JP2012037536A - Proton precession magnetometer sensor measurable in all direction - Google Patents

Proton precession magnetometer sensor measurable in all direction Download PDF

Info

Publication number
JP2012037536A
JP2012037536A JP2011254533A JP2011254533A JP2012037536A JP 2012037536 A JP2012037536 A JP 2012037536A JP 2011254533 A JP2011254533 A JP 2011254533A JP 2011254533 A JP2011254533 A JP 2011254533A JP 2012037536 A JP2012037536 A JP 2012037536A
Authority
JP
Japan
Prior art keywords
coil
proton
current
magnetic field
magnetometer sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011254533A
Other languages
Japanese (ja)
Inventor
Hyun-Ki Jeong
ヒョン キ ジョン,
Mu-Taek Lim
ム テク リム,
Jon-Sol Song
ジョンソル ソン,
Hyon-Li Lim
ヒョン リ リム,
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Korea Institute of Geoscience and Mineral Resources KIGAM
Original Assignee
Korea Institute of Geoscience and Mineral Resources KIGAM
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Korea Institute of Geoscience and Mineral Resources KIGAM filed Critical Korea Institute of Geoscience and Mineral Resources KIGAM
Publication of JP2012037536A publication Critical patent/JP2012037536A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/04Measuring direction or magnitude of magnetic fields or magnetic flux using the flux-gate principle
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/028Electrodynamic magnetometers

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a proton precession magnetometer sensor capable of all-direction measurement, in which measurements is possible in all directions since there is no low-sensitivity angle (dead band).SOLUTION: The present invention relates to a proton precession magnetometer sensor capable of all-direction measurement, in which the frequency of a current induced in a coil by streaming and then breaking the current in the coil is measured to calculate the strength of an external magnetic field. The coil may be achieved by two solenoid coils connected perpendicularly, or N solenoid coils connected in the form of a polygon, where N is an integer of 3 or more.

Description

本発明は、コイルに強い電流を流した後、上記電流を切ってコイルに誘起される電流の振動数を測定して磁場の強さを測定する陽子歳差磁力計センサに関するものである。 The present invention relates to a proton precession magnetometer sensor that measures the strength of a magnetic field by passing a strong current through a coil and then measuring the frequency of the current induced in the coil by cutting the current.

物理探査において、磁力探査は概略探査及び精密探査のために基本的で、かつ重要な情報を提供する方法である。このために地表及び航空探査で使われる磁力計には3成分フラックスゲート磁力計(Fluxgate magnetometer)、陽子歳差磁力計(Proton precession magnetometer)、オーバーハウザー効果磁力計(Overhauser effect magnetometer)、光ポンピング磁力計(Optical-pumping magnetometer)などがある。 In geophysical exploration, magnetic exploration is a basic and important method for rough and precise exploration. For this reason, the three-component fluxgate magnetometer, the Proton precession magnetometer, the Overhauser effect magnetometer, and the optical pumping magnetometer are used for the surface and aerial exploration. There is a meter (Optical-pumping magnetometer).

フラックスゲート磁力計はベクトル的成分測定が可能であるが、温度ドリフト(drift)特性や直交性(orthogonality)角度が精密でなく、オーバーハウザー効果磁力計は経験的に60Hz電力線などの外部雑音環境に多少脆弱であり、光ポンピング磁力計は現在技術水準上、内部ランプ寿命の厳密な予測が可能でないので、取替のためには製作社での直接チューニングがまた必要であるという不便性がある。 The fluxgate magnetometer can measure vector components, but the temperature drift and orthogonality angles are not precise, and the Overhauser effect magnetometer has been empirically used in external noise environments such as 60 Hz power lines. It is somewhat fragile, and the optical pumping magnetometer is inconvenient in the current state of the art that the internal lamp life cannot be predicted precisely, so that replacement requires direct tuning at the manufacturer.

陽子歳差磁力計は、総磁場(total magnetic field)を正確な振動数カウンティングにより測定するので、基準発振振動数の温度特性さえ良ければ、精密な磁場値の獲得が可能であって、航空磁力探査を含んで、世界的に相変わらずたくさん使われている。 The proton precession magnetometer measures the total magnetic field by accurate frequency counting, so if the temperature characteristics of the reference oscillation frequency are good, a precise magnetic field value can be obtained, and the aeromagnetic force can be obtained. Including exploration, it is still used a lot worldwide.

しかしながら、陽子歳差の原理に起因するこのような磁場測定方式は、外部磁場に支配される特定方向の感度脆弱角度(dead band)が存在する源泉的な限界がある。陽子歳差の原理を詳細に説明すれば、次の通りである。 However, such a magnetic field measurement method resulting from the principle of proton precession has a source limitation in which there exists a dead band in a specific direction controlled by an external magnetic field. The principle of the proton precession is described in detail as follows.

原子核である陽子(proton)は、スピン(spin)という量子力学的性質を持っており、陽子のスピンは量子化された各運動量に従う磁気量子数(magnetic quantum number)を有し、一定な方向性を有する。H(proton)や13Cなどのように、総スピン量子数が0でない場合には、磁化率(r)を持つ。陽子のスピンは1/2であり、可能なスピン状態はm=±1/2である。このように、状態は異なるがエネルギー値は同一な場合を重畳されているという。熱平衡状態で両者の分布(population)は同一であるが、陽子に強い磁場を加えれば重畳状態が破られて陽子の磁気モーメントは加えられた磁場方向に整列して一致するようになる。この際、加えられた磁場を除去すれば陽子の磁気モーメントには地球磁場が作用するようになるが、下記の<数式1>のように地球磁場が陽子の磁気モーメントと平行しない方向に作用すれば、陽子は歳差運動をするようになる。この際、陽子の磁気モーメントに垂直な地球磁場成分が歳差運動を起こす。したがって、歳差運動は<数式1>のように陽子の磁気モーメントの方向と地球磁場の方向が平行すれば発生しないようになる。(即ち、陽子の磁気モーメントの方向と地球磁場の方向が0度であるとか180度の場合には歳差運動が発生しない。) Proton, which is an atomic nucleus, has a quantum mechanical property called spin, and the proton spin has a magnetic quantum number according to each quantized momentum and has a certain directionality. Have When the total spin quantum number is not 0, such as 1 H (proton) or 13 C, it has a magnetic susceptibility (r p ). Proton spin is ½ and possible spin states are m = ± ½. In this way, the case where the energy values are the same although the states are different is said to be superimposed. Although the population distribution is the same in the thermal equilibrium state, if a strong magnetic field is applied to the proton, the superposition state is broken and the magnetic moment of the proton is aligned and coincides with the applied magnetic field direction. At this time, if the applied magnetic field is removed, the earth's magnetic field will act on the proton's magnetic moment, but the earth's magnetic field will act in a direction that is not parallel to the proton's magnetic moment as shown in <Formula 1> below. For example, Yoko begins to precess. At this time, the geomagnetic field component perpendicular to the proton magnetic moment causes precession. Therefore, precession does not occur if the direction of the proton magnetic moment and the direction of the earth's magnetic field are parallel as shown in <Equation 1>. (That is, no precession occurs when the direction of the proton magnetic moment and the direction of the earth's magnetic field are 0 degrees or 180 degrees.)

Figure 2012037536
Figure 2012037536

歳差運動とは、回転体の回転軸が動かないある軸の周りを回る現象であって、弱い外力のモーメントが垂直に作用して生じて、地球の自転軸、人工衛星の自転軸などが歳差運動をする。一方、原子核である陽子(proton)はスピン量子数により磁気モーメントを持つようになるが、この磁気モーメントと異なる方向に弱い外部磁場(普通、地球磁場となる)が作用するようになれば、陽子は磁気モーメントに垂直な外部磁場成分に対して歳差運動(precession)をするようになり、このような歳差運動の周波数(fprec)は外部磁場の強さ(Hear)と比例する。 Precession is a phenomenon in which the rotation axis of a rotating body turns around a certain axis that does not move, and is caused by a weak external force acting vertically, causing the rotation axis of the earth, the rotation axis of an artificial satellite, etc. Precession exercise. On the other hand, protons, which are nuclei, have a magnetic moment due to the spin quantum number, but if a weak external magnetic field (usually the earth's magnetic field) acts in a direction different from this magnetic moment, the proton is as precess relative to a vertical external magnetic field component in the magnetic moment (precession), frequency (f prec) such precession is proportional to the intensity of the external magnetic field (H ear).

陽子歳差磁力計は前述した原理を利用したものであって、ソレノイドコイルに電流を流した後、上記電流を切ってソレノイドコイルに誘起される電流の振動数(これは歳差運動の周波数(fprec)と等しい)を測定して外部磁場の強さを算出するものである。即ち、ソレノイドコイルに強い電流を流せば、ソレノイドコイルの内部にはソレノイドを貫通する方向に磁場が形成される。この磁場によりソレノイドの内部にある陽子の磁気モーメントは加えられた磁場の方向(ソレノイドを貫通する方向)と一致するようになるが、この時、電流を切れば陽子の磁気モーメントに地球磁場が作用しながら陽子は歳差運動をするようになる。 The proton precession magnetometer uses the principle described above, and after passing a current through the solenoid coil, the current is turned off and the frequency of the current induced in the solenoid coil (this is the frequency of precession ( f prec )) is measured to calculate the strength of the external magnetic field. That is, if a strong current is passed through the solenoid coil, a magnetic field is formed in the solenoid coil in a direction penetrating the solenoid. This magnetic field causes the proton magnetic moment inside the solenoid to coincide with the direction of the applied magnetic field (the direction through the solenoid). At this time, if the current is turned off, the geomagnetic field acts on the proton magnetic moment. On the other hand, Yoko comes to precession.

ところが、歳差運動は上記<数式1>のように陽子の磁気モーメントと地球磁場の方向が平行しない時に発生するようになるが、<数式2>のように陽子の磁場と地球の磁場の方向が平行した場合(例えば、陽子歳差磁力計センサのソレノイドを貫通する方向と平行に地球磁場が作用する場合)には陽子の磁気モーメントの軸を移動させる外力が存在しなくて歳差運動が発生せず、地球磁場の強さが測定できなくなる。 However, precession occurs when the magnetic moment of the proton and the direction of the earth's magnetic field are not parallel as shown in <Formula 1>, but the direction of the magnetic field of the proton and the earth's magnetic field as shown in <Formula 2>. Are parallel (for example, when the earth's magnetic field acts in parallel to the direction penetrating the solenoid of the proton precession magnetometer sensor), there is no external force that moves the axis of the proton's magnetic moment, and precession does not occur. It does not occur, and the strength of the geomagnetic field cannot be measured.

Figure 2012037536
Figure 2012037536

実質的には、陽子の磁気モーメントと地球磁場の方向が垂直な方向で誘起電圧の強さが最も大きく表れ、両磁場の方向が平行に近づくほど誘起電圧の強さが減少して振動数の測定が困難になる。即ち、従来の陽子歳差磁力計は外部磁場に支配される特定方向の感度脆弱角度(dead band)が存在するという源泉的な限界がある。したがって、従来の陽子歳差磁力計は地球磁場測定のためにソレノイドコイルの磁場方向と地球磁場方向とが垂直になるようにセンサの位置を調整してくれなければならない。 In effect, the strength of the induced voltage appears the largest in the direction where the magnetic moment of the proton and the direction of the earth's magnetic field are perpendicular to each other. Measurement becomes difficult. That is, the conventional proton precession magnetometer has a source limit that there exists a dead band in a specific direction controlled by an external magnetic field. Therefore, the conventional proton precession magnetometer has to adjust the position of the sensor so that the magnetic field direction of the solenoid coil is perpendicular to the geomagnetic field direction for the geomagnetic field measurement.

本発明は、前述した問題点を解決するために、全ての方向で測定が可能な、即ち感度脆弱角度(dead band)が存在しなくて全ての方向で測定できる陽子歳差磁力計センサを提供することをその目的とする。 In order to solve the above-mentioned problems, the present invention provides a proton precession magnetometer sensor capable of measuring in all directions, that is, capable of measuring in all directions without a sensitivity band (dead band). The purpose is to do.

前述した課題を解決するための本発明の全ての方向で測定できる陽子歳差磁力計センサは、コイルに電流を流した後、上記電流を切って上記コイルに誘起される電流の振動数を測定して外部磁場の強さを算出する陽子歳差磁力計センサであって、上記コイルがトロイダルコイル(toroid coil)からなることを特徴とし、上記コイルは2つのソレノイドコイル(solenoid coil)を垂直に連結するか、N(Nは3以上の整数)個のソレノイドコイルを多角形形態で連結してなされることもできる。 The proton precession magnetometer sensor capable of measuring in all directions according to the present invention to solve the above-described problems is to measure the frequency of the current induced in the coil by turning the current off after passing the current through the coil. A proton precession magnetometer sensor for calculating the strength of an external magnetic field, wherein the coil is composed of a toroid coil, and the coil has two solenoid coils vertically. It is also possible to connect or connect N (N is an integer of 3 or more) solenoid coils in a polygonal form.

上記全ての方向で測定できる陽子歳差磁力計センサは、上記コイルは炭化水素系溶媒が詰められた非磁性容器に盛られ、測定装置と連結され、上記測定装置は、上記コイルに誘起された電流の振動数を測定するカウンターと、上記コイルに電流を供給する電流供給源と、上記コイルに供給する電流をスイッチングするリレーとを含んでなることが好ましい。 In the proton precession magnetometer sensor capable of measuring in all directions, the coil is placed in a non-magnetic container filled with a hydrocarbon solvent and connected to a measuring device, and the measuring device is induced in the coil. It preferably includes a counter that measures the frequency of current, a current supply source that supplies current to the coil, and a relay that switches current supplied to the coil.

本発明の全ての方向で測定できる陽子歳差磁力計センサは、感度脆弱角度が存在しなくて全ての方向で外部磁場の測定が可能である。したがって、磁力測定時、センサを特定の方向に合せる必要がないので簡便に外部磁場を測定することができる。 The proton precession magnetometer sensor capable of measuring in all directions of the present invention can measure an external magnetic field in all directions without a sensitivity weak angle. Therefore, it is not necessary to align the sensor in a specific direction when measuring the magnetic force, so that the external magnetic field can be measured easily.

また、この研究結果は、今後より良いインピーダンスマッチング及び電力消耗最適化開発過程を経て実践で多様に応用できる源泉技術蓄積に引き続くはずである。 In addition, the results of this research should continue with the accumulation of source technologies that can be applied in various ways in practice through better impedance matching and power consumption optimization development processes.

本発明の一実施形態に係る全ての方向で測定できる陽子歳差磁力計センサの概念図である。It is a conceptual diagram of the proton precession magnetometer sensor which can be measured in all the directions which concern on one Embodiment of this invention. 本発明の一実施形態に係る全ての方向で測定できる陽子歳差磁力計センサの構成図である。It is a block diagram of the proton precession magnetometer sensor which can be measured in all the directions which concern on one Embodiment of this invention. 本発明の一実施形態に係る全ての方向で測定できる陽子歳差磁力計センサの斜視図である。It is a perspective view of the proton precession magnetometer sensor which can be measured in all directions concerning one embodiment of the present invention. 本発明の他の実施形態に係る全ての方向で測定できる陽子歳差磁力計センサの概念図である。It is a conceptual diagram of the proton precession magnetometer sensor which can be measured in all the directions which concern on other embodiment of this invention. 本発明の他の実施形態に係る全ての方向で測定できる陽子歳差磁力計センサの斜視図である。It is a perspective view of the proton precession magnetometer sensor which can be measured in all directions concerning other embodiments of the present invention. 従来の陽子歳差磁力計センサと本発明の実施形態が適用された全ての方向で測定できる陽子歳差磁力計センサの測定結果を比較したグラフである。It is the graph which compared the measurement result of the conventional proton precession magnetometer sensor and the proton precession magnetometer sensor which can be measured in all the directions to which the embodiment of the present invention was applied.

以下、添付した図面を参照しつつ本発明の好ましい実施形態を詳細に説明する。しかしながら、本発明はここで説明される実施形態に限定されず、他の形態で具体化されることもできる。むしろ、ここで紹介される実施形態は開示された内容が徹底し、かつ完全になることができるように、そして当業者に本発明の思想が十分伝えられることができるようにするために提供されるものである。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the present invention is not limited to the embodiments described herein, and may be embodied in other forms. Rather, the embodiments presented herein are provided so that the disclosed content can be thorough and complete, and to fully convey the spirit of the invention to those skilled in the art. Is.

各図面に図示された同一な参照符号は同一な機能を遂行する構成要素を意味する。 The same reference numerals shown in the drawings refer to components that perform the same function.

図1は、本発明の一実施形態に係る全ての方向で測定できる陽子歳差磁力計センサの概念図である。図示されたように、本発明の陽子歳差磁力計センサ10はコイルがトロイダルコイル(toroid coil)12からなり、トロイダルコイル12に誘起された電流の振動数(陽子の歳差運動の周波数(fprec)と同一)を測定して<数式3>により地球磁場の強さを測定する。 FIG. 1 is a conceptual diagram of a proton precession magnetometer sensor that can be measured in all directions according to an embodiment of the present invention. As shown in the figure, the proton precession magnetometer sensor 10 of the present invention is composed of a toroid coil 12 and the frequency of the current induced in the toroidal coil 12 (frequency of proton precession (f prec ) and the intensity of the earth's magnetic field is measured according to <Equation 3>.

Figure 2012037536
(Hearは地球磁場の大きさ、fprecは歳差運動周波数、rは陽子の磁化率)
Figure 2012037536
(H ear is the Earth's magnetic field magnitude, f prec precession frequency, r p is the proton magnetic susceptibility of)

トロイダルコイル12に電流を加えると、トロイダルコイル12の内部に磁場が形成されるが、磁場の強さは中心からの距離に反比例し、磁場の方向は電流が流れる方向にネジを回した時、ネジが進行する方向であり、円形を描いて、トロイダルコイルの内部を回るようになり、トロイダルコイル12の内部の任意の地点での磁場の方向は、図1に示すように円周の接線方向である。したがって、トロイダルコイル12の内部に形成された磁場の方向は同一な円周上の各地点で各々全て異なるようになる。 When a current is applied to the toroidal coil 12, a magnetic field is formed inside the toroidal coil 12, but the strength of the magnetic field is inversely proportional to the distance from the center, and the direction of the magnetic field is when the screw is turned in the direction in which the current flows. The direction in which the screw travels is to draw a circle and turn around the inside of the toroidal coil. The direction of the magnetic field at any point inside the toroidal coil 12 is the tangential direction of the circumference as shown in FIG. It is. Therefore, the directions of the magnetic fields formed inside the toroidal coil 12 are all different at each point on the same circumference.

トロイダルコイル12に電流を流して上記のようにトロイダルコイル12の内部に強い磁場が形成されれば、トロイダルコイル12の内部に存在する陽子の磁気モーメント(Hexc)は励起段階(excitation stage)を経て内部磁場とその方向が一致するようになる。前述したように、トロイダルコイル12の内部に形成された磁場は同一な円周上の各地点でその方向が全て異なるので陽子の磁気モーメントの方向も同一な円周上の各地点でその方向が全て異なるように形成される。 If a strong magnetic field is formed in the toroidal coil 12 as described above by passing a current through the toroidal coil 12, the proton magnetic moment (H exc ) existing in the toroidal coil 12 undergoes an excitation stage. After that, the internal magnetic field coincides with its direction. As described above, since the directions of the magnetic fields formed inside the toroidal coil 12 are different at each point on the same circumference, the direction of the magnetic moment of the proton is also different at each point on the same circumference. All are formed differently.

この際、コイルに印加された電流を切って外部磁場である地球磁場(Hear)が作用するようになる時、センサの方向に関わらず、地球磁場(Hear)に対して<数式1>を満たす陽子がトロイダルコイル12内の大部分の任意の地点で必ず存在するようになる。したがって、従来の単純なソレノイドコイルとは異なり、センサの方向に関わらず、陽子の歳差運動が発生するようになって、如何なる方向でも地球磁場の強さが測定できるようになる。 At this time, when the geomagnetic field ( Hear ), which is an external magnetic field, is applied after the current applied to the coil is cut off, regardless of the direction of the sensor, with respect to the geomagnetic field ( Hear ), <Equation 1> Protons that satisfy are always present at most arbitrary points in the toroidal coil 12. Therefore, unlike a conventional simple solenoid coil, proton precession occurs regardless of the direction of the sensor, and the strength of the geomagnetic field can be measured in any direction.

図2は、本発明の一実施形態に係る全ての方向で測定できる陽子歳差磁力計センサの構成図である。本発明の全ての方向で測定できる陽子歳差磁力計センサ10は、トロイダルコイル12に測定装置20が連結されるようになる。測定装置20は、陽子の歳差運動によってコイルに誘起された電流を増幅させる増幅器22と、増幅された信号の振動数を測定するカウンター21と、コイルに電流を供給する電流供給源25と、コイルに供給する電流をスイッチングするリレーと、これらを制御するメーンコントローラ27とを含んでなされる。リレーはスイッチとリレースイッチングコントローラ23とを含む。 FIG. 2 is a block diagram of a proton precession magnetometer sensor that can be measured in all directions according to an embodiment of the present invention. In the proton precession magnetometer sensor 10 capable of measuring in all directions of the present invention, the measuring device 20 is connected to the toroidal coil 12. The measuring device 20 includes an amplifier 22 that amplifies the current induced in the coil due to proton precession, a counter 21 that measures the frequency of the amplified signal, a current supply source 25 that supplies current to the coil, The relay includes a relay that switches a current supplied to the coil, and a main controller 27 that controls them. The relay includes a switch and a relay switching controller 23.

図2を参照しながら本発明の全ての方向で測定できる陽子歳差磁力計センサの動作を簡単に説明すれば、次の通りである。 The operation of the proton precession magnetometer sensor that can be measured in all directions of the present invention will be briefly described with reference to FIG.

まず、電流供給源25を通じてトロイダルコイル12に電流を印加する。コイルに印加された電流によってトロイダルコイル12の内部には強い磁場が誘導され、この磁場によってトロイダルコイル12の内に陽子は励起段階(excitation state)を経て磁場(Hexc)の方向と同一な方向に再配列された磁気モーメントを有するようになる定常状態となる。 First, a current is applied to the toroidal coil 12 through the current supply source 25. A strong magnetic field is induced in the inside of the toroidal coil 12 by the current applied to the coil, and the protons in the toroidal coil 12 pass through an excitation state by this magnetic field and have the same direction as the direction of the magnetic field (H exc ). It becomes a steady state that comes to have a magnetic moment rearranged in the.

トロイダルコイル12の内部の陽子が定常状態になった時、リレー23によりトロイダルコイル12に印加された電流を切るようになる。すると、トロイダルコイル12の内部に存在する陽子には地球磁場が作用するようになり、センサ方向や地球磁場の方向に関わらず、トロイダルコイル12の内部の大部分の陽子は上記<数式1>の条件を満たすようになって、地球磁場方向を軸にして歳差運動をするようになる。 When the protons inside the toroidal coil 12 reach a steady state, the current applied to the toroidal coil 12 by the relay 23 is cut off. Then, the geomagnetic field acts on the protons present inside the toroidal coil 12, and most of the protons inside the toroidal coil 12 are expressed by the above formula 1 regardless of the direction of the sensor or the geomagnetic field. As the condition is met, precession occurs around the direction of the geomagnetic field.

陽子の歳差運動によってトロイダルコイル12には陽子の歳差運動の周波数(fprec)と同一な振動数を持つ交流電流が誘起される。カウンター21でコイルに誘起された電流の振動数を測定する。カウンター21における振動数の測定はコイルに誘起される電圧の大きさ及び方向の変化を一定時間の間カウントする方式により測定できる。電流は相対的に弱いので、電圧の変化を通じて振動数をカウントするようになる。 An alternating current having the same frequency as the frequency (f prec ) of the proton precession is induced in the toroidal coil 12 by the precession of the proton. The counter 21 measures the frequency of the current induced in the coil. The frequency of the counter 21 can be measured by a method of counting changes in the magnitude and direction of the voltage induced in the coil for a certain period of time. Since the current is relatively weak, the frequency is counted through the change in voltage.

測定された陽子の歳差運動周波数(fprec)は<数式3>を用いて演算装置(図示せず)により地球の磁場の強さで算出されてディスプレイ装置(図示せず)を通じてディスプレイされる。 The measured precession frequency (f prec ) of the proton is calculated by the calculation device (not shown) using <Equation 3> based on the strength of the earth's magnetic field and displayed through the display device (not shown). .

図3は、本発明の一実施形態に係る全ての方向で測定できる陽子歳差磁力計センサの斜視図である。本発明の全ての方向で測定できる陽子歳差磁力計センサ10は、炭化水素系溶媒が詰められた非磁性容器にトロイダルコイル12が盛られてなされ、トロイダルコイル12は測定装置と連結される。トロイダルコイル12は被覆された状態で盛られるようになり、図3には被覆されたトロイダルコイル12が図示されている。炭化水素系溶媒にはケロセン(kerosene)が使われることが好ましく、遊離される陽子を十分に含有し、含まれた他の元素は総スピン量子数が0になる物質であれば、その他の異なる溶媒も利用できる。 FIG. 3 is a perspective view of a proton precession magnetometer sensor that can be measured in all directions according to an embodiment of the present invention. The proton precession magnetometer sensor 10 capable of measuring in all directions of the present invention is made by placing a toroidal coil 12 in a nonmagnetic container filled with a hydrocarbon solvent, and the toroidal coil 12 is connected to a measuring device. The toroidal coil 12 is piled up in a coated state, and the coated toroidal coil 12 is shown in FIG. It is preferable that kerosene is used as the hydrocarbon-based solvent, and other different materials can be used as long as they contain a sufficient amount of protons to be liberated, and other elements contained therein have a total spin quantum number of 0. Solvents can also be used.

図3に示すように、本発明の全ての方向で測定できる陽子歳差磁力計センサは単純な形態であって、運搬が容易で、何時何処でも測定装置と連結して磁力測定が可能である。 As shown in FIG. 3, the proton precession magnetometer sensor capable of measuring in all directions according to the present invention has a simple configuration, is easy to carry, and can be connected to a measuring device anytime and anywhere to measure magnetic force. .

[発明の実施のための形態]
図4は本発明の他の実施形態に係る全ての方向で測定できる陽子歳差磁力計センサの概念図であり、図5は適用された一例に対する斜視図である。
[Mode for Carrying Out the Invention]
FIG. 4 is a conceptual diagram of a proton precession magnetometer sensor that can be measured in all directions according to another embodiment of the present invention, and FIG. 5 is a perspective view of an applied example.

本発明の全ての方向で測定できる陽子歳差磁力計センサは、前述したトロイダルコイル形態の以外にN(Nは3以上の整数)個のソレノイドコイルを多角形形態で連結して作られることができ、2つのソレノイドコイル(solenoid coil)の場合,垂直に連結して感度脆弱角度(dead band)を縮める形態でなされることもできる。その一例として,図4には4個のソレノイドコイル14を四角形形態(rectagular-type)で連結してなされた概念図が表れており、図5には本実施形態が適用されたセンサの斜視図が表れている。このような場合にも地球磁場を測定し難い脆弱角度をなくすことができる。 The proton precession magnetometer sensor capable of measuring in all directions of the present invention can be made by connecting N (N is an integer of 3 or more) solenoid coils in a polygonal form in addition to the above-described toroidal coil form. In addition, in the case of two solenoid coils, the sensitivity band can be shortened by connecting vertically. As an example, FIG. 4 shows a conceptual diagram formed by connecting four solenoid coils 14 in a rectangular-type, and FIG. 5 is a perspective view of a sensor to which this embodiment is applied. Appears. Even in such a case, it is possible to eliminate the fragile angle where it is difficult to measure the geomagnetic field.

図6は、従来の陽子歳差磁力計センサと本発明の実施形態が適用された全ての方向で測定できる陽子歳差磁力計センサの測定結果を比較したグラフである。図6で、横軸はセンサの位置変化に従う角度を示すものであり、縦軸はコイルに誘起される電圧の振幅を示し、本グラフは24回巻かれたコイルを使用して角度に従う測定値の相対大きさを図示したものである。 FIG. 6 is a graph comparing the measurement results of a conventional proton precession magnetometer sensor and a proton precession magnetometer sensor that can be measured in all directions to which the embodiment of the present invention is applied. In FIG. 6, the horizontal axis indicates the angle according to the change in the position of the sensor, the vertical axis indicates the amplitude of the voltage induced in the coil, and this graph shows the measured value according to the angle using the coil wound 24 times. The relative magnitude of is illustrated.

図6に示すように、従来のソレノイドコイルを使用すれば、陽子の磁気モーメントが地球磁場の方向と垂直をなす方向では誘起される電圧が大きく表れるが、地球磁場と平行した方向へ移動するほど誘起される電圧の大きさが急激に減少して地球磁場を測定し難い脆弱角度(dead band)が存在する。 As shown in FIG. 6, when a conventional solenoid coil is used, an induced voltage appears greatly in the direction in which the magnetic moment of the proton is perpendicular to the direction of the earth's magnetic field, but the more it moves in a direction parallel to the earth's magnetic field. There is a dead band that makes it difficult to measure the geomagnetic field due to a sudden decrease in the magnitude of the induced voltage.

しかしながら、ソレノイドコイルを垂直(Perpendicular-type)に連結した場合には従来の場合に比べて脆弱角度が格段に減ったことが分かり、3つのソレノイドコイルを三角形形態(Triangular-type)で連結した場合には脆弱角度がより一層減ったことが分かり、トロイダルタイプコイルの場合には脆弱角度が存在しないことが分かる。 However, when the solenoid coils are connected vertically (Perpendicular-type), it can be seen that the fragile angle is markedly reduced compared to the conventional case, and when the three solenoid coils are connected in triangular form (Triangular-type). It can be seen that the fragile angle is further reduced, and that the fragile angle does not exist in the case of the toroidal type coil.

即ち、N個(N=2、3、4...∞)のコイルを多角形形態で、より多く連結するほど脆弱角度が減ることが分かり、その極限であるトロイダル形態では脆弱角度が存在しないことが実験的に分かる。 That is, it can be seen that the fragile angle decreases as more N coils (N = 2, 3, 4,...) Are connected in polygonal form, and there is no fragile angle in the toroidal form that is the limit. This is experimentally understood.

以上、図面と明細書で最適の実施形態が開示された。ここで、特定の用語が使われたが、これは単に本発明を説明するために使われたものであり、意味の限定や特許請求範囲に記載された本発明の範囲を制限するために使われたのではない。したがって、本技術分野の通常の知識を有する者であれば、これから多様な変形及び均等な他の実施形態が可能であるということを理解するはずである。したがって、本発明の本当の技術的保護範囲は添付された特許請求範囲の技術的思想により定まるべきである。 As mentioned above, the optimal embodiment was disclosed by drawing and the specification. Here, specific terminology has been used, but is merely used to describe the present invention and is used to limit the meaning and scope of the invention as set forth in the claims. It wasn't broken. Accordingly, those skilled in the art should understand that various modifications and other equivalent embodiments are possible from this. Therefore, the true technical protection scope of the present invention should be determined by the technical idea of the appended claims.

本発明は、全ての方向で測定できる陽子歳差磁力計センサを提供することは勿論、今後より良いインピーダンスマッチング及び電力消耗最適化開発過程を経て実践で多様に応用できる源泉技術蓄積に引き続くはずである。 The present invention not only provides a proton precession magnetometer sensor that can measure in all directions, but it should continue to accumulate source technology that can be applied in various ways in practice through better impedance matching and power consumption optimization development process in the future. is there.

Claims (3)

コイルに電流を流した後、前記電流を切って前記コイルに誘起される電流の振動数を測定して外部磁場の強さを算出する陽子歳差磁力計センサであって、
前記コイルは、2つのソレノイドコイル(solenoid coil)が垂直に連結されるか、N(Nは3以上の整数)個のソレノイドコイルが多角形形態で連結されてなることを特徴とする全ての方向で測定できる陽子歳差磁力計センサ。
A proton precession magnetometer sensor that calculates the strength of an external magnetic field by turning off the current and measuring the frequency of the current induced in the coil after passing a current through the coil,
The coil has two solenoid coils connected vertically or N (N is an integer of 3 or more) solenoid coils connected in a polygonal shape. Proton precession magnetometer sensor that can be measured with.
前記コイルは、炭化水素系溶媒が詰められた非磁性容器に盛られ、測定装置と連結されることを特徴とする請求項1に記載の全ての方向で測定できる陽子歳差磁力計センサ。 The proton precession magnetometer sensor capable of measuring in all directions according to claim 1, wherein the coil is stacked in a nonmagnetic container filled with a hydrocarbon solvent and connected to a measuring device. 前記測定装置は、
前記コイルに誘起された電流の振動数を測定するカウンターと、
前記コイルに電流を供給する電流供給源と、
前記コイルに供給する電流をスイッチングするリレーと、
を含んでなることを特徴とする請求項2に記載の全ての方向で測定できる陽子歳差磁力計センサ。
The measuring device is
A counter for measuring the frequency of current induced in the coil;
A current supply source for supplying current to the coil;
A relay that switches a current supplied to the coil;
The proton precession magnetometer sensor capable of measuring in all directions according to claim 2.
JP2011254533A 2008-12-22 2011-11-22 Proton precession magnetometer sensor measurable in all direction Pending JP2012037536A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020080131535A KR101014370B1 (en) 2008-12-22 2008-12-22 Proton precession magnetometer sensor measurable in all direction
KR10-2008-0131535 2008-12-22

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010544216A Division JP2011517767A (en) 2008-12-22 2008-12-23 Proton precession magnetometer sensor that can measure in all directions

Publications (1)

Publication Number Publication Date
JP2012037536A true JP2012037536A (en) 2012-02-23

Family

ID=42288210

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2010544216A Pending JP2011517767A (en) 2008-12-22 2008-12-23 Proton precession magnetometer sensor that can measure in all directions
JP2011254533A Pending JP2012037536A (en) 2008-12-22 2011-11-22 Proton precession magnetometer sensor measurable in all direction

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2010544216A Pending JP2011517767A (en) 2008-12-22 2008-12-23 Proton precession magnetometer sensor that can measure in all directions

Country Status (4)

Country Link
US (1) US8547092B2 (en)
JP (2) JP2011517767A (en)
KR (1) KR101014370B1 (en)
WO (1) WO2010074357A2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102928885B (en) * 2012-11-22 2015-06-03 吉林大学 Spherical feedback tricomponent fluxgate magnetic full-tenser gradiometer
CN103995298B (en) * 2014-06-07 2017-02-15 吉林大学 Method for optimization selection of proton magnetometer matching capacitor
CN104808251A (en) * 2015-05-18 2015-07-29 中国地质大学(武汉) Method for improving frequency measuring precision of larmor signal of Overhauser magnetometer and circuit thereof
CN105700028A (en) * 2015-10-21 2016-06-22 无锡清杨机械制造有限公司 Optical pumping magnetometer circuit system
CN112014614B (en) * 2019-05-29 2024-05-31 河北爱尔工业互联网科技有限公司 Coil sensor adapter structure and current acquisition device
CN110333545A (en) * 2019-06-28 2019-10-15 中国地质大学(武汉) Improve the system and method for rotary proton class sensor tuning precision and signal-to-noise ratio
CN110333546A (en) * 2019-06-28 2019-10-15 中国地质大学(武汉) Improve the system and method for proton magnetic precession Signal-to-Noise

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50101074A (en) * 1973-10-23 1975-08-11
JPS5897567U (en) * 1981-12-25 1983-07-02 日本電気株式会社 magnetometer
JPH076914A (en) * 1993-06-17 1995-01-10 Hiroko Katsumata Displacement device using circulator or polygonal solenoid coil
JPH10247718A (en) * 1997-03-04 1998-09-14 Fuji Electric Co Ltd Vertical semiconductor element with current detector
JP2002190471A (en) * 2000-05-25 2002-07-05 Applied Materials Inc Toroidal plasma source for plasma processing
JP2006250572A (en) * 2005-03-08 2006-09-21 Central Japan Railway Co Rail joint detector, and rail joint position detection device of track inspection car

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3070745A (en) * 1959-11-30 1962-12-25 Paul H Serson Proton precession magnetometer
US3443207A (en) * 1965-12-02 1969-05-06 Treasure Salvors Inc Proton precession magnetometer with improved means for polarization and larmor frequency determination
US3546574A (en) * 1966-03-12 1970-12-08 Barringer Research Ltd Proton precession magnetometer with synchronous pumping
FR2098624A5 (en) * 1970-07-22 1972-03-10 Commissariat Energie Atomique
CA1145399A (en) * 1980-10-28 1983-04-26 Hendrik M. Wondergem Frequency counter
JPS5897567A (en) * 1981-12-01 1983-06-10 Hitachi Constr Mach Co Ltd Operating lever device and brake operating device for car with hydraulic transmission
US4546317A (en) * 1983-07-01 1985-10-08 The United States Of America As Represented By The Secretary Of The Navy Free nuclear precession gradiometer system
JP2001083223A (en) 1999-09-09 2001-03-30 Magbang Kk Magnetometer
JP2005069883A (en) 2003-08-25 2005-03-17 Takenaka Komuten Co Ltd Corrosion detecting apparatus
US7271592B1 (en) * 2004-06-14 2007-09-18 U.S. Department Of Energy Toroid cavity/coil NMR multi-detector
JP4324070B2 (en) 2004-10-18 2009-09-02 ロックゲート株式会社 Magnetometer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50101074A (en) * 1973-10-23 1975-08-11
JPS5897567U (en) * 1981-12-25 1983-07-02 日本電気株式会社 magnetometer
JPH076914A (en) * 1993-06-17 1995-01-10 Hiroko Katsumata Displacement device using circulator or polygonal solenoid coil
JPH10247718A (en) * 1997-03-04 1998-09-14 Fuji Electric Co Ltd Vertical semiconductor element with current detector
JP2002190471A (en) * 2000-05-25 2002-07-05 Applied Materials Inc Toroidal plasma source for plasma processing
JP2006250572A (en) * 2005-03-08 2006-09-21 Central Japan Railway Co Rail joint detector, and rail joint position detection device of track inspection car

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JPN6011043587; 遠山 文雄,藤井 良一,江尻 全機,国分 征,秋山 弘光,矢島 信之: 'プロトン磁力計を用いた南極周回気球 (PPB) による磁場測定実験' 宇宙科学研究所報告. 特集 Vol. 31, 199303, PP. 91-104, 宇宙航空研究開発機構 *
JPN6011043589; 文部省科学試験研究費研究班: 'プロトン磁力計の試作研究' 東京大學地震研究所彙報 Vol. 36,No. 3, 19581031, PP. 433-446, 東京大学地震研究所 *
JPN6011043591; プロトン磁力計: '力武 常次' 日本物理學會誌 Vol. 13,N0. 6, 19580605, PP. 402-403, 社団法人日本物理学会 *

Also Published As

Publication number Publication date
JP2011517767A (en) 2011-06-16
US8547092B2 (en) 2013-10-01
WO2010074357A2 (en) 2010-07-01
US20110074408A1 (en) 2011-03-31
KR20100072964A (en) 2010-07-01
KR101014370B1 (en) 2011-02-15
WO2010074357A3 (en) 2011-01-20

Similar Documents

Publication Publication Date Title
JP2012037536A (en) Proton precession magnetometer sensor measurable in all direction
Ripka Advances in fluxgate sensors
Tumanski Modern magnetic field sensors–a review
Ripka et al. Advances in magnetic field sensors
US20150369887A1 (en) Methods and apparatuses related to instrumentation for magnetic relaxometry measurements
CN205844507U (en) Fluxgate magnetic core structure based on nurse hertz coil suddenly
Mahavarkar et al. The low cost proton precession magnetometer developed at the Indian institute of geomagnetism
Stahl et al. Phase-sensitive measurement of trapped particle motions
Wu et al. A magnetoelectric compass for in-plane AC magnetic field detection
De Toldi et al. Understanding and control of the magnetic sensitivity of a fiber-optic gyroscope
Jiang et al. Modeling and performances of the orthogonal fluxgate sensor operated in fundamental mode
JP2013015351A (en) Magnetic field detecting device, and ambient magnetic field cancelling method
RU43654U1 (en) MAGNETIC FIELD SENSOR
ES2339622B1 (en) METHOD AND DEVICE FOR THE MEASUREMENT OF MAGNETIC GRADIENT AND MAGNETIC SUSCEPTIBILITY OF A MATERIAL.
Yang et al. Manipulation of spin polarization of rubidium atoms by optical pumping with both D 1 and D 2 beams
RU2298202C1 (en) Method of measurement of magnetic field strength
Dao et al. Design of a high-sensitivity device for detecting weak magnetic fields
Lubyaniy et al. Multilayer thin films for use as fluxgates cores
Krichevtsov et al. Effect of an electric field on the magnetization processes in the yttrium iron garnet Y3Fe5012
Lin et al. A comparison of induction-detection nmr and force-detection nmr on micro-nmr device design
RU111686U1 (en) Coercimeter Sensor
Ripka et al. Advances in magnetic sensors
Butta Orthogonal fluxgates
Moskowicz Measurement parameters of fluxgate magnetic field sensors based on toroidal cores of special design compared
WO2010004063A2 (en) Low-consumption magnetic-field sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120627

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120926

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20121001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130529

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20130816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130819

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130819

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131210