JP2012036440A - Method of manufacturing niobium powder, and method of manufacturing niobium monoxide powder - Google Patents

Method of manufacturing niobium powder, and method of manufacturing niobium monoxide powder Download PDF

Info

Publication number
JP2012036440A
JP2012036440A JP2010177347A JP2010177347A JP2012036440A JP 2012036440 A JP2012036440 A JP 2012036440A JP 2010177347 A JP2010177347 A JP 2010177347A JP 2010177347 A JP2010177347 A JP 2010177347A JP 2012036440 A JP2012036440 A JP 2012036440A
Authority
JP
Japan
Prior art keywords
niobium
powder
niobium powder
reduction
growth inhibitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010177347A
Other languages
Japanese (ja)
Inventor
Yoshihiro Yoneda
佳弘 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2010177347A priority Critical patent/JP2012036440A/en
Publication of JP2012036440A publication Critical patent/JP2012036440A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a niobium powder to obtain the niobium monoxide powder having a powder resistance (electric conductivity) suitable for a capacitor.SOLUTION: The method of manufacturing the niobium powder by reducing a niobium oxide with a high oxidation number includes: a primary reduction process of mixing the niobium oxide with the high oxidation number and a grain growth inhibitor inhibiting a bonding between grains produced by a reduction reaction, performing a reduction using a base metal as a reducing agent, and removing the grain growth inhibitor to produce a primary reduced niobium powder; and a secondary reduction process of mixing the primary reduction niobium powder and the grain growth inhibitor, performing a reduction using a base metal as a reducing agent, and removing the grain growth inhibitor to produce a secondary reduction niobium powder.

Description

本発明は、還元処理によりニオブ粉及び一酸化ニオブ粉を製造する方法に関し、特に、コンデンサ用として好適な粉体抵抗(導電率)を有する一酸化ニオブ粉を得るためのニオブ粉の製造方法に関する。   The present invention relates to a method for producing niobium powder and niobium monoxide powder by reduction treatment, and particularly relates to a method for producing niobium powder for obtaining niobium monoxide powder having powder resistance (conductivity) suitable for a capacitor. .

近年、ニオブ酸化物は、周波数フィルターやコンデンサなどのような電子部品の原料や、スパッタリングのターゲット原料等としての使用量が急増している。また、新しいタイプのコンデンサとしてニオブコンデンサが普及してきており、その原料としてニオブ粉や一酸化ニオブ粉(NbO)が使用されている。ニオブコンデンサは、小型サイズかつ大容量を実現でき、優れた電気的安定性と高い信頼性を備える特徴を有する。   In recent years, the amount of niobium oxide used as a raw material for electronic parts such as frequency filters and capacitors, a target material for sputtering, and the like is rapidly increasing. In addition, niobium capacitors have become widespread as new types of capacitors, and niobium powder and niobium monoxide powder (NbO) are used as the raw material. A niobium capacitor has a feature that it can realize a small size and a large capacity, and has excellent electrical stability and high reliability.

このようなコンデンサ用途のニオブ粉及び一酸化ニオブ粉は、各種製造方法が提案されている(特許文献1〜5参照)。   Various manufacturing methods have been proposed for such niobium powder and niobium monoxide powder for use in capacitors (see Patent Documents 1 to 5).

特許文献1では、種々の製法により得られたニオブ粉と、賦活剤(細孔形成剤)との混合物を原料として、少なくとも焼結工程、解砕工程を順次行い、焼結工程または解砕工程のいずれかの工程において賦活剤を除去することによって、コンデンサ用のニオブ粉を製造する方法が提案されている。この先行技術によれば、平均粒径D50(レーザー回折・散乱法粒子径分布における体積基準の積算分率における50%径)が10〜1000μmのニオブ粉を製造することができる。 In Patent Document 1, at least a sintering step and a crushing step are sequentially performed using a mixture of niobium powder obtained by various production methods and an activator (pore forming agent) as a raw material, and then a sintering step or a crushing step. There has been proposed a method for producing niobium powder for a capacitor by removing the activator in any of the steps. According to this prior art, it is possible to average particle diameter D 50 (50% diameter in cumulative fraction of the volume reference in the laser diffraction scattering method particle size distribution) to produce a niobium powder 10 to 1000 [mu] m.

特許文献2及び3においては、五酸化ニオブ粉(Nb)をアルカリ土類金属や希土類金属などにより還元処理して得られたニオブ粉を、さらに還元処理してニオブ粉を製造する、いわゆる二段階還元処理の製造方法が提案されている。この二段階の還元処理によっても、平均粒径D50が100〜300μmのニオブ粉を製造することができる。 In Patent Documents 2 and 3, niobium powder obtained by reducing niobium pentoxide powder (Nb 2 O 5 ) with an alkaline earth metal or rare earth metal is further reduced to produce niobium powder. A so-called two-stage reduction process manufacturing method has been proposed. The niobium powder having an average particle diameter D50 of 100 to 300 μm can also be produced by this two-stage reduction treatment.

また、特許文献4では、五酸化ニオブ粉(Nb)を水素(H)により還元処理して得られた二酸化ニオブ粉(NbO)を、マグネシウム(Mg)により還元処理してニオブ粉を得る製造方法が提案されている。この特許文献4の製法によると、平均粒径D50が20〜250μmのニオブ粉を製造することができる。 In Patent Document 4, niobium dioxide powder (NbO 2 ) obtained by reducing niobium pentoxide powder (Nb 2 O 5 ) with hydrogen (H 2 ) is reduced with magnesium (Mg) and niobium. A production method for obtaining powder has been proposed. According to the production method of Patent Document 4, niobium powder having an average particle diameter D50 of 20 to 250 μm can be produced.

これらの先行技術によれば、コンデンサ用途に好適な原料となるニオブ粉を製造することができるものの、これらのニオブ粉を使用して一酸化ニオブ粉を製造する場合、例えば、特許文献5では、五酸化ニオブ粉とニオブ粉を反応させる製法は好適ではないという理由により、五酸化ニオブ粉を還元して得られた二酸化ニオブ粉を、ニオブ粉と水素含有雰囲気で反応させることにより、一酸化ニオブ粉を製造する方法が提案されている。この製法により、流動性に優れ、平均粒径D50が200μm程度の一酸化ニオブ粉を製造することができる。この特許文献5のように、五酸化ニオブ粉や二酸化ニオブ粉と、ニオブ粉とを接触させて化学反応させる場合、いわゆる固相反応によるものなので、均一に反応させるためには、接触させる粒子同士の粒径が近いことが重要となる。特許文献1〜4に示されるような二次粒子の平均粒径を有するニオブ粉を用いた場合、二次粒子径の粒径分布の違いにより、酸化ニオブ粉とニオブ粉との混合状態を均一に制御することが難しくなり、均一な粒径の一酸化ニオブ粉を製造することが困難な傾向がある。 According to these prior arts, although niobium powder as a raw material suitable for capacitor use can be produced, when producing niobium monoxide powder using these niobium powders, for example, in Patent Document 5, Niobium monoxide powder is reacted with niobium dioxide powder obtained by reducing niobium pentoxide powder in a hydrogen-containing atmosphere because the method of reacting niobium pentoxide powder with niobium powder is not suitable. A method for producing flour has been proposed. This method, excellent fluidity, the average particle diameter D 50 can be produced niobium monoxide powder of about 200 [mu] m. As in Patent Document 5, when niobium pentoxide powder or niobium dioxide powder is brought into contact with a niobium powder to cause a chemical reaction, it is based on a so-called solid-phase reaction. It is important that the particle diameters of these are close. When niobium powder having the average particle size of secondary particles as shown in Patent Documents 1 to 4 is used, the mixed state of niobium oxide powder and niobium powder is uniform due to the difference in particle size distribution of the secondary particle size. Therefore, it tends to be difficult to produce niobium monoxide powder having a uniform particle size.

また、特許文献1における製造の際に生成される一次粒子としてのニオブ粉は微細なものの、二次粒子(凝集粒子)を形成しているため、微細化のためには粉砕処理を必要とする。しかし、粉砕処理を行うと、ニオブ粉の粒子形状の変形や不純物の混入が起こる場合があり、粉砕処理を必要としない、ニオブ粉の製造技術も求められている。そして、従来の先行技術により得られたニオブ粉に関しては、コンデンサ特性に影響する粉体抵抗については特に検討されていない。   Moreover, although the niobium powder as a primary particle produced | generated at the time of manufacture in patent document 1 is fine, since the secondary particle (aggregated particle) is formed, a grinding | pulverization process is required for refinement | miniaturization. . However, when the pulverization process is performed, the niobium powder may be deformed in particle shape or mixed with impurities, and a niobium powder manufacturing technique that does not require the pulverization process is also required. And about the niobium powder obtained by the conventional prior art, the powder resistance which affects a capacitor characteristic is not examined especially.

特許第4010868号明細書Japanese Patent No. 410868 特許第4381401号明細書Japanese Patent No. 4384011 特許第4202609号明細書Patent No. 4202609 特開2008−274443号公報JP 2008-274443 A 特許第4317091号明細書Japanese Patent No. 4317091

本発明は、以上のような事情を背景になされたものであり、従来の還元処理によるニオブ粉の製造方法を改善することにより、粉砕工程を必要とせずに、より微細なニオブ粉を実現する製造方法、具体的には、平均粒径D50が10μm未満となるようなニオブ粉を実現できるニオブ粉の製造方法、及び粉体抵抗の小さな一酸化ニオブ粉の製造技術を提供することを目的とする。 The present invention has been made in the background as described above, and by improving the conventional method for producing niobium powder by reduction treatment, a finer niobium powder can be realized without the need for a pulverization step. manufacturing method, specifically, aims to provide a manufacturing technique having an average particle production method of niobium powder which diameter D 50 can be realized niobium powder such that less than 10 [mu] m, and smaller niobium monoxide powder powder resistance And

上記課題を解決するため、本発明者は、従来より提案されている二段階の還元処理によるニオブ粉の製造方法について、鋭意検討を行った結果、還元処理時に、還元反応で生成する粒子同士の結合を抑制することで微細なニオブ粉を生成できることを見出すとともに、粉体抵抗の小さな一酸化ニオブ粉も生成できることを見出し、本発明を想到するに至った。   In order to solve the above-mentioned problems, the present inventor has conducted intensive studies on a conventionally proposed method for producing niobium powder by a two-stage reduction process. The inventors have found that fine niobium powder can be produced by suppressing the binding, and that niobium monoxide powder having a low powder resistance can also be produced, and the present invention has been conceived.

本発明は、高酸化数ニオブ酸化物を還元してニオブ粉を生成するニオブ粉の製造方法において、高酸化数ニオブ酸化物と、還元反応で生成する粒子同士の結合を抑制する粒子成長抑制剤とを混合し、卑金属を還元剤として用いて還元を行い、粒子成長抑制剤を除去して一次還元ニオブ粉を生成する第一還元処理と、前記一次還元ニオブ粉と、粒子成長抑制剤とを混合し、卑金属を還元剤として用いて還元を行い、粒子成長抑制剤を除去して二次還元ニオブ粉を生成する第二還元処理とを含む、ことを特徴とする。   The present invention relates to a method for producing niobium powder in which niobium powder is produced by reducing high-oxidation number niobium oxide, and a particle growth inhibitor that suppresses bonding between high-oxidation number niobium oxide and particles produced by a reduction reaction. The first reduction treatment for reducing the particle growth inhibitor to produce primary reduced niobium powder, the primary reduced niobium powder, and the particle growth inhibitor. And a second reduction treatment that performs reduction using a base metal as a reducing agent and removes the particle growth inhibitor to produce secondary reduced niobium powder.

本発明における高酸化数ニオブ酸化物とは、五酸化ニオブ(Nb)または二酸化ニオブ(NbO)であり、中間的な酸化数のニオブ酸化物も含まれる。具体的にはNb1229,NbO1.64,Nbなどの高酸化数ニオブ酸化物も含まれる。本発明における高酸化数ニオブ酸化物は、五酸化ニオブ(Nb)であることが好ましい。 The high oxidation number niobium oxide in the present invention is niobium pentoxide (Nb 2 O 5 ) or niobium dioxide (NbO 2 ), and includes an intermediate oxidation number niobium oxide. Specifically, high oxidation number niobium oxides such as Nb 12 O 29 , NbO 1.64 and Nb 4 O 5 are also included. The high oxidation number niobium oxide in the present invention is preferably niobium pentoxide (Nb 2 O 5 ).

本発明に係るニオブ粉の製造方法は、卑金属を還元剤として用い、二段階の還元処理を行うもので、その還元処理時に還元反応で生成する粒子同士の結合を抑制する粒子成長抑制剤を混合する。第一還元処理では、平均粒径D50が0.5〜2.0μmの一次還元ニオブ粉(酸素を多く含むニオブ粉)が生成される。そして、その一次還元ニオブ粉を第二還元処理することにより、平均粒径D50が10μm未満の二次還元ニオブ粉(酸素の少ないニオブ粉)を製造することができる。 The niobium powder manufacturing method according to the present invention uses a base metal as a reducing agent and performs a two-step reduction treatment, and mixes a particle growth inhibitor that suppresses bonding between particles generated by a reduction reaction during the reduction treatment. To do. In the first reduction treatment, primary reduced niobium powder (niobium powder containing a large amount of oxygen) having an average particle diameter D50 of 0.5 to 2.0 μm is generated. By the primary reductive niobium powder to the second reduction process, it is possible to average particle diameter D 50 to produce secondary reduction niobium powder of less than 10μm (oxygen less niobium powder).

本発明の粒子成長抑制剤の除去は、粒子成長抑制剤の化学的性質に合わせて行うことができ、除去方法に制限はない。例えば、熱分解や揮発により、粒子成長抑制剤を気体化して除去する方法や、アルカリや酸などの溶液に粒子成長抑制剤を溶解することにより除去する方法が採用でき、粒子成長抑制剤の化学的性質などを考慮して、除去しやすい方法を一つもしくは複数選択して、除去処理を行うことができる。   The removal of the particle growth inhibitor of the present invention can be carried out in accordance with the chemical properties of the particle growth inhibitor, and the removal method is not limited. For example, a method of gasifying and removing the particle growth inhibitor by thermal decomposition or volatilization, or a method of removing the particle growth inhibitor by dissolving it in a solution such as alkali or acid can be adopted. The removal process can be performed by selecting one or a plurality of methods that are easy to remove in consideration of specific characteristics.

本発明における粒子成長抑制剤は、アルカリ土類金属塩またはアルカリ土類金属の酸化物であることが好ましい。アルカリ土類金属塩またはアルカリ土類金属の酸化物は、還元反応で生成する粒子同士の結合を抑制する効果に優れているからである。具体的には、アルカリ土類金属塩(カチオン種:マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba)のいずれかの一種)として炭酸塩、硝酸塩、硫酸塩、酢酸塩、シュウ酸塩、リン酸塩、塩化物、フッ化物などが挙げられる。また、酸化物としては、酸化マグネシウム(MgO)、酸化カルシウム(CaO)、酸化ストロンチウム(SrO)、酸化バリウム(BaO)などが挙げられる。   The particle growth inhibitor in the present invention is preferably an alkaline earth metal salt or an alkaline earth metal oxide. This is because an alkaline earth metal salt or an alkaline earth metal oxide has an excellent effect of suppressing the bonding between particles generated by a reduction reaction. Specifically, alkaline earth metal salts (cation species: any of magnesium (Mg), calcium (Ca), strontium (Sr), and barium (Ba)), carbonates, nitrates, sulfates, acetates Oxalate, phosphate, chloride, fluoride and the like. Examples of the oxide include magnesium oxide (MgO), calcium oxide (CaO), strontium oxide (SrO), barium oxide (BaO), and the like.

本発明における還元剤としての卑金属は、リチウム(Li)、マグネシウム(Mg)、アルミニウム(Al)、カルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba)のいずれか1種または2種以上の組み合わせからなることが好ましい。特に、マグネシウムを還元剤として用いることがより好ましい。   The base metal as the reducing agent in the present invention is one or a combination of two or more of lithium (Li), magnesium (Mg), aluminum (Al), calcium (Ca), strontium (Sr), and barium (Ba). Preferably it consists of. In particular, it is more preferable to use magnesium as a reducing agent.

本発明における高酸化数ニオブ酸化物は、その平均粒径D50が0.5〜10μmであることが好ましく、粒子成長抑制剤の平均粒径D50は1〜100μmであることが望ましい。 High oxidation number niobium oxide in the present invention preferably has a mean particle diameter D 50 is 0.5 to 10 [mu] m, it is desirable that the average particle diameter D 50 of the particle growth inhibitor is 1 to 100 [mu] m.

高酸化数ニオブ酸化物と粒子成長抑制剤との混合は、両方の粉体を無溶媒で乾式混合することがことができ、或いは適当な溶媒を用いて両方の粉体を湿式混合し乾燥することもできる。この湿式混合の溶媒としては、水系、非水系(アルコール系や炭化水素系)のどちらも用いることが可能である。また、混合に用いる混合機としては、V型混合機、ボールミル、ディスパーサーなどの通常の混合処理に用いられる市販装置が適用できる。混合処理や乾燥処理は、アルゴンや窒素などの不活性雰囲気中で行う。或いは、乾燥処理には真空乾燥を適用する。   Mixing the high oxidation number niobium oxide with the particle growth inhibitor can dry-mix both powders without solvent, or wet-dry both powders using a suitable solvent. You can also. As the wet-mixing solvent, both aqueous and non-aqueous (alcohol and hydrocarbon) solvents can be used. Moreover, as a mixer used for mixing, the commercially available apparatus used for normal mixing processes, such as a V-type mixer, a ball mill, a disperser, can be applied. The mixing process and the drying process are performed in an inert atmosphere such as argon or nitrogen. Alternatively, vacuum drying is applied to the drying process.

本発明における第一還元処理は、800℃〜1100℃の温度範囲で行うことが好ましく、還元処理を3時間以上保持した後、常温まで炉冷して、粉末を取り出すことが好ましい。   The first reduction treatment in the present invention is preferably performed in a temperature range of 800 ° C. to 1100 ° C., and after holding the reduction treatment for 3 hours or more, it is preferable to cool the furnace to room temperature and take out the powder.

この取り出した粉末は、例えばアルカリや酸の溶液に投入して、粒子成長抑制剤や還元剤として含まれている卑金属の酸化物を溶解して除去することが好ましい。その後、アルゴンや窒素などの不活性雰囲気中で乾燥処理、或いは、真空乾燥処理を行うことが好ましい。このようにして一次還元ニオブ粉が得られる。   The taken-out powder is preferably put into, for example, an alkali or acid solution to dissolve and remove the base metal oxide contained as a particle growth inhibitor or a reducing agent. Thereafter, it is preferable to perform a drying process or a vacuum drying process in an inert atmosphere such as argon or nitrogen. In this way, primary reduced niobium powder is obtained.

第二還元処理は、得られた一次還元ニオブ粉を用いて、700℃〜1000℃の温度範囲で行うことが好ましく、還元処理時間を三時間以上保持した後、常温まで炉冷して、粉末を取り出すことが好ましい。   The second reduction treatment is preferably carried out in the temperature range of 700 ° C. to 1000 ° C. using the obtained primary reduced niobium powder. After holding the reduction treatment time for 3 hours or more, the furnace is cooled to room temperature and powdered Is preferably taken out.

この取り出した粉末は、第一還元処理と同様に、例えばアルカリや酸の溶液に投入して、粒子成長抑制剤や還元剤として含まれている卑金属の酸化物を溶解して除去することが好ましい。その後、アルゴンや窒素などの不活性雰囲気中で乾燥処理、或いは、真空乾燥処理を行うことが好ましい。このようにして二次還元ニオブ粉が得られる。   As in the first reduction treatment, the taken-out powder is preferably introduced into, for example, an alkali or acid solution to dissolve and remove the base metal oxide contained as a particle growth inhibitor or a reducing agent. . Thereafter, it is preferable to perform a drying process or a vacuum drying process in an inert atmosphere such as argon or nitrogen. In this way, secondary reduced niobium powder is obtained.

本発明に係るニオブ粉の製造方法によれば、レーザー回折・散乱法粒子径分布における体積基準の積算分率における50%径である平均粒径D50が10μm未満であり、好ましくは1μm〜5μmで、体積基準の積算分率における90%径である粒径D90が50μm以下、好ましくは30μm以下であるニオブ粉を製造することが可能となる。 According to the method for producing niobium powder according to the present invention, the average particle diameter D50 which is a 50% diameter in the volume-based integrated fraction in the laser diffraction / scattering particle diameter distribution is less than 10 μm, preferably 1 μm to 5 μm. in the particle size D 90 is 90% diameter in cumulative fraction of volume based 50μm or less, preferably it is possible to produce a niobium powder is 30μm or less.

上記した本発明に係るニオブ粉の製造方法により得られた二次還元ニオブ粉を用い、この二次還元ニオブ粉と高酸化数ニオブ酸化物とを混合し、水素を含む雰囲気において還元処理を行い、一酸化ニオブ粉を生成すると、コンデンサ用途に好適な、一次粒子が微細で且つ空隙を有する二次粒子形態の一酸化ニオブ粉となる。従来技術においては、五酸化ニオブ粉とニオブ粉とを水素存在下で反応させることにより、亜酸化ニオブ粉(一酸化ニオブ粉)を生成すると、亜酸化ニオブへ変化する際に五酸化ニオブの体積収縮が生じて、亜酸化ニオブ粉の粗大化を引き起こし、キャパシタ特性に不利な亜酸化ニオブ粉になることが知られている(例えば、特許文献5参照)。しかし、本発明のような粒子成長抑制剤を用いて生成された二次還元ニオブ粉と高酸化数ニオブ酸化物とを混合し、水素を含む雰囲気において還元処理を行うと、コンデンサ用途に好適な、一次粒子が微細で且つ空隙を有する二次粒子形態の一酸化ニオブ粉を製造することができるのである。   Using the secondary reduced niobium powder obtained by the niobium powder manufacturing method according to the present invention described above, the secondary reduced niobium powder and the high oxidation number niobium oxide are mixed and subjected to reduction treatment in an atmosphere containing hydrogen. When niobium monoxide powder is produced, it becomes niobium monoxide powder in the form of secondary particles having fine primary particles and voids, which are suitable for capacitor applications. In the prior art, when niobium pentoxide powder and niobium powder are reacted in the presence of hydrogen to produce niobium suboxide powder (niobium monoxide powder), the volume of niobium pentoxide is changed to niobium suboxide. It is known that contraction occurs to cause the niobium oxide powder to become coarse, resulting in niobium oxide powder that is disadvantageous for capacitor characteristics (see, for example, Patent Document 5). However, when secondary reduction niobium powder produced using a particle growth inhibitor such as the present invention and high oxidation number niobium oxide are mixed and subjected to reduction treatment in an atmosphere containing hydrogen, it is suitable for capacitor applications. The niobium monoxide powder in the form of secondary particles having fine primary particles and voids can be produced.

本発明に係る一酸化ニオブ粉の製造方法により得られた一酸化ニオブ粉は、粉末X線回折から得られる一酸化ニオブのピークの半値幅が0.09〜0.20度であることを特徴とする。このようなX線特性は、非常に結晶性が高く、結晶構造もより安定化していることを示すので、粉体抵抗の小さな一酸化ニオブ粉となる。   The niobium monoxide powder obtained by the method for producing niobium monoxide powder according to the present invention is characterized in that the half-value width of the peak of niobium monoxide obtained from powder X-ray diffraction is 0.09 to 0.20 degrees. And Such X-ray characteristics indicate that the crystallinity is very high and the crystal structure is more stabilized, so that the niobium monoxide powder having a low powder resistance is obtained.

また、本発明に係る一酸化ニオブ粉の製造方法により得られた一酸化ニオブ粉は、圧粉密度3.0g/cmに圧縮してペレット化したときの導電率が500S/cm以上となる。本発明における一酸化ニオブ粉は、粉体抵抗が低いため、コンデンサ原料として極めて好適なものとなる。 Further, the niobium monoxide powder obtained by the niobium monoxide powder manufacturing method according to the present invention has a conductivity of 500 S / cm or more when compressed to a compact density of 3.0 g / cm 3 and pelletized. . Since the niobium monoxide powder in the present invention has a low powder resistance, it is extremely suitable as a capacitor raw material.

本発明に係る一酸化ニオブ粉の製造方法により得られた一酸化ニオブ粉は、その平均粒径D50が30〜200μmとなり、比表面積(BET法)が0.8m/g以上となる。コンデンサ用途の一酸化ニオブ粉としては、粉体の流動性があり、コンデンサ特性を向上できるものが求められるが、本発明による一酸化ニオブ粉は、コンデンサの原料としても極めて好適なニオブ酸化物となる。 NbO powder obtained by the production method of niobium monoxide powder of the present invention, an average particle diameter D 50 of 30~200μm, and the specific surface area (BET method) is 0.8 m 2 / g or more. Niobium monoxide powder for use in capacitors is required to have powder fluidity and improve capacitor characteristics, but niobium monoxide powder according to the present invention is a niobium oxide that is extremely suitable as a raw material for capacitors. Become.

本発明に係る一酸化ニオブ粉の製造方法において、高酸化数ニオブ酸化物は五酸化ニオブ(Nb)であることが好ましい。 In the method for producing niobium monoxide powder according to the present invention, the high oxidation number niobium oxide is preferably niobium pentoxide (Nb 2 O 5 ).

以上のように、本発明によれば、コンデンサ用途として好適な原料となる微細なニオブ粉を、粒子の変形や不純物の混入を引き起こしやすい粉砕処理を行うことなく、効率的に製造することが可能となる。そして、本発明により得られた一酸化ニオブ粉は、微細で、粉体抵抗も小さいので、小型のコンデンサであっても、良好なコンデンサ特性を実現することが可能となる。   As described above, according to the present invention, it is possible to efficiently produce fine niobium powder, which is a suitable raw material for capacitor applications, without performing pulverization that tends to cause deformation of particles or contamination of impurities. It becomes. The niobium monoxide powder obtained by the present invention is fine and has a low powder resistance, so that it is possible to realize good capacitor characteristics even with a small capacitor.

以下、本発明における実施形態について、実施例を参照して説明する。   Embodiments of the present invention will be described below with reference to examples.

まず初めに、五酸化ニオブ粉を一次還元処理した結果について説明する。実施例1−1として、100gの五酸化ニオブ粉(Nb)に対して、64gの金属マグネシウム(Mg)粉末を準備した。そして、粒子成長抑制剤としての酸化マグネシウム(MgO)の粉末を、五酸化ニオブ粉量に対して0.1wt%に相当する量を添加して、ボールミルにて3時間の乾式混合した後、還元処理を行った。還元処理条件は、アルゴン雰囲気中、1100℃、4時間の熱処理を行い、室温まで冷却した後、取り出した粉末を、濃度30wt%硝酸溶液(2L)で洗浄し、水洗処理した。その後、乾燥して、一次還元ニオブ粉を得た。 First, the results of primary reduction treatment of niobium pentoxide powder will be described. As Example 1-1, 64 g of metal magnesium (Mg) powder was prepared with respect to 100 g of niobium pentoxide powder (Nb 2 O 5 ). Then, a powder of magnesium oxide (MgO) as a particle growth inhibitor is added in an amount corresponding to 0.1 wt% with respect to the amount of niobium pentoxide powder, and after dry mixing for 3 hours in a ball mill, reduction is performed. Processed. The reduction treatment conditions were as follows: heat treatment was performed at 1100 ° C. for 4 hours in an argon atmosphere, and after cooling to room temperature, the extracted powder was washed with a 30 wt% nitric acid solution (2 L) and washed with water. Then, it dried and obtained primary reduced niobium powder.

この実施例1の一次還元ニオブ粉について、平均粒径D50、BET法比表面積、酸素量の測定を行った。表1に測定結果を示す。また、各測定条件は以下の通りである。 The primary reduced niobium powder of Example 1 was measured for average particle diameter D 50 , BET specific surface area, and oxygen content. Table 1 shows the measurement results. Moreover, each measurement condition is as follows.

平均粒径D50:レーザー回折・散乱法粒子径分布測定装置((株)堀場製作所製LA−920)を使用して粒度分布を測定することにより、体積基準のメジアン径(D50:小粒径側からの累積体積50%における粒径)を求めた。 Average particle diameter D 50 : Volume-based median diameter (D 50 : small particle) by measuring the particle size distribution using a laser diffraction / scattering particle size distribution measuring device (LA-920 manufactured by Horiba, Ltd.) The particle diameter at a cumulative volume of 50% from the diameter side) was determined.

BET法比表面積:BET法比表面積は、評価試料である一酸化ニオブ粉を、吸着質ガスである窒素を約30容量%、キャリアガスであるヘリウムを約70容量%含有する窒素−ヘリウム混合ガスを用いてBET比表面積測定装置((株)島津製作所製、マイクロメリティックス フローソープII2300)を用いて、JIS R 1626「ファインセラミックス粉体の気体吸着BET法による比表面積の測定方法」の6.2流動法の(3.5)一点法に従い測定を行った。 BET specific surface area: BET specific surface area is a nitrogen-helium mixed gas containing niobium monoxide powder as an evaluation sample, about 30% by volume of nitrogen as an adsorbate gas and about 70% by volume of helium as a carrier gas. Using a BET specific surface area measuring apparatus (manufactured by Shimadzu Corporation, Micromeritics Flow Soap II2300), JIS R 1626 “Method for measuring specific surface area of fine ceramic powder by gas adsorption BET method” 6 Measurements were made according to the (3.5) single point method of the .2 flow method.

酸素量:酸素量は熱分析装置(TG、マックサイエンス社製)を用いて、空気雰囲気中、600℃まで加熱してニオブ粉もしくは一酸化ニオブ粉を五酸化ニオブ粉に酸化させたときの重量変化から算出した。 Oxygen amount: Oxygen amount is the weight when niobium powder or niobium monoxide powder is oxidized to niobium pentoxide powder by heating to 600 ° C in an air atmosphere using a thermal analyzer (TG, manufactured by Mac Science). Calculated from change.

また、実施例1−2〜1−5として、上記実施例1−1の粒子成長抑制剤の酸化マグネシウムの添加量を変化させた一次還元ニオブ粉を製造した。実施例1−2は酸化マグネシウム添加量を1wt%とし、実施例1−3は5wt%、実施例1−4は10wt%、実施例1−5は20wt%とした。その他の条件は、実施例1−1と同様にした。そして、実施例1−2〜1−5の各一次還元ニオブ粉について、平均粒径D50、BET法比表面積、酸素量の測定を行った。表1に測定結果を示す。 In addition, as Examples 1-2 to 1-5, primary reduced niobium powder in which the amount of magnesium oxide added as the particle growth inhibitor of Example 1-1 was changed was produced. In Example 1-2, the amount of magnesium oxide added was 1 wt%, Example 1-3 was 5 wt%, Example 1-4 was 10 wt%, and Example 1-5 was 20 wt%. Other conditions were the same as in Example 1-1. Then, for each primary reduction niobium powder of Example 1-2~1-5, average particle diameter D 50, BET method specific surface area, measured oxygen content was carried out. Table 1 shows the measurement results.

さらに、実施例1−6として、粒子成長抑制剤に酸化カルシウムを使用した場合の一次還元粉を製造した。実施例1−6では、40gの五酸化ニオブ粉(Nb)に対して、8gの金属マグネシウム(Mg)粉末を準備した。そして、粒子成長抑制剤としての酸化カルシウム(CaO)の粉末を、五酸化ニオブ粉量に対して1wt%に相当する量を添加して、ボールミルにて3時間乾式混合した後、還元処理を行った。還元処理条件は、アルゴン雰囲気中、1100℃、4時間の熱処理を行い、室温まで冷却した後、取り出した粉末を濃度30wt%の硝酸溶液(2L)で洗浄し、水洗処理した。その後、乾燥して、一次還元ニオブ粉を得た。この実施例1−6の一次還元ニオブ粉についても、平均粒径D50、BET法比表面積、酸素量の測定を行った。表1に測定結果を示す。 Further, as Example 1-6, a primary reduced powder was produced when calcium oxide was used as the particle growth inhibitor. In Example 1-6, 8 g of metal magnesium (Mg) powder was prepared for 40 g of niobium pentoxide powder (Nb 2 O 5 ). Then, calcium oxide (CaO) powder as a particle growth inhibitor is added in an amount corresponding to 1 wt% with respect to the amount of niobium pentoxide powder, and dry mixed in a ball mill for 3 hours, followed by reduction treatment. It was. The reduction treatment conditions were as follows: heat treatment at 1100 ° C. for 4 hours in an argon atmosphere, cooling to room temperature, washing the extracted powder with nitric acid solution (2 L) having a concentration of 30 wt%, and washing with water. Then, it dried and obtained primary reduced niobium powder. For the primary reduced niobium powder of this Example 1-6, the average particle diameter D 50 , the BET specific surface area, and the oxygen content were measured. Table 1 shows the measurement results.

比較例1−1として、特許文献2で示された先行技術に基づき、一次還元ニオブ粉を製造した。この比較例1−1では、100gの五酸化ニオブ粉(Nb)に対して、64gの金属マグネシウム(Mg)粉末を準備し、粒子成長抑制剤は添加することなく還元処理を行った。還元処理条件は、アルゴン雰囲気中、900℃、4時間の熱処理を行い、室温まで冷却した後、取り出した粉末を、濃度30wt%の硫酸溶液(2L)で洗浄し、水洗処理した。その後、乾燥して、一次還元ニオブ粉を得た。そして、比較例1−1の一次還元ニオブ粉について、平均粒径D50、BET法比表面積、酸素量の測定を行った。表1に測定結果を示す。 As Comparative Example 1-1, primary reduced niobium powder was produced based on the prior art disclosed in Patent Document 2. In Comparative Example 1-1, 64 g of metal magnesium (Mg) powder was prepared for 100 g of niobium pentoxide powder (Nb 2 O 5 ), and reduction treatment was performed without adding a particle growth inhibitor. . The reduction treatment conditions were as follows: heat treatment was performed at 900 ° C. for 4 hours in an argon atmosphere, and after cooling to room temperature, the extracted powder was washed with a 30 wt% sulfuric acid solution (2 L) and washed with water. Then, it dried and obtained primary reduced niobium powder. Then, the primary reduction niobium powder of Comparative Example 1-1, the average particle diameter D 50, BET method specific surface area, measured oxygen content was carried out. Table 1 shows the measurement results.

比較例1−2として、特許文献4で示された先行技術に基づき、一次還元ニオブ粉を製造した。この比較例1−2では、100gの五酸化ニオブ粉(Nb)を、水素雰囲気中、1100℃、4時間の還元処理を行い、室温まで冷却し、一次還元ニオブ粉を得た。そして、比較例1−2の一次還元ニオブ粉について、平均粒径D50、BET法比表面積、酸素量の測定を行った。表1に測定結果を示す。 As Comparative Example 1-2, primary reduced niobium powder was produced based on the prior art disclosed in Patent Document 4. In Comparative Example 1-2, 100 g of niobium pentoxide powder (Nb 2 O 5 ) was subjected to reduction treatment at 1100 ° C. for 4 hours in a hydrogen atmosphere, and cooled to room temperature to obtain primary reduced niobium powder. Then, the primary reduction niobium powder of Comparative Example 1-2, the average particle diameter D 50, BET method specific surface area, measured oxygen content was carried out. Table 1 shows the measurement results.

Figure 2012036440
Figure 2012036440

表1に示すように、実施例1−1〜1−6の一次還元ニオブ粉は、平均粒径D50が1μm未満であった。一方、従来技術である比較例1−1、比較例1−2では、平均粒径D50が非常に大きな値となることが確認された。酸素量については、比較例1−2が最も大きな値となったが、これは比較例1−2の一次還元ニオブ粉が二酸化ニオブ粉(NbO)であることによる。これに対して、実施例1−1〜1−6の一次還元ニオブ粉は、次に説明する二次還元ニオブ粉に比べて、酸素量の多いニオブ粉であることが判明した。 As shown in Table 1, the primary reduction niobium powder of Example 1-1 to 1-6, the average particle diameter D 50 is less than 1 [mu] m. On the other hand, Comparative Example is a conventional art 1-1, Comparative Example 1-2, the average particle diameter D 50 becomes a very large value is confirmed. As for the amount of oxygen, Comparative Example 1-2 had the largest value because the primary reduced niobium powder of Comparative Example 1-2 was niobium dioxide powder (NbO 2 ). On the other hand, it turned out that the primary reduced niobium powder of Examples 1-1 to 1-6 is a niobium powder having a larger amount of oxygen than the secondary reduced niobium powder described below.

続いて、上記した一次還元ニオブ粉を再度還元処理して二次還元ニオブ粉を製造した結果について説明する。   Subsequently, the result of reducing the above-described primary reduced niobium powder again to produce secondary reduced niobium powder will be described.

まず、実施例2−1として、上記実施例1−1として得られた一次還元ニオブ粉40gに対して、8gの金属マグネシウム(Mg)粉末を準備した。そして、粒子成長抑制剤としての酸化マグネシウム(MgO)の粉末を、一次還元ニオブ粉量に対して0.1wt%に相当する量を添加して乾式混合した後、還元処理を行った。還元処理条件は、アルゴン雰囲気中、900℃、4時間の熱処理を行い、室温まで冷却した後、取り出した粉末を、濃度30wt%の硝酸溶液(2L)で洗浄し、水洗処理した。その後、乾燥して、二次還元ニオブ粉を得た。   First, as Example 2-1, 8 g of metal magnesium (Mg) powder was prepared with respect to 40 g of the primary reduced niobium powder obtained as Example 1-1. Then, magnesium oxide (MgO) powder as a particle growth inhibitor was added in an amount corresponding to 0.1 wt% with respect to the amount of primary reduced niobium powder and dry-mixed, followed by reduction treatment. The reduction treatment conditions were as follows: heat treatment at 900 ° C. for 4 hours in an argon atmosphere, and after cooling to room temperature, the extracted powder was washed with a 30 wt% nitric acid solution (2 L) and washed with water. Then, it dried and obtained secondary reduction niobium powder.

また、実施例2−2〜2−5として、上記実施例1−2〜1−5の各一次還元ニオブ粉を用い、粒子成長抑制剤の酸化マグネシウムの添加量を変化させた二次還元ニオブ粉を製造した。実施例2−2は、実施例1−2の一次還元ニオブ粉を用い、酸化マグネシウム添加量を1wt%とし、実施例2−3は実施例1−3の一次還元ニオブ粉を用い、酸化マグネシウム添加量を5wt%とし、実施例2−4は実施例1−4の一次還元ニオブ粉を用い、酸化マグネシウム添加量を10wt%とし、実施例2−5は実施例1−5の一次還元ニオブ粉を用い、酸化マグネシウム添加量を20wt%とした。その他の条件は、実施例2−1と同様にした。   Moreover, as Example 2-2 to 2-5, the secondary reduction niobium which changed each addition amount of the magnesium oxide of a particle growth inhibitor using each primary reduction niobium powder of the said Examples 1-2 to 1-5. Powder was produced. Example 2-2 uses the primary reduced niobium powder of Example 1-2, the amount of magnesium oxide added is 1 wt%, Example 2-3 uses the primary reduced niobium powder of Example 1-3, and magnesium oxide The amount of addition was 5 wt%, Example 2-4 used the primary reduced niobium powder of Example 1-4, the amount of magnesium oxide added was 10 wt%, and Example 2-5 was the primary reduced niobium of Example 1-5. Powder was used and the magnesium oxide addition amount was 20 wt%. Other conditions were the same as in Example 2-1.

さらに、実施例2−6として、実施例1−6の一次還元ニオブ粉を用い、粒子成長抑制剤に酸化カルシウムを使用して二次還元ニオブ粉を製造した。実施例2−6では、実施例1−6の一次還元ニオブ粉40gと、8gの金属マグネシウム粉末を準備した。そして、粒子成長抑制剤としての酸化カルシウムの粉末を、一次還元ニオブ粉量に対して1wt%に相当する量を添加して、ボールミルにて3時間乾式混合した後、還元処理を行った。還元処理条件は、アルゴン雰囲気中、900℃、4時間の熱処理を行い、室温まで冷却した後、取り出した粉末を、濃度30wt%の硝酸溶液(2L)で洗浄し、水洗処理した。その後、乾燥して、二次還元ニオブ粉を得た。   Further, as Example 2-6, primary reduced niobium powder of Example 1-6 was used, and secondary reduced niobium powder was produced using calcium oxide as a particle growth inhibitor. In Example 2-6, 40 g of the primary reduced niobium powder of Example 1-6 and 8 g of metal magnesium powder were prepared. Then, a powder of calcium oxide as a particle growth inhibitor was added in an amount corresponding to 1 wt% with respect to the amount of primary reduced niobium powder, and after dry mixing for 3 hours in a ball mill, reduction treatment was performed. The reduction treatment conditions were as follows: heat treatment at 900 ° C. for 4 hours in an argon atmosphere, and after cooling to room temperature, the extracted powder was washed with a 30 wt% nitric acid solution (2 L) and washed with water. Then, it dried and obtained secondary reduction niobium powder.

比較例2−1として、比較例1−1の一次還元ニオブ粉40gと、8gの金属マグネシウム粉末を準備し、粒子成長抑制剤は添加することなく還元処理を行った。還元処理条件は、アルゴン雰囲気中、800℃、2時間の熱処理を行い、室温まで冷却した後、取り出した粉末を、濃度30wt%の硫酸溶液(2L)で洗浄し、水洗処理した。その後、乾燥して、二次還元ニオブ粉を得た。   As Comparative Example 2-1, 40 g of primary reduced niobium powder of Comparative Example 1-1 and 8 g of metal magnesium powder were prepared, and the reduction treatment was performed without adding the particle growth inhibitor. The reduction treatment conditions were as follows: heat treatment was performed at 800 ° C. for 2 hours in an argon atmosphere, and after cooling to room temperature, the extracted powder was washed with a 30 wt% sulfuric acid solution (2 L) and washed with water. Then, it dried and obtained secondary reduction niobium powder.

比較例2−2として、比較例1−2の一次還元ニオブ粉(二酸化ニオブ粉)80gと、43gの金属マグネシウム粉末を準備し、粒子成長抑制剤は添加することなく還元処理を行った。還元処理条件は、アルゴン雰囲気中、1000℃、4時間の熱処理を行い、室温まで冷却した後、取り出した粉末を、濃度30wt%の硝酸溶液(2L)で洗浄し、水洗処理した。その後、乾燥して、二次還元ニオブ粉を得た。   As Comparative Example 2-2, 80 g of primary reduced niobium powder (niobium dioxide powder) of Comparative Example 1-2 and 43 g of metal magnesium powder were prepared, and reduction treatment was performed without adding the particle growth inhibitor. The reduction treatment conditions were as follows: heat treatment was performed at 1000 ° C. for 4 hours in an argon atmosphere, and after cooling to room temperature, the extracted powder was washed with a nitric acid solution (2 L) having a concentration of 30 wt% and washed with water. Then, it dried and obtained secondary reduction niobium powder.

実施例2−1〜2−6、比較例2−1、2−2の二次還元ニオブ粉について、平均粒径D50、粒径D90、BET法比表面積、酸素量の測定を行った。表2に測定結果を示す。尚、粒径D90については、レーザー回折・散乱法粒子径分布測定装置((株)堀場製作所製LA−920)により粒度分布を測定し、小粒径側からの累積体積90%における粒径を求めた結果である。 For the secondary reduced niobium powders of Examples 2-1 to 2-6 and Comparative Examples 2-1 and 2-2, the average particle size D 50 , the particle size D 90 , the BET specific surface area, and the amount of oxygen were measured. . Table 2 shows the measurement results. Incidentally, the particle diameter D 90, the particle size distribution measured by a laser diffraction scattering method particle size distribution measuring apparatus (manufactured by HORIBA, Ltd. LA-920), the particle size in cumulative volume of 90% from the smaller particle size side It is the result of having calculated | required.

Figure 2012036440
Figure 2012036440

表2に示すように、実施例2−1〜2−6の二次還元ニオブ粉は、平均粒径D50が5μm未満であった。一方、比較例の二次還元二オブ粉は、BET比表面積は実施例と同レベルであったが、平均粒径D50が100μmを超えるものとなった。また。酸素量測定の結果より、各二次還元ニオブ粉は、ニオブ粉であることが判明した。 As shown in Table 2, the secondary reduction niobium powder of Example 2-1 to 2-6, the average particle diameter D 50 is less than 5 [mu] m. On the other hand, the secondary reduction niobium powder of the comparative example has a BET specific surface area of embodiments the same level, the average particle diameter D 50 was to exceed 100 [mu] m. Also. From the results of the oxygen amount measurement, each secondary reduced niobium powder was found to be niobium powder.

最後に、上記した二次還元ニオブ粉を用いて、一酸化ニオブ粉を製造した結果について説明する。   Finally, the results of producing niobium monoxide powder using the secondary reduced niobium powder described above will be described.

実施例3−1〜3−5として、上記実施例2−1〜2−5により得られた各二次還元ニオブ粉を用いて、一酸化ニオブ粉の製造を行った。各実施例の二次還元ニオブ粉30gと、24gの五酸化ニオブ粉(Nb)とをボールミルに投入し、不活性雰囲気中において、純水を用いて、3時間の湿式混合処理をし、乾燥後、焼成処理を行った。焼成処理条件は、水素雰囲気中、1500℃、5時間の熱処理を行い、室温まで冷却した後、篩により選別し、篩下の粉末を各実施例の一酸化ニオブ粉として得た。 As Examples 3-1 to 3-5, niobium monoxide powder was produced using each secondary reduced niobium powder obtained in Examples 2-1 to 2-5. 30 g of secondary reduced niobium powder of each example and 24 g of niobium pentoxide powder (Nb 2 O 5 ) were put into a ball mill, and subjected to a wet mixing process for 3 hours using pure water in an inert atmosphere. Then, after drying, a baking treatment was performed. Firing conditions were as follows: heat treatment at 1500 ° C. for 5 hours in a hydrogen atmosphere, cooling to room temperature, and selecting with a sieve to obtain the powder under the sieve as niobium monoxide powder in each example.

実施例3−6として、上記実施例2−6により得られた二次還元ニオブ粉を用いて、一酸化ニオブ粉の製造を行った。実施例2−6の二次還元ニオブ粉30gと、24gの五酸化ニオブ粉とをボールミルに投入し、不活性雰囲気中において、純水を用いて、3時間の湿式混合処理をし、乾燥後、焼成処理を行った。焼成処理条件は、水素雰囲気中、1450℃、5時間の熱処理を行い、室温まで冷却した後、篩により選別し、篩下の粉末を一酸化ニオブ粉として得た。   As Example 3-6, niobium monoxide powder was produced using the secondary reduced niobium powder obtained in Example 2-6. After putting 30 g of the secondary reduced niobium powder of Example 2-6 and 24 g of niobium pentoxide powder into a ball mill, and performing a wet mixing process for 3 hours using pure water in an inert atmosphere, after drying The baking process was performed. Firing conditions were as follows: heat treatment at 1450 ° C. for 5 hours in a hydrogen atmosphere, cooling to room temperature, and selecting with a sieve to obtain the powder under the sieve as niobium monoxide powder.

比較例3−1として、比較例2−1の二次還元ニオブ粉30gと、19gの五酸化ニオブ粉とをボールミルに投入し、不活性雰囲気中において、純水を用いて、3時間の湿式混合処理をし、乾燥後、焼成処理を行った。焼成処理条件は、水素雰囲気中、1400℃、5時間の熱処理を行い、室温まで冷却した後、篩により選別し、篩下の粉末を一酸化ニオブ粉として得た。   As Comparative Example 3-1, 30 g of the secondary reduced niobium powder of Comparative Example 2-1 and 19 g of niobium pentoxide powder were charged into a ball mill, and wet for 3 hours using pure water in an inert atmosphere. The mixture was processed, dried, and then fired. Firing conditions were as follows: heat treatment at 1400 ° C. for 5 hours in a hydrogen atmosphere, cooling to room temperature, and selecting with a sieve to obtain the powder under the sieve as niobium monoxide powder.

比較例3−2として、比較例2−2の二次還元ニオブ粉30gと、21gの五酸化ニオブ粉とをボールミルに投入し、不活性雰囲気中において、純水を用いて、3時間の湿式混合処理をし、乾燥後、焼成処理を行った。焼成処理条件は、水素雰囲気中、1400℃、5時間の熱処理を行い、室温まで冷却した後、篩により選別し、篩下の粉末を一酸化ニオブ粉として得た。   As Comparative Example 3-2, 30 g of the secondary reduced niobium powder of Comparative Example 2-2 and 21 g of niobium pentoxide powder were charged into a ball mill, and wet for 3 hours using pure water in an inert atmosphere. The mixture was processed, dried, and then fired. Firing conditions were as follows: heat treatment at 1400 ° C. for 5 hours in a hydrogen atmosphere, cooling to room temperature, and selecting with a sieve to obtain the powder under the sieve as niobium monoxide powder.

実施例3−1〜3−6、比較例3−1、3−2の各一酸化ニオブ粉について、平均粒径D50、BET法比表面積、酸素量、及び導電率の測定及びX線回折による一酸化ニオブピークの半値幅測定を行った。そして、実施例及び比較例3−1については粗粒確認のための篩選別試験を行った。表3に測定結果を示す。また、導電率の測定は以下のようにして行った。 For each niobium monoxide powder of Examples 3-1 to 3-6 and Comparative Examples 3-1 and 3-2, measurement of average particle diameter D 50 , BET specific surface area, oxygen amount, and conductivity and X-ray diffraction The full width at half maximum of the niobium monoxide peak was measured. And about the Example and the comparative example 3-1, the sieve screening test for coarse grain confirmation was done. Table 3 shows the measurement results. In addition, the conductivity was measured as follows.

導電率:粉体抵抗測定システム(MCP−PD51型 (株)三菱化学アナリテック社製)を用いて、測定対象の一酸化ニオブ粉を1g測り取り、プレス機にて圧粉密度3.0g/cmに圧縮してペレット化して、その粉体抵抗率を測定し、その逆数から導電率を算出した。 Conductivity: Using a powder resistance measurement system (MCP-PD51 type, manufactured by Mitsubishi Chemical Analytech Co., Ltd.), 1 g of niobium monoxide powder to be measured is measured, and the density of the powder is 3.0 g / The powder resistivity was measured by compressing to cm 3 and pelletizing, and the conductivity was calculated from the reciprocal thereof.

X線回折測定:一酸化ニオブ粉について、X線回折装置(MXP18、マックサイエンス(株)製)を用いて測定を行った。この測定では、銅(Cu)ターゲットを使用し、Cu−Kα線により回折X線強度を測定した。その他の測定条件は、管電圧40kV、管電流150mA、測定範囲2θ=10°〜80°、サンプリング幅0.02°、走査速度4.0°/minとした。半値幅は、JIS K 0131−1996「X線回折分析通則」の図6半値幅(θ1/2)に準じた。この半値幅の単位は、同JISの「12.結晶子の大きさと不均一ひずみの測定」においては「rad」であるが、ここでは「°」で表示した。尚、本発明におけるX線回折は、資料にCuKα線を照射して得られた回折X線ピークのピーク強度順に6本分析し、Cu−Kα線によるピークと、Cu−Kα線によるピークとの分離を行い、Kα線のみを用いて解析を行った。 X-ray diffraction measurement: Niobium monoxide powder was measured using an X-ray diffractometer (MXP18, manufactured by Mac Science Co., Ltd.). In this measurement, a copper (Cu) target was used, and the diffracted X-ray intensity was measured with Cu-Kα 1 line. Other measurement conditions were a tube voltage of 40 kV, a tube current of 150 mA, a measurement range 2θ = 10 ° to 80 °, a sampling width of 0.02 °, and a scanning speed of 4.0 ° / min. The half width was in accordance with the half width (θ 1/2 ) in FIG. 6 of JIS K 0131-1996 “General Rules for X-ray Diffraction Analysis”. The unit of the half-value width is “rad” in “12. Measurement of crystallite size and non-uniform strain” of the same JIS, but here it is indicated by “°”. The X-ray diffraction in the present invention was analyzed in the order of the peak intensity of the diffraction X-ray peaks obtained by irradiating the material with CuKα rays, and the peak due to Cu-Kα 1 line and the peak due to Cu-Kα 2 line were analyzed. also separate and was analyzed by using only K [alpha 1 line.

篩選別試験:各一酸化ニオブ粉について、目開き300μmの篩により篩選別を行い、篩上に残留した粗粒の割合を調査した。 Sieve selection test: Each niobium monoxide powder was subjected to sieve selection with a sieve having an opening of 300 μm, and the ratio of coarse particles remaining on the sieve was examined.

Figure 2012036440
Figure 2012036440

表3に示すように、各実施例と各比較例との測定結果を比較すると、平均粒径D50およびBET比表面積は同レベルであったが、導電率は各実施例の値が、比較例よりも約2倍もの大きな値となることが判明した。この粉体導電率が大きくなった理由としては、一酸化ニオブ粉を生成する際のニオブ粉の平均粒径が小さくなったことで混合性が向上し、生成された一酸化ニオブ粉の結晶性が高くなったことによるものと考えられる。また、300μm以上の粗粒については、実施例ではほとんど含まれていなかったが、比較例3−1では10%以上の割合で含まれていた。比較例3−1では、粒子成長抑制剤を使用していないため、ニオブ粉の二次粒子の大きさの制御ができず、最終的に得られた一酸化粉に径300μmを超える粗粒が生成されたものと考えられる。 As shown in Table 3, when comparing the measurement results of the respective Examples and Comparative Examples, the average particle size D 50 and the BET specific surface area was the same level, conductivity values of each of Examples, Comparative It turned out to be about twice as large as the example. The reason why the powder conductivity has increased is that the average particle size of the niobium powder when producing the niobium monoxide powder has been reduced, so that the mixing property is improved and the crystallinity of the produced niobium monoxide powder. This is probably due to the increase in Moreover, although the coarse particle of 300 micrometers or more was hardly contained in the Example, it was contained in the ratio of 10% or more in the comparative example 3-1. In Comparative Example 3-1, since the particle growth inhibitor is not used, the size of the secondary particles of niobium powder cannot be controlled, and the finally obtained monoxide powder has coarse particles having a diameter exceeding 300 μm. It is thought that it was generated.

本発明によれば、小型サイズのチップで大容量を実現でき、優れた電気的安定性と高い信頼性とを備えたニオブコンデンサを容易に提供することができる。   According to the present invention, it is possible to easily provide a niobium capacitor that can realize a large capacity with a small-sized chip and has excellent electrical stability and high reliability.

Claims (9)

高酸化数ニオブ酸化物を還元してニオブ粉を生成するニオブ粉の製造方法において、
高酸化数ニオブ酸化物と、還元反応で生成する粒子同士の結合を抑制する粒子成長抑制剤とを混合し、卑金属を還元剤として用いて還元を行い、粒子成長抑制剤を除去して一次還元ニオブ粉を生成する第一還元処理と、
前記一次還元ニオブ粉と、粒子成長抑制剤とを混合し、卑金属を還元剤として用いて還元を行い、粒子成長抑制剤を除去して二次還元ニオブ粉を生成する第二還元処理とを含む、ことを特徴とするニオブ粉の製造方法。
In the method for producing niobium powder, in which niobium powder is produced by reducing high oxidation number niobium oxide,
Mixing high-oxidation niobium oxide with a particle growth inhibitor that suppresses the bonding between particles produced by the reduction reaction, reducing the base metal as a reducing agent, removing the particle growth inhibitor, and performing primary reduction A first reduction treatment for producing niobium powder;
The primary reduction niobium powder and a particle growth inhibitor are mixed, and reduction is performed using a base metal as a reducing agent, and the second reduction treatment is performed to remove the particle growth inhibitor and generate a secondary reduced niobium powder. The manufacturing method of niobium powder characterized by the above-mentioned.
粒子成長抑制剤は、アルカリ土類金属塩またはアルカリ土類金属の酸化物である請求項1に記載のニオブ粉の製造方法。 The method for producing niobium powder according to claim 1, wherein the particle growth inhibitor is an alkaline earth metal salt or an alkaline earth metal oxide. 高酸化数ニオブ酸化物は五酸化ニオブ(Nb)である請求項1または請求項2のニオブ粉の製造方法。 The method for producing niobium powder according to claim 1 or 2, wherein the high-oxidation number niobium oxide is niobium pentoxide (Nb 2 O 5 ). 卑金属は、リチウム、マグネシウム、アルミニウム、カルシウム、ストロンチウム、バリウムのいずれか1種または2種以上の組み合わせからなる請求項1〜請求項3いずれかに記載のニオブ粉の製造方法。 The method for producing niobium powder according to any one of claims 1 to 3, wherein the base metal is one or a combination of two or more of lithium, magnesium, aluminum, calcium, strontium, and barium. 請求項1〜請求項4いずれかに記載のニオブ粉の製造方法により得られたニオブ粉であって、
レーザー回折・散乱法粒子径分布における体積基準の積算分率における50%径である平均粒径D50が10μm未満であり、90%径である粒径D90が50μm以下であることを特徴とするニオブ粉。
A niobium powder obtained by the niobium powder manufacturing method according to any one of claims 1 to 4,
Less than 10μm average particle diameter D 50 is 50% diameter in cumulative fraction of the volume reference in the laser diffraction scattering method particle size distribution, and wherein the particle size D 90 90% diameter is 50μm or less Niobium powder.
請求項1〜請求項4いずれかに記載のニオブ粉の製造方法により得られた二次還元ニオブ粉と高酸化数ニオブ酸化物とを混合し、水素を含む雰囲気において還元処理を行い、一酸化ニオブ粉を生成する一酸化ニオブ粉の製造方法。 The secondary reduced niobium powder obtained by the niobium powder production method according to any one of claims 1 to 4 is mixed with a high oxidation number niobium oxide, subjected to a reduction treatment in an atmosphere containing hydrogen, and then oxidized. A method for producing niobium monoxide powder that produces niobium powder. 高酸化数ニオブ酸化物は五酸化ニオブ(Nb)である請求項6に記載の一酸化ニオブ粉の製造方法。 The method for producing niobium monoxide powder according to claim 6, wherein the high oxidation number niobium oxide is niobium pentoxide (Nb 2 O 5 ). 粉末X線回折から得られる一酸化ニオブのピークの半値幅が0.09〜0.20度であることを特徴とする一酸化ニオブ粉。 Niobium monoxide powder characterized in that the half-value width of the peak of niobium monoxide obtained from powder X-ray diffraction is 0.09 to 0.20 degrees. 圧粉密度3.0g/cmに圧縮してペレット化したときの導電率が500S/cm以上である請求項8の一酸化ニオブ粉。 The niobium monoxide powder having an electric conductivity of 500 S / cm or more when compressed to a pellet density of 3.0 g / cm 3 and pelletized.
JP2010177347A 2010-08-06 2010-08-06 Method of manufacturing niobium powder, and method of manufacturing niobium monoxide powder Pending JP2012036440A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010177347A JP2012036440A (en) 2010-08-06 2010-08-06 Method of manufacturing niobium powder, and method of manufacturing niobium monoxide powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010177347A JP2012036440A (en) 2010-08-06 2010-08-06 Method of manufacturing niobium powder, and method of manufacturing niobium monoxide powder

Publications (1)

Publication Number Publication Date
JP2012036440A true JP2012036440A (en) 2012-02-23

Family

ID=45848742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010177347A Pending JP2012036440A (en) 2010-08-06 2010-08-06 Method of manufacturing niobium powder, and method of manufacturing niobium monoxide powder

Country Status (1)

Country Link
JP (1) JP2012036440A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104310478A (en) * 2014-10-10 2015-01-28 九江有色金属冶炼有限公司 Preparation method of high-tap-density niobium oxide and high-tap-density niobium oxide prepared by same
CN110963529A (en) * 2018-09-30 2020-04-07 中国科学院上海硅酸盐研究所 Pure-phase niobium lower-valence oxide nano powder and preparation method and application thereof
RU2758401C1 (en) * 2021-03-01 2021-10-28 Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук Method for producing niobium monoxide

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104310478A (en) * 2014-10-10 2015-01-28 九江有色金属冶炼有限公司 Preparation method of high-tap-density niobium oxide and high-tap-density niobium oxide prepared by same
CN110963529A (en) * 2018-09-30 2020-04-07 中国科学院上海硅酸盐研究所 Pure-phase niobium lower-valence oxide nano powder and preparation method and application thereof
CN110963529B (en) * 2018-09-30 2021-12-07 中国科学院上海硅酸盐研究所 Pure-phase niobium lower-valence oxide nano powder and preparation method and application thereof
RU2758401C1 (en) * 2021-03-01 2021-10-28 Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук Method for producing niobium monoxide

Similar Documents

Publication Publication Date Title
KR102154947B1 (en) MXene particulate material, manufacturing method of the particulate material, and secondary battery
EP2277828B1 (en) Lithium iron phosphate powder manufacturing method, olivine structured lithium iron phosphate powder, cathode sheet using said lithium iron phosphate powder, and non-aqueous solvent secondary battery
JP5569034B2 (en) Lithium hydroxide for producing lithium nickel composite oxide, method for producing the same, and method for producing lithium nickel composite oxide using the lithium hydroxide
TWI596828B (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US9293235B2 (en) Lithium titanate particles and process for producing the lithium titanate particles, Mg-containing lithium titanate particles and process for producing the Mg-containing lithium titanate particles, negative electrode active substance particles for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery
JP2009064731A (en) Positive electrode active material, manufacturing method thereof, and electrochemical device
JP2008127265A (en) Composite oxide powder and its manufacturing method, ceramic composition using composite oxide powder and ceramic electronic component using the same
KR20090023180A (en) Complex oxide powder, method for preparing the same, ceramic composition using the complex oxide powder and ceramic electronic parts using the ceramic composition
JP2009024197A (en) Method for producing nickel powder
JP5007667B2 (en) Nickel oxide powder and method for producing the same
JP2012036440A (en) Method of manufacturing niobium powder, and method of manufacturing niobium monoxide powder
JP2022052817A (en) Positive electrode active material for lithium ion secondary battery and method for producing the same, and lithium ion secondary battery
JP4086551B2 (en) Method for producing tricobalt tetroxide and method for producing lithium cobaltate
KR101201752B1 (en) Negative active material for lithium secondary battery, preparing method thereof and lithium secondary battery including same
WO2015053239A1 (en) Niobium granulated powder production method
JP5397694B2 (en) Method for producing lithium nickel composite oxide
JP6769520B1 (en) Method for producing titanium hydroxide and titanium dioxide containing rare earth elements
JP2013023427A (en) Production method for niobium monoxide
JP2021134100A (en) Spinel-type lithium manganate and method for producing the same, and use thereof
JP4362004B2 (en) Lithium manganese composite oxide, method for producing the same, and use thereof
CN102442825B (en) Hexagonal type barium titanate powder, producing method thereof, dielectric ceramic composition, electronic component, and producing method of electronic component
US20160197347A1 (en) LMFP Cathode Materials with Improved Electrochemical Performance
JP7318842B1 (en) Positive electrode active material for lithium ion secondary battery and lithium ion secondary battery
TWI820513B (en) Porous silicon-carbon composite, preparation method thereof, and negative electrode active material comprising same
JP2013252982A (en) MgxSi TYPE POROUS BODY AND METHOD OF PRODUCING THE SAME