JP2012036435A - Electrolytic tin plating solution, and method for manufacturing ceramic electronic component - Google Patents
Electrolytic tin plating solution, and method for manufacturing ceramic electronic component Download PDFInfo
- Publication number
- JP2012036435A JP2012036435A JP2010176323A JP2010176323A JP2012036435A JP 2012036435 A JP2012036435 A JP 2012036435A JP 2010176323 A JP2010176323 A JP 2010176323A JP 2010176323 A JP2010176323 A JP 2010176323A JP 2012036435 A JP2012036435 A JP 2012036435A
- Authority
- JP
- Japan
- Prior art keywords
- plating solution
- molar concentration
- tin
- less
- ceramic electronic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000007747 plating Methods 0.000 title claims abstract description 132
- 239000000919 ceramic Substances 0.000 title claims abstract description 55
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 title claims abstract description 28
- 238000000034 method Methods 0.000 title claims abstract description 15
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 8
- 239000002738 chelating agent Substances 0.000 claims abstract description 43
- 229910001432 tin ion Inorganic materials 0.000 claims description 47
- 150000003839 salts Chemical group 0.000 claims description 36
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 24
- -1 sulfamic acid ions Chemical class 0.000 claims description 22
- 229910021529 ammonia Inorganic materials 0.000 claims description 12
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 10
- 239000006258 conductive agent Substances 0.000 claims description 10
- 229910052725 zinc Inorganic materials 0.000 claims description 10
- 239000011701 zinc Substances 0.000 claims description 10
- 239000003513 alkali Substances 0.000 claims description 9
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims description 7
- 239000000654 additive Substances 0.000 claims description 5
- 238000009713 electroplating Methods 0.000 claims description 5
- 239000000126 substance Substances 0.000 claims description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 claims description 2
- 150000001342 alkaline earth metals Chemical class 0.000 claims description 2
- 230000007797 corrosion Effects 0.000 abstract description 36
- 238000005260 corrosion Methods 0.000 abstract description 36
- IUTCEZPPWBHGIX-UHFFFAOYSA-N tin(2+) Chemical compound [Sn+2] IUTCEZPPWBHGIX-UHFFFAOYSA-N 0.000 abstract 2
- 239000013522 chelant Substances 0.000 abstract 1
- 239000003795 chemical substances by application Substances 0.000 abstract 1
- 238000001556 precipitation Methods 0.000 description 25
- 238000005476 soldering Methods 0.000 description 16
- 239000002585 base Substances 0.000 description 13
- 239000000203 mixture Substances 0.000 description 11
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 10
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 8
- 229910052783 alkali metal Inorganic materials 0.000 description 6
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 6
- 230000007547 defect Effects 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- IIACRCGMVDHOTQ-UHFFFAOYSA-M sulfamate Chemical compound NS([O-])(=O)=O IIACRCGMVDHOTQ-UHFFFAOYSA-M 0.000 description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 5
- RGHNJXZEOKUKBD-SQOUGZDYSA-N D-gluconic acid Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O RGHNJXZEOKUKBD-SQOUGZDYSA-N 0.000 description 5
- 239000002253 acid Substances 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 5
- 239000010949 copper Substances 0.000 description 5
- 229910052759 nickel Inorganic materials 0.000 description 5
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- SUMDYPCJJOFFON-UHFFFAOYSA-N isethionic acid Chemical compound OCCS(O)(=O)=O SUMDYPCJJOFFON-UHFFFAOYSA-N 0.000 description 4
- 229940098779 methanesulfonic acid Drugs 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- RGHNJXZEOKUKBD-UHFFFAOYSA-N D-gluconic acid Natural products OCC(O)C(O)C(O)C(O)C(O)=O RGHNJXZEOKUKBD-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 229910021626 Tin(II) chloride Inorganic materials 0.000 description 3
- 150000001340 alkali metals Chemical class 0.000 description 3
- 239000003990 capacitor Substances 0.000 description 3
- 239000000174 gluconic acid Substances 0.000 description 3
- 235000012208 gluconic acid Nutrition 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- AEQDJSLRWYMAQI-UHFFFAOYSA-N 2,3,9,10-tetramethoxy-6,8,13,13a-tetrahydro-5H-isoquinolino[2,1-b]isoquinoline Chemical compound C1CN2CC(C(=C(OC)C=C3)OC)=C3CC2C2=C1C=C(OC)C(OC)=C2 AEQDJSLRWYMAQI-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 235000019270 ammonium chloride Nutrition 0.000 description 2
- 150000003863 ammonium salts Chemical class 0.000 description 2
- QHYIGPGWXQQZSA-UHFFFAOYSA-N azane;methanesulfonic acid Chemical compound [NH4+].CS([O-])(=O)=O QHYIGPGWXQQZSA-UHFFFAOYSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- XPPKVPWEQAFLFU-UHFFFAOYSA-N diphosphoric acid Chemical compound OP(O)(=O)OP(O)(O)=O XPPKVPWEQAFLFU-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 150000004679 hydroxides Chemical class 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- AICMYQIGFPHNCY-UHFFFAOYSA-J methanesulfonate;tin(4+) Chemical compound [Sn+4].CS([O-])(=O)=O.CS([O-])(=O)=O.CS([O-])(=O)=O.CS([O-])(=O)=O AICMYQIGFPHNCY-UHFFFAOYSA-J 0.000 description 2
- 239000003002 pH adjusting agent Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 229940005657 pyrophosphoric acid Drugs 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 239000000176 sodium gluconate Substances 0.000 description 2
- 235000012207 sodium gluconate Nutrition 0.000 description 2
- 229940005574 sodium gluconate Drugs 0.000 description 2
- 229910052938 sodium sulfate Inorganic materials 0.000 description 2
- 235000011152 sodium sulphate Nutrition 0.000 description 2
- QDWYPRSFEZRKDK-UHFFFAOYSA-M sodium;sulfamate Chemical compound [Na+].NS([O-])(=O)=O QDWYPRSFEZRKDK-UHFFFAOYSA-M 0.000 description 2
- 229910000679 solder Inorganic materials 0.000 description 2
- UBXAKNTVXQMEAG-UHFFFAOYSA-L strontium sulfate Chemical compound [Sr+2].[O-]S([O-])(=O)=O UBXAKNTVXQMEAG-UHFFFAOYSA-L 0.000 description 2
- WHOZNOZYMBRCBL-OUKQBFOZSA-N (2E)-2-Tetradecenal Chemical compound CCCCCCCCCCC\C=C\C=O WHOZNOZYMBRCBL-OUKQBFOZSA-N 0.000 description 1
- VIVCRCODGMFTFY-JPRIQSOUSA-N (4s,5s)-3,4-dihydroxy-5-[(1r,2r)-1,2,3-trihydroxypropyl]oxolan-2-one Chemical compound OC[C@@H](O)[C@@H](O)[C@@H]1OC(=O)C(O)[C@@H]1O VIVCRCODGMFTFY-JPRIQSOUSA-N 0.000 description 1
- HSXUNHYXJWDLDK-UHFFFAOYSA-N 2-hydroxypropane-1-sulfonic acid Chemical compound CC(O)CS(O)(=O)=O HSXUNHYXJWDLDK-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- RGHNJXZEOKUKBD-SQOUGZDYSA-M D-gluconate Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O RGHNJXZEOKUKBD-SQOUGZDYSA-M 0.000 description 1
- PHOQVHQSTUBQQK-SQOUGZDYSA-N D-glucono-1,5-lactone Chemical compound OC[C@H]1OC(=O)[C@H](O)[C@@H](O)[C@@H]1O PHOQVHQSTUBQQK-SQOUGZDYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical group [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 1
- 229910002113 barium titanate Inorganic materials 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- FNAQSUUGMSOBHW-UHFFFAOYSA-H calcium citrate Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O.[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O FNAQSUUGMSOBHW-UHFFFAOYSA-H 0.000 description 1
- 239000001354 calcium citrate Substances 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- PNOXNTGLSKTMQO-UHFFFAOYSA-L diacetyloxytin Chemical compound CC(=O)O[Sn]OC(C)=O PNOXNTGLSKTMQO-UHFFFAOYSA-L 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- QGKBPWOLFJRLKE-UHFFFAOYSA-J distrontium;phosphonato phosphate Chemical compound [Sr+2].[Sr+2].[O-]P([O-])(=O)OP([O-])([O-])=O QGKBPWOLFJRLKE-UHFFFAOYSA-J 0.000 description 1
- 229940050410 gluconate Drugs 0.000 description 1
- 235000012209 glucono delta-lactone Nutrition 0.000 description 1
- 229960003681 gluconolactone Drugs 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- OWNSEPXOQWKTKG-UHFFFAOYSA-M lithium;methanesulfonate Chemical compound [Li+].CS([O-])(=O)=O OWNSEPXOQWKTKG-UHFFFAOYSA-M 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000001755 magnesium gluconate Substances 0.000 description 1
- 229960003035 magnesium gluconate Drugs 0.000 description 1
- 235000015778 magnesium gluconate Nutrition 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- IAKLPCRFBAZVRW-XRDLMGPZSA-L magnesium;(2r,3s,4r,5r)-2,3,4,5,6-pentahydroxyhexanoate;hydrate Chemical compound O.[Mg+2].OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O.OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O IAKLPCRFBAZVRW-XRDLMGPZSA-L 0.000 description 1
- YJWSPTRABMNCGQ-UHFFFAOYSA-L magnesium;methanesulfonate Chemical compound [Mg+2].CS([O-])(=O)=O.CS([O-])(=O)=O YJWSPTRABMNCGQ-UHFFFAOYSA-L 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- LNOPIUAQISRISI-UHFFFAOYSA-N n'-hydroxy-2-propan-2-ylsulfonylethanimidamide Chemical compound CC(C)S(=O)(=O)CC(N)=NO LNOPIUAQISRISI-UHFFFAOYSA-N 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- CJGYQECZUAUFSN-UHFFFAOYSA-N oxygen(2-);tin(2+) Chemical compound [O-2].[Sn+2] CJGYQECZUAUFSN-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229940044652 phenolsulfonate Drugs 0.000 description 1
- 229940044654 phenolsulfonic acid Drugs 0.000 description 1
- WSHYKIAQCMIPTB-UHFFFAOYSA-M potassium;2-oxo-3-(3-oxo-1-phenylbutyl)chromen-4-olate Chemical compound [K+].[O-]C=1C2=CC=CC=C2OC(=O)C=1C(CC(=O)C)C1=CC=CC=C1 WSHYKIAQCMIPTB-UHFFFAOYSA-M 0.000 description 1
- XWIJIXWOZCRYEL-UHFFFAOYSA-M potassium;methanesulfonate Chemical compound [K+].CS([O-])(=O)=O XWIJIXWOZCRYEL-UHFFFAOYSA-M 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- KKVTYAVXTDIPAP-UHFFFAOYSA-M sodium;methanesulfonate Chemical compound [Na+].CS([O-])(=O)=O KKVTYAVXTDIPAP-UHFFFAOYSA-M 0.000 description 1
- 238000005063 solubilization Methods 0.000 description 1
- 230000007928 solubilization Effects 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- UUCCCPNEFXQJEL-UHFFFAOYSA-L strontium dihydroxide Chemical compound [OH-].[OH-].[Sr+2] UUCCCPNEFXQJEL-UHFFFAOYSA-L 0.000 description 1
- 229910001866 strontium hydroxide Inorganic materials 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- FAKFSJNVVCGEEI-UHFFFAOYSA-J tin(4+);disulfate Chemical compound [Sn+4].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O FAKFSJNVVCGEEI-UHFFFAOYSA-J 0.000 description 1
- AECLSPNOPRYXFI-UHFFFAOYSA-J tin(4+);tetrasulfamate Chemical compound [Sn+4].NS([O-])(=O)=O.NS([O-])(=O)=O.NS([O-])(=O)=O.NS([O-])(=O)=O AECLSPNOPRYXFI-UHFFFAOYSA-J 0.000 description 1
- QHGNHLZPVBIIPX-UHFFFAOYSA-N tin(II) oxide Inorganic materials [Sn]=O QHGNHLZPVBIIPX-UHFFFAOYSA-N 0.000 description 1
- HPGGPRDJHPYFRM-UHFFFAOYSA-J tin(iv) chloride Chemical compound Cl[Sn](Cl)(Cl)Cl HPGGPRDJHPYFRM-UHFFFAOYSA-J 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 235000013337 tricalcium citrate Nutrition 0.000 description 1
- 239000004034 viscosity adjusting agent Substances 0.000 description 1
Landscapes
- Electroplating And Plating Baths Therefor (AREA)
- Electroplating Methods And Accessories (AREA)
- Ceramic Capacitors (AREA)
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
Abstract
Description
本発明は、セラミック電子部品に好適に使用される電気スズめっき液及びこのめっき液を用いたセラミック電子部品の製造方法に関する。 The present invention relates to an electrotin plating solution suitably used for ceramic electronic components and a method for producing a ceramic electronic component using the plating solution.
サーミスタ、コンデンサ、インダクタ、LTCC(Low Temperature Co-fired Ceramics)、バリスタやそれらの複合体からなるセラミック電子部品の端子電極形成工程において、電気スズ(Sn)めっきが広く用いられている。例えば、内部電極を備えるセラミック電子部品の表面に、銀、銅等の導電ペーストを塗布し、それを焼成して下地電極を形成した後に、この下地電極表面に選択的に電気バレルめっきでニッケル層及びスズ層を連続的に形成し、端子電極を構成する。このスズ層の電気めっきには、pH4〜9の中性スズめっき液が用いられることが多い。 Electrotin (Sn) plating is widely used in the process of forming terminal electrodes of ceramic electronic parts made of thermistors, capacitors, inductors, LTCC (Low Temperature Co-fired Ceramics), varistors, and their composites. For example, a conductive paste such as silver or copper is applied to the surface of a ceramic electronic component having an internal electrode, and after baking it to form a base electrode, a nickel layer is selectively formed on the surface of the base electrode by electric barrel plating. And a tin layer is formed continuously and a terminal electrode is comprised. For the electroplating of the tin layer, a neutral tin plating solution having a pH of 4 to 9 is often used.
従来、めっき後のセラミック電子部品の電気特性が、めっき前の電気特性に比べて劣化するという問題があった。その理由の1つとして、主としてセラミックスからなる素体に存在する多数の細孔を通じて素体の内部にめっき液が侵入し、素体を腐食させ得ることが挙げられる。このような観点から、特許文献1に示すように、めっき液の粘度を高めて、細孔内部へのめっき液の侵入を抑制する方法が提案されている。 Conventionally, there has been a problem that the electrical characteristics of a ceramic electronic component after plating are deteriorated as compared with the electrical characteristics before plating. One of the reasons is that the plating solution can enter the inside of the element body through a large number of pores present in the element body mainly made of ceramics and corrode the element body. From such a viewpoint, as shown in Patent Document 1, a method has been proposed in which the viscosity of the plating solution is increased to suppress the penetration of the plating solution into the pores.
しかしながら、本発明者の研究によれば、めっき液の粘度を単に調整する手法では、素体の腐食を十分に抑制できないことが判明した。このため、素体の腐食を十分に抑制し、めっきによるセラミック電子部品の電気特性の劣化を防止し得るめっき液が切望されている。 However, according to the inventor's research, it has been found that the method of simply adjusting the viscosity of the plating solution cannot sufficiently suppress the corrosion of the element body. For this reason, a plating solution that can sufficiently suppress the corrosion of the element body and prevent the deterioration of the electrical characteristics of the ceramic electronic component due to plating is desired.
そこで、本発明は上記の事情に鑑みてなされたものであり、その目的は、めっきによるセラミック電子部品の素体の腐食を抑制し、安定しためっきが可能な電気スズめっき液及び当該電気スズめっき液を用いたセラミック電子部品の製造方法を提供することにある。 Accordingly, the present invention has been made in view of the above circumstances, and an object of the present invention is to suppress corrosion of the ceramic electronic component body due to plating and to enable stable plating, and the electrotin plating. An object of the present invention is to provide a method for manufacturing a ceramic electronic component using a liquid.
上記の目的を達成するため、本発明の電気スズめっき液は、セラミック電子部品用の電気スズめっき液であって、スズイオン及びキレート剤を含み、pHが6以上9以下であり、キレート剤のモル濃度/スズイオンのモル濃度(いずれも、電気スズめっき液全体に対するモル濃度)の比の値が2.4より大きく、4.5以下である。 In order to achieve the above object, the electrotin plating solution of the present invention is an electrotin plating solution for ceramic electronic components, containing tin ions and a chelating agent, having a pH of 6 or more and 9 or less, and the molarity of the chelating agent. The value of the ratio of concentration / molar concentration of tin ions (both molar concentration with respect to the entire electrotin plating solution) is greater than 2.4 and not greater than 4.5.
pHが9を超える場合や、キレート剤のモル濃度/スズイオンのモル濃度の比の値が2.4以下の場合には、放置時又は通電時に沈殿が生じ、めっき液の組成が変動し、安定しためっきが困難となる傾向にある。また、pHが6より小さい場合や、キレート剤のモル濃度/スズイオンのモル濃度の比の値が4.5を超えると、セラミック電子部品の素体が腐食する傾向にある。従って、電気スズめっき液のpH及びキレート剤のモル濃度/スズイオンのモル濃度の比の値を上述した範囲に調整することにより、セラミック電子部品の素体の腐食を抑制し、かつ安定しためっきを行なうことができる。 When the pH exceeds 9, or when the ratio of the molar concentration of the chelating agent / the molar concentration of tin ions is 2.4 or less, precipitation occurs during standing or energization, and the composition of the plating solution fluctuates and is stable. Tends to be difficult. Further, when the pH is less than 6, or when the ratio of the chelating agent molar concentration / tin ion molar concentration exceeds 4.5, the ceramic electronic component body tends to corrode. Therefore, by adjusting the pH value of the electrotin plating solution and the ratio of the molar concentration of the chelating agent / the molar concentration of the tin ion within the above-described ranges, corrosion of the ceramic electronic component body is suppressed and stable plating is achieved. Can be done.
好ましくは、スズイオンの供給物質又は他の添加物由来のスルファミン酸イオンを含んでおり、電気スズめっき液全体に対するスルファミン酸イオン濃度が0.5mol/L未満である。このスルファミン酸イオンの濃度が0.5mol/L以上の場合、放置時または通電時に沈殿が生じ易くなり、これに起因してめっき液の組成が変動してしまうため、安定しためっきが困難となる傾向にある。 Preferably, sulfamate ions derived from a tin ion supply substance or other additives are contained, and the sulfamate ion concentration relative to the entire electrotin plating solution is less than 0.5 mol / L. When the concentration of the sulfamate ions is 0.5 mol / L or more, precipitation is likely to occur when left standing or energized, and the composition of the plating solution fluctuates due to this, making stable plating difficult. There is a tendency.
好ましくは、電気スズめっき液全体に対するキレート剤濃度が0.3mol/L以下である。キレート剤濃度が0.3mol/Lを超えると、セラミック電子部品の素体が腐食する傾向にある。キレート剤の例として、グルコン酸、クエン酸、ピロリン酸及びその塩が揚げられるが、グルコン酸及びその塩はめっき液が安定であり、またはんだ付性の良好なスズめっき被膜の形成が可能であり、好ましい。 Preferably, the chelating agent concentration with respect to the entire electrotin plating solution is 0.3 mol / L or less. When the chelating agent concentration exceeds 0.3 mol / L, the body of the ceramic electronic component tends to corrode. Examples of chelating agents include gluconic acid, citric acid, pyrophosphoric acid and their salts, but gluconic acid and its salts have a stable plating solution or can form a tin plating film with good solderability. Yes, it is preferable.
好ましくは、アンモニア又はアンモニウムイオンを更に含み、電気スズめっき液におけるアンモニア及びアンモニウムイオンの濃度が0.3mol/L以下である。アンモニア及びアンモニウムイオンの濃度が0.3mol/Lを超えると、セラミック電子部品の素体が腐食する傾向にある。 Preferably, ammonia or ammonium ions are further included, and the concentration of ammonia and ammonium ions in the electrotin plating solution is 0.3 mol / L or less. When the concentrations of ammonia and ammonium ions exceed 0.3 mol / L, the ceramic electronic component body tends to corrode.
好ましくは、アルカリ又はアルカリ土類金属の塩である導電剤を更に含み、電気スズめっき液全体に対する導電剤のモル濃度/スズイオンのモル濃度の比の値が2以上かつ12より小さい。導電剤のモル濃度/スズイオンのモル濃度の比の値が2より小さいと、めっき膜上にはんだ付けを行なう場合に、はんだ付け不良が発生し易い傾向にある。また、導電剤のモル濃度/スズイオンのモル濃度の値が12以上の場合には、放置時又は通電時に沈殿が生じ、めっき液の組成が変動し易く、その結果、安定しためっきが困難となる傾向にある。導電剤の例としてメタンスルホン酸、硫酸、塩酸及びその塩が揚げられるが、メタンスルホン酸及びその塩は沈殿が生じにくくめっき液が安定であり、好ましい。 Preferably, a conductive agent that is an alkali or alkaline earth metal salt is further included, and the value of the ratio of the molar concentration of the conductive agent to the molar concentration of tin ions with respect to the entire electrotin plating solution is 2 or more and less than 12. If the value of the ratio of the molar concentration of the conductive agent / the molar concentration of tin ions is smaller than 2, when soldering is performed on the plating film, soldering defects tend to occur. Further, when the value of the molar concentration of the conductive agent / the molar concentration of tin ions is 12 or more, precipitation occurs when left standing or energization, the composition of the plating solution is likely to fluctuate, and as a result, stable plating becomes difficult. There is a tendency. Examples of the conductive agent include methanesulfonic acid, sulfuric acid, hydrochloric acid, and salts thereof, and methanesulfonic acid and salts thereof are preferable because precipitation hardly occurs and the plating solution is stable.
好ましくは、この電気スズめっき液の温度が5℃より大きく35℃より小さい。電気スズめっき液の温度が5℃以下であると、放置時又は通電時に沈殿が生じ、めっき液の組成が変動し、安定しためっきが困難となる傾向にある。電気スズめっき液の温度が35℃以上の場合、めっき膜上にはんだ付けを行なう場合に、はんだ付け不良が発生する傾向にある。 Preferably, the temperature of the electrotin plating solution is greater than 5 ° C and less than 35 ° C. When the temperature of the electrotin plating solution is 5 ° C. or lower, precipitation occurs during standing or energization, the composition of the plating solution varies, and stable plating tends to be difficult. When the temperature of the electrotin plating solution is 35 ° C. or higher, poor soldering tends to occur when soldering is performed on the plating film.
さらに、上記の目的を達成するため、本発明のセラミック電子部品の製造方法は、本発明の電気スズめっき液を用いて好適に実施できる方法であり、すなわち、セラミック素子の下地電極上に電気スズめっき液を用いてスズ層を形成する工程を備え、その工程においては、スズイオン及びキレート剤を含み、pHが6以上9以下であり、電気スズめっきにおけるキレート剤のモル濃度/スズイオンのモル濃度の比の値が2.4より大きく、4.5以下である電気スズめっき液を用いる。 Furthermore, in order to achieve the above object, the method for producing a ceramic electronic component according to the present invention is a method that can be suitably carried out using the electrotin plating solution according to the present invention. A step of forming a tin layer using a plating solution, in which a tin ion and a chelating agent are included, the pH is 6 or more and 9 or less, and the molar concentration of the chelating agent in tin electroplating / the molar concentration of tin ions An electrotin plating solution having a ratio value greater than 2.4 and not greater than 4.5 is used.
殊に、亜鉛元素を含有するセラミック素体を用いる場合、本発明の効果が顕著である。亜鉛元素を含む素体は、素体の耐薬品性に乏しいため、従来のめっき液による処理では素体の腐食が不都合な程度に大きくなってしまい、絶縁不良などの不具合が生じ易い場合があるのに対し、本発明によるセラミック電子部品の製造方法を用いることにより、かかる不具合を十分に抑制することができる。 In particular, when the ceramic body containing zinc element is used, the effect of the present invention is remarkable. Since the element containing zinc element is poor in chemical resistance of the element, the corrosion of the element becomes undesirably large in the treatment with the conventional plating solution, and there is a possibility that defects such as defective insulation are likely to occur. On the other hand, by using the method for manufacturing a ceramic electronic component according to the present invention, such a problem can be sufficiently suppressed.
本発明によれば、pHが6以上9以下であり、キレート剤のモル濃度/スズイオンのモル濃度の値が2.4より大きく、4.5以下となるようにめっき液を調製することにより、めっき液によるセラミック電子部品の素体の腐食を抑制することができ、安定しためっきを行なうことができる。 According to the present invention, by preparing the plating solution so that the pH is 6 or more and 9 or less, and the value of the molar concentration of the chelating agent / the molar concentration of tin ions is greater than 2.4 and 4.5 or less, Corrosion of the element body of the ceramic electronic component by the plating solution can be suppressed, and stable plating can be performed.
以下、本発明の実施の形態について、図面を参照して説明する。なお、図面中、同一の要素には同一の符号を付し、重複する説明を省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。さらに、図面の寸法比率は、図示の比率に限定されるものではない。また、以下の実施の形態は、本発明を説明するための例示であり、本発明をその実施の形態のみに限定する趣旨ではない。さらに、本発明は、その要旨を逸脱しない限り、さまざまな変形が可能である。 Embodiments of the present invention will be described below with reference to the drawings. In the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted. Further, the positional relationship such as up, down, left and right is based on the positional relationship shown in the drawings unless otherwise specified. Furthermore, the dimensional ratios in the drawings are not limited to the illustrated ratios. Further, the following embodiments are exemplifications for explaining the present invention, and are not intended to limit the present invention only to the embodiments. Furthermore, the present invention can be variously modified without departing from the gist thereof.
<セラミック電子部品の例>
図1は、本発明による電気めっき処理の対象となるセラミック電子部品の一例を示す斜視図である。図2は、図1のII−II線における断面図である。
<Examples of ceramic electronic components>
FIG. 1 is a perspective view showing an example of a ceramic electronic component to be subjected to electroplating processing according to the present invention. 2 is a cross-sectional view taken along line II-II in FIG.
セラミック電子部品1は、セラミックスからなる素体2と、素体2内に形成された複数の内部電極3とを含む積層体4を有し、換言すれば、素体2と内部電極3が積層された単位構造10を少なくとも1つ備えたものである。より具体的には、積層体4の一方の側面に露出した端部を有する内部電極3と、積層体4の他方の側面に露出した端部を有する内部電極3とが交互に積層されている。積層体4の両側(端)面には、それらの側面を覆うように下地電極5,5が設けられており、各下地電極5は、積層体4の一方の側面から露出した内部電極3の群、あるいは積層体4の他方の面から露出した内部電極3の群に電気的に接続されている。 The ceramic electronic component 1 has a laminated body 4 including an element body 2 made of ceramics and a plurality of internal electrodes 3 formed in the element body 2. In other words, the element body 2 and the internal electrodes 3 are laminated. At least one unit structure 10 is provided. More specifically, the internal electrodes 3 having end portions exposed on one side surface of the multilayer body 4 and the internal electrodes 3 having end portions exposed on the other side surface of the multilayer body 4 are alternately stacked. . Base electrodes 5 and 5 are provided on both sides (ends) of the multilayer body 4 so as to cover the side surfaces thereof, and each ground electrode 5 is formed of the internal electrode 3 exposed from one side surface of the multilayer body 4. A group or a group of internal electrodes 3 exposed from the other surface of the laminate 4 is electrically connected.
セラミック電子部品1の素体2はセラミックス、具体的には、半導体セラミックス又は誘電体セラミックスからなる。半導体セラミックス、及び、誘電体セラミックスのいずれの場合にも、素体2には亜鉛元素が含まれることがある。半導体セラミックスでは、バリスタ、サーミスタなどの主成分として、また、誘電体では、焼結助剤として亜鉛元素を含むガラスが好ましく用いられる。特に後者では、LTCC(部品)の小型化に伴い薄層化が進み、このためにさらに焼結温度の低下が進んでおり、使用例も一段と増加している。 The element body 2 of the ceramic electronic component 1 is made of ceramics, specifically, semiconductor ceramics or dielectric ceramics. In both cases of semiconductor ceramics and dielectric ceramics, the element body 2 may contain a zinc element. For semiconductor ceramics, glass containing zinc element is preferably used as the main component of varistors, thermistors and the like, and for dielectrics, glass containing zinc element as a sintering aid. Particularly in the latter case, as the LTCC (parts) is miniaturized, the layer thickness is reduced. For this reason, the sintering temperature is further lowered, and the use examples are further increased.
内部電極3には、素体2との間での確実なオーミック接触を可能とする観点から、例えば、銀、パラジウム、ニッケル、銅、又はアルミニウムを主成分とする材料が用いられるが、特に材料に限定はない。 For the internal electrode 3, for example, a material mainly composed of silver, palladium, nickel, copper, or aluminum is used from the viewpoint of enabling reliable ohmic contact with the element body 2. There is no limitation.
下地電極5は、例えば、積層体4の側面への導電性ペーストの塗布及び焼成により得られる。下地電極5を形成するための導電性ペーストとしては、主として、ガラス粉末(フリット)と、有機ビヒクル(バインダー)と、金属粉末とを含むものが挙げられ、導電性ペーストの焼成により、有機ビヒクルは揮散し、最終的にガラス成分及び金属成分を含む下地電極5が形成される。なお、導電性ペーストには、必要に応じて、粘度調整剤、無機結合剤、酸化剤等種々の添加剤を加えてもよい。例えば、下地電極5は、金属成分として銀、銅、又は、亜鉛を含む。 The base electrode 5 is obtained, for example, by applying and baking a conductive paste on the side surface of the multilayer body 4. Examples of the conductive paste for forming the base electrode 5 mainly include glass powder (frit), organic vehicle (binder), and metal powder. By firing the conductive paste, the organic vehicle is The base electrode 5 that volatilizes and finally contains a glass component and a metal component is formed. In addition, you may add various additives, such as a viscosity modifier, an inorganic binder, and an oxidizing agent, to an electrically conductive paste as needed. For example, the base electrode 5 contains silver, copper, or zinc as a metal component.
図3に示すように、セラミック電子部品1の下地電極5,5の表面に、さらに、電気めっきにより端子電極7,7が形成される。これらの端子電極7,7と、例えば、配線基板上の電極とがはんだ等により接合される。各端子電極7は、例えば、下地電極5側から積層形成されたニッケル層7a及びスズ層7bを含む2層構造を有する。ニッケル層7aは、はんだ付け時の熱によるスズ層7bと下地電極5との相互拡散によるはんだ付け不良を防止するバリアメタルとして機能するものであり、その厚さは例えば2μm程度である。また、スズ層7bは、はんだの濡れ性を向上させる機能を有するものであり、その厚さは例えば4μm程度とされる。 As shown in FIG. 3, terminal electrodes 7 and 7 are further formed on the surfaces of the base electrodes 5 and 5 of the ceramic electronic component 1 by electroplating. These terminal electrodes 7 and 7 are joined to, for example, electrodes on the wiring board by solder or the like. Each terminal electrode 7 has, for example, a two-layer structure including a nickel layer 7a and a tin layer 7b that are stacked from the base electrode 5 side. The nickel layer 7a functions as a barrier metal that prevents poor soldering due to mutual diffusion between the tin layer 7b and the base electrode 5 due to heat during soldering, and has a thickness of, for example, about 2 μm. The tin layer 7b has a function of improving the wettability of the solder, and the thickness thereof is, for example, about 4 μm.
<めっき液>
本実施形態に係るめっき液は、上述したスズ層7bのようなセラミック電子部品の電極の形成に好適に用いられる。以下、本実施形態に係るめっき液について説明する。
<Plating solution>
The plating solution according to the present embodiment is suitably used for forming an electrode of a ceramic electronic component such as the tin layer 7b described above. Hereinafter, the plating solution according to the present embodiment will be described.
本実施形態に係るめっき液は、例えば、スズイオンと、キレート剤と、導電塩(導電剤)と、pH調整剤を含む。以下、各成分について説明する。 The plating solution according to the present embodiment includes, for example, tin ions, a chelating agent, a conductive salt (conductive agent), and a pH adjuster. Hereinafter, each component will be described.
スズイオンの供給源としては、メタンスルホン酸スズ等のスズアルカンスルホン酸塩、硫酸スズ、スルファミン酸スズ塩化スズ、酢酸第1スズ、酸化第1スズ、ホウフッ化第1スズ、2−ヒドロキシエタンスルホン酸第1スズ、2−ヒドロキシプロパンスルホン酸第1スズ、及びフェノールスルホン酸第1スズの等が挙げられる。これらのなかで、取り扱い性及び安定性の観点から、メタンスルホン酸スズを用いることが好ましい。 Examples of tin ion sources include tin alkane sulfonates such as tin methanesulfonate, tin sulfate, tin sulfamate, tin chloride, stannous acetate, stannous oxide, stannous borofluoride, 2-hydroxyethanesulfonic acid Examples thereof include stannous, stannous 2-hydroxypropane sulfonate, and stannous phenol sulfonate. Among these, it is preferable to use tin methanesulfonate from the viewpoints of handleability and stability.
キレート剤は、スズイオンの可溶化及び溶解安定化のために添加される。キレート剤として、例えば、グルコン酸、グルコヘプトン酸、グルコノラクトン、グルコヘプトノラクトン、クエン酸、ピロリン酸及びこれらのアルカリ金属塩、アルカリ土類金属塩、アンモニウム塩が挙げられる。具体的にはグルコン酸ナトリウム(グルコン酸ソーダ)、グルコン酸マグネシウム、クエン酸カルシウム、ピロリン酸ストロンチウム等がある。その中でもグルコン酸塩はめっき液の安定性を高めることができるので好ましい。 A chelating agent is added for solubilization and dissolution stabilization of tin ions. Examples of the chelating agent include gluconic acid, glucoheptonic acid, gluconolactone, glucoheptonolactone, citric acid, pyrophosphoric acid, and alkali metal salts, alkaline earth metal salts, and ammonium salts thereof. Specific examples include sodium gluconate (sodium gluconate), magnesium gluconate, calcium citrate, and strontium pyrophosphate. Of these, gluconate is preferred because it can enhance the stability of the plating solution.
本実施形態では、キレート剤のモル濃度/スズイオンのモル濃度の値(モル比)が2.4より大きく、4.5以下に調整される。後述する実施例に示されるように、キレート剤のモル濃度/スズイオンのモル濃度の値が2.4以下の場合には、放置時又は通電時に沈殿が生じ、めっき液の組成が変動し、安定しためっきが困難となる傾向にある。また、キレート剤のモル濃度/スズイオンのモル濃度の値が4.5を超えると、セラミック電子部品の素体が腐食する傾向にある。 In this embodiment, the value of the molar concentration of the chelating agent / the molar concentration of tin ions (molar ratio) is adjusted to be larger than 2.4 and 4.5 or smaller. As shown in Examples described later, when the value of the molar concentration of the chelating agent / the molar concentration of tin ions is 2.4 or less, precipitation occurs during standing or energization, and the composition of the plating solution fluctuates and is stable. Tends to be difficult. Moreover, when the value of the molar concentration of the chelating agent / the molar concentration of tin ions exceeds 4.5, the element body of the ceramic electronic component tends to corrode.
スズめっきに用いられるキレート剤は錯イオン生成定数が大きいため、キレート剤が多く含まれると、セラミックスからなる素体自体が溶解され易くなる傾向にある。具体的には、キレート剤の濃度が0.3mol/L以下であると、素体の腐食は大幅に抑制される。 Since the chelating agent used for tin plating has a large complex ion formation constant, when the chelating agent is contained in a large amount, the element body itself made of ceramics tends to be easily dissolved. Specifically, when the concentration of the chelating agent is 0.3 mol / L or less, corrosion of the element body is significantly suppressed.
また、本実施形態では、めっき液のpHが6以上9以下に調整される。後述する実施例に示されるように、pHが9を超える場合には、放置時又は通電時に沈殿が生じ、めっき液の組成が変動し、安定しためっきが困難となる傾向にある。また、pHが6より小さい場合には、セラミック電子部品の素体が腐食する傾向にある。 In the present embodiment, the pH of the plating solution is adjusted to 6 or more and 9 or less. As shown in the examples described later, when the pH exceeds 9, precipitation occurs during standing or energization, the composition of the plating solution varies, and stable plating tends to be difficult. On the other hand, when the pH is less than 6, the body of the ceramic electronic component tends to corrode.
pH調整剤の種類に特に限定はないが、例えば、アンモニアや、水酸化ナトリウムのようなアルカリ金属の水酸化物や、水酸化ストロンチウム、水酸化マグネシウム等のアルカリ土類の水酸化物が用いられる。 There are no particular limitations on the type of pH adjuster, but for example, ammonia, hydroxides of alkali metals such as sodium hydroxide, and alkaline earth hydroxides such as strontium hydroxide and magnesium hydroxide are used. .
導電塩は、めっき液の導電性を高めるために導電剤として添加される。導電剤の例としては、アルカリ金属、アルカリ土類金属、又はアンモニアと、メタンスルホン酸等のアルカンスルホン酸、硫酸、スルファミン酸、酢酸、ホウフッ酸、2−ヒドロキシエタンスルホン酸、2−ヒドロキシプロパンスルホン酸、及びフェノールスルホン酸等の酸との塩、又は塩化物が挙げられる。具体的にはメタンスルホン酸マグネシウム、メタンスルホン酸アンモニウム、塩化カルシウム、硫酸ストロンチウム、硫酸ナトリウム、塩化アンモニウム、スルファミン酸ナトリウム等が挙げられる。このなかで、塩化アンモニウム等のアンモニウム塩は、素体が腐食し易い傾向にあり、また、スルファミン酸ナトリウム等のスルファミン酸塩は、通電時に沈殿が生じ易い傾向にある。このようなスルファミン酸塩の沈殿を防止するためには、スルファミン酸イオン濃度が0.5mol/L未満であることが好ましい。 The conductive salt is added as a conductive agent in order to increase the conductivity of the plating solution. Examples of the conductive agent include alkali metal, alkaline earth metal, or ammonia, alkanesulfonic acid such as methanesulfonic acid, sulfuric acid, sulfamic acid, acetic acid, borofluoric acid, 2-hydroxyethanesulfonic acid, and 2-hydroxypropanesulfone. Examples include acids and salts with acids such as phenolsulfonic acid, or chlorides. Specific examples include magnesium methanesulfonate, ammonium methanesulfonate, calcium chloride, strontium sulfate, sodium sulfate, ammonium chloride, sodium sulfamate and the like. Among these, ammonium salts such as ammonium chloride tend to corrode the element body, and sulfamate such as sodium sulfamate tends to precipitate when energized. In order to prevent such precipitation of sulfamate, the sulfamate ion concentration is preferably less than 0.5 mol / L.
導電塩として、アルカリ金属塩又はアルカリ土類金属塩を使用する場合には、例えば、導電塩のモル濃度/スズイオンのモル濃度の値が2以上かつ12より小さくなるように調整される。導電塩のモル濃度/スズイオンのモル濃度の値が2より小さいと、めっき膜上にはんだ付けを行なう場合に、はんだ付け不良が発生する傾向にある。また、導電塩のモル濃度/スズイオンのモル濃度の値が12以上の場合には、放置時又は通電時に沈殿が生じ、めっき液の組成が変動し、安定しためっきが困難となる傾向にある。 When an alkali metal salt or an alkaline earth metal salt is used as the conductive salt, for example, the molar concentration of the conductive salt / the molar concentration of tin ions is adjusted to be 2 or more and smaller than 12. If the value of the molar concentration of conductive salt / the molar concentration of tin ions is smaller than 2, soldering tends to occur when soldering is performed on the plating film. Further, when the value of the molar concentration of the conductive salt / the molar concentration of tin ions is 12 or more, precipitation occurs during standing or energization, the composition of the plating solution varies, and stable plating tends to be difficult.
ここで、アンモニア及びアンモニウムイオンは、できる限り含まないことが好ましく、全く含まなくてもよい。アンモニア又はアンモニウムイオンが含まれると、素体自体の腐食が進行し易くなる傾向にある。具体的には、アンモニア及びアンモニウムイオンを0.3mol/L以下にすると、素体の腐食は大幅に抑制される。 Here, it is preferable that ammonia and ammonium ions are not contained as much as possible, and may not be contained at all. When ammonia or ammonium ions are included, the corrosion of the element itself tends to proceed. Specifically, when ammonia and ammonium ions are set to 0.3 mol / L or less, corrosion of the element body is significantly suppressed.
なお、本実施形態に係るめっき液には、必要に応じて光沢剤や界面活性剤などの公知の添加剤を含んでいてもよく、その場合においても、上述した条件を満たすように添加剤の種類を選択し、またその量を調整することが好ましい。 In addition, the plating solution according to the present embodiment may contain a known additive such as a brightener or a surfactant as necessary, and even in that case, the additive solution may satisfy the above-described condition. It is preferable to select the type and adjust the amount.
めっき液の温度は、5℃より大きく35℃より小さいことが好ましい。めっき液の温度が5℃以下であると、放置時又は通電時に沈殿が生じ、めっき液の組成が変動し、安定しためっきが困難となる傾向にある。めっき液の温度が35℃を超えると、めっき膜上にはんだ付けを行なう場合に、はんだ付け不良が発生する傾向にある。 The temperature of the plating solution is preferably larger than 5 ° C and smaller than 35 ° C. When the temperature of the plating solution is 5 ° C. or lower, precipitation occurs when left standing or energized, the composition of the plating solution varies, and stable plating tends to be difficult. If the temperature of the plating solution exceeds 35 ° C., soldering tends to occur when soldering is performed on the plating film.
本実施形態に係るめっき方法は、上述した電気スズめっき液で、セラミック電子部品にスズを電気めっきするものである。めっき方法として、例えばバレルめっきを用いることができる。必要に応じてカソード遥動、ポンプなどによるめっき液の流動の方法で攪拌することができる。 The plating method according to the present embodiment is a method in which tin is electroplated on a ceramic electronic component with the above-described electrotin plating solution. As a plating method, for example, barrel plating can be used. If necessary, the agitation can be carried out by a method of flowing the plating solution using a cathode swing or a pump.
めっき条件としては、公知の条件を用いることができる。例えば、陽極としては、スズ金属が通常使用されるが、場合によっては白金めっきをしたチタン板などの不溶性電極を使用することもできる。陰極電流密度や、めっき時間等のめっき条件は、要求されるスズ層の膜厚等に応じて当業者が適宜決定することができる。このような本実施形態に係るめっき方法によれば、めっき液による素体の腐食を好適に抑制することが可能となる。 Known conditions can be used as the plating conditions. For example, tin metal is usually used as the anode, but insoluble electrodes such as platinum-plated titanium plates may be used in some cases. Plating conditions such as cathode current density and plating time can be appropriately determined by those skilled in the art according to the required film thickness of the tin layer. According to such a plating method according to the present embodiment, it is possible to suitably suppress the corrosion of the element body by the plating solution.
また、本実施形態に係るめっき液及びめっき方法は、亜鉛元素を含有する素体を備えるセラミック電子部品に好ましく用いることができる。亜鉛元素を含む場合、特に素体の粒界成分に亜鉛元素を含む場合には、素体の耐薬品性が乏しくなることから、本実施形態に係るめっき液の効果が一層顕著になることによる。 Moreover, the plating solution and the plating method according to the present embodiment can be preferably used for a ceramic electronic component including an element body containing a zinc element. When zinc element is included, particularly when zinc element is included in the grain boundary component of the element body, the chemical resistance of the element body becomes poor, so the effect of the plating solution according to the present embodiment becomes more remarkable. .
以下、本発明の実施例について説明するが、本発明はこれら実施例に限定されるものではない。 Examples of the present invention will be described below, but the present invention is not limited to these examples.
(実施例1)
予め、キレート剤のモル濃度を変えて表1の組成の50種類の電気スズめっき液を調製した。そして、素体の主組成がチタン酸バリウムで外形が1.6×0.8×0.8mmであり、端部に銅ペーストを塗布して焼成した銅の下地電極が形成されているチップコンデンサ10000個を用意した。次に全チップの絶縁抵抗(IR)を測定し、IRが108Ω以下のものをIR不良として評価した。次に、バレルめっき装置を用いて表中のめっき液でスズめっきを行って4μmのスズ層を形成した。次に各めっき液で処理したチップについて素体の腐食距離を調べた。腐食距離は、めっき後のチップを10個抜き取り(サンプリングし)、SEMの断面観察より素体表面の腐食層の厚さを測定した場合の平均値を示す。結果を表1及び図4に示す。なお、表1を含む全ての表及び図4において、「キレート剤/スズ(Sn)塩」はキレート剤のモル濃度/スズイオンのモル濃度の値を示し、「導電塩/スズ塩」は導電塩のモル濃度/スズイオンのモル濃度の値を示す。
Example 1
In advance, 50 types of electrotin plating solutions having the compositions shown in Table 1 were prepared by changing the molar concentration of the chelating agent. A chip capacitor in which the main composition of the element body is barium titanate and the outer shape is 1.6 × 0.8 × 0.8 mm, and a copper base electrode is formed by applying a copper paste to the end portion and firing it. 10,000 pieces were prepared. Next, the insulation resistance (IR) of all the chips was measured, and those having an IR of 10 8 Ω or less were evaluated as IR defects. Next, tin plating was performed with a plating solution in the table using a barrel plating apparatus to form a 4 μm tin layer. Next, the corrosion distance of the element body was examined for the chips treated with each plating solution. The corrosion distance indicates an average value when ten chips after plating are sampled (sampled), and the thickness of the corrosion layer on the element body surface is measured by cross-sectional observation of the SEM. The results are shown in Table 1 and FIG. In all the tables including Table 1 and FIG. 4, “chelating agent / tin (Sn) salt” indicates the molar concentration of the chelating agent / molar concentration of tin ion, and “conductive salt / tin salt” indicates the conductive salt. Mole concentration / tin ion molar concentration value is shown.
図4に示すように、キレート剤のモル濃度/スズイオンのモル濃度の値(モル比)が4.5を超えると腐食距離が急激に大きくなることが判明した。また、表1に示すように、pHが小さくなると全体的に腐食距離が大きくなることが判明した。 As shown in FIG. 4, it was found that when the molar concentration of the chelating agent / the molar concentration of tin ions (molar ratio) exceeds 4.5, the corrosion distance increases rapidly. Further, as shown in Table 1, it was found that the overall corrosion distance increases as the pH decreases.
また、めっき後の全チップのIR試験を行い、108Ω以下のものを不良とした。結果を表1に示す。腐食距離が1μmを超えるとIR不良が発生すること、またこれにより、pHが5の場合は全ての場合でIR不良が発生していることが判明した。 Further, an IR test was performed on all the chips after plating, and a chip having a resistance of 10 8 Ω or less was regarded as defective. The results are shown in Table 1. It has been found that when the corrosion distance exceeds 1 μm, an IR defect occurs, and that when the pH is 5, an IR defect occurs in all cases.
また、キレート剤のモル濃度/スズイオンのモル濃度の値が4.5の場合のpHと腐食距離の関係を図5に示す。図5に示すように、pHが8の場合が腐食は最も小さく、またpHが6を下回ると腐食が急速に大きくなることが判明した。 FIG. 5 shows the relationship between the pH and the corrosion distance when the value of the molar concentration of the chelating agent / the molar concentration of tin ions is 4.5. As shown in FIG. 5, it was found that the corrosion was smallest when the pH was 8, and the corrosion rapidly increased when the pH was lower than 6.
また、各めっき液のサンプルを100mL採取し、1ヶ月間放置して沈殿の有無を調査した。結果を表1に示す。pHが6以上でキレート剤のモル濃度/スズイオンのモル濃度の値が2.5より小さいと沈殿が発生することが判明した。またpH6,7,8及び9のめっき液でキレート剤のモル濃度/スズイオンのモル濃度の値を0.1ずつ変化させたサンプルを各100mL作成し、一ヶ月間放置後沈殿の有無を調べ各pHで沈殿の発生する最小の値を調べた。結果を表2に示す。pHが9を超える場合はキレート剤のモル濃度/スズイオンのモル濃度の値に関わらず沈殿が発生した。 In addition, 100 mL of each plating solution sample was collected and allowed to stand for 1 month to investigate the presence or absence of precipitation. The results are shown in Table 1. It was found that precipitation occurs when the pH is 6 or more and the molar concentration of the chelating agent / the molar concentration of tin ions is less than 2.5. In addition, 100 mL of each sample in which the molar concentration of the chelating agent / the molar concentration of tin ions was changed by 0.1 with a plating solution of pH 6, 7, 8, and 9 was prepared, and after standing for one month, the presence or absence of precipitation was examined. The minimum value at which precipitation occurred at pH was investigated. The results are shown in Table 2. When the pH exceeded 9, precipitation occurred regardless of the value of the molar concentration of the chelating agent / the molar concentration of tin ions.
以上の結果より、めっき液の好ましい組成の範囲はキレート剤のモル濃度/スズイオンのモル濃度の値(モル比)が2.4を超え4.5以下でpHが6以上9以下であることが判明した。キレート剤のモル濃度/スズイオンのモル濃度の値が2.4以下の場合は設定のpH範囲では沈殿が発生し、4.5より大きい場合は腐食距離が1μmを超えてIR不良が発生する。またpHが6未満の場合は腐食距離が大きくIR不良が発生し、またpHが9を超えるとキレート剤のモル濃度/スズイオンのモル濃度の値に関わらず沈殿が発生する。 From the above results, the preferable range of the composition of the plating solution is that the molar concentration of the chelating agent / the molar concentration of tin ions (molar ratio) exceeds 2.4 and is 4.5 or less, and the pH is 6 or more and 9 or less. found. When the value of the molar concentration of the chelating agent / the molar concentration of tin ions is 2.4 or less, precipitation occurs in the set pH range, and when it is larger than 4.5, the corrosion distance exceeds 1 μm and IR failure occurs. When the pH is less than 6, the corrosion distance is long and IR failure occurs. When the pH exceeds 9, precipitation occurs regardless of the value of the molar concentration of the chelating agent / the molar concentration of tin ions.
(実施例2)
実施例1においてキレート剤のモル濃度/スズイオンのモル濃度の値を一定にして、キレート剤のモル濃度を変えた。結果を表3及び図6に示す。
(Example 2)
In Example 1, the value of the molar concentration of the chelating agent / the molar concentration of tin ions was kept constant, and the molar concentration of the chelating agent was changed. The results are shown in Table 3 and FIG.
図6に示すように、キレート剤のモル濃度が0.3mol/Lを超えると腐蝕距離が急増し、表3に示すように、キレート剤のモル濃度が0.5mol/Lを超えるとIR不良が発生することが判明した。 As shown in FIG. 6, when the molar concentration of the chelating agent exceeds 0.3 mol / L, the corrosion distance increases rapidly, and as shown in Table 3, when the molar concentration of the chelating agent exceeds 0.5 mol / L, the IR failure occurs. Was found to occur.
(実施例3)
予め、アルカリ導電塩としてメタンスルホン酸ソーダを用いそのモル濃度を変えて10種類の電気スズめっき液を調製した。そして、10種類の電気スズめっき液について、沈殿発生の有無、セラミック素体の腐食距離、IR不良率、はんだ付け不良について評価した。結果を表4に示す。
(Example 3)
Ten types of electrotin plating solutions were prepared in advance using sodium methanesulfonate as the alkali conductive salt and changing its molar concentration. The ten types of electrotin plating solutions were evaluated for the presence or absence of precipitation, the corrosion distance of the ceramic body, the IR failure rate, and the soldering failure. The results are shown in Table 4.
表4に示すように、腐蝕距離はアルカリ導電塩のモル濃度/スズイオンのモル濃度の値によらないがアルカリ導電塩のモル濃度/スズイオンのモル濃度の値が2より小さくなるとはんだ付不良が発生することが判明した。これはスズ結晶が粗雑化して酸化されやすくなることによると考えられる。一方、アルカリ導電塩のモル濃度/スズイオンのモル濃度の値が12以上になると沈殿が発生する。以上より、アルカリ導電塩のモル濃度/スズイオンのモル濃度の値の好ましい範囲は、2≦アルカリ導電塩/スズ塩<12であることが判明した。 As shown in Table 4, the corrosion distance does not depend on the molar concentration of alkali conductive salt / molar concentration of tin ions, but when the molar concentration of alkaline conductive salt / molar concentration of tin ions is less than 2, poor soldering occurs. Turned out to be. This is thought to be due to the fact that tin crystals become coarse and are easily oxidized. On the other hand, when the value of the molar concentration of alkali conductive salt / the molar concentration of tin ions is 12 or more, precipitation occurs. From the above, it was found that the preferable range of the molar concentration of the alkali conductive salt / the molar concentration of the tin ion is 2 ≦ alkali conductive salt / tin salt <12.
アルカリ導電塩をメタンスルホン酸カリウム及びメタンスルホン酸リチウムのようなNa以外のアルカリ金属塩にしても同様の結果が得られた。炭酸ナトリウム、硫酸ナトリウム等のメタンスルホン酸以外の酸とアルカリ金属との塩にしても同じ結果が得られた。 Similar results were obtained when the alkali conductive salt was an alkali metal salt other than Na, such as potassium methanesulfonate and lithium methanesulfonate. The same results were obtained even when the salt of an acid other than methanesulfonic acid such as sodium carbonate or sodium sulfate and an alkali metal was used.
(実施例4)
実施例3のアルカリ導電塩をアルカリ土類導電塩に置き換えて実験を行った。すなわち、アルカリ土類導電塩としてメタルスルホン酸ストロンチウム(Sr)を用いそのモル濃度を変えて10種類の電気スズめっき液を調製した。そして、10種類の電気スズめっき液について、沈殿発生の有無、セラミック素体の腐食距離、IR不良率、はんだ付け不良について評価した。結果を表5に示す。
Example 4
The experiment was conducted by replacing the alkaline conductive salt of Example 3 with an alkaline earth conductive salt. That is, ten types of electrotin plating solutions were prepared using strontium metal sulfonate (Sr) as the alkaline earth conductive salt and changing its molar concentration. The ten types of electrotin plating solutions were evaluated for the presence or absence of precipitation, the corrosion distance of the ceramic body, the IR failure rate, and the soldering failure. The results are shown in Table 5.
実施例4では、実施例3と同様の結果が得られることが判明した。すなわち、表5に示すように、腐蝕距離はアルカリ土類導電塩のモル濃度/スズイオンのモル濃度の値によらないがアルカリ土類導電塩のモル濃度/スズイオンのモル濃度の値が2より小さくなるとはんだ付不良が発生することが判明した。一方、アルカリ土類導電塩のモル濃度/スズイオンのモル濃度の値が12以上になると沈殿が発生する。以上より、アルカリ土類導電塩のモル濃度/スズイオンのモル濃度の値の好ましい範囲は、2≦アルカリ土類導電塩/スズ塩<12であることが判明した。 In Example 4, it was found that the same results as in Example 3 were obtained. That is, as shown in Table 5, the corrosion distance does not depend on the value of the alkaline earth conductive salt molar concentration / tin ion molar concentration, but the alkaline earth conductive salt molar concentration / tin ion molar concentration is less than 2. Then, it became clear that a soldering defect occurred. On the other hand, precipitation occurs when the value of the molar concentration of alkaline earth conductive salt / the molar concentration of tin ions is 12 or more. From the above, it was found that the preferable range of the molar concentration of alkaline earth conductive salt / the molar concentration of tin ions is 2 ≦ alkaline earth conductive salt / tin salt <12.
(実施例5)
実施例3のアルカリ導電塩をアンモニア導電塩に置き換えて実験を行った。すなわち、アンモニア導電塩としてメタンスルホン酸アンモニウムを用いそのモル濃度を変えて9種類の電気スズめっき液を調製した。そして、9種類の電気スズめっき液について、沈殿発生の有無、セラミック素体の腐食距離、IR不良率、はんだ付け不良について評価した。結果を表6に示す。
(Example 5)
An experiment was conducted by replacing the alkali conductive salt of Example 3 with an ammonia conductive salt. That is, nine types of electrotin plating solutions were prepared using ammonium methanesulfonate as the ammonia conductive salt and changing its molar concentration. And about nine types of electrotin plating solutions, the presence or absence of precipitation, the corrosion distance of the ceramic body, the IR failure rate, and the soldering failure were evaluated. The results are shown in Table 6.
アンモニウム導電塩のモル濃度が0.3mol/Lを超えると素体の腐蝕が大きくなり、IR不良が発生することが判明した。従って、めっき液中のアンモニウムイオンの濃度は0.3mol/L以下に抑える必要があることが判明した。 It has been found that when the molar concentration of the ammonium conductive salt exceeds 0.3 mol / L, the corrosion of the element increases and IR failure occurs. Accordingly, it has been found that the concentration of ammonium ions in the plating solution needs to be suppressed to 0.3 mol / L or less.
(実施例6)
めっき液の温度を変えて同様の実験を行った。すなわち、温度の異なる9種類の電気スズめっき液について、沈殿発生の有無、セラミック素体の腐食距離、IR不良率、はんだ付け不良について評価した。結果を表7に示す。
(Example 6)
A similar experiment was performed by changing the temperature of the plating solution. That is, nine types of electrotin plating solutions having different temperatures were evaluated for the presence or absence of precipitation, the corrosion distance of the ceramic body, the IR failure rate, and the soldering failure. The results are shown in Table 7.
表7に示すように、腐蝕距離はめっき液温度に大きく依存しないが、温度が35℃以上になるとはんだ付性不良が発生することが判明した。これはめっき液温度が上昇するとスズ結晶が粗雑化して酸化されやすくなることによると考えられる。また温度が5℃に達すると沈殿が発生する。この結果、めっき液温度の好ましい範囲は5℃<めっき液温度<35℃であることが判明した。 As shown in Table 7, the corrosion distance does not greatly depend on the plating solution temperature, but it has been found that poor solderability occurs when the temperature is 35 ° C. or higher. This is thought to be due to the fact that when the plating solution temperature rises, the tin crystals become coarse and are easily oxidized. In addition, precipitation occurs when the temperature reaches 5 ° C. As a result, it was found that the preferable range of the plating solution temperature was 5 ° C. <plating solution temperature <35 ° C.
(実施例8)
めっき液にスルファミン酸塩を添加して同様の実験を行った。結果を表8に示す。
(Example 8)
A similar experiment was performed by adding sulfamate to the plating solution. The results are shown in Table 8.
表8に示すように、スルファミン酸塩のモル濃度が0.5mol/L以上になると沈殿が発生することが判明した。 As shown in Table 8, it was found that precipitation occurred when the molar concentration of sulfamate was 0.5 mol / L or more.
本発明は、サーミスタ、コンデンサ、インダクタ、LTCC(Low Temperature Co-fired Ceramics)、バリスタ、それらの複合部品からなるセラミック電子部品のめっき処理に広く利用することができる。 INDUSTRIAL APPLICABILITY The present invention can be widely used for plating treatment of ceramic electronic parts including thermistors, capacitors, inductors, LTCC (Low Temperature Co-fired Ceramics), varistors, and composite parts thereof.
1…セラミック電子部品、2…素体、3…内部電極、4…積層体、5…下地電極、7…端子電極、7a…ニッケル層、7b…スズ層、10…単位構造。 DESCRIPTION OF SYMBOLS 1 ... Ceramic electronic component, 2 ... Element body, 3 ... Internal electrode, 4 ... Laminated body, 5 ... Base electrode, 7 ... Terminal electrode, 7a ... Nickel layer, 7b ... Tin layer, 10 ... Unit structure.
Claims (8)
スズイオン及びキレート剤を含み、
pHが6以上9以下であり、
当該電気スズめっき液における前記キレート剤のモル濃度/前記スズイオンのモル濃度の比の値が2.4より大きく、4.5以下である、
電気スズめっき液。 An electrotin plating solution for ceramic electronic components,
Containing tin ions and chelating agents,
pH is 6 or more and 9 or less,
The ratio of the molar ratio of the chelating agent / the molar concentration of the tin ions in the electrotin plating solution is greater than 2.4 and not greater than 4.5.
Electro tin plating solution.
当該電気スズめっき液における前記スルファミン酸イオン濃度が0.5mol/L未満である、
請求項1に記載の電気スズめっき液。 Including sulfamic acid ions derived from the tin ion supply substance or other additives,
The sulfamic acid ion concentration in the electrotin plating solution is less than 0.5 mol / L.
The electrotin plating solution according to claim 1.
請求項1又は2に記載の電気スズめっき液。 The chelating agent concentration in the electrotin plating solution is 0.3 mol / L or less,
The electrotin plating solution according to claim 1 or 2.
当該電気スズめっき液における前記アンモニア及び前記アンモニウムイオンの濃度が0.3mol/L以下である、
請求項1〜3のいずれかに記載の電気スズめっき液。 Contains ammonia or ammonium ions,
The concentration of the ammonia and the ammonium ion in the electrotin plating solution is 0.3 mol / L or less,
The electrotin plating solution according to claim 1.
当該電気スズめっき液における前記導電剤のモル濃度/スズイオンのモル濃度の比の値が2以上かつ12より小さい、
請求項1〜4のいずれかに記載の電気スズめっき液。 A conductive agent that is a salt of an alkali or alkaline earth metal;
The ratio of the molar concentration of the conductive agent to the molar concentration of tin ions in the electrotin plating solution is 2 or more and less than 12.
The electrotin plating solution according to claim 1.
請求項1〜5のいずれかに記載の電気スズめっき液。 The temperature is greater than 5 ° C and less than 35 ° C,
The electrotin plating solution according to any one of claims 1 to 5.
前記工程においては、スズイオン及びキレート剤を含み、pHが6以上9以下であり、前記電気スズめっきにおける前記キレート剤のモル濃度/前記スズイオンのモル濃度の比の値が2.4より大きく、4.5以下である電気スズめっき液を用いる、
セラミック電子部品の製造方法。 Comprising a step of forming a tin layer on the underlying electrode of the ceramic element using electrotin plating;
In the step, tin ions and a chelating agent are included, the pH is 6 or more and 9 or less, and the ratio of the molar concentration of the chelating agent / the molar concentration of the tin ions in the electrotin plating is greater than 2.4. .. using an electroplating solution that is 5 or less,
Manufacturing method of ceramic electronic components.
請求項7に記載のセラミック電子部品の製造方法。 The ceramic body contains zinc;
A method for manufacturing a ceramic electronic component according to claim 7.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010176323A JP5585280B2 (en) | 2010-08-05 | 2010-08-05 | Electrotin plating solution and method for producing ceramic electronic component |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010176323A JP5585280B2 (en) | 2010-08-05 | 2010-08-05 | Electrotin plating solution and method for producing ceramic electronic component |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012036435A true JP2012036435A (en) | 2012-02-23 |
JP5585280B2 JP5585280B2 (en) | 2014-09-10 |
Family
ID=45848738
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010176323A Active JP5585280B2 (en) | 2010-08-05 | 2010-08-05 | Electrotin plating solution and method for producing ceramic electronic component |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5585280B2 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0820886A (en) * | 1994-07-11 | 1996-01-23 | Murata Mfg Co Ltd | Plating method of ceramic electronic parts |
JPH09272995A (en) * | 1996-04-08 | 1997-10-21 | Dipsol Chem Co Ltd | Non-acidic bath for tin plating and tin-lead alloy plating and plating method using the same |
JP2005126772A (en) * | 2003-10-24 | 2005-05-19 | Murata Mfg Co Ltd | Plating method, and method of producing electronic component |
JP2007239076A (en) * | 2006-03-10 | 2007-09-20 | Meltex Inc | Tinning coat, tinning liquid for forming tinning coat, method for forming tinning coat and chip type electronic parts formed of electrode with tinning coat |
JP2010275613A (en) * | 2009-05-29 | 2010-12-09 | Tdk Corp | Tin electroplating solution and method of manufacturing electronic component |
-
2010
- 2010-08-05 JP JP2010176323A patent/JP5585280B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0820886A (en) * | 1994-07-11 | 1996-01-23 | Murata Mfg Co Ltd | Plating method of ceramic electronic parts |
JPH09272995A (en) * | 1996-04-08 | 1997-10-21 | Dipsol Chem Co Ltd | Non-acidic bath for tin plating and tin-lead alloy plating and plating method using the same |
JP2005126772A (en) * | 2003-10-24 | 2005-05-19 | Murata Mfg Co Ltd | Plating method, and method of producing electronic component |
JP2007239076A (en) * | 2006-03-10 | 2007-09-20 | Meltex Inc | Tinning coat, tinning liquid for forming tinning coat, method for forming tinning coat and chip type electronic parts formed of electrode with tinning coat |
JP2010275613A (en) * | 2009-05-29 | 2010-12-09 | Tdk Corp | Tin electroplating solution and method of manufacturing electronic component |
Also Published As
Publication number | Publication date |
---|---|
JP5585280B2 (en) | 2014-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101937773B (en) | Laminated ceramic electronic component and manufacturing method therefor | |
JP4632186B2 (en) | Tin electrolytic plating solution for electronic parts, tin electrolytic plating method for electronic parts and tin electrolytic plated electronic parts | |
JP6070288B2 (en) | Ceramic multilayer electronic components | |
JP2006339536A (en) | Electronic parts and manufacturing method thereof | |
JP4539719B2 (en) | Manufacturing method of ceramic electronic component and Sn plating bath | |
JP2007239076A (en) | Tinning coat, tinning liquid for forming tinning coat, method for forming tinning coat and chip type electronic parts formed of electrode with tinning coat | |
JP2014053551A (en) | Ceramic electronic component | |
JP6070287B2 (en) | Ceramic multilayer electronic components | |
JP5141980B2 (en) | Electro nickel plating solution and method for manufacturing electronic component | |
JP4986167B2 (en) | Electro nickel plating solution and plating method | |
JP5278170B2 (en) | Electrotin plating solution and method for manufacturing electronic component | |
JP5278169B2 (en) | Electrotin plating solution and method for manufacturing electronic component | |
JP2017137554A (en) | Ni POWDER, MANUFACTURING METHOD OF Ni POWDER, INTERNAL ELECTRODE PASTE AND ELECTRONIC COMPONENT | |
JP5585280B2 (en) | Electrotin plating solution and method for producing ceramic electronic component | |
US20050123784A1 (en) | Terminal having surface layer formed of Sn-Ag-Cu ternary alloy formed thereon, and part and product having the same | |
JP4678194B2 (en) | Electronic component manufacturing method and electronic component | |
JP5974457B2 (en) | Ceramic electronic components | |
JP5404123B2 (en) | Copper-coated polyimide substrate and manufacturing method thereof | |
JP5287816B2 (en) | Ceramic electronic components | |
JP2007242715A (en) | Method of manufacturing ceramic electronic component | |
JP5835047B2 (en) | Ceramic electronic components | |
JP4666134B2 (en) | Nickel plating bath and electronic parts | |
JP4904853B2 (en) | Manufacturing method of ceramic electronic component | |
JP4936210B2 (en) | Manufacturing method of electronic parts | |
JP2012077324A (en) | Nickel plating liquid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121206 |
|
RD05 | Notification of revocation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7425 Effective date: 20130419 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130515 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130820 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131015 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140624 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140707 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5585280 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |