limit potential both mean potentials with respect to the reversible hydrogen potential which is a reference electrode.

このような方法で所定量の電荷量を多孔質炭素基材に流した後、これをリン酸から取り出し、上記と同様の方法で1M硫酸中での静電容量を測定したところ、59F/gであった。また、得られた多孔質炭素基材の嵩密度は0.70g/cmであった。すなわち、矩形波をなす電位の印加の前後において、多孔質炭素基材の嵩密度の低下は小さく、静電容量は約19倍となった。 After flowing a predetermined amount of charge into the porous carbon substrate by such a method, it was taken out from phosphoric acid, and the capacitance in 1M sulfuric acid was measured by the same method as described above. Met. Moreover, the bulk density of the obtained porous carbon base material was 0.70 g / cm 3 . That is, before and after the application of a rectangular wave potential, the decrease in bulk density of the porous carbon substrate was small, and the capacitance was about 19 times.

<実施例2>
実施例1では、多孔質炭素基材に含有される炭素1mol当たり38,000Cの電荷量が流れるまで印加したが、これを76,000Cの電荷量が流れるまで印加し、それ以外は、全て実施例1と同様の実験を行い、同様の方法で静電容量を測定した。その結果、静電容量は146F/g、多孔質炭素基材の嵩密度は0.63g/cmであった。
<Example 2>
In Example 1, it was applied until a charge amount of 38,000 C per 1 mol of carbon contained in the porous carbon base material flowed, but this was applied until a charge amount of 76,000 C flowed, and all other operations were performed. The same experiment as in Example 1 was performed, and the capacitance was measured by the same method. As a result, the capacitance was 146 F / g, and the bulk density of the porous carbon substrate was 0.63 g / cm 3 .

<比較例1>
実施例1と同様の方法で、嵩密度が0.79g/cm、1M硫酸中での静電容量が3F/gの多孔質炭素基材を調整した。
次に、内部を850℃に調整した電気炉内にCOガスを300mL/minの流量で流し、ここへ前記多孔質炭素基材を入れ、5時間保持することで賦活した。
そして、上記と同様の方法で1M硫酸中での静電容量を測定したところ21F/gであり、多孔質炭素基材の嵩密度は0.71g/cmであった。
<Comparative Example 1>
A porous carbon substrate having a bulk density of 0.79 g / cm 3 and a capacitance of 3 F / g in 1M sulfuric acid was prepared in the same manner as in Example 1.
Next, CO 2 gas was allowed to flow at a flow rate of 300 mL / min in an electric furnace whose inside was adjusted to 850 ° C., and the porous carbon base material was put therein and held for 5 hours for activation.
And when the electrostatic capacitance in 1M sulfuric acid was measured by the method similar to the above, it was 21 F / g, and the bulk density of the porous carbon base material was 0.71 g / cm < 3 >.

<比較例2>
比較例1では、5時間保持して賦活したが、これを10時間とし、それ以外は、全て比較例1と同様の実験を行い、同様の方法で静電容量を測定した。その結果、静電容量は48F/g、多孔質炭素基材の嵩密度は0.63g/cmであった。
<Comparative example 2>
In Comparative Example 1, activation was carried out by holding for 5 hours, but this was set to 10 hours, and all other than that, the same experiment as in Comparative Example 1 was performed, and the capacitance was measured by the same method. As a result, the electrostatic capacity was 48 F / g, and the bulk density of the porous carbon substrate was 0.63 g / cm 3 .

<比較例3>
比較例1では、5時間保持して賦活したが、これを15時間とし、それ以外は、全て比較例1と同様の実験を行い、同様の方法で静電容量を測定した。その結果、静電容量は78F/g、多孔質炭素基材の嵩密度は0.55g/cmであった。
<Comparative Example 3>
In Comparative Example 1, activation was carried out by holding for 5 hours, but this was set to 15 hours, and all other experiments were performed in the same manner as in Comparative Example 1, and the capacitance was measured by the same method. As a result, the electrostatic capacity was 78 F / g, and the bulk density of the porous carbon substrate was 0.55 g / cm 3 .

上記の実施例1、実施例2、比較例1、比較例2および比較例3の場合における多孔質炭素基材の嵩密度と、静電容量との関係を図4に示す。また、図4には、賦活前の多孔質炭素基材における嵩密度と静電容量との関係を示すプロットを示す。
COガスを用いて賦活した比較例1〜3に対して、実施例1および実施例2の場合は、多孔質炭素基材の嵩密度に対する静電容量が高くなることがわかる。
FIG. 4 shows the relationship between the bulk density of the porous carbon substrate and the capacitance in the case of Example 1, Example 2, Comparative Example 1, Comparative Example 2, and Comparative Example 3 described above. Moreover, in FIG. 4, the plot which shows the relationship between the bulk density in the porous carbon base material before activation and an electrostatic capacitance is shown.
In contrast to Comparative Examples 1 to 3 activated using CO 2 gas, it can be seen that in Examples 1 and 2, the capacitance with respect to the bulk density of the porous carbon substrate is increased.

<実施例3>
実施例1では、矩形波をなす電位の下限電位を+0.1Vに固定したが、これを0.0、+0.2V、+0.3V、+0.4V、+0.5V、+0.6Vへ変更した各々の場合について、実施例1と同様の実験を行い、同様の方法で静電容量を測定した。結果を実施例1の場合と合わせて図5に示す。なお、図5では、静電容量を、矩形波をなす電位を印加する前後の比(処理後の静電容量/元の静電容量)として示した。
図5に示すように、下限電位が0.0〜+0.3Vの場合に静電容量が高まり、0.0〜+0.1Vの場合に静電容量が特に高まることがわかった。
<Example 3>
In Example 1, the lower limit potential of the rectangular wave was fixed at +0.1 V, but this was changed to 0.0, +0.2 V, +0.3 V, +0.4 V, +0.5 V, and +0.6 V. In each case, the same experiment as in Example 1 was performed, and the capacitance was measured by the same method. The results are shown in FIG. 5 together with the case of Example 1. In FIG. 5, the electrostatic capacity is shown as a ratio (capacitance after processing / original electrostatic capacity) before and after applying a rectangular wave potential.
As shown in FIG. 5, it was found that the electrostatic capacity increased when the lower limit potential was 0.0 to +0.3 V, and the electrostatic capacity was particularly increased when the lower limit potential was 0.0 to +0.1 V.

<実施例4>
実施例1では、矩形波をなす電位の上限電位を+0.7Vに固定したが、これを+0.4V、+0.5V、+0.6V、+0.8V、+0.9V、+1.0Vへ変更した各々の場合について、実施例4と同様の実験を行い、同様の方法で静電容量を測定した。結果を実施例1の場合と合わせて図5に示す。なお、図5では、静電容量を、矩形波をなす電位を印加する前後の比(処理後の静電容量/元の静電容量)として示した。
図5に示すように、下限電位が+0.5〜+0.7Vの場合に静電容量が高まることがわかった。
<Example 4>
In Example 1, the upper limit potential of the potential forming the rectangular wave was fixed to + 0.7V, but this was changed to + 0.4V, + 0.5V, + 0.6V, + 0.8V, + 0.9V, + 1.0V. In each case, the same experiment as in Example 4 was performed, and the capacitance was measured by the same method. The results are shown in FIG. 5 together with the case of Example 1. In FIG. 5, the electrostatic capacity is shown as a ratio (capacitance after processing / original electrostatic capacity) before and after applying a rectangular wave potential.
As shown in FIG. 5, it was found that the capacitance increases when the lower limit potential is +0.5 to +0.7 V.

<実施例5>
実施例1と同様の方法で、矩形波をなす電位を多孔質炭素基材へ印加する準備をした。そして、下限電位である+0.1Vから上限電位である+0.7Vへ切り替えた後の、多孔質炭素基材の電荷量(単位時間当たりの積算電荷量増加率)の変化を測定した。測定結果を図6に示す。なお、多孔質炭素基材の電荷量は、クロノクーロメトリー(定電位を印加した時の電荷を測定する方法)で測定した。
図6から、単位時間当たりの積算電荷量増加率は、下限電位から上限電位へ切り替えてから60秒以降は変化が極小さくなることがわかる。また、上限電位保持時間は10〜30秒程度が望ましいといえる。
<Example 5>
In the same manner as in Example 1, preparation was made to apply a rectangular wave potential to the porous carbon substrate. And the change of the charge amount (integrated charge amount increase rate per unit time) of the porous carbon base material after switching from +0.1 V that is the lower limit potential to +0.7 V that is the upper limit potential was measured. The measurement results are shown in FIG. In addition, the charge amount of the porous carbon substrate was measured by chronocoulometry (a method for measuring the charge when a constant potential was applied).
From FIG. 6, it can be seen that the change rate of the accumulated charge amount per unit time becomes extremely small after 60 seconds after switching from the lower limit potential to the upper limit potential. Moreover, it can be said that the upper limit potential holding time is desirably about 10 to 30 seconds.

<実施例6>
実施例1では、多孔質炭素基材に含まれる炭素1mol当たり38,000Cの電荷量が流れるまで印加したが、これを、1,000C、10,000C、38,000C、50,000C、70,000C、100,000Cの電荷量が流れるまで印加することへ変更した各々の場合について、実施例1と同様の実験を行い、同様の方法で嵩密度を測定した。結果を図7に示す。なお、図7では、嵩密度を、矩形波をなす電位を印加する前後の比(処理後嵩密度/元の嵩密度(0.70g/cm))として示した。
図7に示すように、120,000Cの電荷量を流しても、元の嵩密度の70%程度の嵩密度を維持していることがわかる。したがって、本発明の電極は容易に破壊されず、扱いが容易であるといえる。
<Example 6>
In Example 1, it was applied until a charge amount of 38,000 C per 1 mol of carbon contained in the porous carbon substrate flowed. This was applied to 1,000 C, 10,000 C, 38,000 C, 50,000 C, 70, In each case where the charge was changed to flow until 000 C and 100,000 C charge flows, the same experiment as in Example 1 was performed, and the bulk density was measured by the same method. The results are shown in FIG. In FIG. 7, the bulk density is shown as a ratio before and after applying a rectangular wave potential (bulk density after treatment / original bulk density (0.70 g / cm 3 )).
As shown in FIG. 7, it can be seen that a bulk density of about 70% of the original bulk density is maintained even when a charge amount of 120,000 C is passed. Therefore, it can be said that the electrode of the present invention is not easily destroyed and is easy to handle.

5 容器
15 電解液
10 炭素基材
20 作用極
22 対極
24 可逆水素電極
26 ポテンシオスタッド
30 電気二重層キャパシタ
32 電気二重層キャパシタ電極
33 セパレータ
34 集電板
35 リード線
36 絶縁セル枠
5 Container 15 Electrolyte 10 Carbon Base Material 20 Working Electrode 22 Counter Electrode 24 Reversible Hydrogen Electrode 26 Potentio Stud 30 Electric Double Layer Capacitor 32 Electric Double Layer Capacitor Electrode 33 Separator 34 Current Collector Plate 35 Lead Wire 36 Insulated Cell Frame

Claims (9)

電解液中で炭素基材に矩形波をなす電位を印加する工程を備える、電気二重層キャパシタ電極の製造方法。   A method for producing an electric double layer capacitor electrode, comprising a step of applying a potential that forms a rectangular wave to a carbon substrate in an electrolytic solution. 150〜220℃の前記電解液中で、前記炭素基材に前記電圧を印加する、請求項1に記載の電気二重層キャパシタ電極の製造方法。   The method for producing an electric double layer capacitor electrode according to claim 1, wherein the voltage is applied to the carbon substrate in the electrolytic solution at 150 to 220 ° C. 前記電解液がリン酸または硫酸である、請求項1または2に記載の電気二重層キャパシタ電極の製造方法。   The method for producing an electric double layer capacitor electrode according to claim 1, wherein the electrolytic solution is phosphoric acid or sulfuric acid. 前記矩形波をなす電位の下限電位が、参照極として用いる可逆水素電極に対して0.0〜+0.3Vである、請求項1〜3のいずれかに記載の電気二重層キャパシタ電極の製造方法。   The method for producing an electric double layer capacitor electrode according to any one of claims 1 to 3, wherein a lower limit potential of the potential forming the rectangular wave is 0.0 to +0.3 V with respect to a reversible hydrogen electrode used as a reference electrode. . 前記矩形波をなす電位の上限電位が、参照極として用いる可逆水素電極に対して+0.5〜+0.7Vである、請求項1〜4のいずれかに記載の電気二重層キャパシタ電極の製造方法。   The method for producing an electric double layer capacitor electrode according to any one of claims 1 to 4, wherein an upper limit potential of the potential forming the rectangular wave is +0.5 to +0.7 V with respect to a reversible hydrogen electrode used as a reference electrode. . 前記炭素基材に含まれる炭素1mol当たり3,800〜120,000Cの電荷量が流れるまで印加する、請求項1〜5のいずれかに記載の電位二重層キャパシタ電極の製造方法。   The method for producing a potential double layer capacitor electrode according to any one of claims 1 to 5, wherein the charge is applied until a charge amount of 3,800 to 120,000 C flows per mol of carbon contained in the carbon substrate. 前記矩形波をなす電位の上限電位の保持時間が10〜60秒である、請求項1〜6のいずれかに記載の電気二重層キャパシタ電極の製造方法。   The manufacturing method of the electric double layer capacitor electrode according to any one of claims 1 to 6, wherein a holding time of the upper limit potential of the potential forming the rectangular wave is 10 to 60 seconds. 請求項1〜7のいずれかに記載の電気二重層キャパシタ電極の製造方法によって得られる、電気二重層キャパシタ電極。   The electric double layer capacitor electrode obtained by the manufacturing method of the electric double layer capacitor electrode in any one of Claims 1-7. 請求項8に記載の電気二重層キャパシタ電極を有する、電気二重層キャパシタ。   An electric double layer capacitor comprising the electric double layer capacitor electrode according to claim 8.
JP2010179084A 2010-08-09 2010-08-09 Method of manufacturing electric double layer capacitor electrode and electric double layer capacitor electrode Pending JP2012038982A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010179084A JP2012038982A (en) 2010-08-09 2010-08-09 Method of manufacturing electric double layer capacitor electrode and electric double layer capacitor electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010179084A JP2012038982A (en) 2010-08-09 2010-08-09 Method of manufacturing electric double layer capacitor electrode and electric double layer capacitor electrode

Publications (1)

Publication Number Publication Date
JP2012038982A true JP2012038982A (en) 2012-02-23

Family

ID=45850627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010179084A Pending JP2012038982A (en) 2010-08-09 2010-08-09 Method of manufacturing electric double layer capacitor electrode and electric double layer capacitor electrode

Country Status (1)

Country Link
JP (1) JP2012038982A (en)

Similar Documents

Publication Publication Date Title
KR100569188B1 (en) Carbon-porous media composite electrode and preparation method thereof
JP2014530502A (en) High voltage electrochemical double layer capacitor
US20110026189A1 (en) Single-wall Carbon Nanotube Supercapacitor
JP2007059899A (en) Electrochemical device
TW201507974A (en) High voltage EDLC electrodes containing CO2 activated coconut char
CN110246699A (en) A kind of anode electrode piece of lithium-ion capacitor, lithium-ion capacitor and its cathode pre-embedding lithium method
KR101660297B1 (en) Active carbon synthesized from ionic liquids, manufacturing method of the same, supercapacitor using the active carbon and manufacturing method of the supercapacitor
JP3165478U (en) Battery electrode
US6830594B2 (en) Process for producing an electric double layer capacitor and positive electrode for an electric double layer capacitor
Meng et al. Lightweight freestanding hollow carbon fiber interlayer for high‐performance lithium‐sulfur batteries
JP2009105186A (en) Activated carbon for electric double layer capacitor electrode, and its manufacturing method
KR100911891B1 (en) Manufacturing method of activated carbon for electric double layer capacitor and the electric double layer capacitor electrode and the capacitor
JPH11307404A (en) Electric double layer capacitor and its manufacture, ana active carbon for positive electrode
KR102013173B1 (en) Composite for ultracapacitor electrode, manufacturing method of ultracapacitor electrode using the composite, and ultracapacitor manufactured by the method
JP2545216B2 (en) Electric double layer capacitor
JP2002110472A (en) Electrical double layer capacitor
JP2002151364A (en) Electric double-layer capacitor and its manufacturing method
JP2004247433A (en) Raw-material coal composition of carbon material for electrodes of electric double-layer capacitor
JP4179581B2 (en) Activated carbon, its production method and its use
JP2012038982A (en) Method of manufacturing electric double layer capacitor electrode and electric double layer capacitor electrode
KR20220057948A (en) Manufacturing method of porous activated carbon performing spray activation after acid treatment and supercapacitor using the same and method of manufacturing thereof
Chen et al. Pseudo-capacitive properties of LiCoO 2/AC electrochemical capacitor in various aqueous electrolytes
JP5846575B2 (en) Manufacturing method of electric double layer capacitor
JP2010183063A (en) Hybrid supercapacitor
KR100342069B1 (en) Preparing method of electrode made by Rice Hull Activated Carbon and Application for Electric Double Layer Capacitor