JP2012037131A - Flow rate control mechanism of multi-branch chamber - Google Patents

Flow rate control mechanism of multi-branch chamber Download PDF

Info

Publication number
JP2012037131A
JP2012037131A JP2010177387A JP2010177387A JP2012037131A JP 2012037131 A JP2012037131 A JP 2012037131A JP 2010177387 A JP2010177387 A JP 2010177387A JP 2010177387 A JP2010177387 A JP 2010177387A JP 2012037131 A JP2012037131 A JP 2012037131A
Authority
JP
Japan
Prior art keywords
discharge
discharge hole
hole
opening
adjustment wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010177387A
Other languages
Japanese (ja)
Other versions
JP5461338B2 (en
Inventor
Shinya Anbutsu
安佛真哉
Kenji Miyayama
宮山健二
Kohei Sano
佐野浩平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TYLON CORP
Original Assignee
TYLON CORP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TYLON CORP filed Critical TYLON CORP
Priority to JP2010177387A priority Critical patent/JP5461338B2/en
Publication of JP2012037131A publication Critical patent/JP2012037131A/en
Application granted granted Critical
Publication of JP5461338B2 publication Critical patent/JP5461338B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Duct Arrangements (AREA)

Abstract

PROBLEM TO BE SOLVED: To allow an air volume and a flow rate to be uniformized by arranging a control wall having an opening between a first discharge hole and a second discharge hole, though usually a large amount is discharged from a supply hole to a first discharge hole at a position facing a supply hole, gas having passed through the opening is discharged from the first discharge hole, and gas blocked with the control wall is not discharged from the first discharge hole but discharged from the other second discharge hole, and further by arranging a second control wall having an open portion between the second discharge hold and a third discharge hole.SOLUTION: An air volume control mechanism of a multi-branch chamber, which has the supply hole and discharge holes, and which is formed with a hollow box body, has the first discharge hole at the position facing the supply face, the second discharge hole at the side of the supply hole of the first discharge hole, and the third discharge hole, has the first control wall which is provided between the first discharge hole and the second discharge hole and which has an opening portion, and the second control wall which is provided between the second discharge hole and the third discharge hole and which has an opening portion in the periphery.

Description

本発明は、空調設備等に使用され、送風機等からダクトを通じて送られる冷気や暖気等の気体を多方向に送るに当たって、ダクトの分岐のために用いられる多分岐チャンバーに関する。   The present invention relates to a multi-branch chamber that is used for air-conditioning equipment or the like and used for branching a duct when a gas such as cold air or warm air sent from a blower or the like through a duct is sent in multiple directions.

本発明の先行文献として特許文献1が存在する。
この先行技術は、図7に示すように、そのチャンバー本体101に、導入口102と、チャンバー本体101の外方に向けて放射状に複数の排出口103が設けられている。チャンバー本体101の内部は円柱状の整流部材104が複数設けられる。これは、導入口102から供給された気体が複数の排出口103から排出されるが、チャンバー本体101の内部の整流部材104により気体の排出量を平均化するものであった。
また、本発明の先行文献として特許文献1が存在する。
この発明は、複数のダクトに分岐するためのチャンバーにおいて、チャンバー内において上下方向に起立させて入口側開口部の正面位置に一又は複数配設される風量調整体を備え、その風量調整体には一又は複数の開口部分がある。
Patent Document 1 exists as a prior document of the present invention.
In this prior art, as shown in FIG. 7, the chamber body 101 is provided with an introduction port 102 and a plurality of discharge ports 103 radially toward the outside of the chamber body 101. A plurality of columnar rectifying members 104 are provided inside the chamber body 101. This is because the gas supplied from the inlet 102 is discharged from the plurality of outlets 103, but the amount of gas discharged is averaged by the rectifying member 104 inside the chamber body 101.
Further, Patent Document 1 exists as a prior document of the present invention.
The present invention is a chamber for branching into a plurality of ducts, and is provided with an air volume adjusting body that is erected in the vertical direction in the chamber and disposed at a front position of the opening on the inlet side. Has one or more openings.

特開2003−74958号公報JP 2003-74958 A 特開2000−130830号公報JP 2000-130830 A

図7に示す先行技術は、流量の均一化をすることはできても、排出される圧力が低くなる問題があった。これは、気体が整流部材に衝突してチャンバー内に乱流が生じ、通常の排出より排出圧力が小さくなるためである。
また、特許文献1に記載の発明は、開口部分があるとはいえ、案内羽根により流入する気体を分散させるものである。案内羽根による気体の分配は羽根の位置、角度により左右され、第二、第三の排出孔を有する場合、排出量の均一化を図ることが難しかった。
Although the prior art shown in FIG. 7 can equalize the flow rate, there is a problem that the discharged pressure is lowered. This is because the gas collides with the rectifying member and a turbulent flow is generated in the chamber, and the discharge pressure becomes smaller than the normal discharge.
The invention described in Patent Document 1 disperses the gas flowing in by the guide vanes even though there is an opening. The distribution of the gas by the guide vanes depends on the position and angle of the vanes. When the second and third discharge holes are provided, it is difficult to make the discharge amount uniform.

そこで、本発明の多分岐チャンバーの流量調整機構は、中空状の箱体と、この箱体の供給面を開孔し、箱体内部に気体を供給する供給孔と、供給面以外の面に、箱体内部の気体を排出する複数の排出孔と、を有する多分岐チャンバーにおいて、排出孔は、少なくとも供給面と対向する第一排出面に第一排出孔と、当該第一排出面以外の第二排出面の第二排出孔があり、第一排出孔と第二排出孔との間に、開口部を設けた第一調整壁を配置することを特徴とする。   Therefore, the multi-branch chamber flow adjustment mechanism of the present invention has a hollow box, a supply surface for opening the box, a gas supply hole for supplying gas into the box, and a surface other than the supply surface. In the multi-branch chamber having a plurality of discharge holes for discharging the gas inside the box, the discharge holes are at least a first discharge hole on the first discharge surface facing the supply surface, and other than the first discharge surface There is a second discharge hole on the second discharge surface, and a first adjustment wall provided with an opening is disposed between the first discharge hole and the second discharge hole.

また、第二排出孔と、該第二排出孔より供給孔側に位置する第三排出孔を有し、第二排出孔と第三排出孔との間に、開口部を設けた第二調整壁を配置し、第二調整壁の周囲に開放部があることが好ましい。   The second adjustment has a second discharge hole and a third discharge hole located closer to the supply hole than the second discharge hole, and an opening is provided between the second discharge hole and the third discharge hole. It is preferable to arrange a wall and to have an opening around the second adjustment wall.

また、第二調整壁は、第一調整壁の開口部よりも開口率の低い開口部を有することが好ましい。   Moreover, it is preferable that a 2nd adjustment wall has an opening part whose opening rate is lower than the opening part of a 1st adjustment wall.

また、第二排出孔と第三排出孔は、供給孔と第一排出孔との排出方向と直交する両側面に、上下二段に配置されていることが好ましい。   Moreover, it is preferable that the 2nd discharge hole and the 3rd discharge hole are arrange | positioned at the upper and lower two steps | paragraphs on the both sides | surfaces orthogonal to the discharge direction of a supply hole and a 1st discharge hole.

また、第三排出孔より供給孔側に排出孔を順次、開孔し、この順次開孔された排出孔と、その排出孔の第一排出孔側の排出孔との間に、周囲に開放部を有する調整壁を有し、一の調整壁と、その一の調整壁の供給孔側の調整壁とは、順次開口部の開口面積が少なくなることが好ましい。   In addition, the discharge holes are sequentially opened from the third discharge hole to the supply hole side, and open to the periphery between the sequentially opened discharge hole and the discharge hole on the first discharge hole side of the discharge hole. It is preferable that the opening area of the opening portion is successively reduced between the one adjusting wall and the adjusting wall on the supply hole side of the one adjusting wall.

請求項1に記載の発明によると、通常は供給孔から対向する位置にある第一排出孔へ、多くの気体が排出される。そのため、第一排出孔のある第一排出面以外の面に配置された第二排出孔等へは第一排出孔に排出される風量よりも少ない気体が排出されてしまう。
そのため、開口部をもつ調整壁を第一排出孔と第二排出孔の間の位置に配置させることで、開口部を通過した気体を第一排出孔から排出し、調整壁で通過を遮断された気体は、第一排出孔ではない他の第二排出孔から排出させる。
これにより、風量を調整して排出量の均一化に資することができる。
また、開口部のない調整壁を用いると、チャンバー内に乱流が生じて排出の圧力が減少することがあるが、調整壁に開口部を有することで気体が開口部を通過する場合には乱流が生じ難くなり、圧力損失の少ない排出が可能になる。
According to the first aspect of the present invention, a large amount of gas is normally discharged from the supply hole to the first discharge hole located at the opposite position. For this reason, a gas smaller than the amount of air discharged to the first discharge hole is discharged to the second discharge hole and the like disposed on a surface other than the first discharge surface having the first discharge hole.
Therefore, by arranging the adjustment wall with the opening at a position between the first discharge hole and the second discharge hole, the gas that has passed through the opening is discharged from the first discharge hole, and the passage is blocked by the adjustment wall. The discharged gas is discharged from another second discharge hole that is not the first discharge hole.
Thereby, air volume can be adjusted and it can contribute to equalization of discharge amount.
In addition, if an adjustment wall without an opening is used, turbulent flow may occur in the chamber and the discharge pressure may decrease.However, if the adjustment wall has an opening, gas passes through the opening. Turbulence is less likely to occur, and discharge with less pressure loss is possible.

請求項2に記載の発明によると、第二排出孔とこの第二排出孔より供給孔側に第三排出孔があるので、第二排出孔、第一排出孔へ気体を送りながら、第三排出孔へ気体を排出する必要があるところ、開口部と開放部により第二排出孔、第一排出孔への気体の通過を確保することができ、第二調整壁により遮断されて第三排出孔へ排出される風量、排出量の調整を行うことができる。   According to the second aspect of the present invention, since the third discharge hole is provided on the supply hole side from the second discharge hole and the second discharge hole, the gas is sent to the second discharge hole and the first discharge hole while the third discharge hole. Where the gas needs to be discharged to the discharge hole, the opening and the open part can ensure the passage of the gas to the second discharge hole and the first discharge hole, and the third discharge is blocked by the second adjustment wall. The amount of air discharged to the hole and the amount of discharge can be adjusted.

請求項3に記載の発明によると、この第二調整壁の開口部の開口率を第一調整壁の開口部より低くすることで、第二調整壁で遮断され易くなり、第三排出孔から排出され易くすることができる。   According to the invention described in claim 3, by making the opening ratio of the opening of the second adjustment wall lower than the opening of the first adjustment wall, the second adjustment wall can be easily blocked, and from the third discharge hole. It can be easily discharged.

請求項4に記載の発明によると、第二排出孔、第三排出孔を水平方向に並べて配置するよりも、上下二段に配置する方が水平方向の長さを省略することができ、小さいスペースにも設置することが可能になる。
また、上下二段に排出孔が配置されていることで、供給孔から供給された気体が上段の排出孔、下段の排出孔と、明確に分けられて排出される。段がない場合に比べて、調整壁がなくても一定流量の配分が可能になる。
それに加え、下段の排出孔の第一排出孔側にある調整壁は上段の位置を開放部とするスペースを有するものとすることができ、気体の通過を円滑に行うことができる。
According to the invention described in claim 4, it is possible to omit the length in the horizontal direction because the second discharge hole and the third discharge hole are arranged in the upper and lower two stages rather than arranging the second discharge hole and the third discharge hole side by side in the horizontal direction. It can be installed in a space.
Further, since the discharge holes are arranged in two upper and lower stages, the gas supplied from the supply holes is discharged in a clearly divided manner, the upper discharge hole and the lower discharge hole. Compared to the case where there is no stage, it is possible to distribute a constant flow rate without an adjustment wall.
In addition, the adjustment wall on the first discharge hole side of the lower discharge hole can have a space with the upper position as an open portion, and gas can be passed smoothly.

請求項5に記載の発明によると、第三排出孔より供給孔側に第四排出孔など順次、排出孔を設けることが可能になり、多くの分岐ができる多分岐チャンバーを提供することができる。
また、供給孔側の調整壁になるに従って開口率を下げることで、最も排出が少ないと考えられる排出孔からも気体が排出されることになり、風量の調整を行うことが可能になる。
According to the fifth aspect of the present invention, it is possible to sequentially provide the discharge holes such as the fourth discharge holes on the supply hole side from the third discharge holes, and it is possible to provide a multi-branch chamber capable of many branches. .
Further, by lowering the aperture ratio as it becomes the adjustment wall on the supply hole side, gas is discharged also from the discharge hole considered to have the least discharge, and the air volume can be adjusted.

本発明の第一実施例にかかる多分岐チャンバーの全体を示す斜視図であって、ダクトを第三排出孔の一つのみに取り付けた状態を示す。It is a perspective view which shows the whole multi-branch chamber concerning the 1st Example of this invention, Comprising: The state which attached the duct only to one of the 3rd discharge holes is shown. 本発明の第一実施例にかかる多分岐チャンバーについて調整壁を破線で示すものであって、(a)は平面図であって気体の通過方向を示し、(b)は側面図である。The adjustment wall is shown with a broken line about the multi-branch chamber concerning the 1st Example of this invention, (a) is a top view and shows the passage direction of gas, (b) is a side view. 本発明の第二実施例を示す多分岐チャンバーであって、(a)はその斜視図、(b)は側面図である。It is the multi-branch chamber which shows the 2nd Example of this invention, Comprising: (a) is the perspective view, (b) is a side view. 本発明の第一調整壁の一例を示す斜視図である。It is a perspective view which shows an example of the 1st adjustment wall of this invention. 本発明の第一実施例であって、箱体の上面を外し、その内部を示す斜視図である。FIG. 3 is a perspective view showing the inside of the first embodiment of the present invention, with the top surface of the box body removed. 本発明の第三実施例を示す多分岐チャンバーであって、(a)は平面図、(b)は側面図である。It is a multi-branch chamber which shows the 3rd Example of this invention, Comprising: (a) is a top view, (b) is a side view. 従来の多分岐チャンバーを示す斜視図であって、箱体の上面及び短菅を取り外し、一部を切り欠いた状態を示す。It is a perspective view which shows the conventional multi-branch chamber, Comprising: The upper surface and short rod of a box are removed, and the state which notched part is shown.

本発明の実施の一例を図面に沿って説明する。
図1は、多分岐チャンバー1の全体斜視図である。多分岐チャンバー1は、主に空調設備に使用される。これは、空調設備等による冷気、暖気などの気体を、ダクト3を通じて各方向へ送る場合に、ダクトを多方向に分岐するために用いるものである。
An embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is an overall perspective view of the multi-branch chamber 1. The multi-branch chamber 1 is mainly used for air conditioning equipment. This is used to branch the duct in multiple directions when a gas such as cold air or warm air from an air conditioner is sent in each direction through the duct 3.

図1に示すように、多分岐チャンバー1は、箱体2のような形状をしており、その内部が中空状である。供給孔11から箱体2の内部に送られた気体をそれぞれの排出孔から排出する。供給孔11、排出孔は箱体2の内外と連通しており、ダクト3を通じて多分岐チャンバー1の内部に気体を供給し、排出するためのものである。図1などは円形状の孔であるが、必ずしもこれのみに限られない。   As shown in FIG. 1, the multi-branch chamber 1 has a shape like a box 2 and its inside is hollow. The gas sent from the supply hole 11 to the inside of the box body 2 is discharged from each discharge hole. The supply hole 11 and the discharge hole communicate with the inside and outside of the box 2, and supply and discharge gas into the multi-branch chamber 1 through the duct 3. Although FIG. 1 etc. are circular holes, it is not necessarily restricted to this.

箱体2の一面(図1の左奥側の面)は供給面21となり、この供給面21に供給孔11を開孔する。
一方、供給面21の対向側の面(図1の右手前側の面)が第一排出面22a、22bとなる。この第一排出面22a、22bに第一排出孔12a、12bを開孔する。第一排出面22a、22bは、中央が突出した山型形状となり、傾斜する二つの面からなる。この二つの第一排出面22a、22bの各々の傾斜面に二つの第一排出孔12a、12bが形成される。
One surface of the box 2 (the left back surface in FIG. 1) serves as a supply surface 21, and the supply hole 11 is opened in the supply surface 21.
On the other hand, the surface on the opposite side of the supply surface 21 (the surface on the right front side in FIG. 1) is the first discharge surfaces 22a and 22b. First discharge holes 12a and 12b are opened in the first discharge surfaces 22a and 22b. The first discharge surfaces 22a and 22b are mountain-shaped with the center protruding, and are composed of two inclined surfaces. Two first discharge holes 12a and 12b are formed on the inclined surfaces of the two first discharge surfaces 22a and 22b.

供給面21から第一排出面22a、22bへの排出方向(図2(a)のA方向)と直交する二方向の面(図1の左手前側の面、右奥側の面)が第二排出面23a、23bとなる。
第二排出面23a、23bに第二排出孔13a、13bと第三排出孔14a、14bが開孔されている。第二排出孔13a、13bは第三排出孔14a、14bより第一排出孔12a、12b側に配置されている。
第一排出孔12a、12bと第二排出孔13a、13bは、第二排出面23a、23bのうち、箱体2の垂直方向上側に配置され、第三排出孔14a、14bは箱体2の垂直方向下側に配置されている。
Two surfaces (surface on the left front side and surface on the right rear side in FIG. 1) perpendicular to the discharge direction from the supply surface 21 to the first discharge surfaces 22a and 22b (direction A in FIG. 2A) are the second. It becomes the discharge surfaces 23a and 23b.
Second discharge holes 13a and 13b and third discharge holes 14a and 14b are opened in the second discharge surfaces 23a and 23b. The second discharge holes 13a and 13b are disposed closer to the first discharge holes 12a and 12b than the third discharge holes 14a and 14b.
The first discharge holes 12a and 12b and the second discharge holes 13a and 13b are disposed on the upper side in the vertical direction of the box body 2 of the second discharge surfaces 23a and 23b, and the third discharge holes 14a and 14b are formed on the box body 2. It is arranged on the lower side in the vertical direction.

ここで、本実施例において、図1に示すように、第二排出孔13a、13b、第三排出孔14a、14bは、箱体2の両側面に配置されているが、箱体2の上面24や底面25に配置してもよい。
また、供給孔11に比して第一排出孔12a、12b、第二排出孔13a、13b、第三排出孔14a、14bは、開孔面積が小さいものとなっている。これは供給孔11から多量の気体が供給されるために、供給孔11の開孔面積を大きくしてあるからであるが、必ずしもこれに限定されず、同径のものでもよい。
Here, in this embodiment, as shown in FIG. 1, the second discharge holes 13 a and 13 b and the third discharge holes 14 a and 14 b are arranged on both side surfaces of the box body 2. 24 and the bottom surface 25.
Further, the first discharge holes 12 a and 12 b, the second discharge holes 13 a and 13 b, and the third discharge holes 14 a and 14 b have a smaller opening area than the supply hole 11. This is because a large amount of gas is supplied from the supply hole 11, so that the opening area of the supply hole 11 is increased. However, the supply hole 11 is not necessarily limited to this and may have the same diameter.

また、それぞれの排出孔の位置は、図1に示す場合のみに限定されない。
図3(a)に示すように、第一排出孔12が箱体2の垂直方向中央部分に位置していてもよく、図示しないが、第二排出孔13a、13bと第三排出孔14a、14bとが箱体2の第二排出面22a、22bの水平方向に並んでいてもよい。
また、図3(a)、図3(b)に示す第二実施例のように、第三排出孔14a、14bの供給孔11側に、さらに第四排出孔15a、15bを形成してもよい。また、第四排出孔15a、15bの供給孔11側に、さらに順次、供給孔を開孔してもよい。
Moreover, the position of each discharge hole is not limited only to the case shown in FIG.
As shown in FIG. 3 (a), the first discharge hole 12 may be located in the central portion in the vertical direction of the box 2, and although not shown, the second discharge holes 13a, 13b and the third discharge holes 14a, 14b may be arranged in the horizontal direction of the second discharge surfaces 22a and 22b of the box 2.
Further, as in the second embodiment shown in FIGS. 3A and 3B, fourth discharge holes 15a and 15b may be further formed on the supply hole 11 side of the third discharge holes 14a and 14b. Good. Further, the supply holes may be further sequentially opened on the supply hole 11 side of the fourth discharge holes 15a and 15b.

図1に示すように、第一実施例にかかる多分岐チャンバー1は、第一排出孔12a、12bと同じく、第二排出孔13a、13b、第三排出孔14a、14bも、第二排出面23a、23bとなる箱体2の両側面に、二つ開孔されている。
これは、供給孔11から最も離れた位置にある第一排出孔12a、12bから順次供給孔11に近い位置にある排出孔を、第二排出孔13a、13b、第三排出孔14a、14bとしており、左右に二つ開口されている。
供給孔11、第一排出孔12a、12b、第二排出孔13a、13b、第三排出孔14a、14bは、短菅4が取り付けられる。実際に多分岐チャンバー1を使用するときは、全ての短菅4にダクト3を取り付けるものであるが、図1は一つの短菅4にのみダクト3を取り付けた状態を示す。
As shown in FIG. 1, in the multi-branch chamber 1 according to the first embodiment, the second discharge holes 13a and 13b and the third discharge holes 14a and 14b are also formed on the second discharge surface, as with the first discharge holes 12a and 12b. Two holes are opened on both side surfaces of the box 2 to be 23a and 23b.
This is because the discharge holes at positions closest to the supply hole 11 from the first discharge holes 12a and 12b located farthest from the supply hole 11 as second discharge holes 13a and 13b and third discharge holes 14a and 14b. There are two openings left and right.
The short hole 4 is attached to the supply hole 11, the first discharge holes 12a and 12b, the second discharge holes 13a and 13b, and the third discharge holes 14a and 14b. When the multi-branch chamber 1 is actually used, the duct 3 is attached to all the short rods 4, but FIG. 1 shows a state where the duct 3 is attached to only one short rod 4.

第二排出孔13a、13bと第三排出孔14a、14bとの違いは、第一排出孔12a、12bから供給孔11側の方向への距離による。第二排出孔13a、13bは二つ開孔されるが、第一排出孔12a、12bからの距離が同じであるため、同じ第二の排出孔とする。なお、完全に同じである必要はなく、ほぼ同じ距離にあるものは、同じ第二の、第三の排出孔としてよい。   The difference between the second discharge holes 13a and 13b and the third discharge holes 14a and 14b depends on the distance from the first discharge holes 12a and 12b to the supply hole 11 side. Two second discharge holes 13a and 13b are opened, but since the distance from the first discharge holes 12a and 12b is the same, the second discharge holes are the same. It should be noted that it is not necessary to be completely the same, and those located at substantially the same distance may be the same second and third discharge holes.

次に、調整壁について説明する。
図2(a)の破線で示すように、箱体2の内部に、第一調整壁31、第二調整壁32が配置される。
図4は、第一調整壁31を示す斜視図である。第一調整壁31は、薄手の平板状のものであり、複数の開口部34が形成されている。開口部34の形状は、図4に示すように小径の孔を多数形成したものでもよい。この形態ではなく、径を比較的大きくしてもよい。
図2(a)、(b)に示すように、第一調整壁31は、第一排出孔12a、12bと第二排出孔13a、13bとの間に、箱体2の内部の底面から起立させて配置する。
Next, the adjustment wall will be described.
As shown by a broken line in FIG. 2A, the first adjustment wall 31 and the second adjustment wall 32 are arranged inside the box body 2.
FIG. 4 is a perspective view showing the first adjustment wall 31. The first adjustment wall 31 is a thin flat plate, and has a plurality of openings 34 formed therein. The shape of the opening 34 may be one in which many small-diameter holes are formed as shown in FIG. Instead of this form, the diameter may be relatively large.
As shown in FIGS. 2A and 2B, the first adjustment wall 31 stands from the bottom surface inside the box body 2 between the first discharge holes 12a and 12b and the second discharge holes 13a and 13b. Let them be arranged.

ダクト3を通じて供給孔11から箱体2の内部に供給された気体は、障害物がなければ直線状に進むので、供給孔11のある供給面21と対向する位置にある第一排出面22a、22bの第一排出孔12a、12bからそのまま排出される(図2(a)のA方向)。
そのため、箱体2のその他の面に排出孔をたとえ開孔したとしても、やはり第一排出孔12a、12bからの排出量が多く、排出量(流量)の均一化を図る事ができなかった。
Since the gas supplied from the supply hole 11 to the inside of the box body 2 through the duct 3 proceeds in a straight line if there is no obstacle, the first discharge surface 22a located at a position facing the supply surface 21 with the supply hole 11, 22b is discharged as it is from the first discharge holes 12a and 12b (direction A in FIG. 2A).
Therefore, even if the discharge holes are opened on the other surface of the box body 2, the discharge amount from the first discharge holes 12a and 12b is still large, and the discharge amount (flow rate) cannot be made uniform. .

そこで、図2(a)に示すように、第一排出孔12a、12bの供給孔11側に、開口部34を有する第一調整壁31を配置することにより、第一調整壁31の開口部34を通過した気体をそのまま第一排出孔12a、12bから排出し、第一調整壁31の開口部34以外の部分で通過を遮断された気体を第一排出孔12a、12bから排出することなく、その近くにある第二排出孔13a、13bから排出するようにした(図2(a)のB方向)。   Therefore, as shown in FIG. 2A, the first adjustment wall 31 having the opening 34 is disposed on the supply hole 11 side of the first discharge holes 12 a and 12 b, thereby opening the first adjustment wall 31. The gas that has passed through 34 is discharged from the first discharge holes 12a and 12b as it is, and the gas that is blocked from passing through the portion other than the opening 34 of the first adjustment wall 31 is not discharged from the first discharge holes 12a and 12b. The second discharge holes 13a and 13b in the vicinity thereof are discharged (direction B in FIG. 2A).

図7に示すように、従来の排出口103から排出される気体を調整する整流部材104では、整流部材104に供給された気体が衝突し、チャンバー本体101の内部に乱流が生じ、排出される圧力が低くなる問題があった。これにより、ダクトを通じて一定距離まで送れなくなることがあった。本実施例の調整によると、開口部34を通過した気体は第一排出孔12a、12bからそのまま排出されるので、圧力の低減が生じることが少なくなり、均一の排出が可能となる。   As shown in FIG. 7, in the rectifying member 104 that adjusts the gas discharged from the conventional discharge port 103, the gas supplied to the rectifying member 104 collides and a turbulent flow is generated inside the chamber body 101 and is discharged. There was a problem that the pressure was low. As a result, it may not be possible to send a certain distance through the duct. According to the adjustment of this embodiment, the gas that has passed through the opening 34 is discharged as it is from the first discharge holes 12a and 12b, so that the pressure is less likely to be reduced and uniform discharge is possible.

次に、第三排出孔14a、14bを開孔した場合、図2(a)、(b)、図5に示すように、第二調整壁32は第二排出孔12a、12bと第三排出孔13a、13bとの間の位置に配置する。
また、図2(b)、図5に示すように、第一排出孔12a、12b、第二排出孔13a、13bの場合とは異なり、第三排出孔14a、14bは箱体2の垂直方向の下側に位置しているところ、第二調整壁32は箱体2の内部の底面25から起立させて、第三排出孔14a、14bの上端付近まで延長し、その上方は開放された開放部35としている。
また、図5に示すように、第二調整壁32には第一調整壁31と同じく開口部34が形成されているが、その開口率は第二調整壁32の方が低くなるようにしてある。具体的には、第一調整壁31の開口部34は複数の丸型の開口孔であるのに対して、第二調整壁32の開口部の開口孔は口径が小さい。これにより、第一調整壁31に比して第二調整壁32の方が、気体を通過させ難い。
Next, when the third discharge holes 14a and 14b are opened, as shown in FIGS. 2 (a), 2 (b), and 5, the second adjustment wall 32 is connected to the second discharge holes 12a and 12b and the third discharge holes. It arrange | positions in the position between hole 13a, 13b.
Further, as shown in FIGS. 2B and 5, unlike the first discharge holes 12 a and 12 b and the second discharge holes 13 a and 13 b, the third discharge holes 14 a and 14 b are arranged in the vertical direction of the box 2. The second adjustment wall 32 is erected from the bottom surface 25 inside the box body 2 and extends to the vicinity of the upper ends of the third discharge holes 14a and 14b. This is part 35.
As shown in FIG. 5, the second adjustment wall 32 has an opening 34 formed in the same manner as the first adjustment wall 31, but the opening ratio of the second adjustment wall 32 is lower. is there. Specifically, the opening 34 of the first adjustment wall 31 is a plurality of round opening holes, whereas the opening of the opening of the second adjustment wall 32 has a small diameter. Thereby, compared with the 1st adjustment wall 31, the direction of the 2nd adjustment wall 32 is hard to let gas pass.

図2(a)に、第三排出孔14a、14bを開孔し、第二調整壁32を使用した場合の気体の排出方向を示す。
第三排出孔14a、14bは箱体2の垂直方向の下側に位置しているので、供給孔11から供給された気体のうち、第三排出孔14a、14bの上側を通過するものは、前述のように第一調整壁31の開口部34を通過すると、第一排出孔12a、12bから排出され(図2(a)のA方向)、第一調整壁31で遮断されると第二排出孔13a、13bから排出される(図2(a)のB方向)。これは、第二調整壁32の上側が開放部35により開放されているため、この部分を通る気体は第二調整壁32により遮断されないためである。
FIG. 2A shows the gas discharge direction when the third discharge holes 14a and 14b are opened and the second adjustment wall 32 is used.
Since the third discharge holes 14a and 14b are located on the lower side in the vertical direction of the box body 2, among the gases supplied from the supply holes 11, those passing above the third discharge holes 14a and 14b are: When passing through the opening 34 of the first adjustment wall 31 as described above, it is discharged from the first discharge holes 12a and 12b (direction A in FIG. 2A), and when blocked by the first adjustment wall 31, the second. It discharges | emits from the discharge holes 13a and 13b (B direction of Fig.2 (a)). This is because the upper side of the second adjustment wall 32 is opened by the opening portion 35, so that gas passing through this portion is not blocked by the second adjustment wall 32.

そして、供給孔11から供給された気体のうち、箱体2の垂直方向下側を通るものは、第二調整壁32の開口部34を通過するものと、第二調整壁32で遮断されるものとがある。
第二調整壁32の開口部34を通過した気体は、A方向に流れる気体と同じく、第一調整壁31を通過して第一排出孔12a、12bから排出されるものと、第一調整壁31により遮断されて第二排出孔13a、13bから排出されるものに分かれる(図2(a)のC方向)。
また、第二調整壁32で遮断された気体は、近くの第三排出孔14a、14bから排出される。
これにより多分岐チャンバー1から排出される気体の流量、風量を均一にすることができる。
Of the gas supplied from the supply hole 11, the gas passing through the lower side in the vertical direction of the box 2 is blocked by the gas passing through the opening 34 of the second adjustment wall 32 and the second adjustment wall 32. There is a thing.
The gas that has passed through the opening 34 of the second adjustment wall 32 passes through the first adjustment wall 31 and is discharged from the first discharge holes 12a and 12b, as well as the gas flowing in the A direction, and the first adjustment wall. It is divided into those which are blocked by 31 and discharged from the second discharge holes 13a and 13b (direction C in FIG. 2A).
The gas blocked by the second adjustment wall 32 is discharged from the nearby third discharge holes 14a and 14b.
Thereby, the flow volume and the air volume of the gas discharged from the multi-branch chamber 1 can be made uniform.

第二調整壁32は、図5に示すように、その底辺と両側辺を箱体2の内側の底面と両側面に固定され、上方のみが開放されている。第二調整壁32の上辺の高さは、箱体2の内部の略半分の高さまでであり、その上側は開放部35を形成する。具体的には、箱体2の内部の高さを330mmとした場合、第二調整壁32の高さは150mm程度であり、上方に180mmの開放部35が形成される。
また、第一調整壁31も第二調整壁32と同じく、その底辺と両側辺を箱体2の内側の底面と両側面に固定されている。取り付けの都合上、第一調整壁31の上辺は箱体2の上面に接するまでの高さではない。
また、第一調整壁31の開口部34の開口率は40%程度、第二調整壁32の開口部34の開口率は33%程度とするのが好ましい。
As shown in FIG. 5, the second adjustment wall 32 has its bottom side and both side sides fixed to the bottom surface and both side surfaces inside the box 2, and only the upper side is open. The height of the upper side of the second adjustment wall 32 is up to about half of the height inside the box body 2, and the upper side forms an opening 35. Specifically, when the height of the inside of the box 2 is 330 mm, the height of the second adjustment wall 32 is about 150 mm, and the open portion 35 of 180 mm is formed above.
The first adjustment wall 31 is also fixed to the bottom surface and both side surfaces on the inner side of the box body 2, as in the second adjustment wall 32. For convenience of attachment, the upper side of the first adjustment wall 31 is not a height until it contacts the upper surface of the box body 2.
Moreover, it is preferable that the opening ratio of the opening 34 of the first adjusting wall 31 is about 40% and the opening ratio of the opening 34 of the second adjusting wall 32 is about 33%.

以上が図1、図2(a)、(b)、図5に示す本発明の第一実施例の場合である。図3(a)、(b)に示すように、第二実施例の第四排出孔15a、15bがある場合など実施の形態が異なる場合、適宜、開放部35の開放面積や開口部34の開放率を変えることが望ましい。
図3(b)に示すように、第一調整壁31と第二調整壁32のみならず、第四排出孔15a、15bと第三排出孔14a、14bとの間に第三調整壁33を配置する。
第二調整壁32と第三調整壁33は、第一実施例と同じく、箱体2の内部の略半分の高さであるが、第三調整壁33は上辺と両側辺を固定している点で第二調整壁32とは異なる。
この場合、第三調整壁の開口部34の開口率を31%程度とすることが好ましい。
The above is the case of the first embodiment of the present invention shown in FIG. 1, FIG. 2 (a), (b), and FIG. As shown in FIGS. 3A and 3B, when the embodiment is different, such as when there are the fourth discharge holes 15a and 15b of the second embodiment, the open area of the opening 35 and the opening 34 are appropriately selected. It is desirable to change the opening rate.
As shown in FIG. 3 (b), not only the first adjustment wall 31 and the second adjustment wall 32 but also the third adjustment wall 33 is provided between the fourth discharge holes 15a and 15b and the third discharge holes 14a and 14b. Deploy.
The second adjustment wall 32 and the third adjustment wall 33 are approximately half the height inside the box 2 as in the first embodiment, but the third adjustment wall 33 fixes the upper side and both sides. This is different from the second adjustment wall 32 in that respect.
In this case, it is preferable that the opening ratio of the opening 34 of the third adjustment wall is about 31%.

この第1実施例にかかる多分岐チャンバー1の実験結果を示す。
実験では、送風機から一定量の風量を、ダクト3を介して多分岐チャンバー1に送り、6つの各排出孔12a、12b、13a、13b、14a、14bからダクト3を通して風量を測定する。
送風機からの風量は、時間当り200立方メートル、400立方メートル、600立方メートル、800立方メートル、1000立方メートルであり、それぞれの排出孔から実際に排出された風量を示す。その他、6分岐した場合に理論上均等に分岐した風量と、それと実際に排出された風量との誤差を示す。
また、箱体2に供給前の気体と各排出孔から排出された後の気体の風速、空気密度、供給前と排出後の気体の圧力差を計測し、下の式により抵抗係数を算出した。

Figure 2012037131
The experimental result of the multi-branch chamber 1 concerning this 1st Example is shown.
In the experiment, a certain amount of air is sent from the blower to the multi-branch chamber 1 through the duct 3 and the amount of air is measured through the duct 3 from each of the six discharge holes 12a, 12b, 13a, 13b, 14a, 14b.
The amount of air from the blower is 200 cubic meters, 400 cubic meters, 600 cubic meters, 800 cubic meters, and 1000 cubic meters per hour, and indicates the amount of air actually discharged from the respective discharge holes. In addition, the error between the air volume that is theoretically branched evenly when 6 branches and the actual air volume that is exhausted is shown.
In addition, the wind velocity of the gas before being supplied to the box 2 and the gas density after being discharged from each discharge hole, the air density, the pressure difference between the gas before being supplied and after being discharged were measured, and the resistance coefficient was calculated by the following equation. .
Figure 2012037131

Figure 2012037131
Figure 2012037131

Figure 2012037131
Figure 2012037131

Figure 2012037131
Figure 2012037131

Figure 2012037131
Figure 2012037131

Figure 2012037131
Figure 2012037131

このように、第一実施例にかかる多分岐チャンバー1によると、各排出孔から排出される風量は、−5%から+5%の間にあり、全体として均等な風量を維持することができる。
また、本実施例の抵抗係数は最大でも1.29であり、平均しても1.018と低い値になる。一方、図7に示す従来技術についても、同じ試験方法で、本実施例と同じ位置で計測してそれぞれの抵抗係数を比較すると、本実施例の場合には従来技術の場合よりも平均して60%程度、抵抗係数が軽減することが判明した。これは従来技術に比して抵抗が少ないことを示している。
これにより、本実施例における多分岐チャンバーは乱流が生じ難くなり、圧力の減少を軽減し得ることを示すものである。
Thus, according to the multi-branch chamber 1 according to the first embodiment, the air volume discharged from each discharge hole is between -5% and + 5%, and the entire air volume can be maintained as a whole.
Further, the resistance coefficient of the present example is 1.29 at the maximum, and the average value is as low as 1.018. On the other hand, for the prior art shown in FIG. 7 as well, when the same test method was used to measure each of the resistance coefficients measured at the same position as in this example, the average in the case of this example was higher than in the case of the prior art. It has been found that the resistance coefficient is reduced by about 60%. This indicates that there is less resistance than the prior art.
This shows that the multi-branch chamber in the present embodiment is less likely to generate turbulent flow and can reduce the decrease in pressure.

また、図6は本発明の第三実施例を示す。
第三実施例は、第一実施例、第二実施例と異なり、第一調整壁31、第二調整壁32が湾曲して形成されている。具体的には、図4に示すような多数の開口部34が形成されている第一調整壁31及び第二調整壁32の中央部分を供給孔11方向へせり出させ、両側部分を第一排出孔12の方に来るように、U字型に湾曲させてある。図6の第三実施例は第一調整壁31、第二調整壁32の両方が湾曲した調整壁となっているが、第一調整壁31のみ、若しくは、第二調整壁のみと、一方の調整壁のみを湾曲させ、その他の調整壁が湾曲されていないものであってもよい。
FIG. 6 shows a third embodiment of the present invention.
In the third embodiment, unlike the first embodiment and the second embodiment, the first adjustment wall 31 and the second adjustment wall 32 are formed to be curved. Specifically, the central portions of the first adjustment wall 31 and the second adjustment wall 32 in which a large number of openings 34 are formed as shown in FIG. It is curved in a U shape so as to come toward the discharge hole 12. In the third embodiment of FIG. 6, both the first adjustment wall 31 and the second adjustment wall 32 are curved adjustment walls, but only the first adjustment wall 31 or only the second adjustment wall, Only the adjustment wall may be curved, and other adjustment walls may not be curved.

この第一調整壁31、第二調整壁32を使用することによって、開口部34を通過せずに遮断された気体が第二排出孔13a、13bや第三排出孔14a、14bの方向に流れやすくなる。これは、第一調整壁31、第二調整壁32が湾曲していることで、湾曲した方向へ気体が流れ易くなることによる。しかも、図4のように多数の開口部34を有する第一調整壁31、第二調整壁32を湾曲させているので、それらの側方になるに従い、それらの開口部34は正面からみた投影面積が減少する。このため、正面から流入した気体は第一調整壁31、第二調整壁32の開口部34を通過し難くなり、第二排出孔13a、13b、第二排出孔14a、14bに排出され易くなる。
このため、より開口率の高い調整壁を用いた場合でも、第二排出孔13a、13b、第三排出孔14a、14bから気体を排出することが可能になる。
By using the first adjustment wall 31 and the second adjustment wall 32, the gas blocked without passing through the opening 34 flows in the direction of the second discharge holes 13a and 13b and the third discharge holes 14a and 14b. It becomes easy. This is because the first adjustment wall 31 and the second adjustment wall 32 are curved, so that gas easily flows in the curved direction. In addition, since the first adjustment wall 31 and the second adjustment wall 32 having a large number of openings 34 are curved as shown in FIG. 4, the openings 34 are projected from the front as they become sideways. The area is reduced. For this reason, it is difficult for the gas flowing in from the front to pass through the openings 34 of the first adjustment wall 31 and the second adjustment wall 32, and is easily discharged to the second discharge holes 13a and 13b and the second discharge holes 14a and 14b. .
For this reason, even when an adjustment wall having a higher aperture ratio is used, gas can be discharged from the second discharge holes 13a and 13b and the third discharge holes 14a and 14b.

1…多分岐チャンバー、2…箱体、3…ダクト、4…短菅、11…供給孔、12…第一排出孔、13…第二排出孔、14…第三排出孔、15…第四排出孔、21…供給面、22…第一排出面、23…第二排出面、24…上面、25…底面、31…第一調整壁、32…第二調整壁、33…第三調整壁、34…開口部、35…開放部、101…チャンバー本体、102…導入孔、103…排出孔、104…整流部材 DESCRIPTION OF SYMBOLS 1 ... Multi-branch chamber, 2 ... Box, 3 ... Duct, 4 ... Short rod, 11 ... Supply hole, 12 ... First discharge hole, 13 ... Second discharge hole, 14 ... Third discharge hole, 15 ... Fourth Discharge hole, 21 ... supply surface, 22 ... first discharge surface, 23 ... second discharge surface, 24 ... upper surface, 25 ... bottom surface, 31 ... first adjustment wall, 32 ... second adjustment wall, 33 ... third adjustment wall 34 ... Opening part, 35 ... Opening part, 101 ... Chamber body, 102 ... Introduction hole, 103 ... Discharge hole, 104 ... Rectification member

Claims (5)

中空状の箱体と、
この箱体の供給面を開孔し、箱体内部に気体を供給する供給孔と、
供給面以外の面に、箱体内部の気体を排出する複数の排出孔と、を有する多分岐チャンバーにおいて、
排出孔は、少なくとも供給面と対向する第一排出面に第一排出孔と、当該第一排出面以外の第二排出面の第二排出孔があり、
第一排出孔と第二排出孔との間に、開口部を設けた第一調整壁を配置することを特徴とする多分岐チャンバーの流量調整機構。
A hollow box,
Opening the supply surface of the box, supplying a gas into the box,
In a multi-branch chamber having a plurality of discharge holes for discharging the gas inside the box on a surface other than the supply surface,
The discharge hole has at least a first discharge hole on the first discharge surface facing the supply surface and a second discharge hole of a second discharge surface other than the first discharge surface,
A flow adjustment mechanism for a multi-branch chamber, wherein a first adjustment wall provided with an opening is disposed between the first discharge hole and the second discharge hole.
第二排出孔と、該第二排出孔より供給孔側に位置する第三排出孔を有し、
第二排出孔と第三排出孔との間に、開口部を設けた第二調整壁を配置し、
第二調整壁の周囲に開放部があることを特徴とする請求項1に記載の多分岐チャンバーの流量調節機構。
A second discharge hole and a third discharge hole located on the supply hole side from the second discharge hole;
Between the second discharge hole and the third discharge hole, arrange a second adjustment wall provided with an opening,
The flow control mechanism of a multi-branch chamber according to claim 1, wherein an opening is provided around the second adjustment wall.
第二調整壁は、第一調整壁の開口部よりも開口率の低い開口部を有することを特徴とする請求項1に記載の多分岐チャンバーの流量調整機構。   The flow rate adjusting mechanism for a multi-branch chamber according to claim 1, wherein the second adjusting wall has an opening having an opening ratio lower than that of the opening of the first adjusting wall. 第二排出孔と第三排出孔は、供給孔と第一排出孔との排出方向と直交する両側面に、上下二段に配置されていることを特徴とする請求項2に記載の多分岐チャンバーの流量調整機構。   The multi-branch according to claim 2, wherein the second discharge hole and the third discharge hole are arranged in two upper and lower stages on both side surfaces orthogonal to the discharge direction of the supply hole and the first discharge hole. Chamber flow rate adjustment mechanism. 第三排出孔より供給孔側に排出孔を順次、開孔し、
この順次開孔された排出孔と、その排出孔の第一排出孔側の排出孔との間に、周囲に開放部を有する調整壁を有し、
一の調整壁と、その一の調整壁の供給孔側の調整壁とは、順次開口部の開口面積が少なくなることを特徴とする請求項2又は3のいずれかに記載の多分岐チャンバーの流量調整機構。
Open the discharge holes sequentially from the third discharge hole to the supply hole side,
Between the sequentially opened discharge hole and the discharge hole on the first discharge hole side of the discharge hole, there is an adjustment wall having an open part around,
4. The multi-branch chamber according to claim 2, wherein an opening area of the adjustment wall and the adjustment wall on the supply hole side of the one adjustment wall are sequentially reduced. Flow rate adjustment mechanism.
JP2010177387A 2010-08-06 2010-08-06 Multi-branch chamber flow control mechanism Active JP5461338B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010177387A JP5461338B2 (en) 2010-08-06 2010-08-06 Multi-branch chamber flow control mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010177387A JP5461338B2 (en) 2010-08-06 2010-08-06 Multi-branch chamber flow control mechanism

Publications (2)

Publication Number Publication Date
JP2012037131A true JP2012037131A (en) 2012-02-23
JP5461338B2 JP5461338B2 (en) 2014-04-02

Family

ID=45849324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010177387A Active JP5461338B2 (en) 2010-08-06 2010-08-06 Multi-branch chamber flow control mechanism

Country Status (1)

Country Link
JP (1) JP5461338B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020173076A (en) * 2019-04-12 2020-10-22 三機工業株式会社 Distribution chamber

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11270895A (en) * 1998-03-25 1999-10-05 Matsushita Seiko Co Ltd Ventilator
JP2000130830A (en) * 1998-10-23 2000-05-12 Kuken Kogyo Kk Air conditioner chamber
JP2006029613A (en) * 2004-07-13 2006-02-02 Fujimori Sangyo Kk Branching type chamber for air conditioner
JP2006132825A (en) * 2004-11-04 2006-05-25 Matsushita Environment Airconditioning Eng Co Ltd Air blowoff device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11270895A (en) * 1998-03-25 1999-10-05 Matsushita Seiko Co Ltd Ventilator
JP2000130830A (en) * 1998-10-23 2000-05-12 Kuken Kogyo Kk Air conditioner chamber
JP2006029613A (en) * 2004-07-13 2006-02-02 Fujimori Sangyo Kk Branching type chamber for air conditioner
JP2006132825A (en) * 2004-11-04 2006-05-25 Matsushita Environment Airconditioning Eng Co Ltd Air blowoff device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020173076A (en) * 2019-04-12 2020-10-22 三機工業株式会社 Distribution chamber

Also Published As

Publication number Publication date
JP5461338B2 (en) 2014-04-02

Similar Documents

Publication Publication Date Title
CN105546778B (en) A kind of plenum chamber for realizing balanced ventilation
JP2011136683A (en) Vehicle ventilation system
AU2014379851A1 (en) Air conditioner
JP2012026676A (en) Supply chamber
JP5461338B2 (en) Multi-branch chamber flow control mechanism
JP6184190B2 (en) Low temperature blowout device
JP2000130830A (en) Air conditioner chamber
JP6664982B2 (en) Air conditioning outlet and air conditioning system using the same
JP6677465B2 (en) Air conditioner
JP2010107054A (en) Air conditioner
JP6628656B2 (en) Air outlet device
JP2005156095A (en) Heat exchanger
JP6465769B2 (en) Branch chamber
JP7280063B2 (en) Blowout box device
JP4965197B2 (en) Air conditioning duct
WO2013098878A1 (en) Air conditioning system, and railroad train provided with same
CN102538161A (en) Air-conditioning system and air-conditioning system in information processing equipment room
JP4601326B2 (en) Air conditioning chamber
JP7073519B2 (en) A device that diffuses the air volume flow
JP6499396B2 (en) Branch chamber for air conditioning
JP7297604B2 (en) air conditioning chamber equipment
JP2021148295A (en) Multi-branched chamber
JP6440252B2 (en) Air outlet device
JP5502665B2 (en) Air outlet device
JP6026759B2 (en) Air outlet box device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140115

R150 Certificate of patent or registration of utility model

Ref document number: 5461338

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250