JP2012036997A - Rolling bearing unit with encoder - Google Patents

Rolling bearing unit with encoder Download PDF

Info

Publication number
JP2012036997A
JP2012036997A JP2010178861A JP2010178861A JP2012036997A JP 2012036997 A JP2012036997 A JP 2012036997A JP 2010178861 A JP2010178861 A JP 2010178861A JP 2010178861 A JP2010178861 A JP 2010178861A JP 2012036997 A JP2012036997 A JP 2012036997A
Authority
JP
Japan
Prior art keywords
encoder
axial direction
outer ring
sealing
bearing unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010178861A
Other languages
Japanese (ja)
Other versions
JP5598150B2 (en
Inventor
Yoshio Kaneko
吉男 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2010178861A priority Critical patent/JP5598150B2/en
Publication of JP2012036997A publication Critical patent/JP2012036997A/en
Application granted granted Critical
Publication of JP5598150B2 publication Critical patent/JP5598150B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/76Sealings of ball or roller bearings
    • F16C33/78Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C41/00Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such
    • F16C41/007Encoders, e.g. parts with a plurality of alternating magnetic poles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • F16C19/186Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement with three raceways provided integrally on parts other than race rings, e.g. third generation hubs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/02Wheel hubs or castors

Abstract

PROBLEM TO BE SOLVED: To achieve a structure by which measuring performance of a rotational speed or others can be enhanced, the sealing performance of a space where an encoder body 17b and respective rollers 3 are arranged can be sufficiently secured and which can be made at low cost.SOLUTION: The axial directional inside end surface of an outer wheel 1b is located at an end outside in the axial direction more than the axial directional inside end surface of the inner wheel 11b and the diameter size of the outer periphery (surface to be detected) of the encoder body 17b supported at the axial directional inside end of the inner wheel 11b is set to be the sizes between the inner diameter size and the outer diameter size of the axial directional inside part of the outer wheel 1b. The surrounding of the encoder body 17b is covered with the non-magnetic sealing core metal 18b outwardly fitted and fixed to the axial directional inside end of the outer wheel 1b. The distal and fringes of a plurality of seal lips 20d, 20e, 20f constituting the seal material 19a fixed to the inner diameter side part of the sealing core metal 18b are slidably contact with the outer periphery of the surface of the core metal 16 for the encoder or the outer periphery of the outer ring 22a for a constant velocity joint over an entire periphery.

Description

この発明は、自動車の車輪を懸架装置に対して回転自在に支持すると共に、この車輪の回転速度や、この車輪に加わる荷重を測定する為に利用する、エンコーダ付転がり軸受ユニットの改良に関する。   The present invention relates to an improvement in a rolling bearing unit with an encoder which is used for rotatably supporting a wheel of an automobile with respect to a suspension device and measuring the rotational speed of the wheel and a load applied to the wheel.

自動車の車輪を懸架装置に対して回転自在に支持するのに、転がり軸受ユニットを使用する。又、アンチロックブレーキシステム(ABS)やトラクションコントロールシステム(TCS)を制御する為には、車輪の回転速度を検出する必要がある。この為、前記転がり軸受ユニットに回転速度検出装置を組み込んだ回転速度検出装置付転がり軸受ユニットにより、前記車輪を懸架装置に対して回転自在に支持すると共に、この車輪の回転速度を検出する事が、近年広く行われる様になっている。   A rolling bearing unit is used to rotatably support the wheels of the automobile with respect to the suspension system. Moreover, in order to control an anti-lock brake system (ABS) and a traction control system (TCS), it is necessary to detect the rotational speed of a wheel. For this reason, the rolling bearing unit with a rotational speed detection device incorporating a rotational speed detection device in the rolling bearing unit can support the wheel rotatably with respect to the suspension device, and can detect the rotational speed of the wheel. In recent years, it has been widely performed.

図6〜7は、この様な目的で使用される回転速度検出装置付転がり軸受ユニットの従来構造の第1例として、特許文献1に記載されたものを示している。この従来構造の第1例は、駆動輪用のもので、懸架装置に支持固定された状態で使用時にも回転しない外輪1と、車輪(駆動輪)を支持固定した状態で使用時にこの車輪と共に回転するハブ2と、複数個の転動体3、3と、1対の密封部材4a、4bと、エンコーダ5と、センサ6と、駆動軸部材7とを備える。   FIGS. 6 to 7 show what is described in Patent Document 1 as a first example of a conventional structure of a rolling bearing unit with a rotational speed detection device used for such a purpose. The first example of this conventional structure is for a drive wheel. The outer wheel 1 that is supported and fixed to a suspension device does not rotate during use, and the wheel (drive wheel) is supported and fixed together with this wheel during use. A rotating hub 2, a plurality of rolling elements 3 and 3, a pair of sealing members 4 a and 4 b, an encoder 5, a sensor 6, and a drive shaft member 7 are provided.

このうちの外輪1は、内周面に複列の外輪軌道8a、8bを、外周面の内端寄り部分に静止側フランジ9を、それぞれ備える。尚、軸方向に関して「外」とは、自動車への組み付け状態で車両の幅方向外側を言い、図2を除く各図の左側となる。これに対して、自動車への組み付け状態で車両の幅方向中央側となる、図2を除く各図の右側を、軸方向に関して「内」と言う。この点に関しては、本明細書及び特許請求の範囲の全体で同じである。   Of these, the outer ring 1 includes double-row outer ring raceways 8a and 8b on the inner peripheral surface, and a stationary flange 9 on the inner end portion of the outer peripheral surface. Note that “outside” with respect to the axial direction refers to the outside in the width direction of the vehicle in the assembled state in the automobile, and is the left side of each figure except FIG. On the other hand, the right side of each figure excluding FIG. 2, which is the center side in the width direction of the vehicle in the assembled state in the automobile, is referred to as “inside” in the axial direction. This is the same throughout the present specification and claims.

又、前記ハブ2は、ハブ本体10と、このハブ本体10の軸方向内端部に外嵌した内輪11とを、このハブ本体10の軸方向内端部に形成したかしめ部12により互いに結合して成る。この様なハブ2は、前記外輪1の内径側に配置されており、外周面のうちで、この外輪1の内径側から軸方向外側に突出した部分に回転側フランジ13を、前記両外輪軌道8a、8bと対向する部分に複列の内輪軌道14a、14bを、それぞれ有する。尚、これら両内輪軌道14a、14bのうちの軸方向内側の内輪軌道14bは、前記内輪11の外周面に形成されている。又、前記ハブ2の径方向中心部にはスプライン孔15が、軸方向に形成されている。   In the hub 2, the hub main body 10 and the inner ring 11 fitted on the inner end in the axial direction of the hub main body 10 are coupled to each other by a caulking portion 12 formed at the inner end in the axial direction of the hub main body 10. It consists of Such a hub 2 is disposed on the inner diameter side of the outer ring 1, and a rotation-side flange 13 is provided on a portion of the outer peripheral surface that protrudes axially outward from the inner diameter side of the outer ring 1. Double row inner ring raceways 14a and 14b are respectively provided in portions facing 8a and 8b. Of these inner ring raceways 14 a and 14 b, the inner ring raceway 14 b on the inner side in the axial direction is formed on the outer peripheral surface of the inner race 11. Further, a spline hole 15 is formed in the axial direction at the center portion in the radial direction of the hub 2.

又、前記各転動体3、3は、前記両外輪軌道8a、8bと前記両内輪軌道14a、14bとの間に、両列毎に複数個ずつ、転動自在に設けられている。尚、図示の例では、これら各転動体3、3として玉を使用しているが、重量の嵩む車両用の転がり軸受ユニットの場合には、円すいころを使用する場合もある。   Further, a plurality of rolling elements 3, 3 are provided between the outer ring raceways 8a, 8b and the inner ring raceways 14a, 14b so as to be freely rollable in both rows. In the illustrated example, balls are used as the rolling elements 3 and 3, but in the case of a rolling bearing unit for a heavy vehicle, tapered rollers may be used.

又、前記エンコーダ5は、前記内輪11の外周面のうち、軸方向内側の内輪軌道14bの軸方向内側に隣接する部分に外嵌固定されている。このエンコーダ5は、図7に詳示する様に、前記内輪11に外嵌固定された、磁性金属板製で円環状のエンコーダ用芯金16と、このエンコーダ用芯金16の外径側円筒部の外周面に添着固定された、永久磁石製で円筒状のエンコーダ本体17とから成る。前記ハブ2と同心の被検出面である、このエンコーダ本体17の外周面には、N極とS極とが、円周方向に関して交互に且つ等間隔に配置されている。   The encoder 5 is externally fixed to a portion of the outer peripheral surface of the inner ring 11 that is adjacent to the inner side in the axial direction of the inner ring raceway 14b on the inner side in the axial direction. As shown in detail in FIG. 7, the encoder 5 includes an encoder cored bar 16 made of a magnetic metal plate, which is externally fitted and fixed to the inner ring 11, and an outer diameter side cylinder of the encoder cored bar 16. And a cylindrical encoder body 17 made of a permanent magnet fixedly attached to the outer peripheral surface of the portion. N poles and S poles are alternately arranged at equal intervals in the circumferential direction on the outer peripheral surface of the encoder body 17 which is a detection surface concentric with the hub 2.

又、前記両密封部材4a、4bは、前記外輪1の内周面と前記ハブ2の外周面との間に存在する、前記各転動体3、3及び前記エンコーダ本体17を設置した内部空間の軸方向両端開口を塞ぐもので、これら両端開口部分に1つずつ組み付けられている。これにより、前記内部空間内に封入した潤滑用グリースの外部空間への漏洩防止と、この外部空間から前記内部空間への塵芥、雨水、泥水等の異物の侵入防止とが図られている。又、前記両密封部材4a、4bのうちの軸方向内側の密封部材4bは、図7に詳示する様に、前記外輪1の軸方向内端部に内嵌固定された、金属板製で円環状の密封用芯金18と、この密封用芯金18の内周縁部に固定された、弾性材製で円環状のシール材19とから成る。そして、このシール材19を構成する3本のシールリップ20a、20b、20cを、それぞれ前記エンコーダ用芯金16の内径側円筒部の外周面と円輪部の軸方向内側面とに、全周に亙り摺接させている。   The both sealing members 4a and 4b are located between the inner peripheral surface of the outer ring 1 and the outer peripheral surface of the hub 2, and are in an internal space where the rolling elements 3 and 3 and the encoder body 17 are installed. It closes both axial direction openings, and is assembled one by one at these opening portions. This prevents leakage of the lubricating grease sealed in the internal space into the external space and prevents foreign matters such as dust, rainwater, and muddy water from entering the internal space from the external space. Further, the sealing member 4b on the inner side in the axial direction of the sealing members 4a and 4b is made of a metal plate that is fitted and fixed to the inner end of the outer ring 1 in the axial direction, as shown in detail in FIG. It consists of an annular sealing core 18 and an annular sealing material 19 made of an elastic material fixed to the inner peripheral edge of the sealing core 18. Then, the three seal lips 20a, 20b, and 20c constituting the seal material 19 are respectively arranged on the outer peripheral surface of the inner diameter side cylindrical portion of the encoder core bar 16 and the inner surface in the axial direction of the annular portion. Slid in contact with

又、前記センサ6は、図7に詳示する様に、前記密封用芯金18の一部に形成した取付孔21の内側に挿通支持された状態で、検出部である先端部を、被検出面である前記エンコーダ本体17の外周面に近接対向させている。前記センサ6の検出部には、ホール素子、磁気抵抗素子等の磁気検出素子が組み込まれている。   Further, as shown in detail in FIG. 7, the sensor 6 is inserted and supported inside an attachment hole 21 formed in a part of the sealing metal core 18, and the tip portion serving as a detection portion is covered. It is made to face and face the outer peripheral surface of the encoder body 17 that is a detection surface. A magnetic detection element such as a Hall element or a magnetoresistive element is incorporated in the detection portion of the sensor 6.

又、前記駆動軸部材7は、等速ジョイント用外輪22と、この等速ジョイント用外輪22の外端面の中心部に固設された、駆動軸であるスプライン軸23とから成る。そして、このスプライン軸23を前記スプライン孔15にスプライン係合させると共に、前記等速ジョイント用外輪22の外端面を前記ハブ2の内端面に当接させた状態で、前記スプライン軸23の先端部にナット24を螺合し、更に締め付けている。これにより、前記駆動軸部材7を前記ハブ2に対し、回転駆動力の伝達を可能に結合固定している。   The drive shaft member 7 includes a constant velocity joint outer ring 22 and a spline shaft 23 which is a drive shaft fixedly provided at the center of the outer end surface of the constant velocity joint outer ring 22. The spline shaft 23 is engaged with the spline hole 15 and the outer end surface of the constant velocity joint outer ring 22 is in contact with the inner end surface of the hub 2. A nut 24 is screwed onto the screw and further tightened. Thereby, the drive shaft member 7 is coupled and fixed to the hub 2 so as to be able to transmit a rotational drive force.

上述の様に構成する回転速度検出装置付転がり軸受ユニットを自動車の車体に組み付ける場合には、前記外輪1の静止側フランジ9を、懸架装置を構成するナックル等の支持部材25に結合固定すると共に、前記ハブの回転側フランジに車輪を支持固定する。尚、前記静止側フランジ9を前記支持部材25に結合固定する場合には、前記外輪1の軸方向内端部で、前記静止側フランジ9よりも軸方向内側に突出した部分を、前記支持部材25に設けた取付孔26に内嵌すると共に、前記静止側フランジ9の軸方向内側面を、この支持部材25の側面に当接させる。そして、この状態で、これら静止側フランジ9と支持部材25とを、ボルト等により結合固定する。この状態で、車輪と共に前記ハブ2が回転すると、前記センサ6の検出部の近傍を、前記エンコーダ5の被検出面に存在するN極とS極とが交互に通過する。この結果、前記センサ6の検出部内を流れる磁束の向きが交互に変化し、このセンサ6の出力が変化する。この様にしてセンサ6の出力が変化する周波数は、前記車輪の回転速度に比例する。従って、このセンサ6の出力を図示しない制御器に送れば、ABSやTCSを適切に制御できる。   When the rolling bearing unit with a rotational speed detection device configured as described above is assembled to the vehicle body, the stationary flange 9 of the outer ring 1 is coupled and fixed to a support member 25 such as a knuckle that constitutes a suspension device. The wheel is supported and fixed to the rotation side flange of the hub. When the stationary flange 9 is coupled and fixed to the support member 25, a portion that protrudes inward in the axial direction from the stationary flange 9 at the axially inner end of the outer ring 1 is the support member. The inner side surface of the stationary flange 9 is brought into contact with the side surface of the support member 25. In this state, the stationary flange 9 and the support member 25 are coupled and fixed with bolts or the like. In this state, when the hub 2 rotates together with the wheels, the N pole and the S pole existing on the detection surface of the encoder 5 alternately pass through the vicinity of the detection portion of the sensor 6. As a result, the direction of the magnetic flux flowing in the detection section of the sensor 6 changes alternately, and the output of the sensor 6 changes. The frequency at which the output of the sensor 6 changes in this way is proportional to the rotational speed of the wheel. Therefore, if the output of the sensor 6 is sent to a controller (not shown), the ABS and TCS can be controlled appropriately.

上述した様な従来構造の第1例の場合、前記密封用芯金18の一部に前記取付孔21を形成する必要があり、その分の加工コストが嵩む。又、この取付孔21の内周面と前記センサ6の外周面との間に存在する微小隙間の存在が、密封性を低下させる原因となる可能性がある。又、前記エンコーダ本体17と前記センサ6とを、前記内輪11の外周面と前記外輪1の内周面との間で径方向に重畳配置している為、前記エンコーダ5の被検出面(前記エンコーダ本体17の外周面)の直径を余り大きくする事ができない。この事は、回転速度の検出性能の向上を図る上で不利となる。即ち、前記エンコーダ5の被検出面に配置する磁極の数が一定である場合には、この被検出面の直径が大きくなる程、これら各磁極の周方向幅(着磁面積)が大きくなり、これに伴う磁気強化によって、前記センサ6の検出性能が向上する。又、前記各磁極の周方向幅が一定である場合には、前記被検出面の直径が大きくなる程、この被検出面に配置する磁極の数が多くなり、これによって、回転速度検出に関する精度が向上する。これに対して、上述した従来構造の第1例の場合には、前記エンコーダ5の被検出面の直径を余り大きくできない為、回転速度の検出性能の向上を図る上で不利となる。   In the case of the first example of the conventional structure as described above, it is necessary to form the mounting hole 21 in a part of the sealing core 18, which increases the processing cost. In addition, the presence of a minute gap between the inner peripheral surface of the mounting hole 21 and the outer peripheral surface of the sensor 6 may cause a decrease in sealing performance. In addition, since the encoder body 17 and the sensor 6 are arranged in a radial direction between the outer peripheral surface of the inner ring 11 and the inner peripheral surface of the outer ring 1, The diameter of the outer peripheral surface of the encoder body 17 cannot be increased too much. This is disadvantageous in improving the detection performance of the rotational speed. That is, when the number of magnetic poles arranged on the detection surface of the encoder 5 is constant, the circumferential width (magnetization area) of each magnetic pole increases as the diameter of the detection surface increases. Due to the magnetic enhancement accompanying this, the detection performance of the sensor 6 is improved. Further, when the circumferential width of each magnetic pole is constant, the larger the diameter of the detected surface, the larger the number of magnetic poles arranged on the detected surface. Will improve. On the other hand, in the case of the first example of the conventional structure described above, the diameter of the detection surface of the encoder 5 cannot be increased so much, which is disadvantageous in improving the detection performance of the rotational speed.

次に、図8は、回転速度検出装置付転がり軸受ユニットの従来構造の第2例として、特許文献2に記載されたものを示している。この従来構造の第2例の場合、外輪1aの軸方向内端部に支持固定した、密封部材4cを構成する密封用芯金18aを、非磁性金属板製としている。又、この密封用芯金18aの外面に、センサ6aを包埋した樹脂部材27を、インサート成形により結合固定している。そして、この状態で、ハブ2aを構成する内輪11aの内端部に外嵌固定したエンコーダ5aの被検出面(円筒状のエンコーダ本体17aの外周面)に、前記センサ6aの検出部を、前記密封用芯金18aの一部を介して近接対向させている。   Next, FIG. 8 shows what is described in Patent Document 2 as a second example of a conventional structure of a rolling bearing unit with a rotational speed detection device. In the case of the second example of the conventional structure, the sealing metal core 18a constituting the sealing member 4c supported and fixed to the inner end portion in the axial direction of the outer ring 1a is made of a nonmagnetic metal plate. A resin member 27 in which the sensor 6a is embedded is bonded and fixed to the outer surface of the sealing core 18a by insert molding. In this state, the detection portion of the sensor 6a is placed on the detection surface (the outer peripheral surface of the cylindrical encoder body 17a) of the encoder 5a that is externally fitted and fixed to the inner end portion of the inner ring 11a constituting the hub 2a. It is made to face and face through a part of the sealing core 18a.

上述の様な構成を有する従来構造の第2例の場合には、前記従来構造の第1例の場合と異なり、前記密封用芯金18aの一部に前記センサ6aの取付孔が存在しない。この為、この取付孔の存在に基づく、加工コストの上昇や密封性の低下と言った問題が生じる事はない。但し、上述した従来構造の第2例の場合も、前記従来構造の第1例の場合と同様、前記内輪11aの外周面と前記外輪1aの内周面との間で、前記エンコーダ本体17aと前記センサ6aとを径方向に重畳配置している為、前記エンコーダ5aの被検出面の直径を余り大きくできない。従って、回転速度検出に関する性能向上を図る上で不利となる。   In the second example of the conventional structure having the above-described configuration, unlike the first example of the conventional structure, the mounting hole for the sensor 6a does not exist in a part of the sealing metal core 18a. For this reason, problems such as an increase in processing cost and a decrease in sealing performance due to the presence of the mounting hole do not occur. However, in the case of the second example of the conventional structure described above, as in the case of the first example of the conventional structure, the encoder main body 17a and the inner peripheral surface of the outer ring 1a Since the sensor 6a is arranged so as to overlap in the radial direction, the diameter of the detection surface of the encoder 5a cannot be increased too much. Therefore, it is disadvantageous in improving the performance related to rotation speed detection.

尚、エンコーダとセンサとの組み合わせは、上述した回転速度検出装置に限らず、近年登場し、その開発が進められている、荷重測定装置(例えば、特許文献3、4参照)でも、車輪に加わる荷重(外輪とハブとの間に作用する荷重)を測定する為に使用する。この様な荷重測定装置を備えた転がり軸受ユニットを実施する際に、上述の図6〜8に示した各従来構造と同様の構造を採用すると、やはり上述した場合と同様の問題が生じる。   In addition, the combination of an encoder and a sensor is not limited to the above-described rotational speed detection device, and even a load measuring device (for example, see Patent Documents 3 and 4) that has recently appeared and is being developed is applied to wheels. Used to measure load (load acting between outer ring and hub). When implementing a rolling bearing unit equipped with such a load measuring device, if the same structure as the conventional structures shown in FIGS. 6 to 8 is employed, the same problem as described above will occur.

特開2005−42866号公報JP 2005-42866 A 特開2008−202733号公報JP 2008-202733 A 特開2006−317420号公報JP 2006-317420 A 特開2008−64731号公報JP 2008-64731 A

本発明のエンコーダ付転がり軸受ユニットは、上述の様な事情に鑑み、回転速度や荷重の測定性能を向上させる事ができると共に、エンコーダ本体と各転動体とを設置した内部空間の軸方向内端開口の密封性を十分に確保でき、しかも低コストで造れる構造を実現すべく発明したものである。   The rolling bearing unit with an encoder of the present invention can improve the measurement performance of the rotational speed and the load in view of the circumstances as described above, and the inner end in the axial direction of the internal space where the encoder body and each rolling element are installed The invention was invented to realize a structure that can sufficiently secure the sealing performance of the opening and can be manufactured at low cost.

本発明のエンコーダ付転がり軸受ユニットは、外輪と、回転体と、複数個の転動体と、エンコーダと、密封部材とを備える。
このうちの外輪は、内周面に複列の外輪軌道を有し、使用時に懸架装置に支持された状態で回転しない。
又、前記回転体は、前記外輪の内径側に配置されている。そして、外周面のうちで、この外輪の内径側から軸方向外側に突出した部分に車輪を支持する為のフランジを、同じく前記両外輪軌道と対向する部分に複列の内輪軌道を、それぞれ有し、使用時に前記車輪と共に回転する。
又、前記各転動体は、前記両外輪軌道と前記両内輪軌道との間に、両列毎に複数個ずつ、転動自在に設けられている。
又、前記エンコーダは、磁性金属材製で円環状のエンコーダ用芯金と、このエンコーダ用芯金の外周面に固定された、永久磁石製で円筒状のエンコーダ本体とを備えると共に、被検出面であるこのエンコーダ本体の外周面に、S極とN極とを円周方向に関して交互に配置している。そして、前記エンコーダ用芯金を、前記回転体の一部で軸方向内側の内輪軌道の軸方向内側に隣接する部分に外嵌固定している。
又、前記密封部材は、前記各転動体及び前記エンコーダ本体を設置した内部空間の軸方向内端開口を塞ぐものである。
The rolling bearing unit with an encoder of the present invention includes an outer ring, a rotating body, a plurality of rolling elements, an encoder, and a sealing member.
Of these, the outer ring has a double-row outer ring raceway on the inner peripheral surface, and does not rotate while being supported by the suspension device during use.
The rotating body is disposed on the inner diameter side of the outer ring. A flange for supporting the wheel is provided on a portion of the outer peripheral surface that protrudes outward in the axial direction from the inner diameter side of the outer ring, and a double-row inner ring raceway is provided on a portion that faces both the outer ring raceways. And rotates with the wheel during use.
In addition, a plurality of rolling elements are provided between the outer ring raceways and the inner ring raceways so as to roll freely for each row.
The encoder includes an annular encoder core made of a magnetic metal material, and a cylindrical encoder body made of a permanent magnet fixed to the outer peripheral surface of the encoder core. S poles and N poles are alternately arranged in the circumferential direction on the outer peripheral surface of the encoder body. The encoder core metal is externally fixed to a part of the rotating body adjacent to the axially inner side of the inner ring raceway on the axially inner side.
The sealing member closes the axial inner end opening of the internal space in which the rolling elements and the encoder body are installed.

特に、本発明のエンコーダ付転がり軸受ユニットに於いては、前記外輪の軸方向内端面は、前記エンコーダ本体よりも軸方向外側に配置されている。そして、前記エンコーダの被検出面(このエンコーダ本体の外周面)の直径寸法は、前記外輪の軸方向内端部の内径寸法よりも大きく、且つ、この外輪の軸方向内端部の外径寸法よりも小さくなっている。
又、前記密封部材は、密封用芯金と、シール材とを備える。そして、このうちの密封用芯金は、非磁性金属材により円環状に造られており、前記エンコーダの被検出面の周囲を取り囲むと共に、一部をこの被検出面に近接対向させた状態で、前記外輪の軸方向内端部に支持固定されている。又、前記シール材は、弾性材により円環状に造られると共に、前記密封用芯金の内径側部分に固定されており、且つ、その先端縁を前記エンコーダ用芯金の表面に全周に亙り摺接させたシールリップを備えている。
In particular, in the rolling bearing unit with an encoder of the present invention, the inner end surface in the axial direction of the outer ring is disposed on the outer side in the axial direction with respect to the encoder body. The diameter of the detected surface of the encoder (the outer peripheral surface of the encoder body) is larger than the inner diameter of the inner end of the outer ring in the axial direction, and the outer diameter of the inner end of the outer ring in the axial direction. Is smaller than
The sealing member includes a sealing metal core and a sealing material. Of these, the sealing metal core is made of a nonmagnetic metal material in an annular shape, surrounds the periphery of the detection surface of the encoder, and partially closes the detection surface. The outer ring is supported and fixed to the inner end in the axial direction. The sealing material is formed in an annular shape by an elastic material, and is fixed to the inner diameter side portion of the sealing metal core, and the tip edge thereof extends over the entire surface of the encoder metal core. It has a seal lip in sliding contact.

又、本発明を実施する場合で、前記車輪が駆動輪であり、且つ、前記回転体が、ハブと駆動軸部材とを互いに結合して成るものであり、このうちのハブは、外周面に前記フランジ及び前記1対の内輪軌道を、径方向中心部に軸方向に亙るスプライン孔を、それぞれ有するものであり、前記駆動軸部材は、前記ハブの軸方向内側に隣接配置される等速ジョイント用外輪と、この等速ジョイント用外輪の軸方向外端面に固設されて前記スプライン孔とスプライン係合するスプライン軸とを備えたものであり、且つ、前記エンコーダが、前記ハブの軸方向内端部に外嵌固定されている構造を対象とする場合に、好ましくは、請求項2〜3に記載した発明の構成を採用する。
このうちの請求項2に記載した発明の構成を採用する場合には、前記シール材に、その先端縁を前記等速ジョイント用外輪の外周面に全周に亙り摺接させたシールリップを備えさせる。
これに対し、請求項3に記載した発明の構成を採用する場合には、前記等速ジョイント用外輪の軸方向外端寄り部分に、円環状のスリンガを外嵌固定する。これと共に、前記シール材に、その先端縁をこのスリンガの表面に全周に亙り摺接させたシールリップを備えさせる。
又、この様な請求項3に記載した発明を実施する場合に、好ましくは、請求項4に記載した発明の様に、前記シール材に、その先端縁を前記等速ジョイント用外輪の外周面のうちで前記スリンガを外嵌固定した部分よりも軸方向外側部分に全周に亙り摺接させたシールリップを備えさせる。
又、これら請求項3〜4に記載した発明を実施する場合に、好ましくは、請求項5に記載した発明の様に、前記スリンガを、このスリンガの表面に摺接させた前記シールリップの周囲を覆う状態で配置し、且つ、このスリンガの基端部を前記等速ジョイント用外輪に外嵌すると共に、このスリンガの先端部を前記密封用芯金の表面に近接対向させる。
In the case of carrying out the present invention, the wheel is a drive wheel, and the rotating body is formed by coupling a hub and a drive shaft member to each other. The flange and the pair of inner ring raceways each have a spline hole extending in the axial direction in the radial center, and the drive shaft member is disposed adjacent to the hub in the axial direction. And a spline shaft fixed to the outer end surface in the axial direction of the outer ring for the constant velocity joint and engaged with the spline hole, and the encoder is arranged in the axial direction of the hub. In the case of targeting a structure that is externally fitted and fixed to the end, the configuration of the invention described in claims 2 to 3 is preferably employed.
When the configuration of the invention described in claim 2 is adopted, the seal member is provided with a seal lip whose tip edge is in sliding contact with the outer circumferential surface of the constant velocity joint outer ring over the entire circumference. Let
On the other hand, when the configuration of the invention described in claim 3 is adopted, an annular slinger is externally fitted and fixed to a portion near the outer end of the constant velocity joint outer ring in the axial direction. At the same time, the seal material is provided with a seal lip whose tip edge is in sliding contact with the entire surface of the slinger.
In carrying out the invention described in claim 3, it is preferable that, as in the invention described in claim 4, the tip edge of the sealing material is the outer peripheral surface of the outer ring for the constant velocity joint. Among them, a seal lip is provided which is slidably contacted on the entire outer periphery in the axially outer portion than the portion where the slinger is fitted and fixed.
Further, when carrying out the inventions according to the third to fourth aspects, preferably, as in the invention according to the fifth aspect, the periphery of the seal lip in which the slinger is brought into sliding contact with the surface of the slinger. And the base end portion of the slinger is externally fitted to the outer ring for the constant velocity joint, and the front end portion of the slinger is made to face the surface of the sealing metal core.

又、本発明を実施する場合に、好ましくは、請求項6に記載した発明の様に、前記エンコーダ本体の軸方向外端面の径方向一部分に、軸方向外方に突出し且つ着磁されていない凸部を、全周に亙り形成する。これと共に、この凸部の先端縁を、前記外輪の軸方向内端面に全周に亙り近接対向させる。   In carrying out the present invention, preferably, as in the invention described in claim 6, the encoder body protrudes outward in the radial direction and is not magnetized at a part in the radial direction of the outer end surface in the axial direction of the encoder body. Convex parts are formed over the entire circumference. At the same time, the tip edge of the convex portion is made to face and oppose the entire inner circumference of the outer ring in the axial direction.

又、本発明を実施する場合に、好ましくは、請求項7に記載した発明の様に、前記エンコーダ用芯金の一部で、前記エンコーダ本体と前記各転動体とを配置した内部空間内に存在する部分に、円環状の第二シール材を固定する。これと共に、この第二シール材に、その先端縁を前記外輪の軸方向内端面に摺接させたシールリップを備えさせる。   In carrying out the present invention, preferably, as in the invention described in claim 7, a part of the core metal for the encoder is in an internal space in which the encoder body and the rolling elements are arranged. An annular second sealing material is fixed to the existing portion. At the same time, the second seal material is provided with a seal lip whose tip edge is slidably contacted with the axially inner end surface of the outer ring.

又、本発明を実施する場合に、好ましくは、請求項8に記載した発明の様に、前記密封用芯金の一部で前記エンコーダの被検出面に近接対向させた部分の外周面のうち、使用時にセンサの先端面を当接させる部分に、ゴム層を設ける。   Further, when carrying out the present invention, preferably, as in the invention described in claim 8, of the outer peripheral surface of a portion of the sealing metal core that is close to and faces the detection surface of the encoder. In addition, a rubber layer is provided at a portion where the front end surface of the sensor is brought into contact with the sensor in use.

上述の様に構成する本発明のエンコーダ付転がり軸受ユニットによれば、回転速度や荷重の測定性能を向上させる事ができると共に、エンコーダの被検出面と各転動体とを設置した内部空間の軸方向内端開口の密封性を十分に確保でき、しかも低コストで造れる。
即ち、前記エンコーダの被検出面に配置する磁極の数を一定とする場合には、この被検出面の直径が大きくなる程、これら各磁極の周方向幅(着磁面積)が大きくなり、これに伴う磁気強化によって、センサの検出性能が向上する。例えば、信号電圧を高くする事による信頼性向上を図れる。又、前記各磁極の周方向幅を一定とする場合には、前記被検出面の直径が大きくなる程、この被検出面に配置する磁極の数が増え、これによって、回転速度検出に関する精度が向上する。これに対して、本発明の場合には、前記エンコーダの被検出面の直径寸法が、外輪の軸方向内端部の内径寸法よりも大きくなっている。この為、本発明の場合には、前述の図6〜8に示した各従来構造の様に、エンコーダの被検出面の直径寸法が、外輪の軸方向内端部の内径寸法よりも小さくなっている構造に比べて、回転速度や荷重の測定性能を向上させる事ができる。
又、本発明の場合、前記密封用芯金には、センサを挿通支持する為の取付孔を形成する必要がない。この為、この取付孔の存在に基づいて前記内部空間の軸方向内端開口の密封性が低下すると言った不具合が生じる事はない。従って、前記内部空間の軸方向内端開口の密封性を十分に確保できる。
更に、本発明の場合には、前記センサの取付孔の加工コストが不要になる分、低コストで造れる。
According to the rolling bearing unit with an encoder of the present invention configured as described above, the rotational speed and load measurement performance can be improved, and the shaft of the internal space where the detected surface of the encoder and each rolling element are installed It is possible to sufficiently secure the sealing property of the inner end opening in the direction and to manufacture at a low cost.
That is, when the number of magnetic poles arranged on the detection surface of the encoder is constant, the circumferential width (magnetization area) of each magnetic pole increases as the diameter of the detection surface increases. The detection performance of the sensor is improved by the magnetic strengthening associated with. For example, the reliability can be improved by increasing the signal voltage. Further, when the circumferential width of each magnetic pole is made constant, the larger the diameter of the detected surface, the more the number of magnetic poles arranged on the detected surface. improves. On the other hand, in the case of the present invention, the diameter dimension of the detected surface of the encoder is larger than the inner diameter dimension of the inner end portion in the axial direction of the outer ring. For this reason, in the case of the present invention, as in the conventional structures shown in FIGS. 6 to 8 described above, the diameter dimension of the detection surface of the encoder is smaller than the inner diameter dimension of the inner end portion in the axial direction of the outer ring. Compared with the existing structure, the measurement performance of the rotational speed and load can be improved.
In the case of the present invention, it is not necessary to form a mounting hole for inserting and supporting the sensor in the sealing core. For this reason, there is no problem that the sealing performance of the axially inner end opening of the internal space is lowered due to the presence of the mounting hole. Therefore, it is possible to sufficiently secure the sealing performance of the inner end opening in the axial direction of the internal space.
Furthermore, in the case of the present invention, the processing cost of the mounting hole of the sensor is not required, so that the manufacturing cost can be reduced.

又、請求項2〜4に記載した発明の構成を採用すれば、前記等速ジョイント用外輪の外周面又は前記スリンガの表面に摺接させた、前記シール材を構成するシールリップの存在に基づいて、前記内部空間の密封性を向上させる事ができる。これと共に、前記スプライン孔と前記スプライン軸とのスプライン係合部に、このスプライン係合部の軸方向内側から、雨水、泥水等の異物が入り込む事を防止できる。この為、このスプライン係合部に塗布されたグリースによる、このスプライン係合部の防錆効果を、長期間維持する事ができる。この結果、点検、修理等の際に、前記スプライン孔から前記スプライン軸を抜き取る事が困難になると言った不具合が生じる事を防止できる。   Moreover, if the structure of the invention described in claims 2 to 4 is adopted, it is based on the presence of a seal lip that constitutes the seal material in sliding contact with the outer peripheral surface of the constant velocity joint outer ring or the surface of the slinger. Thus, the sealing performance of the internal space can be improved. At the same time, it is possible to prevent foreign matter such as rain water and muddy water from entering the spline engaging portion between the spline hole and the spline shaft from the inside in the axial direction of the spline engaging portion. For this reason, the antirust effect of this spline engaging part by the grease apply | coated to this spline engaging part can be maintained for a long period of time. As a result, it is possible to prevent a problem that it is difficult to extract the spline shaft from the spline hole during inspection, repair, or the like.

又、請求項5に記載した発明の構成を採用すれば、前記スリンガの存在に基づいて、前記内部空間及び前記スプライン係合部の密封性の向上を図れる。これと共に、前記スリンガの表面に摺接させたシールリップ、及び、前記等速ジョイント用外輪の外周面に摺接させたシールリップに、飛石等の異物がぶつかる事を防止できる。この結果、これら各シールリップが損傷する事を防止できる。   Further, if the configuration of the invention described in claim 5 is adopted, the sealing performance of the internal space and the spline engaging portion can be improved based on the presence of the slinger. At the same time, foreign matters such as stepping stones can be prevented from colliding with the seal lip slidably contacted with the surface of the slinger and the seal lip slidably contacted with the outer peripheral surface of the constant velocity joint outer ring. As a result, each of these seal lips can be prevented from being damaged.

又、請求項6に記載した発明の構成を採用すれば、その先端縁を前記外輪の軸方向内端面に近接対向させた、前記エンコーダ本体を構成する凸部の存在に基づいて、前記各転動体を設置した空間内に封入した潤滑用グリースが、前記エンコーダ本体を設置した空間内に漏洩する事を抑制できる。
即ち、本発明を実施する場合には、前記エンコーダの被検出面から出入りする磁束が、前記外輪の軸方向内端面に多く引き込まれた状態になる(磁束がこの外輪に漏洩する)事を防止する為に、この外輪の軸方向内端面と前記エンコーダ本体の軸方向外端面との間には、互いの接触を避ける為に必要な最小限の隙間よりも或る程度大きな隙間を介在させる(前記外輪の軸方向内端面に対して前記被検出面を軸方向に遠ざける)のが好ましい。但し、この隙間を大きくする程、この隙間を通じて、前記各転動体を設置した空間内の潤滑用グリースが、前記エンコーダ本体を設置した空間内に漏れ出し易くなる。これに対して、上述の様な凸部を設ければ、前記外輪の軸方向内端面に対して前記被検出面を軸方向に遠ざけると共に、前記隙間を通じて前記潤滑用グリースが漏れ出す事を抑制できる。
尚、前記凸部は、着磁されていない為、この凸部の存在に基づいて、前記被検出面から出入りする磁束の形状が歪むと言った不具合が生じる事はない。
Further, if the configuration of the invention described in claim 6 is adopted, each of the rollers is based on the presence of a convex portion constituting the encoder body, the tip edge of which is in close proximity to the axial inner end surface of the outer ring. The lubricating grease sealed in the space where the moving body is installed can be prevented from leaking into the space where the encoder body is installed.
That is, when carrying out the present invention, it is possible to prevent the magnetic flux entering and exiting from the detected surface of the encoder from being drawn to the inner end surface in the axial direction of the outer ring (magnetic flux leaks to the outer ring). Therefore, a gap somewhat larger than the minimum gap necessary to avoid mutual contact is interposed between the axial inner end surface of the outer ring and the axial outer end surface of the encoder body ( It is preferable that the detected surface is moved away from the inner end surface in the axial direction of the outer ring in the axial direction. However, the larger this gap is, the easier it is for the lubricating grease in the space where the rolling elements are installed to leak into the space where the encoder body is installed. On the other hand, if the convex portion as described above is provided, the detected surface is moved away from the axially inner end surface of the outer ring in the axial direction, and the lubricating grease is prevented from leaking through the gap. it can.
In addition, since the said convex part is not magnetized, the malfunction that the shape of the magnetic flux entering / exiting from the said to-be-detected surface is distorted based on the presence of this convex part does not arise.

又、請求項7に記載した発明の構成を採用すれば、前記外輪の軸方向内端面に摺接させた、第二シール材を構成するシールリップの存在に基づいて、前記各転動体を設置した空間内に封入した潤滑用グリースが、前記エンコーダ本体を設置した空間内に漏洩する事を防止できる。   Further, if the configuration of the invention described in claim 7 is adopted, each of the rolling elements is installed based on the presence of a seal lip that constitutes the second seal member that is in sliding contact with the axially inner end surface of the outer ring. It is possible to prevent the lubricating grease sealed in the space from leaking into the space where the encoder body is installed.

又、請求項8に記載した発明の構成を採用すれば、前記ゴム層の存在に基づいて、密封用芯金の外周面とセンサの先端面との間に磁性粉等の異物が入り込む事を防止できる。この為、回転速度や荷重の測定に関する信頼性を向上させる事ができる。更には、前記ゴム層の存在に基づいて、前記密封用芯金の外周面と前記センサの先端面との間でフレッチング摩耗が生じる事を防止できる。   Further, if the configuration of the invention described in claim 8 is adopted, it is possible that foreign matter such as magnetic powder enters between the outer peripheral surface of the sealing metal core and the front end surface of the sensor based on the presence of the rubber layer. Can be prevented. For this reason, the reliability regarding the measurement of a rotational speed and a load can be improved. Furthermore, fretting wear can be prevented from occurring between the outer peripheral surface of the sealing metal core and the front end surface of the sensor based on the presence of the rubber layer.

本発明の実施の形態の第1例を示す、図6のA部に相当する拡大断面図。The expanded sectional view equivalent to the A section of Drawing 6 showing the 1st example of an embodiment of the invention. 密封用芯金の外周寄り部分の円周方向一部分を、軸方向内側から見た図。The figure which looked at the circumference direction part of the outer periphery side part of the metal core for sealing from the axial direction inner side. 本発明の実施の形態の第2例を示す、図1と同様の図。The figure similar to FIG. 1 which shows the 2nd example of embodiment of this invention. 同第3例を示す、図1と同様の図。The figure similar to FIG. 1 which shows the 3rd example. 同第4例を示す、図1と同様の図。The figure similar to FIG. 1 which shows the 4th example. 回転速度検出装置付転がり軸受ユニットの従来構造の第1例を示す断面図。Sectional drawing which shows the 1st example of the conventional structure of a rolling bearing unit with a rotational speed detection apparatus. 図6のA部拡大図。The A section enlarged view of FIG. 回転速度検出装置付転がり軸受ユニットの従来構造の第2例を示す、図7と同様の図。The figure similar to FIG. 7 which shows the 2nd example of the conventional structure of a rolling bearing unit with a rotational speed detection apparatus.

[実施の形態の第1例]
図1〜2は、請求項1、2、6に対応する、本発明の実施の形態の第1例を示している。尚、本例の特徴は、エンコーダ5b及び密封部材4dの構造と、これらエンコーダ5b及び密封部材4dを組み付ける箇所の構造とにある。その他の部分の構造及び作用は、一部を除き、基本的には、前述の図6〜7に示した従来構造の第1例の場合と同様である。この為、同等部分に関する図示並びに説明は省略若しくは簡略にし、以下、本例の特徴部分、並びに、前記従来構造の第1例と異なる部分を中心に説明する。
[First example of embodiment]
1 and 2 show a first example of an embodiment of the present invention corresponding to claims 1, 2, and 6. FIG. The feature of this example is the structure of the encoder 5b and the sealing member 4d and the structure of the place where the encoder 5b and the sealing member 4d are assembled. The structure and operation of other parts are basically the same as those of the first example of the conventional structure shown in FIGS. For this reason, illustrations and explanations of equivalent parts are omitted or simplified, and hereinafter, the characteristic parts of this example and parts different from the first example of the conventional structure will be mainly described.

本例の場合、ハブ2bを構成するハブ本体10aの軸方向内端部には、かしめ部を形成せず、このハブ2bを構成する内輪11bの軸方向内端面に、駆動軸部材7aを構成する等速ジョイント用外輪22aの軸方向外端面を、直接当接させている。尚、本例の場合には、前記ハブ2bと前記駆動軸部材7aとが、回転体に相当する。又、本例の場合には、外輪1bの軸方向内端面を、前記内輪11bの外周面に形成した内輪軌道14bの軸方向内端縁よりも、軸方向外側に少しだけずれた位置に配置している。そして、前記内輪11bの外周面のうちで前記内輪軌道14bの軸方向内側に隣接する部分、即ち、この内輪11bの外周面の軸方向内端部で、前記外輪1bの軸方向内端面よりも軸方向内側に突出した部分に、前記エンコーダ5bを外嵌固定している。   In the case of this example, a caulking portion is not formed at the axial inner end portion of the hub body 10a constituting the hub 2b, and the drive shaft member 7a is constituted on the axial inner end surface of the inner ring 11b constituting the hub 2b. The axial outer end surface of the constant velocity joint outer ring 22a is in direct contact with each other. In the case of this example, the hub 2b and the drive shaft member 7a correspond to a rotating body. In the case of this example, the inner end surface in the axial direction of the outer ring 1b is arranged at a position slightly shifted outward in the axial direction from the inner end edge in the axial direction of the inner ring raceway 14b formed on the outer peripheral surface of the inner ring 11b. is doing. Of the outer peripheral surface of the inner ring 11b, the portion adjacent to the inner side in the axial direction of the inner ring raceway 14b, that is, the inner end portion in the axial direction of the outer peripheral surface of the inner ring 11b, than the inner end surface in the axial direction of the outer ring 1b. The encoder 5b is fitted and fixed to a portion protruding inward in the axial direction.

このエンコーダ5bは、エンコーダ用芯金16aと、エンコーダ本体17bとから成る。このうちのエンコーダ用芯金16aは、軟鋼板、磁性ステンレス鋼板等の磁性金属板により全体を円環状に造られており、互いに同心の外径側円筒部28及び内径側円筒部29と、これら外径側、内径側両円筒部28、29の軸方向外端縁同士を連結する円輪部30とを備える。そして、このうちの内径側円筒部29を、前記内輪11bの軸方向内端部に締り嵌めで外嵌している。又、前記エンコーダ本体17bは、ゴム磁石若しくはプラスチック磁石製で、全体を円筒状に造られており、前記外径側円筒部28の外周面に固定されている。前記ハブ2bと同心の被検出面である、前記エンコーダ本体17bの外周面には、N極とS極とが、円周方向に関して交互に且つ等間隔に配置されている。特に、本例の場合には、前記エンコーダ5bの被検出面の直径寸法を、前記外輪1bの軸方向内端部の内径寸法よりも大きく、且つ、この外輪1bの軸方向内端部の外径寸法よりも小さくしている。より具体的には、前記エンコーダ5bの被検出面の直径寸法を、前記外輪1bの軸方向内端部の内径寸法と外径寸法とのほぼ平均の値{直径寸法≒(内径寸法+外径寸法)/2}としている。この為に、前記外径側円筒部28の外径寸法、及び、前記エンコーダ本体17bの径方向厚さ寸法を規制している。   The encoder 5b includes an encoder core 16a and an encoder body 17b. Of these, the encoder core 16a is made of a magnetic metal plate such as a mild steel plate or a magnetic stainless steel plate in an annular shape as a whole, and includes an outer diameter side cylindrical portion 28 and an inner diameter side cylindrical portion 29 that are concentric with each other. An annular portion 30 that connects the outer end edges in the axial direction of both the outer diameter side and inner diameter side cylindrical portions 28 and 29 is provided. Of these, the inner diameter side cylindrical portion 29 is externally fitted to the inner end portion in the axial direction of the inner ring 11b with an interference fit. The encoder body 17b is made of a rubber magnet or a plastic magnet, and is formed in a cylindrical shape as a whole, and is fixed to the outer peripheral surface of the outer diameter side cylindrical portion 28. On the outer peripheral surface of the encoder body 17b, which is a detection surface concentric with the hub 2b, N poles and S poles are alternately arranged at equal intervals in the circumferential direction. In particular, in the case of this example, the diameter dimension of the detection surface of the encoder 5b is larger than the inner diameter dimension of the inner end portion in the axial direction of the outer ring 1b, and the outer diameter of the inner end portion in the axial direction of the outer ring 1b. It is smaller than the diameter dimension. More specifically, the diameter dimension of the surface to be detected of the encoder 5b is approximately the average value of the inner diameter dimension and the outer diameter dimension of the inner end in the axial direction of the outer ring 1b {diameter dimension≈ (inner diameter dimension + outer diameter). Dimension) / 2}. For this purpose, the outer diameter of the outer diameter side cylindrical portion 28 and the radial thickness of the encoder body 17b are restricted.

又、本例の場合、前記外輪1bの軸方向内端面と、前記エンコーダ本体17bの軸方向外端面の径方向外端部乃至中間部との間に、互いの接触を避ける為に必要な最小限の隙間よりも少し大きな隙間を介在させている。これにより、前記外輪1bの軸方向内端面に対し、前記エンコーダ5bの被検出面を軸方向に遠ざけて、この被検出面から出入りする磁束が、前記外輪1bの軸方向内端面に多く引き込まれた状態になる(被検出面から出入する磁束が外輪1bに漏洩する)事を防止している。又、本例の場合には、前記エンコーダ本体17bの軸方向外端面の内周縁部分で、前記外径側円筒部28の外周面よりも内径側部分に、軸方向外方に突出し且つ着磁されていない凸部31を、全周に亙り設けている。そして、この凸部31の先端縁を、前記外輪1bの軸方向内端面の内周縁部分に全周に亙り近接対向させる事で、この近接対向させた部分にラビリンス隙間を形成している。   In the case of this example, the minimum necessary for avoiding mutual contact between the axial inner end surface of the outer ring 1b and the radially outer end portion or intermediate portion of the axial outer end surface of the encoder body 17b. A gap slightly larger than the limit gap is interposed. As a result, the detected surface of the encoder 5b is moved away from the axially inner end surface of the outer ring 1b in the axial direction, and a large amount of magnetic flux entering and exiting from the detected surface is drawn into the axially inner end surface of the outer ring 1b. (The magnetic flux entering and exiting from the detected surface leaks to the outer ring 1b). In the case of this example, the inner peripheral edge portion of the outer end surface in the axial direction of the encoder body 17b protrudes outward in the axial direction from the outer peripheral surface of the outer cylindrical portion 28 and is magnetized. The convex part 31 which is not performed is provided over the perimeter. And the labyrinth clearance gap is formed in the part which made the front-end edge of this convex part 31 face and oppose to the inner peripheral part of the axial direction inner end surface of the said outer ring | wheel 1b over the perimeter.

又、本例の場合、前記外輪1bの軸方向内端部に、前記密封部材4dを支持固定している。この密封部材4dは、密封用芯金18bと、シール材19aとから成る。このうちの密封用芯金18bは、非磁性ステンレス鋼板、アルミニウム合金板等の非磁性金属板により、全体を円環状に造られており、円筒状の周壁部32と、この周壁部32の軸方向内端縁から径方向内方に折れ曲がった側壁部33とを備える。このうちの周壁部32の軸方向内半部の円周方向一部分には、この周壁部32の他の部分よりも径方向内方に凹んだ平坦部34を設けている。又、前記側壁部33の内周寄り部分に傾斜部35を設ける事により、この側壁部33の内径側を、外径側に比べて、軸方向外側に位置させている。この様な密封用芯金18bは、前記周壁部32の軸方向外端部を、前記外輪1bの軸方向内端部に締り嵌めで外嵌する事により、この外輪1bの軸方向内端部に支持固定されている。又、この状態で、前記密封用芯金18bは、前記エンコーダ本体17bの周囲を取り囲むと共に、前記平坦部34が、このエンコーダ5bの被検出面に近接対向した状態になる。   In the case of this example, the sealing member 4d is supported and fixed to the inner end in the axial direction of the outer ring 1b. The sealing member 4d includes a sealing core 18b and a sealing material 19a. Of these, the sealing core 18b is made of a non-magnetic metal plate such as a non-magnetic stainless steel plate or an aluminum alloy plate in an annular shape as a whole, and has a cylindrical peripheral wall portion 32 and a shaft of the peripheral wall portion 32. And a side wall portion 33 bent inward in the radial direction from the inner edge in the direction. A flat portion 34 that is recessed inward in the radial direction from the other portion of the peripheral wall portion 32 is provided in a portion in the circumferential direction of the inner half portion in the axial direction of the peripheral wall portion 32. Further, by providing the inclined portion 35 on the inner peripheral portion of the side wall portion 33, the inner diameter side of the side wall portion 33 is positioned on the outer side in the axial direction as compared with the outer diameter side. Such a sealing metal core 18b is configured such that the outer end in the axial direction of the peripheral wall portion 32 is externally fitted to the inner end in the axial direction of the outer ring 1b with an interference fit, thereby the inner end in the axial direction of the outer ring 1b. Is supported and fixed. In this state, the sealing core 18b surrounds the encoder body 17b and the flat portion 34 is in close proximity to the detected surface of the encoder 5b.

又、前記シール材19aは、ゴムの如きエラストマー等の弾性材製で、全体を円環状に造られており、前記密封用芯金18bを構成する側壁部33の径方向内端部乃至中間部に固定されている。本例の場合、このシール材19aは、3本のシールリップ20d、20e、20fを有する。そして、このうちの2本のシールリップ20d、20eの先端縁を、前記エンコーダ用芯金16aを構成する内径側円筒部29の外周面に、残り1本のシールリップ20fの先端縁を、前記等速ジョイント用外輪22aの外周面のうちで軸方向外端寄り部分に存在する傾斜面部に、それぞれ全周に亙り摺接させている。尚、前記等速ジョイント用外輪22aの外周面のうち、少なくとも前記1本のシールリップ20fの先端縁を摺接させる部分は、平滑面としている。又、本例の場合、前記1本のシールリップ20fの先端縁の自由状態での外径寸法は、前記密封用芯金18bを構成する周壁部32の外径寸法よりも小さく(具体的には、この周壁部32の中心軸を中心とし、前記平坦部34の外径側面に接する円の直径寸法よりも小さく)している。これにより、前記外輪1bの軸方向内端部に前記周壁部32の軸方向外端部を圧入する際に、前記1本のシールリップ20fに邪魔される事なく、前記周壁部32の軸方向内端縁を押圧治具により押圧できる様にしている。   The sealing material 19a is made of an elastic material such as an elastomer such as rubber, and is formed in an annular shape as a whole, and the radially inner end or intermediate portion of the side wall 33 constituting the sealing core 18b. It is fixed to. In the case of this example, the sealing material 19a has three sealing lips 20d, 20e, and 20f. Of these, the tip edges of the two seal lips 20d, 20e are attached to the outer peripheral surface of the inner diameter side cylindrical portion 29 constituting the encoder core 16a, and the tip edges of the remaining one seal lip 20f are Out of the outer peripheral surface of the constant velocity joint outer ring 22a, it is in sliding contact with the entire circumference of the inclined surface portion present near the outer end in the axial direction. Of the outer peripheral surface of the constant velocity joint outer ring 22a, at least the portion where the tip edge of the one seal lip 20f is slidably contacted is a smooth surface. In the case of this example, the outer diameter dimension in the free state of the tip edge of the one seal lip 20f is smaller than the outer diameter dimension of the peripheral wall portion 32 constituting the sealing metal core 18b (specifically, Is smaller than the diameter dimension of a circle centered on the central axis of the peripheral wall portion 32 and in contact with the outer diameter side surface of the flat portion 34. As a result, the axial direction of the peripheral wall portion 32 is not obstructed by the one seal lip 20f when the axially outer end portion of the peripheral wall portion 32 is press-fitted into the axially inner end portion of the outer ring 1b. The inner edge can be pressed by a pressing jig.

又、本例の場合には、前記平坦部34の外径側面に、センサ6bの先端面(平坦面であり、図1に於ける下端面)を当接させている。これにより、このセンサ6bの先端部に設けた検出部を、前記平坦部34を介して、前記エンコーダ5bの被検出面に近接対向させている。尚、この状態で、前記センサ6bは、懸架装置を構成する支持部材25の一部等、使用時にも回転しない車体の一部に支持されている。   In the case of this example, the front end surface (the flat surface, the lower end surface in FIG. 1) of the sensor 6b is brought into contact with the outer diameter side surface of the flat portion 34. Thereby, the detection part provided in the front-end | tip part of this sensor 6b is made to oppose and close to the to-be-detected surface of the said encoder 5b through the said flat part 34. FIG. In this state, the sensor 6b is supported by a part of the vehicle body that does not rotate during use, such as a part of the support member 25 that constitutes the suspension device.

上述の様に構成する本例のエンコーダ付転がり軸受ユニットによれば、回転速度検出の性能を向上させる事ができると共に、前記エンコーダ本体17bと前記各転動体3、3とを設置した内部空間の軸方向内端開口の密封性を十分に確保でき、しかも低コストで造れる。
即ち、本例の場合には、前記エンコーダ5bの被検出面の直径寸法が、前記外輪1bの軸方向内端部の内径寸法よりも大きくなっている。この為、前述の図6〜8に示した各従来構造の様に、エンコーダ5、5aの被検出面の直径寸法が、外輪1、1aの軸方向内端部の内径寸法よりも小さくなっている構造に比べて、前記被検出面に存在する各磁極の周方向幅(着磁面積)を大きくしたり、この被検出面に存在する磁極の数を増やしたりする事ができる。この結果、本例の場合には、前記エンコーダ5bと前記センサ6bとの組み合わせによる回転速度検出の性能を向上させる事ができる。
又、本例の場合、前記エンコーダ5bは、外周面を寸法精度の良い研削面とした、前記内輪11bの内端部に外嵌される。この為、この研削面との嵌め合い面である、前記エンコーダ用芯金16aを構成する内径側円筒部29の内周面と、被検出面である、前記エンコーダ本体17bの外周面とが同心となる様に、このエンコーダ本体17bの加硫又は射出成形を行えば、使用時に於ける、前記被検出面の径方向の振れを十分に抑える事ができる。従って、本例の場合、前記密封用芯金18bを構成する平坦部34の寸法管理さえ厳密に行えば、前記エンコーダ5bの被検出面と前記センサ6bの検出部とのエアギャップ(対向間隔)を十分に小さく設定する事ができる。この結果、上述の様に被検出面の直径寸法が大きい事と相まって、回転速度検出の性能を十分に確保できる。
According to the rolling bearing unit with an encoder of the present example configured as described above, the performance of detecting the rotational speed can be improved, and the internal space in which the encoder body 17b and the rolling elements 3 and 3 are installed can be improved. The sealability of the axially inner end opening can be sufficiently secured and can be manufactured at low cost.
That is, in the case of this example, the diameter dimension of the detection surface of the encoder 5b is larger than the inner diameter dimension of the inner end portion in the axial direction of the outer ring 1b. For this reason, as in each of the conventional structures shown in FIGS. 6 to 8 described above, the diameter of the detected surface of the encoder 5, 5a is smaller than the inner diameter of the inner end of the outer ring 1, 1a in the axial direction. Compared to the structure, the circumferential width (magnetization area) of each magnetic pole existing on the detected surface can be increased, or the number of magnetic poles existing on the detected surface can be increased. As a result, in the case of this example, it is possible to improve the rotational speed detection performance by the combination of the encoder 5b and the sensor 6b.
In the case of this example, the encoder 5b is fitted on the inner end portion of the inner ring 11b with the outer peripheral surface being a ground surface with good dimensional accuracy. For this reason, the inner peripheral surface of the inner diameter side cylindrical portion 29 constituting the encoder core metal 16a, which is a fitting surface with the ground surface, and the outer peripheral surface of the encoder main body 17b, which is a detected surface, are concentric. Thus, if the encoder body 17b is vulcanized or injection-molded, it is possible to sufficiently suppress radial deflection of the detected surface during use. Therefore, in the case of this example, the air gap (opposite distance) between the detection surface of the encoder 5b and the detection portion of the sensor 6b is only required if the dimensions of the flat portion 34 constituting the sealing core 18b are strictly controlled. Can be set sufficiently small. As a result, coupled with the large diameter size of the surface to be detected as described above, sufficient rotation speed detection performance can be ensured.

又、本例の場合、前記密封用芯金18bには、前記センサ6bを挿通支持する為の取付孔を形成する必要がない。この為、この取付孔の存在に基づいて前記内部空間の軸方向内端開口の密封性が低下すると言った不具合が生じる事はない。従って、前記内部空間の軸方向内端開口の密封性を十分に確保できる。
更に、本例の場合には、前記センサ6bの取付孔の加工コストが不要になる分、製造コストの低減を図れる。
In the case of this example, it is not necessary to form a mounting hole for inserting and supporting the sensor 6b in the sealing core 18b. For this reason, there is no problem that the sealing performance of the axially inner end opening of the internal space is lowered due to the presence of the mounting hole. Therefore, it is possible to sufficiently secure the sealing performance of the inner end opening in the axial direction of the internal space.
Furthermore, in the case of this example, the manufacturing cost can be reduced because the processing cost of the mounting hole of the sensor 6b becomes unnecessary.

又、本例の場合、前記シール材19aは、前記エンコーダ用芯金16aを構成する内径側円筒部29の外周面に摺接させる2本のシールリップ20d、20eに加えて、等速ジョイント用外輪22aの外周面の軸方向外端寄り部分に摺接させる1本のシールリップ20fを備えている。この為、単に、前記2本のシールリップ20d、20eのみを備えている構造に比べて、前記内部空間の密封性を高める事ができる。又、前記1本のシールリップ20fの存在に基づいて、前記ハブ2bのスプライン孔15と前記駆動軸部材7aのスプライン軸23(図6参照)とのスプライン係合部に、このスプライン係合部の軸方向内側から、雨水、泥水等の異物が入り込む事を防止できる。この為、このスプライン係合部に塗布されたグリースによる、このスプライン係合部の防錆効果を、長期間維持する事ができる。この結果、点検、修理等の際に、前記スプライン孔15から前記スプライン軸23を抜き取る事が困難になると言った不具合が生じる事を防止できる。   In the case of this example, the seal material 19a is used for a constant velocity joint in addition to the two seal lips 20d and 20e slidably in contact with the outer peripheral surface of the inner diameter side cylindrical portion 29 constituting the encoder core metal 16a. One seal lip 20f is provided to be slidably brought into contact with the outer peripheral surface of the outer ring 22a near the outer end in the axial direction. For this reason, the sealing performance of the internal space can be improved as compared with the structure having only the two sealing lips 20d and 20e. Further, based on the presence of the one seal lip 20f, the spline engagement portion is connected to the spline engagement portion between the spline hole 15 of the hub 2b and the spline shaft 23 (see FIG. 6) of the drive shaft member 7a. It is possible to prevent foreign substances such as rainwater and muddy water from entering from the inside in the axial direction. For this reason, the antirust effect of this spline engaging part by the grease apply | coated to this spline engaging part can be maintained for a long period of time. As a result, it is possible to prevent a problem that it becomes difficult to pull out the spline shaft 23 from the spline hole 15 during inspection, repair, or the like.

又、本例の場合には、前記エンコーダ本体17bの軸方向外端面の内周縁部分に設けた凸部31の先端縁を、前記外輪1bの軸方向内端面の内周縁部分に全周に亙り近接対向させる事で、この近接対向させた部分にラビリンス隙間を形成している。この為、前記外輪1bの軸方向内端面に対して前記被検出面を軸方向に遠ざけると共に、前記各転動体3、3を設置した空間内に封入した潤滑用グリースが、前記エンコーダ本体17bを設置した空間内に漏洩する事を抑制できる。尚、本例の場合、前記凸部31は、着磁されていない為、この凸部31の存在に基づいて、前記被検出面から出入りする磁束の形状(分布)が歪むと言った不具合が生じる事はない。   Further, in the case of this example, the tip edge of the convex portion 31 provided on the inner peripheral edge portion of the outer end surface in the axial direction of the encoder body 17b extends over the entire inner periphery portion of the inner end surface in the axial direction of the outer ring 1b. The labyrinth gap is formed in the portion opposed to each other by making it face and face each other. For this reason, the surface to be detected is moved away from the axially inner end surface of the outer ring 1b in the axial direction, and the lubricating grease sealed in the space in which the rolling elements 3 and 3 are installed causes the encoder main body 17b to move. Leakage into the installed space can be suppressed. In the case of this example, since the convex portion 31 is not magnetized, there is a problem that the shape (distribution) of the magnetic flux entering and exiting from the detected surface is distorted based on the presence of the convex portion 31. It never happens.

又、本例の場合、前記密封用芯金18bを構成する周壁部32に関しては、前記センサ6bと前記エンコーダ5bとの間に挟まれた前記平坦部34のみが、このエンコーダ5bの被検出面に近接対向した状態となり、それ以外の部分は、この被検出面から少し遠ざかった状態になっている。この為、前記周壁部32のうち、前記平坦部34から外れた部分では、外部に達する磁束が弱まり、当該部分の外周面に、鉄粉、鉄片等の磁性体が付着しにくくなる。従って、この様に付着した磁性体が酸化する事によって形成される、所謂もらい錆びの発生を十分に抑制できる。   In the case of this example, with respect to the peripheral wall portion 32 constituting the sealing core 18b, only the flat portion 34 sandwiched between the sensor 6b and the encoder 5b is the detected surface of the encoder 5b. The other part is in a state slightly away from the detected surface. For this reason, the magnetic flux reaching the outside is weakened at the portion of the peripheral wall portion 32 that is separated from the flat portion 34, and the magnetic material such as iron powder or iron pieces is less likely to adhere to the outer peripheral surface of the portion. Therefore, it is possible to sufficiently suppress the occurrence of so-called rust, which is formed by oxidizing the attached magnetic material.

[実施の形態の第2例]
図3は、請求項1〜5、8に対応する、本発明の実施の形態の第2例を示している。本例の場合、外輪1cの軸方向内端部外周面に、小径段部36を形成している。そして、この小径段部36に、密封部材4eを構成する密封用芯金18bのうち、周壁部32の軸方向外端部を締り嵌めで外嵌している。又、この状態で、前記小径段部36の基端部に存在する段差面に、前記周壁部32の軸方向外端縁を突き当てる事により、前記密封部材4eの軸方向の位置決めを図っている。更に、本例の場合、前記小径段部36の軸方向中間部に係止溝37を、全周に亙り形成すると共に、この係止溝37内にOリング38を装着している。そして、このOリング38を、この係止溝37の底面と前記周壁部32の軸方向外端部内周面との間で圧縮する事により、この周壁部32の軸方向外端部と前記小径段部36との嵌合部をシールしている。
[Second Example of Embodiment]
FIG. 3 shows a second example of an embodiment of the present invention corresponding to claims 1 to 5 and 8. In the case of this example, a small diameter step portion 36 is formed on the outer peripheral surface of the inner end portion in the axial direction of the outer ring 1c. And the axial direction outer end part of the surrounding wall part 32 is externally fitted by this interference fitting to this small diameter step part 36 among the sealing metal cores 18b which comprise the sealing member 4e. In this state, the sealing member 4e is positioned in the axial direction by abutting the axial outer end edge of the peripheral wall portion 32 against the step surface existing at the base end portion of the small diameter step portion 36. Yes. Further, in the case of this example, a locking groove 37 is formed over the entire circumference in the axially intermediate portion of the small diameter step portion 36, and an O-ring 38 is mounted in the locking groove 37. The O-ring 38 is compressed between the bottom surface of the locking groove 37 and the inner peripheral surface of the outer peripheral end portion of the peripheral wall portion 32, so that the outer peripheral end portion of the peripheral wall portion 32 and the small diameter portion are compressed. The fitting part with the step part 36 is sealed.

又、本例の場合、エンコーダ5cを構成するエンコーダ用芯金16bは、内径側円筒部29の軸方向内端部から径方向内方に直角に折れ曲がった、円輪状の間座部39を備える。そして、この間座部39を、内輪11bの軸方向内端面に当接させる事により、前記エンコーダ5cの軸方向の位置決めを図っている。更に、本例の場合には、前記間座部39を、前記内輪11bの軸方向内端面と等速ジョイント用外輪22aの軸方向外端面との間で挟持している。
そして、本例の場合には、前記間座部39を備えたエンコーダ用芯金16bの材質、熱処理、表面処理等の選定を適切に行う事により、前記内輪11bの軸方向内端面と前記等速ジョイント用外輪22aの軸方向外端面との間でフレッチング摩耗が発生する事を防止している。
In the case of this example, the encoder core bar 16b constituting the encoder 5c includes an annular spacer 39 bent at a right angle inward in the radial direction from the axial inner end of the inner diameter side cylindrical portion 29. . The spacer portion 39 is brought into contact with the inner end surface of the inner ring 11b in the axial direction, thereby positioning the encoder 5c in the axial direction. Further, in the case of this example, the spacer 39 is sandwiched between the axial inner end surface of the inner ring 11b and the axial outer end surface of the constant velocity joint outer ring 22a.
In the case of this example, by appropriately selecting the material, heat treatment, surface treatment, etc. of the encoder core bar 16b provided with the spacer 39, the inner end face in the axial direction of the inner ring 11b and the like The fretting wear is prevented from occurring between the outer peripheral surface 22a of the fast joint and the axial direction outer end surface.

又、本例の場合、前記密封用芯金18bを構成する平坦部34の外径側面のうち、センサ6bの先端面を当接させる部分に、薄いゴム層40を加硫接着している。そして、使用時に、このゴム層40の外径側面に前記センサ6bの先端面を当接させる事により、このセンサ6bの先端面と前記平坦部34の外径側面との間に磁性粉等の異物が入り込む事を防止している。これにより、回転速度検出に関する信頼性を向上させている。更には、前記ゴム層40の存在に基づいて、前記センサ6bの先端面と前記平坦部34の外径側面との間でフレッチング摩耗が発生する事を防止している。   In the case of this example, a thin rubber layer 40 is vulcanized and bonded to a portion of the outer diameter side surface of the flat portion 34 constituting the sealing metal core 18b where the tip surface of the sensor 6b comes into contact. During use, the tip surface of the sensor 6b is brought into contact with the outer diameter side surface of the rubber layer 40, so that magnetic powder or the like is placed between the tip surface of the sensor 6b and the outer diameter side surface of the flat portion 34. Prevents foreign objects from entering. Thereby, the reliability regarding rotation speed detection is improved. Furthermore, fretting wear is prevented from occurring between the front end surface of the sensor 6b and the outer diameter side surface of the flat portion 34 based on the presence of the rubber layer 40.

又、本例の場合、前記等速ジョイント用外輪22aの軸方向外端寄り部分で、外周面を円筒面とした部分に、スリンガ41を外嵌固定している。このスリンガ41は、ステンレス鋼板等の優れた耐食性を有する金属板により、断面クランク形で全体を円環状に造られており、互いに同心の外径側円筒部42及び内径側円筒部43と、これら外径側円筒部42の軸方向内端縁と内径側円筒部43の軸方向外端縁とを連結する円輪部44とを備える。そして、このうちの内径側円筒部43を、前記等速ジョイント用外輪22aの軸方向外端寄り部分で外周面を円筒面とした部分に、締り嵌めで外嵌している。又、この状態で、前記外径側円筒部42の軸方向外端縁を、前記密封用芯金18bを構成する周壁部32のうち、円周方向に関して前記平坦部34から外れた部分の軸方向内端縁に近接対向させている。これにより、この近接対向させた部分にラビリンス隙間を形成している。   In the case of this example, a slinger 41 is fitted and fixed to a portion near the outer end in the axial direction of the outer ring 22a for the constant velocity joint and a portion whose outer peripheral surface is a cylindrical surface. The slinger 41 is made of a metal plate having excellent corrosion resistance, such as a stainless steel plate, and is formed into an annular shape as a whole with a crank-shaped cross section. The outer diameter side cylindrical portion 42 and the inner diameter side cylindrical portion 43 are concentric with each other. An annular portion 44 that connects the axial inner end edge of the outer diameter side cylindrical portion 42 and the axial outer end edge of the inner diameter side cylindrical portion 43 is provided. Of these, the inner diameter side cylindrical portion 43 is externally fitted into a portion near the outer end in the axial direction of the outer ring 22a for the constant velocity joint with a cylindrical outer surface. In this state, the axial outer end edge of the outer diameter side cylindrical portion 42 is the axis of the portion of the peripheral wall portion 32 constituting the sealing metal core 18b that is out of the flat portion 34 in the circumferential direction. It is made to face and oppose the inner edge in the direction. As a result, a labyrinth gap is formed in the portion opposed to each other.

又、本例の場合には、前記密封部材4eを構成するシール材19bの構成要素として、2本のシールリップ20g、20hを追加している。そして、このうちの一方のシールリップ20gの先端縁を、前記エンコーダ用芯金16bを構成する円輪部30の軸方向内側面に、他方のシールリップ20hの先端縁を、前記スリンガ41を構成する円輪部44の軸方向外側面に、それぞれ全周に亙り摺接させている。これにより、各転動体3とエンコーダ本体17cとを設置した内部空間、及び、スプライン孔15とスプライン軸23とのスプライン係合部(図6参照)の密封性能を向上させている。   In the case of this example, two seal lips 20g and 20h are added as components of the sealing material 19b constituting the sealing member 4e. The leading edge of one of the seal lips 20g is formed on the inner surface in the axial direction of the annular ring portion 30 constituting the encoder core 16b, and the leading edge of the other sealing lip 20h is formed on the slinger 41. The ring portion 44 is in sliding contact with the entire outer circumference in the axial direction. This improves the sealing performance of the internal space in which the rolling elements 3 and the encoder main body 17c are installed, and the spline engagement portion (see FIG. 6) between the spline hole 15 and the spline shaft 23.

又、本例の場合には、前記スリンガ41が、前記他方のシールリップ20hの周囲を覆う状態で配置されており、且つ、このスリンガ41と前記密封用芯金18bとの間に前記ラビリンス隙間が形成されている。この為、前記内部空間及び前記スプライン係合部の密封性の向上を図れる。これと共に、前記スリンガ41の表面に摺接させたシールリップ20h、及び、前記等速ジョイント用外輪22aの外周面に摺接させたシールリップ20fに、飛石等の異物がぶつかる事を防止できる。この結果、これら各シールリップ20f、20hが損傷する事を防止できる。   In the case of this example, the slinger 41 is arranged so as to cover the periphery of the other seal lip 20h, and the labyrinth gap is provided between the slinger 41 and the sealing core 18b. Is formed. For this reason, the sealing performance of the internal space and the spline engaging portion can be improved. At the same time, foreign matters such as stepping stones can be prevented from colliding with the seal lip 20h slidably in contact with the surface of the slinger 41 and the seal lip 20f slidably in contact with the outer peripheral surface of the outer ring 22a for the constant velocity joint. As a result, the seal lips 20f and 20h can be prevented from being damaged.

尚、本例の場合、前記スリンガ41を構成する外径側円筒部42の軸方向外端縁と、前記密封用芯金18bを構成する平坦部34の軸方向内端縁との間には、前記ラビリンス隙間よりも大きな隙間が、軸方向外側に開口する状態で存在している。但し、この大きな隙間の開口部に対向する部分には、前記センサ6bの先端部が配置されている。この為、本例の場合には、このセンサ6bの先端部が、前記大きな隙間を通じて前記スリンガ41の内側に異物が侵入する事を抑える為の阻止部材として機能する。   In the case of this example, between the axial outer end edge of the outer diameter side cylindrical portion 42 constituting the slinger 41 and the axial inner end edge of the flat portion 34 constituting the sealing core 18b. A gap larger than the labyrinth gap exists in a state of opening outward in the axial direction. However, the tip of the sensor 6b is arranged at a portion facing the opening of the large gap. For this reason, in the case of this example, the front end portion of the sensor 6b functions as a blocking member for suppressing foreign matter from entering the slinger 41 through the large gap.

尚、本例の場合、前記エンコーダ本体17cの外端面には、凸部31(図1参照)を設けていないが、この凸部31を設ける様にしても良い。その他の構成及び作用は、前述の図1〜2に示した実施の形態の第1例の場合と同様である。   In the case of this example, the convex portion 31 (see FIG. 1) is not provided on the outer end surface of the encoder body 17c, but this convex portion 31 may be provided. Other configurations and operations are the same as those in the first example of the embodiment shown in FIGS.

[実施の形態の第3例]
図4は、請求項1〜5、8に対応する、本発明の実施の形態の第3例を示している。本例の場合には、スリンガ41aを構成する外径側円筒部42aの直径を、上述した実施の形態の第2例の場合よりも小さくする事により、この外径側円筒部42aの軸方向外端縁を、密封用芯金18bを構成する側壁部33の軸方向内側面の外周寄り部分に、全周に亙り近接対向させている。これにより、前記スリンガ41aと前記密封用芯金18bとの間に全周に亙るラビリンス隙間を形成する事で、このスリンガ41aの存在に基づく異物侵入防止効果を、上述した実施の形態の第2例の場合よりも高めている。その他の構成及び作用は、上述の図3に示した実施の形態の第2例の場合と同様である。
[Third example of embodiment]
FIG. 4 shows a third example of the embodiment of the invention corresponding to claims 1 to 5 and 8. In the case of this example, by making the diameter of the outer diameter side cylindrical portion 42a constituting the slinger 41a smaller than in the case of the second example of the embodiment described above, the axial direction of the outer diameter side cylindrical portion 42a. The outer end edge is closely opposed to the outer peripheral portion of the inner side surface in the axial direction of the side wall 33 constituting the sealing core 18b over the entire circumference. Thus, by forming a labyrinth gap over the entire circumference between the slinger 41a and the sealing core 18b, the foreign matter intrusion preventing effect based on the presence of the slinger 41a is achieved in the second embodiment. It is higher than the case of the example. Other configurations and operations are the same as those in the second example of the embodiment shown in FIG.

[実施の形態の第4例]
図5は、請求項1、3、7に対応する、本発明の実施の形態の第4例を示している。本例の場合、密封用芯金18cを構成する周壁部32aの一部に、平坦部34(図1〜2参照)を設けず、この周壁部32aの全体を単なる円筒状としている。これにより、本例の場合には、エンコーダ5dの被検出面の直径寸法を、前記周壁部32aの内径寸法(外輪1bの軸方向内端部の外径寸法)に近づけて大きくする事により、前記被検出面を前記周壁部32aの内周面に対して、全周に亙り近接対向させている。本例の場合には、この様にして前記被検出面の直径寸法を更に大きくする事により、回転速度検出に関する性能を更に向上させている。これと共に、前記被検出面から出入りする磁束が存在する空間と、前記外輪1bの内端面とが軸方向に対向する面積を狭くする事で、この被検出面から出入りする磁束が前記外輪1bに漏洩しにくくしている。更に、エンコーダ用芯金16cを構成する円輪部30aの外径寸法を大きくすると共に、この円輪部30aの軸方向外側面の径方向中間部に固定した第二シール材45を構成するシールリップ20kの先端縁を、前記外輪1bの内端面に全周に亙り摺接させている。これにより、各転動体3を設置した空間とエンコーダ本体17dを設置した空間との間を遮断している。尚、図示の例の場合、前記第二シール材45を構成するシールリップ20kの傾斜方向は、前記各転動体3、3を設置した空間内への水の浸入防止を図り易い方向としているが、本発明を実施する場合には、逆方向、即ち、前記エンコーダ本体17dを設置した空間に潤滑用グリースが漏洩するのを防止し易い方向とする事もできる。
[Fourth Example of Embodiment]
FIG. 5 shows a fourth example of an embodiment of the present invention corresponding to claims 1, 3 and 7. In the case of this example, the flat portion 34 (see FIGS. 1 and 2) is not provided in a part of the peripheral wall portion 32a constituting the sealing core 18c, and the entire peripheral wall portion 32a is simply cylindrical. Thereby, in the case of this example, by increasing the diameter dimension of the detected surface of the encoder 5d close to the inner diameter dimension of the peripheral wall portion 32a (the outer diameter dimension of the inner end portion in the axial direction of the outer ring 1b), The detected surface is closely opposed to the inner peripheral surface of the peripheral wall portion 32a over the entire periphery. In the case of this example, the performance relating to the rotational speed detection is further improved by further increasing the diameter of the surface to be detected in this way. At the same time, by reducing the area where the space where the magnetic flux entering and exiting from the detected surface exists and the inner end surface of the outer ring 1b face in the axial direction, the magnetic flux entering and exiting from the detected surface enters the outer ring 1b. It is difficult to leak. Further, the outer diameter of the annular portion 30a constituting the encoder core 16c is increased, and the seal constituting the second seal member 45 fixed to the radially intermediate portion of the outer circumferential surface of the annular portion 30a. The tip edge of the lip 20k is brought into sliding contact with the inner end surface of the outer ring 1b over the entire circumference. As a result, the space between the rolling elements 3 and the space where the encoder body 17d is installed are blocked. In the case of the illustrated example, the inclination direction of the seal lip 20k constituting the second seal material 45 is set to a direction in which it is easy to prevent water from entering the space where the rolling elements 3 and 3 are installed. When the present invention is implemented, the direction can be reversed, that is, the direction in which it is easy to prevent the lubricating grease from leaking into the space where the encoder body 17d is installed.

又、本例の場合、センサ6cの先端面は、前記周壁部32aの外周面に合致する部分円筒状凹面として、この周壁部32aの外周面に密接させている。尚、本例の場合も、この周壁部32aの外周面のうちで、前記センサ6cの先端面を当接させる部分に、ゴム層を設ける事ができる。この場合に、このゴム層の厚さを周方向に関し変化させ、このゴム層の外径側面(前記センサ6cの先端面を当接させる面)を平坦面にすれば、このセンサ6cの先端面も平坦面にできる。   In the case of this example, the tip surface of the sensor 6c is in close contact with the outer peripheral surface of the peripheral wall portion 32a as a partial cylindrical concave surface that matches the outer peripheral surface of the peripheral wall portion 32a. In the case of this example as well, a rubber layer can be provided on a portion of the outer peripheral surface of the peripheral wall portion 32a that is in contact with the tip surface of the sensor 6c. In this case, if the thickness of the rubber layer is changed in the circumferential direction, and the outer side surface of the rubber layer (the surface on which the tip surface of the sensor 6c abuts) is flat, the tip surface of the sensor 6c. Can also be flat.

又、本例の場合、等速ジョイント用外輪22aの軸方向外端寄り部分に外嵌固定したスリンガ41bは、内径側円筒部43及び円輪部44のみを備えている。
又、本例の場合、密封部材4fを構成するシール材19cは、外径側部分に、先端部が二股に分かれたシールリップ20mを備え、このシールリップ20mの二股の先端縁を、前記スリンガ41bを構成する円輪部44の外側面に、全周に亙り摺接させている。
その他の構成及び作用は、上述した各実施の形態の場合と同様である。
In the case of this example, the slinger 41b fitted and fixed to the portion near the outer end in the axial direction of the outer ring 22a for the constant velocity joint includes only the inner diameter side cylindrical portion 43 and the annular portion 44.
In the case of this example, the sealing material 19c constituting the sealing member 4f is provided with a sealing lip 20m having a bifurcated tip at the outer diameter side portion, and the bifurcated leading edge of the sealing lip 20m is connected to the slinger. The outer circumferential surface of the annular portion 44 constituting 41b is in sliding contact with the entire circumference.
Other configurations and operations are the same as those in the above-described embodiments.

本発明は、回転速度を検出する為に利用するエンコーダ付転がり軸受ユニットに限らず、前述した荷重を測定する為に利用するエンコーダ付転がり軸受ユニットに適用して実施する事も可能である。
又、本発明は、駆動輪用のエンコーダ付転がり軸受ユニットに限らず、従動輪用のエンコーダ付転がり軸受ユニットに適用して実施する事もできる。従動輪用のエンコーダ付転がり軸受ユニットの場合には、車輪と共に回転するハブに結合固定する駆動軸部材が存在しない為、このハブのみが回転体に相当する。
The present invention is not limited to the rolling bearing unit with an encoder used for detecting the rotational speed, but can also be applied to the rolling bearing unit with an encoder used for measuring the load described above.
The present invention is not limited to a rolling bearing unit with an encoder for driving wheels, but can be applied to a rolling bearing unit with an encoder for driven wheels. In the case of a rolling bearing unit with an encoder for a driven wheel, there is no drive shaft member that is coupled and fixed to a hub that rotates together with the wheel, so only this hub corresponds to a rotating body.

1、1a〜1c 外輪
2、2a〜2b ハブ
3 転動体
4a〜4f 密封部材
5、5a〜5d エンコーダ
6、6a〜6b センサ
7、7a 駆動軸部材
8a、8b 外輪軌道
9 静止側フランジ
10、10a ハブ本体
11、11a、11b 内輪
12 かしめ部
13 回転側フランジ
14a、14b 内輪軌道
15 スプライン孔
16、16a〜16c エンコーダ用芯金
17、17a〜17d エンコーダ本体
18、18a〜18c 密封用芯金
19、19a〜19c シール材
20a〜20m シールリップ
21 取付孔
22、22a 等速ジョイント用外輪
23 スプライン軸
24 ナット
25 支持部材
26 取付孔
27 樹脂部材
28 外径側円筒部
29 内径側円筒部
30、30a 円輪部
31 凸部
32、32a 周壁部
33 側壁部
34 平坦部
35 傾斜部
36 小径段部
37 係止溝
38 Oリング
39 間座部
40 ゴム層
41、41a スリンガ
42、42a 外径側円筒部
43 内径側円筒部
44 円輪部
45 第二シール材
DESCRIPTION OF SYMBOLS 1, 1a-1c Outer ring 2, 2a-2b Hub 3 Rolling element 4a-4f Seal member 5, 5a-5d Encoder 6, 6a-6b Sensor 7, 7a Drive shaft member 8a, 8b Outer ring track 9 Stationary side flange 10, 10a Hub body 11, 11a, 11b Inner ring 12 Caulking portion 13 Rotating flange 14a, 14b Inner ring raceway 15 Spline hole 16, 16a-16c Encoder core 17, 17a-17d Encoder body 18, 18a-18c Sealing core 19, 19a to 19c Sealing material 20a to 20m Seal lip 21 Mounting hole 22, 22a Constant velocity joint outer ring 23 Spline shaft 24 Nut 25 Support member 26 Mounting hole 27 Resin member 28 Outer diameter side cylindrical portion 29 Inner diameter side cylindrical portion 30, 30a Circle Ring part 31 Convex part 32, 32a Peripheral wall part 33 Side wall part 34 Flat part 35 Inclined portion 36 Small diameter step portion 37 Locking groove 38 O-ring 39 Spacer portion 40 Rubber layer 41, 41a Slinger 42, 42a Outer diameter side cylindrical portion 43 Inner diameter side cylindrical portion 44 Annular portion 45 Second seal material

Claims (8)

外輪と、回転体と、複数個の転動体と、エンコーダと、密封部材とを備え、
このうちの外輪は、内周面に複列の外輪軌道を有し、使用時に懸架装置に支持された状態で回転しないものであり、
前記回転体は、前記外輪の内径側に配置されていて、外周面のうちで、この外輪の内径側から軸方向外側に突出した部分に車輪を支持する為のフランジを、同じく前記両外輪軌道と対向する部分に複列の内輪軌道を、それぞれ有し、使用時に前記車輪と共に回転するものであり、
前記各転動体は、前記両外輪軌道と前記両内輪軌道との間に、両列毎に複数個ずつ、転動自在に設けられており、
前記エンコーダは、磁性金属材製で円環状のエンコーダ用芯金と、このエンコーダ用芯金の外周面に固定された、永久磁石製で円筒状のエンコーダ本体とを備えると共に、被検出面であるこのエンコーダ本体の外周面に、S極とN極とを円周方向に関して交互に配置したものであって、前記エンコーダ用芯金を、前記回転体の一部で軸方向内側の内輪軌道の軸方向内側に隣接する部分に外嵌固定しており、
前記密封部材は、前記各転動体及び前記エンコーダ本体を設置した内部空間の軸方向内端開口を塞ぐものである、
エンコーダ付転がり軸受ユニットに於いて、
前記外輪の軸方向内端面は、前記エンコーダ本体よりも軸方向外側に配置されており、前記エンコーダの被検出面の直径寸法は、前記外輪の軸方向内端部の内径寸法よりも大きく、且つ、この外輪の軸方向内端部の外径寸法よりも小さくなっており、
前記密封部材は、密封用芯金と、シール材とを備え、このうちの密封用芯金は、非磁性金属材により円環状に造られており、前記エンコーダの被検出面の周囲を取り囲むと共に、一部をこの被検出面に近接対向させた状態で、前記外輪の軸方向内端部に支持固定されており、前記シール材は、弾性材により円環状に造られると共に、前記密封用芯金の内径側部分に固定されており、且つ、その先端縁を前記エンコーダ用芯金の表面に全周に亙り摺接させたシールリップを備えている事を特徴とする、
エンコーダ付転がり軸受ユニット。
An outer ring, a rotating body, a plurality of rolling elements, an encoder, and a sealing member;
Of these, the outer ring has a double row outer ring raceway on the inner peripheral surface, and does not rotate while being supported by the suspension device during use.
The rotating body is disposed on the inner diameter side of the outer ring, and a flange for supporting a wheel on a portion of the outer peripheral surface that protrudes outward in the axial direction from the inner diameter side of the outer ring, Each having a double-row inner ring raceway in a portion opposed to and rotating with the wheel during use,
Each of the rolling elements is provided between the outer ring raceway and the inner ring raceway so as to be freely rollable for each row.
The encoder includes an annular encoder core made of a magnetic metal material, and a cylindrical encoder body made of a permanent magnet fixed to the outer peripheral surface of the encoder core, and is a detected surface. The S pole and the N pole are alternately arranged in the circumferential direction on the outer peripheral surface of the encoder body, and the core metal for the encoder is a part of the rotating body and the shaft of the inner ring raceway on the inner side in the axial direction. It is fitted and fixed to the part adjacent to the inner side in the direction,
The sealing member closes an axially inner end opening of an internal space where the rolling elements and the encoder body are installed.
In rolling bearing unit with encoder,
An inner end surface in the axial direction of the outer ring is disposed on the outer side in the axial direction from the encoder body, and a diameter dimension of the detected surface of the encoder is larger than an inner diameter dimension of the inner end portion in the axial direction of the outer ring, and The outer diameter of the outer ring is smaller than the outer diameter of the inner end,
The sealing member includes a sealing metal core and a sealing material, and the sealing metal core is formed in an annular shape from a nonmagnetic metal material, and surrounds the detected surface of the encoder. The seal member is supported and fixed to the inner end portion in the axial direction of the outer ring with a part facing and close to the detection surface, and the sealing material is formed in an annular shape by an elastic material, and the sealing core It is fixed to the inner diameter side portion of the gold, and has a seal lip whose tip edge is in sliding contact with the entire surface of the core metal for the encoder,
Rolling bearing unit with encoder.
前記車輪は駆動輪であり、
前記回転体は、ハブと駆動軸部材とを互いに結合して成るものであり、このうちのハブは、外周面に前記フランジ及び前記1対の内輪軌道を、径方向中心部に軸方向に亙るスプライン孔を、それぞれ有するものであり、前記駆動軸部材は、前記ハブの軸方向内側に隣接配置される等速ジョイント用外輪と、この等速ジョイント用外輪の軸方向外端面に固設されて前記スプライン孔とスプライン係合するスプライン軸とを備えたものであり、
前記エンコーダは、前記ハブの軸方向内端部に外嵌固定されており、
前記シール材は、その先端縁を前記等速ジョイント用外輪の外周面に全周に亙り摺接させたシールリップを備えている、
請求項1に記載したエンコーダ付転がり軸受ユニット。
The wheels are drive wheels;
The rotating body is formed by coupling a hub and a drive shaft member to each other, and the hub includes the flange and the pair of inner ring raceways on an outer peripheral surface and an axial center on a radial center portion. The drive shaft member is fixed to an outer ring for a constant velocity joint disposed adjacent to an inner side in the axial direction of the hub and an outer end surface in the axial direction of the outer ring for the constant velocity joint. A spline shaft that engages with the spline hole and the spline;
The encoder is fixedly fitted to the inner end of the hub in the axial direction,
The seal material includes a seal lip whose tip edge is in sliding contact with the outer peripheral surface of the constant velocity joint outer ring over the entire circumference.
The rolling bearing unit with an encoder according to claim 1.
前記車輪は駆動輪であり、
前記回転体は、ハブと駆動軸部材とを互いに結合して成るものであり、このうちのハブは、外周面に前記フランジ及び前記1対の内輪軌道を、径方向中心部に軸方向に亙るスプライン孔を、それぞれ有するものであり、前記駆動軸部材は、前記ハブの軸方向内側に隣接配置される等速ジョイント用外輪と、この等速ジョイント用外輪の軸方向外端面に固設されて前記スプライン孔とスプライン係合するスプライン軸とを備えたものであり、
前記エンコーダは、前記ハブの軸方向内端部に外嵌固定されており、
前記等速ジョイント用外輪の軸方向外端寄り部分には、円環状のスリンガが外嵌固定されており、
前記シール材は、その先端縁を前記スリンガの表面に全周に亙り摺接させたシールリップを備えている、
請求項1に記載したエンコーダ付転がり軸受ユニット。
The wheels are drive wheels;
The rotating body is formed by coupling a hub and a drive shaft member to each other, and the hub includes the flange and the pair of inner ring raceways on an outer peripheral surface and an axial center on a radial center portion. The drive shaft member is fixed to an outer ring for a constant velocity joint disposed adjacent to an inner side in the axial direction of the hub and an outer end surface in the axial direction of the outer ring for the constant velocity joint. A spline shaft that engages with the spline hole and the spline;
The encoder is fixedly fitted to the inner end of the hub in the axial direction,
An annular slinger is fitted and fixed to a portion near the outer end in the axial direction of the outer ring for the constant velocity joint,
The sealing material includes a sealing lip whose tip edge is in sliding contact with the entire surface of the slinger.
The rolling bearing unit with an encoder according to claim 1.
前記シール材は、その先端縁を前記等速ジョイント用外輪の外周面のうちで前記スリンガを外嵌固定した部分よりも軸方向外側部分に全周に亙り摺接させたシールリップを備えている、請求項3に記載したエンコーダ付転がり軸受ユニット。   The seal material includes a seal lip whose tip edge is slidably contacted with the entire outer periphery of the outer peripheral surface of the constant velocity joint outer ring on the outer periphery in the axial direction from the portion where the slinger is fitted and fixed. A rolling bearing unit with an encoder according to claim 3. 前記スリンガは、このスリンガの表面に摺接させた前記シールリップの周囲を覆う状態で配置されていて、基端部を前記等速ジョイント用外輪に外嵌すると共に、先端部を前記密封用芯金の表面に近接対向させている、請求項3〜4のうちの何れか1項に記載したエンコーダ付転がり軸受ユニット。   The slinger is disposed in a state of covering the periphery of the seal lip that is in sliding contact with the surface of the slinger, and a base end portion is fitted on the outer ring for the constant velocity joint, and a distal end portion is disposed on the sealing core. The rolling bearing unit with an encoder according to any one of claims 3 to 4, wherein the rolling bearing unit has an encoder close to and opposed to the gold surface. 前記エンコーダ本体の軸方向外端面の径方向一部分に、軸方向外方に突出し且つ着磁されていない凸部を、全周に亙り形成すると共に、この凸部の先端縁を前記外輪の軸方向内端面に全周に亙り近接対向させている、請求項1〜5のうちの何れか1項に記載したエンコーダ付軸受ユニット。   A convex portion that protrudes outward in the axial direction and is not magnetized is formed over the entire circumference on a part of the outer radial surface of the encoder body in the radial direction, and the tip edge of the convex portion is formed in the axial direction of the outer ring. The bearing unit with an encoder according to any one of claims 1 to 5, wherein the bearing unit is closely opposed to the inner end surface over the entire circumference. 前記エンコーダ用芯金の一部で、前記エンコーダ本体と前記各転動体とを配置した内部空間内に存在する部分に、円環状の第二シール材を固定しており、この第二シール材は、その先端縁を前記外輪の軸方向内端面に摺接させたシールリップを備えている、請求項1〜6のうちの何れか1項に記載したエンコーダ付軸受ユニット。   An annular second sealing material is fixed to a part of the core metal for the encoder, which is present in an internal space where the encoder main body and the rolling elements are arranged, and the second sealing material is The bearing unit with an encoder according to any one of claims 1 to 6, comprising a seal lip whose tip edge is slidably contacted with the inner end surface in the axial direction of the outer ring. 前記密封用芯金の一部で前記エンコーダの被検出面に近接対向させた部分の外周面のうち、使用時にセンサの先端面を当接させる部分に、ゴム層を設けている、請求項1〜7のうちの何れか1項に記載したエンコーダ付転がり軸受ユニット。   The rubber layer is provided in the part which the front-end | tip surface of a sensor contact | abuts in the outer peripheral surface of the part which adjoined and opposed the to-be-detected surface of the said encoder in a part of said core metal for sealing. The rolling bearing unit with an encoder described in any one of? 7.
JP2010178861A 2010-08-09 2010-08-09 Rolling bearing unit with encoder Expired - Fee Related JP5598150B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010178861A JP5598150B2 (en) 2010-08-09 2010-08-09 Rolling bearing unit with encoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010178861A JP5598150B2 (en) 2010-08-09 2010-08-09 Rolling bearing unit with encoder

Publications (2)

Publication Number Publication Date
JP2012036997A true JP2012036997A (en) 2012-02-23
JP5598150B2 JP5598150B2 (en) 2014-10-01

Family

ID=45849210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010178861A Expired - Fee Related JP5598150B2 (en) 2010-08-09 2010-08-09 Rolling bearing unit with encoder

Country Status (1)

Country Link
JP (1) JP5598150B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103939464A (en) * 2014-05-01 2014-07-23 湖州吉昌丝绸有限公司 Externally penetrated oil lubricated bearing
JP2017106514A (en) * 2015-12-08 2017-06-15 内山工業株式会社 Seal device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003028167A (en) * 2001-07-18 2003-01-29 Koyo Seiko Co Ltd Bearing device for axle
JP2003049853A (en) * 2001-08-07 2003-02-21 Koyo Seiko Co Ltd Seal structure of bearing device for vehicle
JP2005042866A (en) * 2003-07-24 2005-02-17 Nsk Ltd Rolling bearing unit with rotational speed detector
JP2005226800A (en) * 2004-02-16 2005-08-25 Skf:Ab Hub for wheel, and sealing device of its associated mechanism
JP2005299768A (en) * 2004-04-09 2005-10-27 Ntn Corp Bearing device with sensor
JP2006064145A (en) * 2004-08-30 2006-03-09 Ntn Corp Bearing device for wheel
JP2007503562A (en) * 2003-08-25 2007-02-22 フアーク・クーゲルフイツシエル・アクチエンゲゼルシヤフト Sealing device
WO2009093535A1 (en) * 2008-01-22 2009-07-30 Ntn Corporation Rotational speed detecting device and bearing edevice for wheel
JP2010121781A (en) * 2010-02-24 2010-06-03 Nsk Ltd Rolling bearing unit with rotational speed detecting device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003028167A (en) * 2001-07-18 2003-01-29 Koyo Seiko Co Ltd Bearing device for axle
JP2003049853A (en) * 2001-08-07 2003-02-21 Koyo Seiko Co Ltd Seal structure of bearing device for vehicle
JP2005042866A (en) * 2003-07-24 2005-02-17 Nsk Ltd Rolling bearing unit with rotational speed detector
JP2007503562A (en) * 2003-08-25 2007-02-22 フアーク・クーゲルフイツシエル・アクチエンゲゼルシヤフト Sealing device
JP2005226800A (en) * 2004-02-16 2005-08-25 Skf:Ab Hub for wheel, and sealing device of its associated mechanism
JP2005299768A (en) * 2004-04-09 2005-10-27 Ntn Corp Bearing device with sensor
JP2006064145A (en) * 2004-08-30 2006-03-09 Ntn Corp Bearing device for wheel
WO2009093535A1 (en) * 2008-01-22 2009-07-30 Ntn Corporation Rotational speed detecting device and bearing edevice for wheel
JP2010121781A (en) * 2010-02-24 2010-06-03 Nsk Ltd Rolling bearing unit with rotational speed detecting device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103939464A (en) * 2014-05-01 2014-07-23 湖州吉昌丝绸有限公司 Externally penetrated oil lubricated bearing
JP2017106514A (en) * 2015-12-08 2017-06-15 内山工業株式会社 Seal device

Also Published As

Publication number Publication date
JP5598150B2 (en) 2014-10-01

Similar Documents

Publication Publication Date Title
JP5576222B2 (en) Wheel bearing device
JP5842536B2 (en) Rotation support device for wheels
JP2012087858A (en) Wheel bearing device
US20080159673A1 (en) Vehicle Wheel Bearing Apparatus
JP2005042866A5 (en)
JP2010151277A (en) Wheel bearing device with rotation speed detector
JP5145958B2 (en) Combination seal ring with encoder
JP2010101332A (en) Fitting ring and bearing device for wheel having the same
JP6654941B2 (en) Wheel bearing device
JP2013061052A (en) Rolling bearing unit for supporting wheel with encoder
JP4867454B2 (en) SEALING DEVICE WITH MULTI-POLE MAGNET ENCODER Rolling bearing and wheel support bearing unit provided with the sealing device
WO2009119036A1 (en) Bearing device adapted for use in wheel and having rotational speed detection device
JP5598150B2 (en) Rolling bearing unit with encoder
JP4952035B2 (en) Manufacturing method of seal ring with encoder and rolling bearing unit with encoder
JP4953362B2 (en) Wheel bearing device with rotation speed detector
JP6398484B2 (en) Rolling bearing unit with encoder
JP4239669B2 (en) Rolling bearing unit for wheel support
JP4742796B2 (en) Rolling bearing unit with rotation detector
JP2008180544A (en) Bearing device for wheel with revolution detector
JP4628395B2 (en) Wheel bearing device with rotation speed detector
JP4995673B2 (en) Wheel bearing device with rotation speed detector
US10718376B2 (en) Wheel bearing device
JP2019206977A (en) Hub unit bearing
JP2008261462A (en) Bearing device for wheel with rotational speed detector
JP2017203515A (en) Rolling bearing unit with encoder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140715

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140728

R150 Certificate of patent or registration of utility model

Ref document number: 5598150

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees