JP2021148295A - Multi-branched chamber - Google Patents

Multi-branched chamber Download PDF

Info

Publication number
JP2021148295A
JP2021148295A JP2020044870A JP2020044870A JP2021148295A JP 2021148295 A JP2021148295 A JP 2021148295A JP 2020044870 A JP2020044870 A JP 2020044870A JP 2020044870 A JP2020044870 A JP 2020044870A JP 2021148295 A JP2021148295 A JP 2021148295A
Authority
JP
Japan
Prior art keywords
inflow
outflow
port
wall
diversion wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020044870A
Other languages
Japanese (ja)
Other versions
JP7493122B2 (en
Inventor
泰輝 向
Yasuteru Mukai
泰輝 向
誠 杉山
Makoto Sugiyama
誠 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2020044870A priority Critical patent/JP7493122B2/en
Publication of JP2021148295A publication Critical patent/JP2021148295A/en
Application granted granted Critical
Publication of JP7493122B2 publication Critical patent/JP7493122B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Duct Arrangements (AREA)

Abstract

To provide a multi-branched chamber that can make a discharging flow rate uniform.SOLUTION: A multi-branched chamber 1 has a hollow rectangular-shape body 2 that includes: an inflow port 21 provided at an air inflow surface 11; an opposed flow-out port 22 provided at an opposed surface 12 which is opposed to the inflow surface 11; a lateral flow-out port 23 provided at a lateral flow-out surface 13; and a splitting wall provided between the inflow surface 11 and the opposed surface 12 to distribute a gas from the inflow port 21 to each flow-out port, thereby making a discharging rate uniform by adjusting a gas volume from each flow-out port of the chamber.SELECTED DRAWING: Figure 10

Description

本発明は、多分岐チャンバーに関するものである。 The present invention relates to a multi-branch chamber.

従来の多分岐チャンバーとして、空調機器等からダクトを通じて送風される気体を多方向に送る分岐チャンバーであって、供給口へ送風された気体を、チャンバー内に設けた開口率の異なる複数の調整壁により、複数の排出口へ均一に送風するとともに、チャンバー内での乱流による圧力低下の少ない排出を可能にするものが知られている。(例えば、特許文献1参照)。 As a conventional multi-branch chamber, it is a branch chamber that sends gas blown from an air conditioner or the like through a duct in multiple directions. As a result, it is known that the air is uniformly blown to a plurality of discharge ports and the discharge with less pressure drop due to turbulent flow in the chamber is possible. (See, for example, Patent Document 1).

以下、その従来の多分岐チャンバーについて図13を参照しながら説明する。 Hereinafter, the conventional multi-branch chamber will be described with reference to FIG.

図13は多分岐チャンバー101の箱体の上面を外し、その内部を表す斜視図である。箱体102内部の供給面107にある供給口103と、対向する第一排出面108にある第一排出口104と、第一排出口104以外の面の第二排出面109にある第二排出口105と、第二排出口105より供給口103側に位置する第三排出口106とを有し、第一排出口104と第二排出口105との間に、開口部を設けた第一調整壁110を、第二排出口105と第三排出口106との間に、開口部を設けた第二調整壁111を有し、第二調整壁111には第一調整壁110の開口部よりも開口率の低い開口部を設けている。また第二調整壁111の周囲には開放部112を設けている。 FIG. 13 is a perspective view showing the inside of the multi-branch chamber 101 with the upper surface of the box removed. The supply port 103 on the supply surface 107 inside the box body 102, the first discharge port 104 on the opposite first discharge surface 108, and the second discharge on the second discharge surface 109 on the surface other than the first discharge port 104. A first outlet 105 having an outlet 105 and a third outlet 106 located closer to the supply port 103 than the second outlet 105, and an opening provided between the first outlet 104 and the second outlet 105. The adjustment wall 110 has a second adjustment wall 111 having an opening between the second discharge port 105 and the third discharge port 106, and the second adjustment wall 111 has an opening of the first adjustment wall 110. An opening having a lower aperture ratio is provided. An open portion 112 is provided around the second adjusting wall 111.

上記構成で、上述した多分岐チャンバー101は、以下のように機能する。 With the above configuration, the above-mentioned multi-branch chamber 101 functions as follows.

調整壁が無い場合、供給口103から対向する位置にある第一排出口104へ、多くの気体が排出され、第一排出口104のある第一排出面108以外の面に配置された第二排出口105から排出される風量は第一排出口104に排出される風量よりも少なくなってしまう。そのため、開口部をもつ第一調整壁110を第一排出口104と第二排出口105の間の位置に配置させることで、第一調整壁110の開口部を通過した気体を第一排出口104から排出し、第一調整壁110で通過を遮断された気体は、第一排出口でない、第二排出口105から排出させる。 When there is no adjusting wall, a large amount of gas is discharged from the supply port 103 to the first discharge port 104 located opposite to the supply port 103, and the second is arranged on a surface other than the first discharge surface 108 where the first discharge port 104 is located. The amount of air discharged from the discharge port 105 is smaller than the amount of air discharged to the first discharge port 104. Therefore, by arranging the first adjusting wall 110 having an opening at a position between the first discharging port 104 and the second discharging port 105, the gas that has passed through the opening of the first adjusting wall 110 is discharged to the first discharging port. The gas discharged from 104 and blocked from passing by the first adjusting wall 110 is discharged from the second discharge port 105, which is not the first discharge port.

また、この第二排出口105より供給口103側に第三排出口106があるので、第二排出口105、第一排出口104へ気体を送りながら、第三排出口106へ気体を排出する必要があるところ、開口部と開放部112により第二排出口105、第一排出口104への気体の通過を確保することができ、第二調整壁111により遮断されて第三排出口106へ排出される風量、排出量の調整を行うことができる。 Further, since the third discharge port 106 is located on the supply port 103 side from the second discharge port 105, the gas is discharged to the third discharge port 106 while sending the gas to the second discharge port 105 and the first discharge port 104. Where necessary, the opening and the opening 112 can ensure the passage of gas to the second discharge port 105 and the first discharge port 104, which is blocked by the second adjusting wall 111 to the third discharge port 106. It is possible to adjust the amount of air discharged and the amount of discharge.

そして、この第二調整壁の開口部の開口率を第一調整壁の開口部より低くすることで、
第二調整壁で遮断され易くなり、第三排出孔から排出され易くすることができる。
Then, by making the opening ratio of the opening of the second adjusting wall lower than that of the opening of the first adjusting wall,
It can be easily blocked by the second adjusting wall and can be easily discharged from the third discharge hole.

これにより、風量を調整して排出量を均一化する効果を発揮するものであるとしている。 As a result, it is said that the effect of adjusting the air volume and making the discharge amount uniform is exhibited.

特開2012−37131号公報Japanese Unexamined Patent Publication No. 2012-37131

このような従来の多分岐チャンバーにおいても、排出する流量の均一化を図ることは可能であるが、調整壁の開口部に塵埃が堆積しやすく、メンテナンスの回数が増加する傾向があった。また、高さ方向に異なる位置に排出孔を配置する必要があり、天井裏や床面などへの配置が制限されるという課題もあった。 Even in such a conventional multi-branch chamber, it is possible to make the discharge flow rate uniform, but dust tends to accumulate in the opening of the adjusting wall, and the number of maintenance tends to increase. Further, it is necessary to arrange the discharge holes at different positions in the height direction, and there is also a problem that the arrangement on the ceiling or the floor surface is restricted.

そこで本発明では、筐体内に設けた分流壁により、メンテナンス回数を増加させることなく、また高さ方向の配置制限を受けることなく、筐体内の空気を分流し、排出する流量の均一化を図ることができる、多分岐チャンバーを提供することを目的とする。 Therefore, in the present invention, the flow dividing wall provided in the housing separates the air in the housing and makes the flow rate to be discharged uniform without increasing the number of maintenances and without being restricted by the arrangement in the height direction. It is an object of the present invention to provide a multi-branch chamber capable of providing a multi-branch chamber.

そして、本発明に係る多分岐チャンバーは、中空矩形形状を有するボディと、前記ボディの一側面である流入面に設けられた流入口と、前記流入面と対向する対向面に設けられた対向流出口と、前記流入面と前記対向面とに隣接する二つの側方流出面それぞれに設けられた側方流出口と、前記流入面と前記対向面との間に流入口からの気体を各流出口に分配する分流壁を備えたものであり、これにより所期の目的を達成するものである。 The multi-branch chamber according to the present invention has a body having a hollow rectangular shape, an inflow port provided on an inflow surface which is one side surface of the body, and a countercurrent provided on an opposite surface facing the inflow surface. Each flow of gas from the inflow port between the outlet, the side outflow port provided on each of the two side outflow surfaces adjacent to the inflow surface and the facing surface, and the inflow surface and the facing surface. It is equipped with a diversion wall that distributes to the outlet, thereby achieving the intended purpose.

本発明によれば、メンテナンス回数を増加させることなく、また高さ方向の配置制限を受けることなく、筐体内の空気を分流し、排出する流量の均一化を図ることができる、多分岐チャンバーを提供することができる。 According to the present invention, a multi-branch chamber capable of shunting and discharging air in a housing without increasing the number of maintenances and without being restricted in arrangement in the height direction can be provided. Can be provided.

本発明の実施の形態1の多分岐チャンバーの斜視図Perspective view of the multi-branch chamber according to the first embodiment of the present invention. 本発明の実施の形態1の多分岐チャンバーの断面図Sectional drawing of the multi-branch chamber of Embodiment 1 of this invention 本発明の実施の形態2、3の多分岐チャンバーの斜視図Perspective view of the multi-branch chamber of Embodiments 2 and 3 of the present invention 本発明の実施の形態2の多分岐チャンバーの断面図Sectional drawing of the multi-branch chamber of Embodiment 2 of this invention 本発明の実施の形態3の多分岐チャンバーの断面図Sectional drawing of the multi-branch chamber of Embodiment 3 of this invention 本発明の実施の形態4の多分岐チャンバーの斜視図Perspective view of the multi-branch chamber according to the fourth embodiment of the present invention. 本発明の実施の形態4の多分岐チャンバーの断面図Sectional drawing of the multi-branch chamber of Embodiment 4 of this invention 本発明の実施の形態5、6、7、8の多分岐チャンバーの斜視図Perspective view of the multi-branch chamber of Embodiments 5, 6, 7, and 8 of the present invention. 本発明の実施の形態5の多分岐チャンバーの断面図Sectional drawing of the multi-branch chamber of Embodiment 5 of this invention 本発明の実施の形態6の多分岐チャンバーの断面図Sectional drawing of the multi-branch chamber of Embodiment 6 of this invention 本発明の実施の形態7の多分岐チャンバーの断面図Sectional drawing of the multi-branch chamber of Embodiment 7 of this invention 本発明の実施の形態8の多分岐チャンバーの断面図Sectional drawing of the multi-branch chamber of Embodiment 8 of this invention 従来の多分岐チャンバーの断面図Sectional view of a conventional multi-branch chamber

以下、本発明の実施の形態について図面を参照しながら説明する。なお、以下の実施の形態は、本発明を具体化した一例であって、本発明の技術的範囲を限定するものではない。また、全図面を通して、同一の部位については同一の符号を付している。さらに、各図面において、本発明に直接には関係しない各部の詳細については説明を省略している。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following embodiments are examples that embody the present invention, and do not limit the technical scope of the present invention. In addition, the same parts are designated by the same reference numerals throughout the drawings. Further, in each drawing, description of each part not directly related to the present invention is omitted.

(実施の形態1)
図1は本実施の形態に係る多分岐チャンバー1の斜視図である。
(Embodiment 1)
FIG. 1 is a perspective view of the multi-branch chamber 1 according to the present embodiment.

多分岐チャンバー1は、内部空間に流入した気体を、複数に分岐させて送風することで、例えば一つのファンにより供給された気体を複数の部屋に分配するために利用される。 The multi-branch chamber 1 is used to, for example, distribute the gas supplied by one fan to a plurality of chambers by branching the gas flowing into the internal space into a plurality of chambers and blowing the air.

多分岐チャンバー1は、図1に示すように、中空矩形形状のボディ2に流入面11と対向面12と側方流出面13と、天面14と、底面15とを備えている。 As shown in FIG. 1, the multi-branch chamber 1 includes an inflow surface 11, a facing surface 12, a side outflow surface 13, a top surface 14, and a bottom surface 15 in a hollow rectangular body 2.

ボディ2は、多分岐チャンバー1の外郭を構成し、例えば発泡スチロールを素材とする複数の部位を組み立てて形成される。 The body 2 constitutes the outer shell of the multi-branch chamber 1, and is formed by assembling a plurality of parts made of, for example, Styrofoam.

流入面11は、ボディ2の一側面を形成し、流入口21を備えている。 The inflow surface 11 forms one side surface of the body 2 and includes an inflow port 21.

流入口21は、円筒形状を有し、ボディ2の外部に突出するアダプターが設けられている。流入口21は、例えばアダプター及びダクトを介して接続された送風機からボディ2内部に空気を流入するための開口である。流入口21は、流入面11の幅方向における中央に流入口21の中心軸を一致させて設けられる。また、流入口21は、流入面11の高さ方向における中央に、流入口21の中心軸を一致させて設けられる。 The inflow port 21 has a cylindrical shape and is provided with an adapter that projects to the outside of the body 2. The inflow port 21 is an opening for allowing air to flow into the body 2 from a blower connected via, for example, an adapter and a duct. The inflow port 21 is provided so as to coincide with the central axis of the inflow port 21 at the center in the width direction of the inflow surface 11. Further, the inflow port 21 is provided at the center of the inflow surface 11 in the height direction so as to coincide with the central axis of the inflow port 21.

対向面12は、流入面11に対向する、ボディ2の一側面である。対向面12は、対向流出口22を備えている。 The facing surface 12 is one side surface of the body 2 facing the inflow surface 11. The facing surface 12 is provided with a countercurrent outlet 22.

対向流出口22は、円筒形状を有し、例えばボディ2外部に突出するアダプターが設けられており、アダプター及びダクトを介して接続された部屋に、ボディ2内部の空気を流出するための開口である。 The countercurrent outlet 22 has a cylindrical shape, and is provided with an adapter that projects to the outside of the body 2, for example, and is an opening for flowing out air inside the body 2 into a room connected via the adapter and a duct. be.

対向流出口22は、対向面12の幅方向における中央に対向流出口22の中心軸を一致させて設けられる。また、対向流出口22は、対向面12の高さ方向における中央に、対向流出口22の中心軸を一致させて設けられる。 The countercurrent outlet 22 is provided so as to coincide with the central axis of the countercurrent outlet 22 at the center in the width direction of the counter surface 12. Further, the countercurrent outlet 22 is provided at the center of the facing surface 12 in the height direction so that the central axis of the countercurrent outlet 22 is aligned with each other.

側方流出面13は、流入面11と対向面12とに隣接する、ボディ2の二つの側面である。側方流出面13は、一側面に設けられた側方流出面13aと、側方流出面13aに対向する位置に設けられた側方流出面13bとより構成される。 The lateral outflow surface 13 is two side surfaces of the body 2 adjacent to the inflow surface 11 and the facing surface 12. The side outflow surface 13 is composed of a side outflow surface 13a provided on one side surface and a side outflow surface 13b provided at a position facing the side outflow surface 13a.

側方流出面13aは、側方流出口23を構成する側方流出口23aを備えている。 The side outflow surface 13a includes a side outflow port 23a that constitutes the side outflow port 23.

側方流出面13bは、側方流出口23を構成する側方流出口23bを備えている。 The side outflow surface 13b includes a side outflow port 23b that constitutes the side outflow port 23.

側方流出口23は、対向流出口22と同一径の円筒形状を有する。側方流出口23は、例えばボディ2外部に突出するアダプターが設けられており、アダプター及びダクトを介して接続された部屋に、ボディ2内部の空気を流出するための開口である。 The side outlet 23 has a cylindrical shape having the same diameter as the countercurrent outlet 22. The side outlet 23 is provided with, for example, an adapter protruding to the outside of the body 2, and is an opening for flowing out the air inside the body 2 into a room connected via the adapter and a duct.

側方流出口23は、側方流出面13の幅方向における中央に対向流出口22の中心軸を一致させて設けられる。また、側方流出口23は、対向面12の高さ方向における中央に、側方流出口23の中心軸を一致させて設けられる。 The side outlet 23 is provided so that the central axis of the countercurrent outlet 22 is aligned with the center of the lateral outflow surface 13 in the width direction. Further, the side outlet 23 is provided at the center of the facing surface 12 in the height direction so that the central axis of the side outlet 23 is aligned with the center.

流入口21、対向流出口22、二つの側方流出口23は、上記構成によりそれぞれの中心軸が同一平面上に位置することとなる。 The central axes of the inflow port 21, the countercurrent outflow port 22, and the two side outflow ports 23 are located on the same plane according to the above configuration.

天面14は、流入面11と対向面12と二つの側方流出面13とに隣接する。 The top surface 14 is adjacent to the inflow surface 11, the facing surface 12, and the two lateral outflow surfaces 13.

底面15は、流入面11と対向面12と二つの側方流出面13とに隣接し、天面14に対向する。なお、天面14及び底面15が示す上下の関係は必ずしも名称と一致する必要は無い。つまり、多分岐チャンバー1の設置状態において、天面14が鉛直下方に、底面15が鉛直上方に位置しても問題は無い。 The bottom surface 15 is adjacent to the inflow surface 11, the facing surface 12, and the two lateral outflow surfaces 13, and faces the top surface 14. The vertical relationship indicated by the top surface 14 and the bottom surface 15 does not necessarily have to match the name. That is, in the installed state of the multi-branch chamber 1, there is no problem even if the top surface 14 is located vertically below and the bottom surface 15 is located vertically above.

続いて、図2を参照しながら多分岐チャンバー1における風の流れについて説明する。なお図2は、図1に示した多分岐チャンバー1の(a)平面における断面図である。 Subsequently, the flow of wind in the multi-branch chamber 1 will be described with reference to FIG. FIG. 2 is a cross-sectional view of the multi-branch chamber 1 shown in FIG. 1 in the plane (a).

図2に示すように、多分岐チャンバー1は、中空矩形形状のボディ2内に分流壁の一種として、対向分流壁31を備えている。 As shown in FIG. 2, the multi-branch chamber 1 includes an opposed diversion wall 31 as a kind of diversion wall in the hollow rectangular body 2.

対向分流壁31は、ボディ2と同様に発泡スチロールで形成され、矩形板形状を有する。対向分流壁31は、底面15に固定されて天面14まで突出することで、底面15と天面14とに挟持される。対向分流壁31は、流入面11と平行な平行壁34を備えており、平行壁34を流入面11と平行に配置される。 The facing diversion wall 31 is formed of styrofoam like the body 2 and has a rectangular plate shape. The facing diversion wall 31 is fixed to the bottom surface 15 and projects to the top surface 14 so as to be sandwiched between the bottom surface 15 and the top surface 14. The facing diversion wall 31 includes a parallel wall 34 parallel to the inflow surface 11, and the parallel wall 34 is arranged parallel to the inflow surface 11.

対向分流壁31は、流入面11と対向面12の間であって、側方流出口23の流入面11側の端部に位置する垂線51よりも対向面12側に配置される。また対向分流壁31は、左右方向、つまり流入面の長手方向における中央に配置される。 The facing diversion wall 31 is located between the inflow surface 11 and the facing surface 12, and is arranged on the facing surface 12 side of the vertical line 51 located at the end of the side outlet 23 on the inflow surface 11 side. Further, the facing diversion wall 31 is arranged at the center in the left-right direction, that is, in the longitudinal direction of the inflow surface.

本実施の形態に係る多分岐チャンバー1では、大きく分けて2つの気流の流れが存在する。即ち、上述した対向流出口22より流出する対向流出気流41(対向流出気流41a、対向流出気流41b)と、上述した側方流出口23より流出する側方流出気流42(側方流出気流42a、側方流出気流42b)である。 In the multi-branch chamber 1 according to the present embodiment, there are roughly two air flow flows. That is, the countercurrent outflow airflow 41 (countercurrent outflow airflow 41a, countercurrent outflow airflow 41b) flowing out from the above-mentioned countercurrent outflow port 22 and the side outflow airflow 42 (side outflow airflow 42a, outflow from the above-mentioned side outflow port 23). Lateral outflow airflow 42b).

対向流出気流41は、流入口21より流入した空気が、対向分流壁31により左右方向に分割され、対向面12の方向に流れた空気を、対向流出口22より流出することで生成される。 The countercurrent outflow airflow 41 is generated by the air flowing in from the inflow port 21 being divided in the left-right direction by the countercurrent diversion wall 31, and the air flowing in the direction of the countercurrent surface 12 flowing out from the countercurrent outflow port 22.

側方流出気流42は、流入口21より流入した空気が、対向分流壁31により分割され、側方流出面13の方向に流れた空気を、側方流出口23より流出することで生成される。 The side outflow airflow 42 is generated by the air flowing in from the inflow port 21 being divided by the facing diversion wall 31 and the air flowing in the direction of the side outflow surface 13 flowing out from the side outflow port 23. ..

このような構成によれば、対向分流壁31の左右方向の長さを適正な長さに設定することで、各流出口に流れる流量を均等に配分することができる。また、左右方向の長さではなく、流入面11から平行壁34までの距離を調節することで、少ない抵抗でありながら各流出口に流れる流量を均等に配分することができる。 According to such a configuration, by setting the length of the facing diversion wall 31 in the left-right direction to an appropriate length, the flow rate flowing to each outflow port can be evenly distributed. Further, by adjusting the distance from the inflow surface 11 to the parallel wall 34 instead of the length in the left-right direction, the flow rate flowing to each outlet can be evenly distributed with a small resistance.

(実施の形態2)
実施の形態2では、実施の形態1と異なる点を説明する。
(Embodiment 2)
The second embodiment will explain the differences from the first embodiment.

図3は、本実施の形態2に係る多分岐チャンバー1の本体の斜視図である。図3に示すように、実施の形態1と異なる点は、対向面12に対向流出口22(対向流出口22a、対向流出口22b)を2か所備えている点である。 FIG. 3 is a perspective view of the main body of the multi-branch chamber 1 according to the second embodiment. As shown in FIG. 3, the difference from the first embodiment is that the facing surface 12 is provided with two countercurrent outlets 22 (countercurrent outlets 22a and countercurrent outlets 22b).

対向流出口22aは、対向面12の幅方向における中央より側方流出面13a側に、対向流出口22aの中心軸を配置させて設けられる。また、対向流出口22aは、対向面12の高さ方向における中央に、対向流出口22aの中心軸を一致させて設けられる。 The countercurrent outlet 22a is provided so that the central axis of the countercurrent outlet 22a is arranged on the side outflow surface 13a side from the center in the width direction of the counter surface 12. Further, the countercurrent outlet 22a is provided at the center of the facing surface 12 in the height direction so that the central axis of the countercurrent outlet 22a is aligned with the center.

対向流出口22bは、対向面12の幅方向における中央より側方流出面13b側に、対向流出口22bの中心軸を配置させて設けられる。また、対向流出口22bは、対向面12の高さ方向における略中央に、対向流出口22bの中心軸を一致させて設けられる。
続いて、図4を参照しながら多分岐チャンバー1における風の流れについて説明する。なお図4は、図3に示した多分岐チャンバー1の(a)平面における断面図である。
The countercurrent outlet 22b is provided so that the central axis of the countercurrent outlet 22b is arranged on the side outflow surface 13b side from the center in the width direction of the counter surface 12. Further, the countercurrent outlet 22b is provided so as to coincide with the central axis of the countercurrent outlet 22b at substantially the center of the counter surface 12 in the height direction.
Subsequently, the flow of wind in the multi-branch chamber 1 will be described with reference to FIG. Note that FIG. 4 is a cross-sectional view of the multi-branch chamber 1 shown in FIG. 3 in the plane (a).

図4に示すように、実施の形態1と異なる点は、対向分流壁31(対向分流壁31a、対向分流壁31b、対向分流壁31c)を所定の間隔を設けて3か所備えている点である。 As shown in FIG. 4, the difference from the first embodiment is that the facing divergence wall 31 (opposing divergence wall 31a, facing divergence wall 31b, facing divergence wall 31c) is provided at three locations at predetermined intervals. Is.

対向分流壁31a、対向分流壁31b、対向分流壁31cは、流入面11と対向面12の間であって、側方流出口23の流入面11側の端部に位置する垂線51よりも対向面12側に配置される。 The opposite divergence wall 31a, the opposite divergence wall 31b, and the opposite divergence wall 31c are between the inflow surface 11 and the opposite surface 12 and are opposed to the vertical line 51 located at the end of the side outlet 23 on the inflow surface 11 side. It is arranged on the surface 12 side.

対向分流壁31aは、左右方向、つまり流入面の長手方向における中央より側方流出面13a側に配置される。 The opposite flow dividing wall 31a is arranged on the side outflow surface 13a side from the center in the left-right direction, that is, in the longitudinal direction of the inflow surface.

対向分流壁31bは、左右方向、つまり流入面の長手方向における中央に配置される。 The facing diversion wall 31b is arranged at the center in the left-right direction, that is, in the longitudinal direction of the inflow surface.

対向分流壁31cは、左右方向、つまり流入面の長手方向における中央より側方流出面13b側に配置される。 The opposite flow dividing wall 31c is arranged on the side outflow surface 13b side from the center in the left-right direction, that is, in the longitudinal direction of the inflow surface.

本実施の形態に係る多分岐チャンバー1では、大きく分けて2つの気流の流れが存在する。即ち、上述した対向流出口22より流出する対向流出気流41(対向流出気流41a、対向流出気流41b)と、上述した側方流出口23より流出する側方流出気流42(側方流出気流42a、側方流出気流42b)である。 In the multi-branch chamber 1 according to the present embodiment, there are roughly two air flow flows. That is, the countercurrent outflow airflow 41 (countercurrent outflow airflow 41a, countercurrent outflow airflow 41b) flowing out from the above-mentioned countercurrent outflow port 22 and the side outflow airflow 42 (side outflow airflow 42a, outflow from the above-mentioned side outflow port 23). Lateral outflow airflow 42b).

対向流出気流41は、流入口21より流入した空気が、対向分流壁31の壁間で左右方向に分割され、対向面12の方向に流れた空気を、対向流出口22より流出することで生成される。 The countercurrent outflow airflow 41 is generated by the air flowing in from the inflow port 21 being divided in the left-right direction between the walls of the countercurrent diversion wall 31 and the air flowing in the direction of the countercurrent surface 12 flowing out from the countercurrent outflow port 22. Will be done.

側方流出気流42は、流入口21より流入した空気が、対向分流壁31により分割され、側方流出面13の方向に流れた空気を、側方流出口23より流出することで生成される。 The side outflow airflow 42 is generated by the air flowing in from the inflow port 21 being divided by the facing diversion wall 31 and the air flowing in the direction of the side outflow surface 13 flowing out from the side outflow port 23. ..

このような構成によれば、対向分流壁31の左右方向の長さを適正な長さに設定し、適正な間隔で配置することで、各流出口に流れる流量を均等に配分することができる。
また、左右方向の長さや間隔ではなく、流入面11から平行壁34までの距離を調節することで、少ない抵抗でありながら各流出口に流れる流量を均等に配分することができる。
According to such a configuration, by setting the length of the opposite flow dividing wall 31 in the left-right direction to an appropriate length and arranging them at appropriate intervals, the flow rate flowing to each outflow port can be evenly distributed. ..
Further, by adjusting the distance from the inflow surface 11 to the parallel wall 34 instead of the length and the interval in the left-right direction, the flow rate flowing to each outlet can be evenly distributed with a small resistance.

(実施の形態3)
実施の形態3では、実施の形態2と異なる点を説明する。
(Embodiment 3)
The third embodiment will explain the differences from the second embodiment.

本実施の形態3に係る多分岐チャンバー1の本体の斜視図は、実施の形態2と同じ図3である。 The perspective view of the main body of the multi-branch chamber 1 according to the third embodiment is the same FIG. 3 as that of the second embodiment.

続いて、図5を参照しながら多分岐チャンバー1における風の流れについて説明する。 Subsequently, the flow of wind in the multi-branch chamber 1 will be described with reference to FIG.

なお、図5は、図3に示した多分岐チャンバー1の(a)平面における断面図である。 Note that FIG. 5 is a cross-sectional view of the multi-branch chamber 1 shown in FIG. 3 in the plane (a).

図5に示すように、実施の形態2と異なる点は、対向分流壁31を設けず、第一傾斜分流壁32(第一傾斜分流壁32a、第一傾斜分流壁32b)を2か所備えている点である。 As shown in FIG. 5, the difference from the second embodiment is that the facing diversion wall 31 is not provided and the first inclined diversion wall 32 (first inclined diversion wall 32a, first inclined diversion wall 32b) is provided at two places. It is a point.

第一傾斜分流壁32は、流入面11と対向面12の間であって、側方流出口23の流入面11側の端部に位置する垂線51よりも対向面12側に配置される。 The first inclined diversion wall 32 is located between the inflow surface 11 and the facing surface 12, and is arranged on the facing surface 12 side of the vertical line 51 located at the end of the side outlet 23 on the inflow surface 11 side.

また第一傾斜分流壁32は、上流側が流入口21の中心を通る垂線に対して近い側に配置され、下流側が遠い側に配置される。 Further, the first inclined diversion wall 32 is arranged so that the upstream side is arranged on the side closer to the perpendicular line passing through the center of the inflow port 21, and the downstream side is arranged on the far side.

本実施の形態に係る多分岐チャンバー1では、大きく分けて2つの気流の流れが存在する。即ち、上述した対向流出口22より流出する対向流出気流41(対向流出気流41a、対向流出気流41b)と、上述した側方流出口23より流出する側方流出気流42(側方流出気流42a、側方流出気流42b)である。 In the multi-branch chamber 1 according to the present embodiment, there are roughly two air flow flows. That is, the countercurrent outflow airflow 41 (countercurrent outflow airflow 41a, countercurrent outflow airflow 41b) flowing out from the above-mentioned countercurrent outflow port 22 and the side outflow airflow 42 (side outflow airflow 42a, outflow from the above-mentioned side outflow port 23). Lateral outflow airflow 42b).

対向流出気流41は、流入口21より流入した空気が、第一傾斜分流壁32の上流端で分割され、第一傾斜分流壁32の下流面が対向面12方向へのガイドとなり、対向面12方向に流れた空気を、対向流出口22に導くことで生成される。 In the countercurrent outflow airflow 41, the air flowing in from the inflow port 21 is divided at the upstream end of the first inclined diversion wall 32, and the downstream surface of the first inclined diversion wall 32 serves as a guide in the facing surface 12 direction. It is generated by guiding the air flowing in the direction to the countercurrent outlet 22.

側方流出気流42は、流入口21より流入した空気が、第一傾斜分流壁32の上流端で分割され、第一傾斜分流壁32の上流面が側方流出面13方向へのガイドとなり、側方流出面13方向に流れた空気を、側方流出口23に導くことで生成される。 In the side outflow airflow 42, the air flowing in from the inflow port 21 is divided at the upstream end of the first inclined diversion wall 32, and the upstream surface of the first inclined diversion wall 32 serves as a guide toward the side outflow surface 13. It is generated by guiding the air flowing in the direction of the side outflow surface 13 to the side outflow port 23.

このような構成によれば、第一傾斜分流壁32の長さを適正な長さに設定し、適正な角度で配置することで、対向面12に複数個の対向流出口を備えた多分岐チャンバー1の各流出口に流れる流量を均等に配分することができる。 According to such a configuration, the length of the first inclined flow dividing wall 32 is set to an appropriate length and arranged at an appropriate angle, so that the facing surface 12 is provided with a plurality of countercurrent outlets. The flow rate flowing to each outlet of the chamber 1 can be evenly distributed.

また、長さや角度ではなく、流入面11から第一傾斜分流壁32までの距離を調節することで、少ない抵抗でありながら各流出口に流れる流量を均等に配分することができる。 Further, by adjusting the distance from the inflow surface 11 to the first inclined diversion wall 32 instead of the length and angle, the flow rate flowing to each outflow port can be evenly distributed with less resistance.

(実施の形態4)
実施の形態4では、実施の形態3と異なる点を説明する。
(Embodiment 4)
The fourth embodiment will explain the differences from the third embodiment.

図6は、本実施の形態3に係る多分岐チャンバー1の本体の斜視図である。図6に示すように、実施の形態3と異なる点は、側方流出面13に側方流出口23(側方流出口23a、側方流出口23b、側方流出口23c、側方流出口23d)を2か所ずつ備えている点である。 FIG. 6 is a perspective view of the main body of the multi-branch chamber 1 according to the third embodiment. As shown in FIG. 6, the difference from the third embodiment is that the side outflow surface 13 has a side outflow port 23 (side outflow port 23a, side outflow port 23b, side outflow port 23c, side outflow port). 23d) is provided in two places each.

側方流出口23aは、側方流出面13aの幅方向における中央より対向面12側に、側方流出口23aの中心軸を配置させて設けられる。 The side outflow port 23a is provided so that the central axis of the side outflow port 23a is arranged on the opposite surface 12 side from the center in the width direction of the side outflow surface 13a.

側方流出口23bは、側方流出面13bの幅方向における中央より対向面12側に、側方流出口23bの中心軸を配置させて設けられる。 The side outflow port 23b is provided so that the central axis of the side outflow port 23b is arranged on the opposite surface 12 side from the center in the width direction of the side outflow surface 13b.

側方流出口23cは、側方流出面13aの幅方向における中央より流入面11側に、側方流出口23cの中心軸を配置させて設けられる。 The side outflow port 23c is provided so that the central axis of the side outflow port 23c is arranged on the inflow surface 11 side from the center in the width direction of the side outflow surface 13a.

側方流出口23dは、側方流出面13bの幅方向における中央より流入面11側に、側方流出口23dの中心軸を配置させて設けられる。 The side outflow port 23d is provided so that the central axis of the side outflow port 23d is arranged on the inflow surface 11 side from the center in the width direction of the side outflow surface 13b.

続いて、図7を参照しながら多分岐チャンバー1における風の流れについて説明する。なお図7は、図6に示した多分岐チャンバー1の(a)平面における断面図である。
図7に示すように、実施の形態3と異なる点は、第一傾斜分流壁32(第一傾斜分流壁32a、第一傾斜分流壁32b)より流入面11側に対向分流壁31(対向分流壁31a、対向分流壁31b、対向分流壁31c)を所定の間隔を設けて3か所備えている点である。
Subsequently, the flow of wind in the multi-branch chamber 1 will be described with reference to FIG. 7. FIG. 7 is a cross-sectional view of the multi-branch chamber 1 shown in FIG. 6 in the plane (a).
As shown in FIG. 7, the difference from the third embodiment is that the opposite diversion wall 31 (opposite diversion wall 31) is closer to the inflow surface 11 side from the first inclined diversion wall 32 (first inclined diversion wall 32a, first inclined diversion wall 32b). The wall 31a, the facing diversion wall 31b, and the facing diversion wall 31c) are provided at three locations at predetermined intervals.

対向分流壁31a、対向分流壁31b、対向分流壁31cは、流入面11と対向面12の間であって、側方流出口23aと側方流出口23bの流入面11側の端部に位置する垂線51よりも対向面12側に配置され、また、第一傾斜分流壁32より流入面11側に配置される。 The facing diversion wall 31a, the facing diversion wall 31b, and the facing diversion wall 31c are located between the inflow surface 11 and the facing surface 12, and are located at the ends of the side outflow port 23a and the side outflow port 23b on the inflow surface 11 side. It is arranged on the facing surface 12 side from the perpendicular line 51, and is arranged on the inflow surface 11 side from the first inclined diversion wall 32.

また対向分流壁31aは、左右方向、つまり流入面の長手方向における中央より側方流出面13a側に配置される。 Further, the opposite flow dividing wall 31a is arranged on the side outflow surface 13a side from the center in the left-right direction, that is, in the longitudinal direction of the inflow surface.

また対向分流壁31bは、左右方向、つまり流入面の長手方向における中央に配置される。 Further, the facing diversion wall 31b is arranged at the center in the left-right direction, that is, in the longitudinal direction of the inflow surface.

また対向分流壁31cは、左右方向、つまり流入面の長手方向における中央より側方流出面13b側に配置される。 Further, the opposed flow dividing wall 31c is arranged on the side outflow surface 13b side from the center in the left-right direction, that is, in the longitudinal direction of the inflow surface.

本実施の形態に係る多分岐チャンバー1では、大きく分けて2つの気流の流れが存在する。即ち、上述した対向流出口22より流出する対向流出気流41(対向流出気流41a、対向流出気流41b)と、上述した側方流出口23より流出する側方流出気流42(側方流出気流42a、側方流出気流42b、側方流出気流42c、側方流出気流42d)である。 In the multi-branch chamber 1 according to the present embodiment, there are roughly two air flow flows. That is, the countercurrent outflow airflow 41 (countercurrent outflow airflow 41a, countercurrent outflow airflow 41b) flowing out from the above-mentioned countercurrent outflow port 22 and the side outflow airflow 42 (side outflow airflow 42a, outflow from the above-mentioned side outflow port 23). Side outflow airflow 42b, side outflow airflow 42c, side outflow airflow 42d).

対向流出気流41は、流入口21より流入した空気が、所定の間隔を設けた各対向分流壁31の壁間で分割されたのち、その先に配置された第一傾斜分流壁32の上流端で分割され、第一傾斜分流壁32の下流面が対向面12方向へのガイドとなり、対向面12方向に流れた空気を、対向流出口22に導くことで生成される。 In the countercurrent outflow airflow 41, the air flowing in from the inflow port 21 is divided between the walls of the countercurrent diversion walls 31 provided at predetermined intervals, and then the upstream end of the first inclined diversion wall 32 arranged ahead of the wall. The downstream surface of the first inclined diversion wall 32 serves as a guide in the direction of the counter surface 12, and is generated by guiding the air flowing in the direction of the counter surface 12 to the counter flow outlet 22.

側方流出気流42は、対向面12側の側方流出口23aと側方流出口23bを流れる側方流出気流42a、側方流出気流42bと、流入面11側の側方流出口23cと側方流出口23dを流れる側方流出気流42c、側方流出気流42dに分かれる。 The side outflow airflow 42 includes the side outflow airflow 42a and the side outflow airflow 42b flowing through the side outflow port 23a and the side outflow port 23b on the opposite surface 12 side, and the side outflow airflow 23c and the side on the inflow surface 11 side. It is divided into a side outflow airflow 42c and a side outflow airflow 42d flowing through the side outflow port 23d.

側方流出気流42a、側方流出気流42bは、流入口21より流入した空気が、所定の間隔を設けた対向分流壁31により分割されたのち、その先にある第一傾斜分流壁32の上流端で分割され、第一傾斜分流壁32の上流面が側方流出面13方向へのガイドとなり、側方流出面13方向に導かれた空気と、流入口21より流入した空気が、側方流出面13と対向分流壁31の間を流れた空気を側方流出口23に導くことで生成される。 In the side outflow airflow 42a and the side outflow airflow 42b, the air flowing in from the inflow port 21 is divided by the opposing diversion wall 31 provided with a predetermined interval, and then upstream of the first inclined diversion wall 32 ahead of the split outflow wall 31. Divided at the end, the upstream surface of the first inclined diversion wall 32 serves as a guide toward the lateral outflow surface 13, and the air guided in the lateral outflow surface 13 direction and the air flowing in from the inflow port 21 are lateral. It is generated by guiding the air flowing between the outflow surface 13 and the facing diversion wall 31 to the side outlet 23.

側方流出気流42c、42dは、流入口21より流入した空気が、対向分流壁31により分割され、側方流出面13の方向に流れた空気を、側方流出口23より流出することで生成される。 The side outflow airflows 42c and 42d are generated by the air flowing in from the inflow port 21 being divided by the facing diversion wall 31 and the air flowing in the direction of the side outflow surface 13 flowing out from the side outflow port 23. Will be done.

このような構成によれば、対向分流壁31の左右方向の長さを適正な長さに設定し、適正な間隔で配置し、また第一傾斜分流壁32の長さを適正な長さに設定し、適正な角度で配置することで、対向面12及び側方流出面13に複数個の対向流出口を備えた多分岐チャンバー1の各流出口に流れる流量を均等に配分することができる。 According to such a configuration, the length of the countercurrent diversion wall 31 in the left-right direction is set to an appropriate length, arranged at an appropriate interval, and the length of the first inclined diversion wall 32 is set to an appropriate length. By setting and arranging at an appropriate angle, the flow rate flowing to each outlet of the multi-branch chamber 1 provided with a plurality of opposite outlets on the facing surface 12 and the side outflow surface 13 can be evenly distributed. ..

特に、上流側では風速が比較的速く、負荷が少ないため、側方流出口23c、23dからの風量は十分得られるが、下流側では側方流出口23a、23bからの風量は、ボディ2の角部などに衝突することで、十分な風量が得られない。これに対して、対向分流壁31、第一傾斜分流壁32により、側方流出口23a、23bへ風を導き、送風の均等化を実現している。 In particular, since the wind speed is relatively high and the load is small on the upstream side, a sufficient amount of air from the side outlets 23c and 23d can be obtained, but on the downstream side, the air volume from the side outlets 23a and 23b is that of the body 2. Sufficient air volume cannot be obtained by colliding with corners. On the other hand, the facing diversion wall 31 and the first inclined diversion wall 32 guide the wind to the side outlets 23a and 23b to realize equalization of the air flow.

また、左右方向の長さや間隔や角度ではなく、流入面11からの対向分流壁31と第一傾斜分流壁32距離を調節することで、少ない抵抗でありながら各流出口に流れる流量を均等に配分することができる。 In addition, by adjusting the distance between the facing diversion wall 31 and the first inclined diversion wall 32 from the inflow surface 11 instead of the length, spacing, and angle in the left-right direction, the flow rate flowing to each outlet is made uniform with little resistance. Can be distributed.

(実施の形態5)
実施の形態5では、実施の形態4と異なる点を説明する。
(Embodiment 5)
The fifth embodiment will explain the differences from the fourth embodiment.

図8は、本実施の形態5に係る多分岐チャンバー1の本体の斜視図である。図8に示すように、実施の形態4と異なる点は、流入口21の位置を側方流出面13a側に移動させ、流入口21の隣に流入面流出口24を1箇所備えている点である。 FIG. 8 is a perspective view of the main body of the multi-branch chamber 1 according to the fifth embodiment. As shown in FIG. 8, the difference from the fourth embodiment is that the position of the inflow port 21 is moved to the side outflow surface 13a side, and one inflow surface outflow port 24 is provided next to the inflow port 21. Is.

流入口21は、流入面11の幅方向における中央より側方流出面13a側に、流入口21の中心軸を配置させて設けられる。また、流入口21は、流入面11の高さ方向における中央に、流入口21の中心軸を一致させて設けられる。 The inflow port 21 is provided so that the central axis of the inflow port 21 is arranged on the side outflow surface 13a side from the center in the width direction of the inflow surface 11. Further, the inflow port 21 is provided at the center of the inflow surface 11 in the height direction so as to coincide with the central axis of the inflow port 21.

流入面流出口24は、流入面11の幅方向における中央より側方流出面13b側に、流入面流出口24の中心軸を配置させて設けられる。また、流入面流出口24は、流入面11の高さ方向における中央に、流入口21の中心軸を一致させて設けられる。 The inflow surface outflow port 24 is provided so that the central axis of the inflow surface outflow port 24 is arranged on the side outflow surface 13b side from the center in the width direction of the inflow surface 11. Further, the inflow surface outflow port 24 is provided at the center of the inflow surface 11 in the height direction so as to coincide with the central axis of the inflow port 21.

続いて、図9を参照しながら多分岐チャンバー1における風の流れについて説明する。 Subsequently, the flow of wind in the multi-branch chamber 1 will be described with reference to FIG.

なお、図9は、本実施の形態5に係る多分岐チャンバー1の(a)平面における断面図である。 Note that FIG. 9 is a cross-sectional view of the multi-branch chamber 1 according to the fifth embodiment in the plane (a).

図9に示すように、実施の形態4と異なる点は、対向分流壁31と第一傾斜分流壁32を設けず、第二傾斜分流壁33を備えている点である。 As shown in FIG. 9, the difference from the fourth embodiment is that the opposite diversion wall 31 and the first inclined diversion wall 32 are not provided, but the second inclined diversion wall 33 is provided.

第二傾斜分流壁33は、流入面11と対向面12の間であって、下流側が流入面11から対向面12に向かう、流入面流出口24側の端部に位置する垂線52よりも流入口21の中心側に位置し、上流側が垂線52よりも流入面流出口24の側に配置される。 The second inclined diversion wall 33 flows from the perpendicular line 52 located at the end on the inflow surface outflow port 24 side between the inflow surface 11 and the facing surface 12 and from the inflow surface 11 to the facing surface 12 on the downstream side. It is located on the central side of the inlet 21, and the upstream side is arranged closer to the inflow surface outflow port 24 than the vertical line 52.

ここでは、第二傾斜分流壁33に関わる、気流の流れについてのみ説明する。 Here, only the air flow related to the second inclined diversion wall 33 will be described.

第二傾斜分流壁33に関わる気流の流れとしては、大きく分けて2つの気流の流れが存在する。即ち、流入面流出口24より流出する流入面流出気流43と、側方流出口23dより流出する側方流出気流42dである。 The airflows related to the second inclined diversion wall 33 are roughly divided into two airflows. That is, the inflow surface outflow airflow 43 flowing out from the inflow surface outflow port 24 and the side outflow airflow 42d flowing out from the side outflow port 23d.

流入面流出気流43は、流入口21より流入した空気が、第二傾斜分流壁33の下流側から上流側に沿って流れ、第二傾斜分流壁33の上流面が流入面11と側方流出面13bへのガイドとなり、流入面11方向に流れた空気を流入面流出口24に導くことで生成される。 In the inflow surface outflow airflow 43, the air flowing in from the inflow port 21 flows from the downstream side to the upstream side of the second inclined diversion wall 33, and the upstream surface of the second inclined diversion wall 33 flows out laterally to the inflow surface 11. It serves as a guide to the surface 13b and is generated by guiding the air flowing in the direction of the inflow surface 11 to the inflow surface outflow port 24.

側方流出気流42dは、流入口21より流入した空気が、第二傾斜分流壁33の下流側から上流側に沿って流れ、第二傾斜分流壁33の上流面が流入面11と側方流出面13bへのガイドとなり、側方流出面13b方向に流れた空気を側方流出口23d導くことで生成される。 In the side outflow airflow 42d, the air flowing in from the inflow port 21 flows from the downstream side to the upstream side of the second inclined diversion wall 33, and the upstream surface of the second inclined diversion wall 33 flows out laterally to the inflow surface 11. It serves as a guide to the surface 13b and is generated by guiding the air flowing in the direction of the lateral outflow surface 13b to the side outlet 23d.

このような構成によれば、第二傾斜分流壁33の長さを適正な長さに設定し、適正な角度で配置することで、第二傾斜分流壁33を設けない場合、流出する流量が少なくなってしまう流入面流出口24や流入口21から遠方にある側方流出口23dに対しても、その他の各流出口同等に、流量を均等に配分することができる。 According to such a configuration, by setting the length of the second inclined diversion wall 33 to an appropriate length and arranging it at an appropriate angle, if the second inclined diversion wall 33 is not provided, the outflow flow rate will be increased. The flow rate can be evenly distributed to the inflow surface outlet 24 and the side outlet 23d far from the inlet 21 as well as the other outlets.

(実施の形態6)
実施の形態6では、実施の形態5と異なる点を説明する。
(Embodiment 6)
The sixth embodiment will explain the differences from the fifth embodiment.

本実施の形態6に係る多分岐チャンバー1の本体の斜視図は、実施の形態5と同じ図8ある。 The perspective view of the main body of the multi-branch chamber 1 according to the sixth embodiment is the same as that of the fifth embodiment, FIG.

続いて、図10を参照しながら多分岐チャンバー1における風の流れについて説明する。 Subsequently, the flow of wind in the multi-branch chamber 1 will be described with reference to FIG.

なお、図10は、本実施の形態6に係る多分岐チャンバー1の(a)平面における断面図である。 FIG. 10 is a cross-sectional view of the multi-branch chamber 1 according to the sixth embodiment in the plane (a).

図10に示すように、実施の形態5と異なる点は、対向分流壁31(対向分流壁31a、対向分流壁31b)を2か所備えており、第一傾斜分流壁32を1箇所備えている点である。 As shown in FIG. 10, the difference from the fifth embodiment is that the opposite divergence wall 31 (opposite divergence wall 31a, the opposite divergence wall 31b) is provided at two places, and the first inclined divergence wall 32 is provided at one place. That is the point.

対向分流壁31a、対向分流壁31bは、流入面11と対向面12の間であって、側方流出口23aと側方流出口23bの流入面11側の端部に位置する垂線51よりも対向面12側に配置される。
また対向分流壁31aは、流入口21の中心軸より側方流出面13a側に配置される。
また対向分流壁31bは、流入口21の中心軸より側方流出面13b側に配置される。
The facing divergence wall 31a and the facing divergence wall 31b are between the inflow surface 11 and the facing surface 12, and are closer to the perpendicular line 51 located at the end of the side outflow port 23a and the side outflow port 23b on the inflow surface 11 side. It is arranged on the facing surface 12 side.
Further, the facing flow diversion wall 31a is arranged on the side outflow surface 13a side from the central axis of the inflow port 21.
Further, the facing diversion wall 31b is arranged on the side outflow surface 13b side from the central axis of the inflow port 21.

第一傾斜分流壁32は、流入面11と対向面12の間であって、対向分流壁31より対向面12側に配置され、側方流出面13b側に近い側に配置される。
また第一傾斜分流壁32は、上流側が流入面流出口24の中心を通る垂線に対して近い側に配置され、下流側が遠い側に配置される。
The first inclined diversion wall 32 is located between the inflow surface 11 and the facing surface 12, is arranged on the facing surface 12 side of the facing diversion wall 31, and is arranged on the side closer to the side outflow surface 13b side.
Further, the first inclined diversion wall 32 is arranged so that the upstream side is closer to the perpendicular line passing through the center of the inflow surface outflow port 24, and the downstream side is arranged on the far side.

第二傾斜分流壁33は、流入面11と対向面12の間であって、対向分流壁31より流入面11側に配置される。 The second inclined diversion wall 33 is located between the inflow surface 11 and the facing surface 12, and is arranged on the inflow surface 11 side of the facing diversion wall 31.

また第二傾斜分流壁33は、下流側が流入面11から対向面12に向かう、流入面流出口24側の端部に位置する垂線52よりも流入口21の中心側に位置し、上流側が垂線52よりも流入面流出口24の側に配置される。 Further, the second inclined diversion wall 33 is located closer to the center of the inflow port 21 than the perpendicular line 52 located at the end of the inflow surface outflow port 24 side from the inflow surface 11 to the facing surface 12 on the downstream side, and the upstream side is the perpendicular line. It is arranged closer to the inflow surface and outflow port 24 than the 52.

本発明の本実施の形態6に係る多分岐チャンバー1では、大きく分けて3つの気流の流れが存在する。即ち、上述した対向流出口22より流出する対向流出気流41(対向流出気流41a、対向流出気流41b)と、上述した側方流出口23より流出する側方流出気流42(側方流出気流42a、側方流出気流42b、側方流出気流42c、側方流出気流42d)と、流入面流出口24より流出する流入面流出気流43である。 In the multi-branch chamber 1 according to the sixth embodiment of the present invention, there are roughly three air flow flows. That is, the countercurrent outflow airflow 41 (countercurrent outflow airflow 41a, countercurrent outflow airflow 41b) flowing out from the above-mentioned countercurrent outflow port 22 and the side outflow airflow 42 (side outflow airflow 42a, outflow from the above-mentioned side outflow port 23). The side outflow airflow 42b, the side outflow airflow 42c, the side outflow airflow 42d), and the inflow surface outflow airflow 43 outflowing from the inflow surface outflow port 24.

対向流出気流41は、対向面12にある流入口21に近い側の対向流出口22aに流れる対向流出気流41aと、対向面12にある流入口21から遠い側の対向流出口22bに流れる対向流出気流41bに分かれる。 The countercurrent outflow airflow 41 flows to the countercurrent outflow airflow 41a flowing to the countercurrent outflow port 22a on the side close to the inflow port 21 on the facing surface 12 and to the countercurrent outflow port 22b on the side far from the inflow port 21 on the facing surface 12. It is divided into airflow 41b.

対向流出気流41aは、流入口21より流入した空気が、所定の間隔を設けた対向分流壁31aと31bで分割され、対向面12の方向に流れた空気を、対向流出口22aより流出することで生成される。 In the countercurrent outflow airflow 41a, the air flowing in from the inflow port 21 is divided by the countercurrent diversion walls 31a and 31b provided with a predetermined interval, and the air flowing in the direction of the countercurrent surface 12 flows out from the countercurrent outflow port 22a. Is generated by.

対向流出気流41bは、流入口21より流入した空気が、対向分流壁31bと第二傾斜分流壁33の下流端で分割されたのち、その先にある第一傾斜分流壁32の上流端で分割され、第一傾斜分流壁32の下流面が対向面12方向へのガイドとなり、対向面12方向に流れた空気を、対向流出口22bに導くことで生成される。 In the countercurrent outflow airflow 41b, the air flowing in from the inflow port 21 is divided at the downstream end of the countercurrent diversion wall 31b and the second inclined diversion wall 33, and then divided at the upstream end of the first inclined diversion wall 32 beyond that. The downstream surface of the first inclined diversion wall 32 serves as a guide in the direction of the counter surface 12, and is generated by guiding the air flowing in the direction of the counter surface 12 to the counter flow outlet 22b.

側方流出気流42は、対向面12に近く、流入口21から近傍の側方流出口23aを流れる側方流出気流42aと、対向面12に近く、流入口21から遠方の側方流出口23bを流れる側方流出気流42bと、流入面11に近く、流入口21から近傍の側方流出口23cを流れる側方流出気流42cと、流入面11に近く、流入口21から遠方の側方流出口23dを流れる側方流出気流42dに分かれる。 The side outflow airflow 42 is close to the facing surface 12 and flows through the side outflow port 23a near the inflow port 21 and the side outflow airflow 42a near the facing surface 12 and far from the inflow port 21. The side outflow airflow 42b flowing through the inflow surface 11 and the side outflow airflow 42c near the inflow surface 11 and flowing through the side outflow port 23c near the inflow port 21 and the side flow near the inflow surface 11 and far from the inflow port 21. It is divided into a side outflow airflow 42d flowing through the outlet 23d.

側方流出気流42aは、流入口21より流入した空気が、側方流出面13aと対向分流壁31aの間を流れた空気を側方流出口23aより流出することで生成される。 The side outflow airflow 42a is generated by the air flowing in from the inflow port 21 flowing out from the side outflow port 23a through the air flowing between the side outflow surface 13a and the facing diversion wall 31a.

側方流出気流42bは、流入口21より流入した空気が、対向分流壁31bと第二傾斜分流壁33の下流端で分割されたのち、その先にある第一傾斜分流壁32の上流端で分割され、第一傾斜分流壁32の上流面が側方流出面13b方向へのガイドとなり、側方流出面13b方向に導かれた空気を、側方流出口23bに導くことで生成される。 In the lateral outflow airflow 42b, the air flowing in from the inflow port 21 is divided at the downstream end of the opposite diversion wall 31b and the second inclined diversion wall 33, and then at the upstream end of the first inclined diversion wall 32 ahead of the split. It is divided, and the upstream surface of the first inclined diversion wall 32 serves as a guide in the direction of the side outflow surface 13b, and is generated by guiding the air guided in the direction of the side outflow surface 13b to the side outflow port 23b.

側方流出気流42cは、流入口21より流入した空気が、対向分流壁31aにより分割され、側方流出面13aの方向に流れた空気を、側方流出口23cより流出することで生成される。 The side outflow airflow 42c is generated by the air flowing in from the inflow port 21 being divided by the facing diversion wall 31a and the air flowing in the direction of the side outflow surface 13a flowing out from the side outflow port 23c. ..

側方流出気流42dは、流入口21より流入した空気が、第二傾斜分流壁33の下流側から上流側に沿って流れ、第二傾斜分流壁33の上流面が流入面11と側方流出面13bへのガイドとなり、側方流出面13b方向に流れた空気を側方流出口23d導くことで生成される。 In the side outflow airflow 42d, the air flowing in from the inflow port 21 flows from the downstream side to the upstream side of the second inclined diversion wall 33, and the upstream surface of the second inclined diversion wall 33 flows out laterally to the inflow surface 11. It serves as a guide to the surface 13b and is generated by guiding the air flowing in the direction of the lateral outflow surface 13b to the side outlet 23d.

流入面流出気流43は、流入口21より流入した空気が、第二傾斜分流壁33の下流側から上流側に沿って流れ、第二傾斜分流壁33の上流面が流入面11と側方流出面13bへのガイドとなり、流入面11方向に流れた空気を流入面流出口24に導くことで生成される。 In the inflow surface outflow airflow 43, the air flowing in from the inflow port 21 flows from the downstream side to the upstream side of the second inclined diversion wall 33, and the upstream surface of the second inclined diversion wall 33 flows out laterally to the inflow surface 11. It serves as a guide to the surface 13b and is generated by guiding the air flowing in the direction of the inflow surface 11 to the inflow surface outflow port 24.

このような構成によれば、対向分流壁31の長さを適正な長さに設定し、適正な間隔で配置し、また第一傾斜分流壁32の長さを適正な長さに設定し、適正な角度で配置し、また第二傾斜分流壁33の長さを適正な長さに設定し、適正な角度で配置することで、流量を均等に配分することができる。つまり、流入口21が流入面11の中心位置から外れ、偏った位置に配置された場合、流入口21から遠方にある側方流出口23dや、流入面と同一面に位置する流入面流出口24の流量が少なくなってしまう傾向が強い。上記構成では、これらに対しても、その他の各流出口同等に流量を均等に配分することができる。 According to such a configuration, the length of the facing diversion wall 31 is set to an appropriate length and arranged at an appropriate interval, and the length of the first inclined diversion wall 32 is set to an appropriate length. By arranging at an appropriate angle, setting the length of the second inclined diversion wall 33 to an appropriate length, and arranging at an appropriate angle, the flow rate can be evenly distributed. That is, when the inflow port 21 is deviated from the central position of the inflow surface 11 and is arranged at an unbalanced position, the side outflow port 23d far from the inflow port 21 or the inflow surface outflow port located on the same surface as the inflow surface. There is a strong tendency for the flow rate of 24 to decrease. In the above configuration, the flow rate can be evenly distributed to each of the other outlets.

また、長さや間隔や角度ではなく、流入面11からの対向分流壁31と第一傾斜分流壁32と第二傾斜分流壁33の距離を調節することで、少ない抵抗でありながら各流出口に流れる流量を均等に配分することができる。 Further, by adjusting the distance between the facing divergence wall 31, the first sloping divergence wall 32, and the second sloping divergence wall 33 from the inflow surface 11 instead of the length, the interval, and the angle, it is possible to reach each outlet with less resistance. The flow rate can be evenly distributed.

(実施の形態7)
実施の形態7では、実施の形態6と異なる点を説明する。
(Embodiment 7)
The seventh embodiment will explain the differences from the sixth embodiment.

本実施の形態7に係る多分岐チャンバー1の本体の斜視図は、実施の形態6と同じ図8ある。 The perspective view of the main body of the multi-branch chamber 1 according to the seventh embodiment is the same as that of the sixth embodiment, FIG.

続いて、図11を参照しながら多分岐チャンバー1における風の流れについて説明する。 Subsequently, the flow of wind in the multi-branch chamber 1 will be described with reference to FIG.

なお、図11は、本実施の形態8に係る多分岐チャンバー1の(a)平面における断面図である。 FIG. 11 is a cross-sectional view of the multi-branch chamber 1 according to the eighth embodiment in the plane (a).

図11に示すように、実施の形態6と異なる点は、流入面流出口24を封止しており、流入面流出口24以外の流出口から、流体の流出を行っている点である。 As shown in FIG. 11, the difference from the sixth embodiment is that the inflow surface outflow port 24 is sealed and the fluid flows out from the outflow port other than the inflow surface outflow port 24.

本発明の本実施の形態7に係る多分岐チャンバー1では、大きく分けて2つの気流の流れが存在する。即ち、上述した対向流出口22より流出する対向流出気流41(対向流出気流41a、対向流出気流41b)と、上述した側方流出口23より流出する側方流出気流42(側方流出気流42a、側方流出気流42b、側方流出気流42c、側方流出気流42d、側方流出気流42e)である。 In the multi-branch chamber 1 according to the seventh embodiment of the present invention, there are roughly two airflows. That is, the countercurrent outflow airflow 41 (countercurrent outflow airflow 41a, countercurrent outflow airflow 41b) flowing out from the above-mentioned countercurrent outflow port 22 and the side outflow airflow 42 (side outflow airflow 42a, outflow from the above-mentioned side outflow port 23). The side outflow airflow 42b, the side outflow airflow 42c, the side outflow airflow 42d, and the side outflow airflow 42e).

次に、対向流出気流41は、対向面12にある流入口21に近い側の対向流出口22aに流れる対向流出気流41aと、対向面12にある流入口21から遠い側の対向流出口22bに流れる対向流出気流41bに分かれる。 Next, the countercurrent outflow airflow 41 is applied to the countercurrent outflow airflow 41a flowing to the countercurrent outflow port 22a on the side close to the inflow port 21 on the facing surface 12 and the countercurrent outflow port 22b on the side far from the inflow port 21 on the facing surface 12. It is divided into a flowing countercurrent outflow airflow 41b.

対向流出気流41aは、流入口21より流入した空気が、所定の間隔を設けた対向分流壁31aと31bで分割され、対向面12の方向に流れた空気を、対向流出口22aより流出することで生成される。 In the countercurrent outflow airflow 41a, the air flowing in from the inflow port 21 is divided by the countercurrent diversion walls 31a and 31b provided with a predetermined interval, and the air flowing in the direction of the countercurrent surface 12 flows out from the countercurrent outflow port 22a. Is generated by.

対向流出気流41bは、流入口21より流入した空気が、対向分流壁31bと第二傾斜分流壁33の上流端で分割されたのち、その先にある第一傾斜分流壁32の上流端で分割され、第一傾斜分流壁32の下流面が対向面12方向へのガイドとなり、対向面12方向に流れた空気を、対向流出口22bに導くことで生成される。 In the countercurrent outflow airflow 41b, the air flowing in from the inflow port 21 is divided at the upstream end of the countercurrent diversion wall 31b and the second inclined diversion wall 33, and then divided at the upstream end of the first inclined diversion wall 32 beyond that. The downstream surface of the first inclined diversion wall 32 serves as a guide in the direction of the counter surface 12, and is generated by guiding the air flowing in the direction of the counter surface 12 to the counter flow outlet 22b.

次に、側方流出気流42は、対向面12に近く、流入口21から近傍の側方流出口23aを流れる側方流出気流42aと、対向面12に近く、流入口21から遠方の側方流出口23bを流れる側方流出気流42bと、流入面11に近く、流入口21から近傍の側方流出口23cを流れる側方流出気流42cと、流入面11に近く、流入口21から遠方の側方流出口23dを流れる側方流出気流42dに分かれる。 Next, the side outflow airflow 42 is close to the facing surface 12 and flows from the inflow port 21 to the nearby side outflow port 23a, and the side outflow airflow 42a is close to the facing surface 12 and far from the inflow port 21. The side outflow airflow 42b flowing through the outflow port 23b and the side outflow airflow 42c near the inflow surface 11 and flowing through the side outflow port 23c near the inflow port 21 and near the inflow surface 11 and far from the inflow port 21. It is divided into a side outflow airflow 42d flowing through the side outflow port 23d.

側方流出気流42aは、流入口21より流入した空気が、側方流出面13aと対向分流壁31aの間を流れた空気を側方流出口23aより流出することで生成される。 The side outflow airflow 42a is generated by the air flowing in from the inflow port 21 flowing out from the side outflow port 23a through the air flowing between the side outflow surface 13a and the facing diversion wall 31a.

側方流出気流42bは、流入口21より流入した空気が、第二傾斜分流壁33に沿って下流側から上流側に流れ、第二傾斜分流壁33の上流面が側方流出面13bへのガイドとなり、側方流出面13b方向に流れた空気を側方流出口23bに導くことで生成される。 In the side outflow airflow 42b, the air flowing in from the inflow port 21 flows from the downstream side to the upstream side along the second inclined diversion wall 33, and the upstream surface of the second inclined diversion wall 33 is directed to the side outflow surface 13b. It serves as a guide and is generated by guiding the air flowing in the direction of the side outflow surface 13b to the side outflow port 23b.

側方流出気流42dは、流入口21より流入した空気が、第二傾斜分流壁33に沿って下流側から上流側に流れ、第二傾斜分流壁33の上流面が側方流出面13bへのガイドとなり、側方流出面13b方向に流れた空気を側方流出口23dに導くことで生成される。 In the side outflow airflow 42d, the air flowing in from the inflow port 21 flows from the downstream side to the upstream side along the second inclined diversion wall 33, and the upstream surface of the second inclined diversion wall 33 is directed to the side outflow surface 13b. It serves as a guide and is generated by guiding the air flowing in the direction of the side outflow surface 13b to the side outflow port 23d.

側方流出気流42eは、流入口21より流入した空気が、対向分流壁31bと第二傾斜分流壁33の下流端で分割されたのち、その先にある第一傾斜分流壁32の上流端で分割され、第一傾斜分流壁32の上流面が側方流出面13b方向へのガイドとなり、側方流出面13b方向に流れた空気を、側方流出口23bに導くことで生成される。 In the side outflow airflow 42e, the air flowing in from the inflow port 21 is divided at the downstream end of the opposite diversion wall 31b and the second inclined diversion wall 33, and then at the upstream end of the first inclined diversion wall 32 ahead of the split. It is divided, and the upstream surface of the first inclined diversion wall 32 serves as a guide in the direction of the side outflow surface 13b, and is generated by guiding the air flowing in the direction of the side outflow surface 13b to the side outflow port 23b.

このような構成によれば、流入面流出口24が封止されたことにより、第二傾斜分流壁33から流入面流出口24方向に流れることができない流体が、対向面12方向に流れる。第一傾斜分流壁32がない場合、対向面12方向に流れた流体の大半は、対向面12にある対向流出口22に流れ、各流出口への均一な流量を流すことができなくなるが、第一傾斜分流壁32を設けることで、対向面12方向に流れた流体を、側方流出面13b方向へ流すことができる。また、側方流出面13b方向へ流れた側方流出気流42bが、第一傾斜分流壁32から分割されて、側方流出面13b方向へ流れようとする側方流出気流42eを抑制するため、側方流出面13bにある、側方流出口23bへ流れる流量が、他の流出口より大きくなることを抑制することができ、流入面流出口24を封止した状態でも、各流出口に流れる流量を均等に配分することができる。 According to such a configuration, since the inflow surface outflow port 24 is sealed, the fluid that cannot flow from the second inclined diversion wall 33 in the inflow surface outflow port 24 direction flows in the facing surface 12 direction. Without the first inclined diversion wall 32, most of the fluid flowing in the direction of the facing surface 12 flows to the countercurrent outlet 22 on the counter surface 12, and a uniform flow rate to each outlet cannot be flowed. By providing the first inclined flow dividing wall 32, the fluid flowing in the direction of the facing surface 12 can flow in the direction of the side outflow surface 13b. Further, in order to suppress the side outflow airflow 42e that flows in the direction of the side outflow surface 13b, the side outflow airflow 42b that flows in the direction of the side outflow surface 13b is separated from the first inclined diversion wall 32 and tends to flow in the direction of the side outflow surface 13b. It is possible to prevent the flow rate flowing to the side outlet 23b on the side outflow surface 13b from becoming larger than that of the other outlets, and it flows to each outlet even when the inflow surface outlet 24 is sealed. The flow rate can be evenly distributed.

(実施の形態8)
実施の形態8では、実施の形態7と異なる点を説明する。
(Embodiment 8)
The eighth embodiment will explain the differences from the seventh embodiment.

本実施の形態8に係る多分岐チャンバー1の本体の斜視図は、実施の形態7と同じ図8ある。 The perspective view of the main body of the multi-branch chamber 1 according to the eighth embodiment is the same as that of the seventh embodiment, FIG.

続いて、図12を参照しながら多分岐チャンバー1における風の流れについて説明する。 Subsequently, the flow of wind in the multi-branch chamber 1 will be described with reference to FIG.

なお、図12は、本実施の形態8に係る多分岐チャンバー1の(a)平面における断面図である。 Note that FIG. 12 is a cross-sectional view of the multi-branch chamber 1 according to the eighth embodiment in the plane (a).

図12に示すように、実施の形態7と異なる点は、側方流出口23dを封止しており、側方流出口23dと流入面流出口24以外の流出口から、流体の流出を行っている点である。 As shown in FIG. 12, the difference from the seventh embodiment is that the side outlet 23d is sealed, and the fluid flows out from the outlets other than the side outlet 23d and the inflow surface outlet 24. It is a point.

本発明の本実施の形態8に係る多分岐チャンバー1では、大きく分けて2つの気流の流れが存在する。即ち、上述した対向流出口22より流出する対向流出気流41(対向流出気流41a、対向流出気流41b)と、上述した側方流出口23より流出する側方流出気流42(側方流出気流42a、側方流出気流42b、側方流出気流42c、側方流出気流42d、側方流出気流42e))である。 In the multi-branch chamber 1 according to the eighth embodiment of the present invention, there are roughly two airflows. That is, the countercurrent outflow airflow 41 (countercurrent outflow airflow 41a, countercurrent outflow airflow 41b) flowing out from the above-mentioned countercurrent outflow port 22 and the side outflow airflow 42 (side outflow airflow 42a, outflow from the above-mentioned side outflow port 23). Side outflow airflow 42b, side outflow airflow 42c, side outflow airflow 42d, side outflow airflow 42e)).

次に、対向流出気流41は、対向面12にある流入口21に近い側の対向流出口22aに流れる対向流出気流41aと、対向面12にある流入口21から遠い側の対向流出口22bに流れる対向流出気流41bに分かれる。 Next, the countercurrent outflow airflow 41 is applied to the countercurrent outflow airflow 41a flowing to the countercurrent outflow port 22a on the side close to the inflow port 21 on the facing surface 12 and the countercurrent outflow port 22b on the side far from the inflow port 21 on the facing surface 12. It is divided into a flowing countercurrent outflow airflow 41b.

対向流出気流41aは、流入口21より流入した空気が、所定の間隔を設けた対向分流壁31aと31bで分割され、対向面12の方向に流れた空気を、対向流出口22aより流出することで生成される。 In the countercurrent outflow airflow 41a, the air flowing in from the inflow port 21 is divided by the countercurrent diversion walls 31a and 31b provided with a predetermined interval, and the air flowing in the direction of the countercurrent surface 12 flows out from the countercurrent outflow port 22a. Is generated by.

対向流出気流41bは、流入口21より流入した空気が、対向分流壁31bと第二傾斜分流壁33の上流端で分割されたのち、その先にある第一傾斜分流壁32の上流端で分割され、第一傾斜分流壁32の下流面が対向面12方向へのガイドとなり、対向面12方向に流れた空気を、対向流出口22bに導くことで生成される。 In the countercurrent outflow airflow 41b, the air flowing in from the inflow port 21 is divided at the upstream end of the countercurrent diversion wall 31b and the second inclined diversion wall 33, and then divided at the upstream end of the first inclined diversion wall 32 beyond that. The downstream surface of the first inclined diversion wall 32 serves as a guide in the direction of the counter surface 12, and is generated by guiding the air flowing in the direction of the counter surface 12 to the counter flow outlet 22b.

次に、側方流出気流42は、対向面12に近く、流入口21から近傍の側方流出口23aを流れる側方流出気流42aと、対向面12に近く、流入口21から遠方の側方流出口23bを流れる側方流出気流42bと、流入面11に近く、流入口21から近傍の側方流出口23cを流れる側方流出気流42cに分かれる。 Next, the side outflow airflow 42 is close to the facing surface 12 and flows from the inflow port 21 to the nearby side outflow port 23a, and the side outflow airflow 42a is close to the facing surface 12 and far from the inflow port 21. It is divided into a side outflow airflow 42b flowing through the outflow port 23b and a side outflow airflow 42c flowing through the side outflow port 23c near the inflow port 21 and near the inflow port 21.

側方流出気流42aは、流入口21より流入した空気が、側方流出面13aと対向分流壁31aの間を流れた空気を側方流出口23aより流出することで生成される。 The side outflow airflow 42a is generated by the air flowing in from the inflow port 21 flowing out from the side outflow port 23a through the air flowing between the side outflow surface 13a and the facing diversion wall 31a.

側方流出気流42bは、流入口21より流入した空気が、第二傾斜分流壁33に沿って下流側から上流側に流れ、第二傾斜分流壁33の上流面が側方流出面13bへのガイドとなり、側方流出面13b方向に流れた空気を側方流出口23bに導くことで生成される。
側方流出気流42eは、流入口21より流入した空気が、対向分流壁31bと第二傾斜分流壁33の下流端で分割されたのち、その先にある第一傾斜分流壁32の上流端で分割され、第一傾斜分流壁32の上流面が側方流出面13b方向へのガイドとなり、側方流出面13b方向に流れた空気を、側方流出口23bに導くことで生成される。
In the side outflow airflow 42b, the air flowing in from the inflow port 21 flows from the downstream side to the upstream side along the second inclined diversion wall 33, and the upstream surface of the second inclined diversion wall 33 is directed to the side outflow surface 13b. It serves as a guide and is generated by guiding the air flowing in the direction of the side outflow surface 13b to the side outflow port 23b.
In the side outflow airflow 42e, the air flowing in from the inflow port 21 is divided at the downstream end of the opposite diversion wall 31b and the second inclined diversion wall 33, and then at the upstream end of the first inclined diversion wall 32 ahead of the split. It is divided, and the upstream surface of the first inclined diversion wall 32 serves as a guide in the direction of the side outflow surface 13b, and is generated by guiding the air flowing in the direction of the side outflow surface 13b to the side outflow port 23b.

このような構成によれば、流入面流出口24と側方流出口23dが封止されたことにより、第二傾斜分流壁33から流入面流出口24と側方流出口23dに流れることができない流体が、対向面12方向に流れる。第一傾斜分流壁32がない場合、対向面12方向に流れた流体の大半は、対向面12にある対向流出口22に流れ、各流出口への均一な流量を流すことができなくなるが、第一傾斜分流壁32を設けることで、対向面12方向に流れた流体を、側方流出面13b方向へ流すことができる。また、側方流出面13b方向へ流れた側方流出気流42bが、第一傾斜分流壁32から分割されて、側方流出面13b方向へ流れようとする側方流出気流42eを抑制するため、側方流出面13bにある、側方流出口23bへ流れる流量が、他の流出口より大きくなることを抑制することができ、流入面流出口24を封止した状態でも、各流出口に流れる流量を均等に配分することができる。 According to such a configuration, since the inflow surface outflow port 24 and the side outflow port 23d are sealed, it is not possible to flow from the second inclined diversion wall 33 to the inflow surface outflow port 24 and the side outflow port 23d. The fluid flows in the facing surface 12 direction. Without the first inclined diversion wall 32, most of the fluid flowing in the direction of the facing surface 12 flows to the countercurrent outlet 22 on the counter surface 12, and a uniform flow rate to each outlet cannot be flowed. By providing the first inclined flow dividing wall 32, the fluid flowing in the direction of the facing surface 12 can flow in the direction of the side outflow surface 13b. Further, in order to suppress the side outflow airflow 42e that flows in the direction of the side outflow surface 13b, the side outflow airflow 42b that flows in the direction of the side outflow surface 13b is separated from the first inclined diversion wall 32 and tends to flow in the direction of the side outflow surface 13b. It is possible to prevent the flow rate flowing to the side outlet 23b on the side outflow surface 13b from becoming larger than that of the other outlets, and it flows to each outlet even when the inflow surface outlet 24 is sealed. The flow rate can be evenly distributed.

従って、従来では流入面11には、十分な風量が得られない等の理由により、流出口を設けられなかったが、上記構成により、流入面11も有効活用して流出口を設けることが可能となり、分岐数を増加させることが可能となる。 Therefore, in the past, the inflow surface 11 was not provided with an outflow port due to reasons such as not being able to obtain a sufficient air volume, but with the above configuration, the inflow surface 11 can also be effectively utilized to provide an outflow port. Therefore, it is possible to increase the number of branches.

(その他変形例)
上記実施の形態1〜8は、矛盾しない範囲で組み合わせて構成してもよい。また本実施の形態における分流壁は、直方多形状をしているがこれに限定されず、異なる形状とすることが可能である。
(Other variants)
The above-described embodiments 1 to 8 may be combined and configured within a consistent range. Further, the diversion wall in the present embodiment has a rectangular multi-shape, but is not limited to this, and can have a different shape.

本発明にかかる多分岐チャンバーは、筐体内に設けられた分流壁を用いて、流入面と同一面を含めた筐体の各側面に設けられた各流出口から、ダクトを通じて排出する流量の均一化が行えるものであり、例えば、流入用ダクトと同一方向に流出用ダクトを引き回す必要がある場合など、ダクトの屈曲が少なく引き回せることによる、ダクトを含めたシステム全体としての圧力損失の低減を可能とする。 The multi-branch chamber according to the present invention uses a flow diversion wall provided in the housing to uniformly discharge a flow rate through a duct from each outflow port provided on each side surface of the housing including the same surface as the inflow surface. For example, when it is necessary to route the outflow duct in the same direction as the inflow duct, the pressure loss of the entire system including the duct can be reduced by allowing the duct to be routed with less bending. Make it possible.

また、流入口と流出口の高さ方向の中心位置を揃えることで、筐体の低背化が実現できるため、高さ方向の設置制約の低減を可能とする。 Further, by aligning the center positions of the inflow port and the outflow port in the height direction, the height of the housing can be reduced, so that the installation restrictions in the height direction can be reduced.

また、施工する部屋数に応じて、流出口の一部を封止しても、各部屋に均一な送風が行えるものであり、施工の自由度の向上を可能とするものであるので、住宅用や工業用の空調設備等に使用される分岐チャンバーとして有用である。 In addition, depending on the number of rooms to be constructed, even if a part of the outlet is sealed, uniform air can be blown to each room, which makes it possible to improve the degree of freedom of construction. It is useful as a branch chamber used for commercial and industrial air conditioners.

1 多分岐チャンバー
2 ボディ
11 流入面
12 対向面
13、13a、13b 側方流出面
14 天面
15 底面
21 流入口
22、22a、22b 対向流出口
23、23a、23b、23c、23d 側方流出口
24 流入面流出口
31、31a、31b、31c 対向分流壁
32、32a、32b 第一傾斜分流壁
33 第二傾斜分流壁
34 平行壁
41、41a、41b 対向流出気流
42、42a、42b、42c、42d、42e 側方流出気流
43 流入面流出気流
51、52 垂線
101 多分岐チャンバー
102 箱体
103 供給口
104 第一排出口
105 第二排出口
106 第三排出口
107 供給面
108 第一排出面
109 第二排出面
110 第一調整壁
111 第二調整壁
112 開放部
1 Multi-branch chamber 2 Body 11 Inflow surface 12 Facing surface 13, 13a, 13b Side outflow surface 14 Top surface 15 Bottom surface 21 Inflow port 22, 22a, 22b Opposite outflow port 23, 23a, 23b, 23c, 23d Side outflow port 24 Inflow surface Outflow port 31, 31a, 31b, 31c Countercurrent diversion wall 32, 32a, 32b First inclined diversion wall 33 Second inclined diversion wall 34 Parallel wall 41, 41a, 41b Countercurrent outflow airflow 42, 42a, 42b, 42c, 42d, 42e Side outflow airflow 43 Inflow surface outflow airflow 51, 52 Vertical line 101 Multi-branch chamber 102 Box 103 Supply port 104 First discharge port 105 Second discharge port 106 Third discharge port 107 Supply surface 108 First discharge surface 109 Second discharge surface 110 First adjustment wall 111 Second adjustment wall 112 Open part

Claims (8)

気体を分岐する多分岐チャンバーであって、
中空矩形形状を有するボディと、
前記ボディの一側面である流入面に設けられた流入口と、
前記流入面と対向する対向面に設けられた対向流出口と、
前記流入面と前記対向面とに隣接する二つの側方流出面それぞれに設けられた側方流出口と、
前記流入面と前記対向面との間に流入口からの気体を各流出口に分配する分流壁と、を備えた多分岐チャンバー。
A multi-branch chamber that branches gas
With a body that has a hollow rectangular shape,
An inflow port provided on the inflow surface, which is one side surface of the body,
With the countercurrent outlet provided on the facing surface facing the inflow surface,
A side outlet provided on each of the two lateral outflow surfaces adjacent to the inflow surface and the facing surface, and
A multi-branch chamber including a diversion wall that distributes gas from an inflow port to each outflow port between the inflow surface and the facing surface.
前記分流壁は、
前記流入面と平行な平行壁を有する対向分流壁であり、
前記対向分流壁は、前記側方流出口の前記流入面側の端部よりも前記対向面側に設けられた多分岐チャンバー。
The diversion wall
An opposed diversion wall having a parallel wall parallel to the inflow surface.
The facing diversion wall is a multi-branch chamber provided on the facing surface side of the side outlet on the inflow surface side.
前記対向分流壁は、
前記平行壁を同一面上に揃え、所定の通風間隔を設けて複数個備えらえた請求項2記載の多分岐チャンバー。
The facing diversion wall
The multi-branch chamber according to claim 2, wherein the parallel walls are aligned on the same surface, and a plurality of the parallel walls are provided with a predetermined ventilation interval.
前記分流壁は、
前記流入面に対して所定の角度を有する傾斜壁を有する第一傾斜分流壁であり、
前記第一傾斜分流壁は、
下流側が上流側に比して風路を拡大するように配置された、請求項1から3のいずれかに記載の多分岐チャンバー。
The diversion wall
A first inclined diversion wall having an inclined wall having a predetermined angle with respect to the inflow surface.
The first inclined diversion wall
The multi-branch chamber according to any one of claims 1 to 3, wherein the downstream side is arranged so as to expand the air passage as compared with the upstream side.
前記分流壁は、
前記流入口面に対して所定の角度を有する傾斜壁を有する第一傾斜分流壁であり、
前記第一傾斜分流壁は、
下流側が上流側に比して風路を拡大するように位置し、
前記対向分流壁よりも前記対向面側に配置された請求項2から3のいずれかに記載の多分岐チャンバー。
The diversion wall
It is a first inclined diversion wall having an inclined wall having a predetermined angle with respect to the inlet surface.
The first inclined diversion wall
The downstream side is located so as to expand the air passage compared to the upstream side,
The multi-branch chamber according to any one of claims 2 to 3, which is arranged on the facing surface side of the facing diversion wall.
前記流入面であって前記流入口の側方に設けられた流入面流出口を備え、
前記分流壁は、
前記流入口面に対して所定の角度を有する傾斜壁を有する第二傾斜分流壁であり、
前記第二傾斜分流壁は、
下流側が前記流入口から対向面に向かう垂線であって前記流入面流出口側の端部に位置する垂線よりも前記流入口の中心側に位置し、
上流側が前記垂線よりも前記流入面流出口の側に位置する、請求項1から5のいずれかに記載の多分岐チャンバー。
The inflow surface is provided with an inflow surface outlet provided on the side of the inflow port.
The diversion wall
A second inclined diversion wall having an inclined wall having a predetermined angle with respect to the inlet surface.
The second inclined diversion wall
The downstream side is a perpendicular line from the inflow port to the opposite surface, and is located closer to the center of the inflow port than the perpendicular line located at the end on the inflow surface outflow side.
The multi-branch chamber according to any one of claims 1 to 5, wherein the upstream side is located closer to the inflow surface outflow port than the vertical line.
前記流入面であって前記流入口の側方に設けられた流入面流出口を備え、
前記分流壁は、
前記流入口面に対して所定の角度を有する傾斜壁を有する第二傾斜分流壁であり、
前記第二傾斜分流壁は、
下流側が前記流入口から対向面に向かう垂線よりも前記流入口の中心側に位置し、
上流側が前記垂線よりも前記流入面流出口の側に位置し、
前記対向分流壁及び前記第一傾斜分流壁よりも前記流入面の側に位置する、請求項5に記載の多分岐チャンバー。
The inflow surface is provided with an inflow surface outlet provided on the side of the inflow port.
The diversion wall
A second inclined diversion wall having an inclined wall having a predetermined angle with respect to the inlet surface.
The second inclined diversion wall
The downstream side is located closer to the center of the inflow port than the perpendicular line from the inflow port to the opposite surface.
The upstream side is located closer to the inflow surface outflow port than the vertical line,
The multi-branch chamber according to claim 5, which is located closer to the inflow surface than the facing diversion wall and the first inclined diversion wall.
前記対向流出口は、
前記対向面に等間隔かつ同径で二個設けられ、
前記側方流出口は、
前記側方流出面に等間隔かつ前記同径で二個ずつ設けられ、
前記流入面流出口は、
前記流入口に隣接して設けられ、
前記対向分流壁は、
前記流入口に対向する位置であって、前記流入口よりも遠方の前記側方流出口の前記流入面側端部に前記平行壁を揃えて設けられ、
前記第一傾斜分流壁は、
前記流入面流出口に対向する位置に設けられ、
前記第二傾斜分流壁は、
前記流入面流出口と前記流入口とに対向する位置に設けられる、請求項5記載の多分岐チャンバー。
The countercurrent outlet is
Two are provided on the facing surfaces at equal intervals and with the same diameter.
The lateral outlet is
Two of them are provided on the lateral outflow surface at equal intervals and with the same diameter.
The inflow surface outlet is
Provided adjacent to the inflow port
The facing diversion wall
The parallel walls are aligned with the inflow surface side end of the lateral outlet at a position facing the inlet and farther than the inlet.
The first inclined diversion wall
It is provided at a position facing the inflow surface outlet.
The second inclined diversion wall
The multi-branch chamber according to claim 5, which is provided at a position facing the inflow surface outlet and the inflow port.
JP2020044870A 2020-03-16 2020-03-16 Multi-branch chamber Active JP7493122B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020044870A JP7493122B2 (en) 2020-03-16 2020-03-16 Multi-branch chamber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020044870A JP7493122B2 (en) 2020-03-16 2020-03-16 Multi-branch chamber

Publications (2)

Publication Number Publication Date
JP2021148295A true JP2021148295A (en) 2021-09-27
JP7493122B2 JP7493122B2 (en) 2024-05-31

Family

ID=77848243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020044870A Active JP7493122B2 (en) 2020-03-16 2020-03-16 Multi-branch chamber

Country Status (1)

Country Link
JP (1) JP7493122B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4160182B2 (en) 1998-10-23 2008-10-01 空研工業株式会社 Air conditioning chamber
JP2003139378A (en) 2001-10-31 2003-05-14 Kurimoto Ltd Chamber for air conditioning
JP2005164140A (en) 2003-12-03 2005-06-23 Matsushita Electric Ind Co Ltd Ventilating system

Also Published As

Publication number Publication date
JP7493122B2 (en) 2024-05-31

Similar Documents

Publication Publication Date Title
US8899309B2 (en) Ventilation device
JP2016115514A (en) Battery temperature adjustment device
JP2021148295A (en) Multi-branched chamber
JP2020008211A (en) Air conditioning system
JP4601326B2 (en) Air conditioning chamber
JP6358534B2 (en) Integrated air conditioner
JP6482492B2 (en) ENVIRONMENTAL TEST DEVICE, FLUID INTRODUCTION MEMBER, AND ENVIRONMENTAL CONTROL DEVICE
JP6465769B2 (en) Branch chamber
JP6813973B2 (en) Chamber duct for air conditioning
JP5408117B2 (en) Ventilation equipment
JP5461338B2 (en) Multi-branch chamber flow control mechanism
JP7120791B2 (en) server room
JP2018194250A (en) Duct structure
JP6898755B2 (en) Air conditioner room structure
KR20230114587A (en) Air conditioner
JP2001124395A (en) Branching chamber and air volume adjusting unit for air-conditioning
KR20090031135A (en) Air-conditioner
CN116811215A (en) Static pressure box and film stretching equipment
JPH0731074Y2 (en) Air blower
JP2008134030A (en) Line type blowout port device
JP2006183930A (en) Chamber for air-conditioning equipment
JP6700582B2 (en) Air conditioning system
JP2014126347A (en) Air supply chamber
JP2023093086A (en) total heat exchanger
JPH11173641A (en) Duct type air conditioner

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20221020

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240311

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240422