JP2012036430A - Molten salt composition modifying oxidized scale - Google Patents

Molten salt composition modifying oxidized scale Download PDF

Info

Publication number
JP2012036430A
JP2012036430A JP2010175844A JP2010175844A JP2012036430A JP 2012036430 A JP2012036430 A JP 2012036430A JP 2010175844 A JP2010175844 A JP 2010175844A JP 2010175844 A JP2010175844 A JP 2010175844A JP 2012036430 A JP2012036430 A JP 2012036430A
Authority
JP
Japan
Prior art keywords
molten salt
scale
naoh
salt composition
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010175844A
Other languages
Japanese (ja)
Other versions
JP5356332B2 (en
Inventor
Tsutomu Takenaka
勉 竹中
Takayuki Yanai
貴幸 柳井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HANKUK PARKER CO Ltd
Parker Corp
Original Assignee
HANKUK PARKER CO Ltd
Parker Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HANKUK PARKER CO Ltd, Parker Corp filed Critical HANKUK PARKER CO Ltd
Priority to JP2010175844A priority Critical patent/JP5356332B2/en
Publication of JP2012036430A publication Critical patent/JP2012036430A/en
Application granted granted Critical
Publication of JP5356332B2 publication Critical patent/JP5356332B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a molten salt composition used for removing oxidized scale formed on the surface of a stainless steel plate, wire rod, or the like in a manufacturing process thereof.SOLUTION: This molten salt composition modifying oxidized scale contains 3-20% of NaNO, 0.2-5% of KOH, 5-10% of NaCl, the remainder of NaOH and inevitable impurities. In addition, this molten salt composition modifying oxidized scale contains one or two of 2-10% of NaCOand 0.1-5% of KMnO, the remainder of NaOH and inevitable impurities.

Description

本発明は、ステンレス鋼板、線材など製造工程でその表面に形成される酸化スケールの除去に用いる溶融塩組成に関する。   The present invention relates to a molten salt composition used for removing oxide scale formed on the surface of a manufacturing process such as a stainless steel plate and a wire rod.

一般に、熱間圧延、あるいは冷間圧延後の焼鈍工程でステンレス鋼の表面には酸化スケールが生成される。このスケールは、酸洗のみでは容易に除去することができない。そのため酸化スケールが生成されたステンレス鋼を酸洗前に溶融ソルト浴に浸漬し、ソルトと反応させ酸洗除去可能なスケールに改質する前処理方法が広く行われている。   Generally, an oxide scale is generated on the surface of stainless steel in an annealing process after hot rolling or cold rolling. This scale cannot be easily removed by pickling alone. For this reason, a pretreatment method is widely used in which stainless steel on which oxide scale is generated is immersed in a molten salt bath before pickling and is reacted with the salt to be modified to a scale that can be removed by pickling.

また、ステンレス鋼のスケール改質用前処理方法には、スケールが生成したステンレス鋼を中性塩水溶液中で電解するルスナー法が知られている。この方法は、高合金系、フェライト系ステンレス鋼などのデスケールは不可能である。また、この方法では、長大な電解設備、および高電流付与が必要で、設備費用および電解費用が高くなるという問題がある。   As a pretreatment method for scale modification of stainless steel, a Lusner method is known in which stainless steel with scales is electrolyzed in a neutral salt aqueous solution. In this method, descaling of high alloy type, ferritic stainless steel, etc. is impossible. In addition, this method has a problem that long electrolytic equipment and high current application are required, and equipment costs and electrolysis costs become high.

一方、ステンレス鋼の前処理の他の方法としては、溶融ソルト法が知られている。当該法による前処理では、アルカリ金属の水酸化物とアルカリ金属の硝酸塩の混合物で、更にアルカリハライド、炭酸塩、酸化剤などを含有する溶融ソルト剤を400〜500℃の操業温度に加熱し、溶融ソルトを形成する。この方法では、例えば、焼鈍炉から出たスケールを生成したステンレス鋼を約500℃に冷却し、当該溶融ソルト中に浸漬通過させる。溶融ソルト中に通過させることにより酸化スケールを酸洗除去が容易なスケールに改質する。なお、溶融ソルトから出たステンレス鋼は、一定状態に冷却後、表面に付着しているアルカリ性塩を水洗により除去し、その後酸洗してスケールを除去する。   On the other hand, as another method for pretreatment of stainless steel, a molten salt method is known. In the pretreatment by this method, a molten salt agent containing an alkali metal hydroxide, an alkali metal nitrate, and further containing an alkali halide, a carbonate, an oxidizing agent, etc. is heated to an operating temperature of 400 to 500 ° C., Form a molten salt. In this method, for example, the stainless steel that has generated scales from the annealing furnace is cooled to about 500 ° C. and immersed in the molten salt. By passing the molten salt through a molten salt, the oxidized scale is modified to a scale that can be easily removed by pickling. In addition, after cooling the stainless steel which came out of the molten salt to a fixed state, the alkaline salt adhering to the surface is removed by washing with water, and then pickling to remove scale.

この溶融ソルト法は、フェライト系ステンレス鋼、オーステナイト系ステンレス鋼、高
合金(高Cr,Ni含有)鋼のいずれに対しても、極めて優れた前処理効果を発揮し、酸洗後の表面光沢が均一で綺麗なステンレス鋼が得られる。また、処理設備が短く、かつ簡便であり設備費用が安価である。従って、ステンレス鋼のデスケール前処理法として広く実施されている。
This molten salt method exhibits an extremely excellent pretreatment effect on any of ferritic stainless steel, austenitic stainless steel, and high alloy (high Cr, Ni-containing) steel, and has a surface gloss after pickling. Uniform and clean stainless steel can be obtained. In addition, the processing equipment is short and simple, and the equipment cost is low. Therefore, it is widely implemented as a method for pre-scaling stainless steel.

しかし、従来の溶融ソルト法は、溶融ソルト組成は、450〜500℃の高温操業をベースとして、改質特性向上、持ち出し抑制、スラジ生成抑制などの観点から、適正ソルト組成を検討した特許が開示されている。例えば、特公昭60−53755号公報(特許文献1)には、NaNO3 、KOH、NaOHの他に、Na2 CO3 を適正量共存添加し、ソルトの持ち出し低減が効果的であることが示されている。 However, the conventional melt salt method is based on a high-temperature operation at 450 to 500 ° C, and a patent that examines an appropriate salt composition from the viewpoint of improving reforming properties, suppressing take-out, suppressing sludge formation, etc. is disclosed. Has been. For example, Japanese Examined Patent Publication No. 60-53755 (Patent Document 1) shows that in addition to NaNO 3 , KOH, and NaOH, an appropriate amount of Na 2 CO 3 is added together to reduce the removal of salt. Has been.

また、特許第4136345号公報(特許文献2)には、NaNO3 、KOH、NaOH、Na2 CO3 、NaClを含有する塩にNa2 SO4 を0.2〜5%共存添加することにより、ソルト持ち出しを抑制する方法が開示されている。さらに、特開平8−291398号公報(特許文献3)には、同じく持ち出し量低減と低クロム含有鋼のデスケールを目的としてKCl、NaCl、Na2 SO4 、K2 SO4 、NaNO3 、KNO3 残部NaOHからなる組成がソルト持ち出し抑制法として開示されている。 In addition, in Japanese Patent No. 4136345 (Patent Document 2), by adding 0.2 to 5% of Na 2 SO 4 to a salt containing NaNO 3 , KOH, NaOH, Na 2 CO 3 , and NaCl, A method for suppressing salt removal is disclosed. Further, JP-A-8-291398 (Patent Document 3) also describes KCl, NaCl, Na 2 SO 4 , K 2 SO 4 , NaNO 3 , KNO 3 for the purpose of reducing the amount taken out and descaling the low chromium-containing steel. A composition comprising the remaining NaOH is disclosed as a method for suppressing salt removal.

また、特許第3387051号公報(特許文献4)には、溶融塩組成とその補給方法として、溶融塩組成Na,K硝酸塩、Na,K塩化物、KOHと残部NaOHからなる組成が開示され、かつそれらを水溶液として溶融ソルトバスに供給するシステムを提案している。
特公昭60−53755号公報 特許第4136345号公報 特開平8−291398号公報 特許第3387051号公報
Japanese Patent No. 3387051 (Patent Document 4) discloses a molten salt composition and a composition comprising molten salt composition Na, K nitrate, Na, K chloride, KOH and the remaining NaOH as a replenishment method thereof, and We have proposed a system that supplies them to the molten salt bath as an aqueous solution.
Japanese Patent Publication No. 60-53755 Japanese Patent No. 4136345 JP-A-8-291398 Japanese Patent No. 3387051

近年、溶融ソルト剤組成のうち硝酸ナトリウムの供給が先細りの状況になってきた。そのため価格高騰を引き起こし供給不安が出ている。これに対して、硝酸ナトリウムに代わる代替酸化剤の提案もされているが価格が高いという問題がある。また、比較的安価な硝酸が使えるとしても、特許文献4に示される供給ための付加設備が必要となる。   In recent years, the supply of sodium nitrate has become tapered in the molten salt composition. As a result, price increases have caused supply insecurity. On the other hand, although an alternative oxidizing agent to replace sodium nitrate has been proposed, there is a problem that the price is high. In addition, even if relatively inexpensive nitric acid can be used, additional equipment for supply shown in Patent Document 4 is required.

上記のように、溶融ソルトの改良が、持ち出し量抑制などコスト低減からの検討が多くなされてきた。しかし、本質的に酸化スケールの改質に及ぼす成分組成、とりわけ、改質に及ぼす共存溶融ソルト成分の有効性、その定量化の検討は十分に行われてこなかったのが現状である。   As described above, improvement of the molten salt has been studied from the viewpoint of cost reduction, such as suppression of the amount taken out. However, the component composition that essentially affects the modification of the oxide scale, especially the effectiveness of the coexisting molten salt component on the modification, and the quantification thereof, have not been fully studied.

上述したような問題に対して、本発明者らは、NaNO3 の供給不安から、今一度溶融
ソルト成分を基本的に見直し、従来以上の改質特性を有するソルト組成の検討を鋭意行った。すなわち、溶融ソルト組成の酸化スケール改質に影響する共存成分の限界濃度がどのように影響しているのか、また、共存する成分の影響によって限界濃度はどの程度まで低減できるかを、定量的に評価した。その結果、これまでになく改質力に問題ない溶融ソルト組成を見出すことができた。
In order to solve the problems described above, the present inventors have fundamentally reviewed the molten salt component once again because of concerns about the supply of NaNO 3 , and have intensively studied a salt composition having reforming characteristics higher than those of conventional ones. In other words, quantitatively determine how the limit concentration of coexisting components affecting the oxide scale modification of the molten salt composition is affected, and to what extent the limit concentration can be reduced by the influence of coexisting components. evaluated. As a result, it was possible to find a molten salt composition that has no problem in reforming power.

その本発明の要旨は以下の通りである。
(1)NaNO3 :3〜20%、KOH:0.2〜5%、NaCl:5〜10%、残部NaOHと不可避的不純物を含むことを特徴とする酸化スケール改質溶融塩組成。
(2)前記(1)に加えて、Na2 CO3 :2〜10%、およびKMnO4 :0.1〜5%の1種、または2種を含有し、残部NaOHと不可避的不純物を含むことを特徴とする酸化スケール改質溶融塩組成にある。
The gist of the present invention is as follows.
(1) NaNO 3 : 3 to 20%, KOH: 0.2 to 5%, NaCl: 5 to 10%, the balance NaOH and unavoidable impurities are contained, and the oxide scale modified molten salt composition characterized by the above-mentioned.
(2) In addition to the above (1), Na 2 CO 3 : 2 to 10% and KMnO 4 : 0.1 to 5% of one or two kinds are contained, and the remainder contains NaOH and inevitable impurities The oxide scale modified molten salt composition is characterized in that.

以上述べたように、本発明によれば、溶融塩組成の主成分であるNaOHを基本にこれ
に共存成分KOH、NaNO3 、NaCl、Na2 CO3 、KMnO4 を適正添加量範囲内で一種、又は、二種以上共存させることにより、従来にない効率的、経済的な溶融ソルト組成を提供できるようになった。
As described above, according to the present invention, based on NaOH, which is the main component of the molten salt composition, coexisting components KOH, NaNO 3 , NaCl, Na 2 CO 3 , and KMnO 4 are used within a proper addition amount range. Alternatively, by coexisting two or more kinds, an unprecedented efficient and economical molten salt composition can be provided.

以下に、本発明範囲の限定理由を述べる。
アルカリ溶融塩中に酸化スケールが生成したステンレス鋼を浸漬して酸化スケールを改質する機構は、これまで開示された特許の中で一般的に示されているが、それぞれの組成がどの程度含有し、最低でもどの程度の含有量が必要か定量的な濃度の規定したものはない。
The reasons for limiting the scope of the present invention will be described below.
The mechanism to modify the oxide scale by immersing the stainless steel with the oxide scale in the alkali molten salt is generally shown in the patents disclosed so far, but how much each composition contains However, there is no one that stipulates a quantitative concentration to determine the minimum content required.

NaNO3 は、NaOH溶融塩中に添加され、その酸化作用によりスケールを改質する。すなわち、酸化スケールは、2(FeO/Cr23 )+7NaNO3 +14NaOH→2Na3 FeO3 +4Na2 CrO4 +7H2 O+7NaNO2
の反応によって、酸化被膜中に存在するCr3価をCr6価に変質し、構造的に結晶構造から、X線回折的に非晶質皮膜に改質する。その結果、溶融ソルト浸漬処理後の酸洗処理によって、改質した皮膜が容易に除去される。しかし、硝酸塩濃度が低いと、改質反応に影響するといわれてきたが、一定量溶融ソルト中に含有していれば改質反応に問題ないことが分かった。その下限値は、3%であった。多量に存在すれば反応は加速するが、過反応によって再酸化されることも明らかになったことから、上限を20%とした。好ましくは5〜15%とする。
NaNO 3 is added to the NaOH molten salt and modifies the scale by its oxidizing action. That is, the oxide scale is 2 (FeO / Cr 2 O 3 ) + 7NaNO 3 + 14NaOH → 2Na 3 FeO 3 + 4Na 2 CrO 4 + 7H 2 O + 7NaNO 2
By this reaction, the trivalent Cr existing in the oxide film is changed to the hexavalent Cr, and the structure is modified from a crystal structure to an amorphous film by X-ray diffraction. As a result, the modified film is easily removed by the pickling treatment after the molten salt immersion treatment. However, it has been said that a low nitrate concentration affects the reforming reaction, but it has been found that there is no problem in the reforming reaction if a certain amount is contained in the molten salt. The lower limit was 3%. The reaction was accelerated if it was present in a large amount, but it was also revealed that it was reoxidized by overreaction, so the upper limit was made 20%. Preferably it is 5 to 15%.

一方、NaNO3 は、アルカリ溶融塩浴の反応性を高めるので、Crを含有するステンレス鋼帯の酸洗処理における脱スケールを促進させるのに有効な成分である。この効果を得るためには、その含有量を3%以上とする必要がある。しかし、その含有量が20%を超えると、反応性が高すぎて、ステンレス鋼帯の表層スケールがアルカリ溶融塩浴内で剥離し、ロール押し込み疵等の品質不良が増加することから、その含有量を3〜20%とした。好ましくは5〜15%とする。 On the other hand, NaNO 3 is an effective component for promoting descaling in the pickling treatment of the stainless steel strip containing Cr because it increases the reactivity of the alkali molten salt bath. In order to obtain this effect, the content needs to be 3% or more. However, if its content exceeds 20%, the reactivity is too high, the surface scale of the stainless steel strip peels off in the alkali molten salt bath, and the quality defects such as roll indentations increase. The amount was 3 to 20%. Preferably it is 5 to 15%.

KOHは、これまでスケール改質に効果的であることから、積極的に添加されている。KOHは、NaOHと全率固溶し、溶融温度を低減することから、溶融ソルトの粘性を低下して持ち出し量低減の観点からも添加されている。しかし、0.2%未満ではその効果が得られない。また、5%を超えるとその効果は飽和することから、その範囲を0.2〜5%とした。   KOH has been actively added so far because it is effective for scale reforming. Since KOH is dissolved in total with NaOH to reduce the melting temperature, it is also added from the viewpoint of reducing the amount of takeout by lowering the viscosity of the molten salt. However, if it is less than 0.2%, the effect cannot be obtained. Moreover, since the effect will be saturated when it exceeds 5%, the range was made 0.2 to 5%.

また、NaNO3 は、KOHと共存させると、酸化スケールの改質が一段と促進されることを見出した。KOH共存濃度範囲は、上述したように、下限は0.2%で上限は5%である。5%を超える添加では、改質性能が飽和する。したがって、その範囲を0.2〜5%とした。好ましくは1〜4%とする。 Further, it has been found that when NaNO 3 coexists with KOH, the modification of the oxide scale is further promoted. As described above, the KOH coexistence concentration range has a lower limit of 0.2% and an upper limit of 5%. Addition exceeding 5% saturates the reforming performance. Therefore, the range was made 0.2 to 5%. Preferably it is 1 to 4%.

また、NaClは、共存添加される。これは、溶融ソルト中でのスラジ(炭酸ナトリウムなど)の微細析出物の塩析効果(分離凝集)から添加され、溶融ソルトの導電性をあげ、電子の流れ(電流)を促進し、間接的に反応に関与する。酸化スケールの改質反応には、直接関与しないとされていたが、NaClの共存添加により改質が促進されることが明らかになった。上述の反応促進を助長するためには、5%超える添加が必要である。また、過度に添加すると改質反応が、促進しすぎるため、上限を10%未満とした。   NaCl is added together. This is added due to the salting-out effect (separation and aggregation) of fine precipitates of sludge (sodium carbonate, etc.) in the molten salt, increasing the conductivity of the molten salt, promoting the flow of electrons (current), and indirectly Involved in the reaction. Although it was considered that the reforming reaction of the oxide scale was not directly involved, it became clear that the reforming was promoted by the simultaneous addition of NaCl. In order to promote the above-mentioned reaction promotion, addition exceeding 5% is necessary. Moreover, since reforming reaction will accelerate | stimulate too much when adding too much, the upper limit was made into less than 10%.

NaNO3 は、溶融ソルトを使用中に空気中の炭酸ガスと主成分であるNaOHと反応して一部生成され、溶融ソルト中に分散する。Na2 CO3 は、酸化スケール改質に直接関与しない。しかし、これまでの公開特許に示されているようにNa2 CO3 が溶融ソルトの粘性を著しく上昇させ、浸漬、取り出しによりソルト消費の原単位を上げ、コスト上昇の要因として考え、これを著しく低減することを主眼としている。 NaNO 3 is partly produced by reacting with the carbon dioxide gas in the air and NaOH as the main component while using the molten salt, and is dispersed in the molten salt. Na 2 CO 3 is not directly involved in oxide scale reforming. However, as shown in the published patents so far, Na 2 CO 3 significantly increases the viscosity of the molten salt, increases the basic unit of salt consumption by immersion and removal, and is considered as a factor of cost increase. The main goal is to reduce.

本発明は、事前にソルト成分中に含有させ、溶融ソルト中に含有させ、使用中の炭酸ガス吸い込みによる生成反応を抑制(遅らせる)することを明らかにした。   The present invention makes it clear that it is contained in the salt component in advance and contained in the molten salt to suppress (delay) the production reaction due to carbon dioxide inhalation during use.

図1は、溶融アルカリ塩中Na2 CO3 含有量とNa2 CO3 増加率(最終含有量初期量/初期量との関係を示す図である。すなわち、溶融アルカリ塩中にCO2 ガス吹込みによるアルカリ分とNa2 CO3 の変化を示すもので、その試験条件は、それぞれ480℃で溶融状態に保持した3kgに純炭酸ガスを90分間100ml/minで連続的に供給した。Na2 CO3 の生成量を中和滴定法で分析した。 FIG. 1 is a graph showing the relationship between the Na 2 CO 3 content in the molten alkali salt and the Na 2 CO 3 increase rate (final content initial amount / initial amount. That is, CO 2 gas blowing into the molten alkali salt. It shows the change in alkalinity and Na 2 CO 3 according Inclusive, .na 2 the test conditions, was pure carbon dioxide gas 3kg held in a molten state at each 480 ° C. was continuously fed for 90 minutes 100 ml / min The amount of CO 3 produced was analyzed by neutralization titration.

図1に示すように、炭酸ガスバブリングによるNa2 CO3 生成量は事前にNa2 CO3 を含有させると、Na2 CO3 2%含有以上で急激に、溶融ソルト中の生成量が減少する。更に、含有量が増えると次第に生成量割合が小さくなり、10%を超えるとほぼ一定になり、著しく生成が遅れることが分かる。このことから、Na2 CO3 の添加範囲を下限2%とした。効果の及ぶ上限濃度は、10%である。これ以上では反応が飽和してしまう。 As shown in FIG. 1, Na 2 CO 3 generated amount of carbon dioxide gas bubbling is when the advance is contained Na 2 CO 3, suddenly in Na 2 CO 3 2% weight or more, the amount of the molten salt is reduced . Furthermore, it can be seen that as the content increases, the proportion of the production amount gradually decreases, and when it exceeds 10%, it becomes almost constant and the production is remarkably delayed. For this reason, the addition range of Na 2 CO 3 was set to the lower limit of 2%. The upper limit concentration that the effect reaches is 10%. Above this, the reaction will be saturated.

KMnO4 は、酸化スケールの改質反応に効果的で、特に、NaNO3 との共存により、一層促進することが分かった。NaNO3 3〜20%の範囲で、KMnO4 0.1%でその効果を発揮する。添加量が多いほどよいが、5%を超えない範囲に限定した。これ以上では経済的に大幅なコストアップ要因になる。したがって、その範囲を0.1〜5%とした。好ましくは0.5〜4%とする。 It has been found that KMnO 4 is effective in the oxidation scale reforming reaction, and is further promoted particularly by coexistence with NaNO 3 . In the range of 3 to 20% NaNO 3 , the effect is exhibited with KMnO 4 0.1%. The larger the addition amount, the better. However, it is limited to a range not exceeding 5%. Above this, the cost will increase significantly. Therefore, the range was made 0.1 to 5%. Preferably it is 0.5 to 4%.

NaOHは、アルカリ溶融塩の主成分である。しかし、この組成だけでは、酸化スケールの改質反応を工業的に効果的(生産性向上)に促進することは難しい。それ故、NaOH主成分に前述の溶融ソルト共存成分が改質反応促進に不可欠である。したがって、本発明の主成分をNaOHとする。   NaOH is the main component of the alkali molten salt. However, with this composition alone, it is difficult to promote the oxidation scale reforming reaction industrially effectively (improvement of productivity). Therefore, the above-mentioned molten salt coexisting component in the NaOH main component is indispensable for promoting the reforming reaction. Therefore, the main component of the present invention is NaOH.

不可避的成分は、NaOH、KOH、NaNO3 、NaCl、Na2 CO3 、KMnO4 など工業的に製造する過程で不可避的に混入する無機物や溶融塩が大気と反応して不可避的に混入するものも含む。また、本発明の溶融塩の使用温度は、通常溶融状態で使用する400℃以上が望ましく、450〜500℃が最適である。530℃以上では、共存ソルトである硝酸ナトリウムの分解が生じ、溶融塩が劣化する。 Inevitable components are those in which inorganic substances and molten salts that are inevitably mixed in the process of industrial production such as NaOH, KOH, NaNO 3 , NaCl, Na 2 CO 3 , and KMnO 4 react with the atmosphere and are inevitably mixed Including. Further, the use temperature of the molten salt of the present invention is preferably 400 ° C. or higher, which is usually used in a molten state, and 450 to 500 ° C. is optimal. Above 530 ° C., sodium nitrate, which is a coexisting salt, is decomposed and the molten salt deteriorates.

上述した溶融ソルトは、使用するソルトバスに所定組成の必要量を所定温度に溶融して使用される。工業的には、連続して使用するため処理材料に随伴して持ち出される。そのため、随時、必要に応じて溶融ソルトバスに供給される。その供給形態は、粉体(フレーク状、グラニュラー状)、ブリケット形状や液体状態(水溶液)のいずれでも良い。   The above-described molten salt is used by melting a required amount of a predetermined composition in a salt bath to be used at a predetermined temperature. Industrially, it is taken along with the processing material for continuous use. Therefore, it is supplied to the molten salt bath as needed. The supply form may be any of powder (flakes and granules), briquette and liquid state (aqueous solution).

以下、本発明について実施例によって具体的に説明する。
表1〜2に示す組成の溶融ソルトを作成し、スケール改質特性を評価した。溶融塩は、市販の固体試薬を準備し、怦量混合して、直径200mm、深さ250mmの鉄製容器に入れ、電気炉で480℃に昇温、加熱溶解した。スケール改質特性は、幅50mm、長さ150mm、厚さ1mmのSUS304を焼鈍炉で焼鈍した。焼鈍は、1100℃で120秒、空冷した。当該焼鈍板をあらかじめ準備した溶融ソルト中に浸漬処理した。この試験は、表1〜2に示す溶融ソルト成分の改質特性の有効性を評価するため、浸漬時間を変化させ、取り出し水洗後の表面観察と、更にその後、10%硫酸溶液に(30℃)に3分間浸漬した。
Hereinafter, the present invention will be specifically described with reference to examples.
A molten salt having the composition shown in Tables 1 and 2 was prepared, and the scale modification characteristics were evaluated. For the molten salt, a commercially available solid reagent was prepared, mixed in a large amount, put into an iron container having a diameter of 200 mm and a depth of 250 mm, heated to 480 ° C. in an electric furnace, and dissolved by heating. As for the scale reforming characteristics, SUS304 having a width of 50 mm, a length of 150 mm, and a thickness of 1 mm was annealed in an annealing furnace. Annealing was air-cooled at 1100 ° C. for 120 seconds. The annealing plate was dipped in a prepared molten salt. In this test, in order to evaluate the effectiveness of the reforming characteristics of the molten salt components shown in Tables 1 and 2, the immersion time was changed, the surface was observed after taking out and washed with water, and then 10% sulfuric acid solution (30 ° C.). ) For 3 minutes.

溶融ソルト浸漬した後取り出し水洗後の表面観察の方法によれば、スケールが改質された状態になると、表面は焼鈍後の茶褐色から黄色主体の明るい色に変化することを明確に判断できる。この改質の程度を○、△、×で評価した。
さらに、10%硫酸溶液に(30℃)に3分間浸漬することによって表面変化(微少スケール残留有無など)を顕微鏡500倍で観察し、スケール有無を評価した。酸化スケール残留無を○、酸化スケール残留有を×とした。
According to the method of observing the surface after being immersed in the molten salt and then taken out and washed with water, it can be clearly determined that when the scale is in a modified state, the surface changes from brown after annealing to a bright color mainly composed of yellow. The degree of this modification was evaluated by ○, Δ, and ×.
Furthermore, by immersing in a 10% sulfuric acid solution (30 ° C.) for 3 minutes, surface changes (such as the presence or absence of microscale residue) were observed with a microscope 500 times, and the presence or absence of scale was evaluated. “O” means no residual oxide scale and “x” means residual oxide scale.

Figure 2012036430
Figure 2012036430

Figure 2012036430
表1、表2のNo.1〜40は本発明例であり、No.41〜60は比較例である。
Figure 2012036430
No. in Table 1 and Table 2 1 to 40 are examples of the present invention. Reference numerals 41 to 60 are comparative examples.

比較例No.41〜42は、NaNO3 濃度が低いために、浸漬時間が長いにも係わらずその後の硫酸酸洗後の表面観察でも、微少スケールの残存が認められた。比較例No.43〜44は、NaNO3 濃度が高いために、浸漬時間が10秒とやや長いにも係わらずその後の硫酸酸洗後の表面観察でも、微少スケールの残存が認められた。比較例No.45〜46は、KOH濃度が低いために、浸漬時間がやや長いにも係わらずその後の硫酸酸洗後の表面観察でも、微少スケールの残存が認められた。 Comparative Example No. In Nos. 41 to 42, since the NaNO 3 concentration was low, the surface was observed after subsequent sulfuric acid pickling even though the immersion time was long. Comparative Example No. In Nos. 43 to 44, since the NaNO 3 concentration was high, a slight scale residue was observed in the surface observation after subsequent sulfuric acid pickling even though the immersion time was a little longer, 10 seconds. Comparative Example No. In Nos. 45 to 46, since the KOH concentration was low, a minute scale residue was observed in the surface observation after subsequent sulfuric acid pickling even though the immersion time was slightly long.

比較例No.47は、KOH濃度が低いために、浸漬時間が10秒とやや長いにも係わらずその後の硫酸酸洗後の表面観察でも、微少スケールの残存が認められた。比較例No.48〜49は、KOH濃度が高いために、浸漬時間が10秒とやや長いにも係わらずその後の硫酸酸洗後の表面観察でも、微少スケールの残存が認められた。比較例No.50〜51は、NaCl濃度が低いために、浸漬時間が長いにも係わらずその後の硫酸酸洗後の表面観察でも、微少スケールの残存が認められた。   Comparative Example No. In No. 47, since the KOH concentration was low, although the immersion time was slightly long as 10 seconds, the surface of the surface after subsequent sulfuric acid pickling was observed to have a minute scale. Comparative Example No. In Nos. 48 to 49, since the KOH concentration was high, even though the immersion time was a little longer, 10 seconds, a minute scale residue was also observed in the surface observation after the subsequent sulfuric acid pickling. Comparative Example No. In Nos. 50 to 51, since the NaCl concentration was low, the surface of the surface after the subsequent sulfuric acid washing was observed to have a minute scale despite the long immersion time.

比較例No.52は、NaCl濃度が低いために、浸漬時間がやや長いにも係わらずその後の硫酸酸洗後の表面観察でも、微少スケールの残存が認められた。比較例No.53〜55は、NaCl濃度が高いために、浸漬時間がやや長いにも係わらずその後の硫酸酸洗後の表面観察でも、微少スケールの残存が認められた。比較例No.56は、NaNO3 およびNaOH濃度が低いために、浸漬時間がやや長いにも係わらずその後の硫酸酸洗後の表面観察でも、微少スケールの残存が認められた。 Comparative Example No. In No. 52, since the NaCl concentration was low, the surface of the surface after subsequent sulfuric acid pickling was observed to have a minute scale despite the slightly longer immersion time. Comparative Example No. In 53 to 55, since the NaCl concentration was high, even though the immersion time was slightly long, microscopic residuals were also observed in the subsequent surface observation after sulfuric acid pickling. Comparative Example No. In No. 56, since the concentrations of NaNO 3 and NaOH were low, a very small scale residue was observed in the surface observation after subsequent sulfuric acid pickling even though the immersion time was slightly long.

比較例No.57は、NaNO3 濃度が高く、NaOH濃度が低いために、浸漬時間がやや長いにも係わらずその後の硫酸酸洗後の表面観察でも、微少スケールの残存が認められた。比較例No.58は、NaOH濃度が高く、NaCl濃度が低いために、浸漬時間が10秒とやや長いにも係わらずその後の硫酸酸洗後の表面観察でも、微少スケールの残存が認められた。 Comparative Example No. In No. 57, since the NaNO 3 concentration was high and the NaOH concentration was low, a very small scale residue was observed in surface observation after subsequent sulfuric acid pickling even though the immersion time was slightly long. Comparative Example No. In No. 58, since the NaOH concentration was high and the NaCl concentration was low, even though the immersion time was slightly long as 10 seconds, a microscale residue was observed in the subsequent surface observation after the sulfuric acid washing.

比較例No.59は、NaOH濃度が低く、NaCl濃度が高く、かつNa2 CO3 濃度が低いために、浸漬時間が10秒とやや長いにも係わらずその後の硫酸酸洗後の表面観察でも、微少スケールの残存が認められた。比較例No.60は、NaNO3 濃度が高く、KOH、NaClおよびKMnO4 濃度が低いために、浸漬時間が10秒とやや長いにも係わらずその後の硫酸酸洗後の表面観察でも、微少スケールの残存が認められた。 Comparative Example No. 59 has a low NaOH concentration, a high NaCl concentration, and a low Na 2 CO 3 concentration. Even though the immersion time is a little longer than 10 seconds, the surface observation after subsequent sulfuric acid pickling has a very small scale. Residual was observed. Comparative Example No. No. 60 has a high concentration of NaNO 3 and a low concentration of KOH, NaCl and KMnO 4. Even though the immersion time is a little longer than 10 seconds, the surface observation after subsequent sulfuric acid pickling shows a slight scale residue. It was.

これに対して、本発明No.1〜40のいずれも本発明の条件を全て満足していることから、いずれの特性も優れていることが分かる。特に、NaOH、NaNO3 、NaCl、KOHにNa2 CO3 が共存含有する場合と、さらに、KMnO4 が共存有無の場合の、酸化スケール改質への効果がある。KMnO4 の共存添加は、NaOH、NaNO3 、KOH系に添加することで改質特性を一段と向上する。炭酸ナトリウムの添加有無にかかわらず、含有量0.1%以上で効果を発揮する。しかし、5%以上添加では、効果が飽和する。 On the other hand, the present invention No. Since all of 1 to 40 satisfy the conditions of the present invention, it can be seen that all the characteristics are excellent. In particular, there is an effect on the oxide scale modification when Na 2 CO 3 coexists in NaOH, NaNO 3 , NaCl, and KOH, and when KMnO 4 coexists. The coexistence addition of KMnO 4 further improves the reforming characteristics by adding to NaOH, NaNO 3 , KOH system. Regardless of whether sodium carbonate is added or not, the effect is exhibited at a content of 0.1% or more. However, the effect is saturated when 5% or more is added.

以上のように、本発明の溶融ソルト組成によれば、NaOHを主成分として、これに共
存成分NaNO3 、KOH共存含有させることによって、従来にない効率的な酸化スケールの改質が出来、工業規模のステンレス生産工程で高い生産性と低コスト化を進めることが出来る。また、熔融ソルトによる改質反応促進に不可欠な硝酸ソーダの供給不安は、ステンレス鋼生産の根幹を揺るがすことになるがこれに代わる方法は、現状では確立されて生きていない。したがって、過渡的にでも、硝酸添加量を低減して、改質特性を保つことのできる組成を確立できることは極めて重要な技術である。
As described above, according to the molten salt composition of the present invention, NaOH is the main component, and coexisting components NaNO 3 and KOH are coexistently contained therein, thereby making it possible to improve the oxide scale more efficiently than in the past. High productivity and low cost can be promoted in the stainless steel production process. Moreover, the uneasy supply of sodium nitrate, which is indispensable for promoting the reforming reaction by the molten salt, shakes the foundation of stainless steel production, but no alternative method has been established and is currently alive. Therefore, it is an extremely important technique to establish a composition capable of maintaining the reforming characteristics by reducing the amount of nitric acid added even in a transient state.

溶融アルカリ塩中Na2 CO3 含有量とNa2 CO3 増加率(最終含有量初期量/初期量との関係を示す図である。Is a diagram showing the relationship between the molten alkali in the salt Na 2 CO 3 content and Na 2 CO 3 increase (final content initial amount / initial amount.

Claims (2)

NaNO3 :3〜20%、KOH:0.2〜5%、NaCl:5〜10%、残部NaOHと不可避的不純物を含むことを特徴とする酸化スケール改質溶融塩組成。 An oxide scale modified molten salt composition comprising NaNO 3 : 3 to 20%, KOH: 0.2 to 5%, NaCl: 5 to 10%, the balance NaOH and unavoidable impurities. 請求項1に加えて、Na2 CO3 :2〜10%、およびKMnO4 :0.1〜5%の1種、または2種を含有し、残部NaOHと不可避的不純物を含むことを特徴とする酸化スケール改質溶融塩組成。 In addition to claim 1, it contains one or two of Na 2 CO 3 : 2 to 10% and KMnO 4 : 0.1 to 5%, and contains the remaining NaOH and inevitable impurities Oxide scale modified molten salt composition.
JP2010175844A 2010-08-05 2010-08-05 Oxide scale modified molten salt bath Active JP5356332B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010175844A JP5356332B2 (en) 2010-08-05 2010-08-05 Oxide scale modified molten salt bath

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010175844A JP5356332B2 (en) 2010-08-05 2010-08-05 Oxide scale modified molten salt bath

Publications (2)

Publication Number Publication Date
JP2012036430A true JP2012036430A (en) 2012-02-23
JP5356332B2 JP5356332B2 (en) 2013-12-04

Family

ID=45848733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010175844A Active JP5356332B2 (en) 2010-08-05 2010-08-05 Oxide scale modified molten salt bath

Country Status (1)

Country Link
JP (1) JP5356332B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113292969A (en) * 2021-05-12 2021-08-24 北京工业大学 Medium-high temperature mixed molten salt heat storage system with high latent heat and preparation method
CN115893871A (en) * 2022-11-03 2023-04-04 青岛中兴通轨道交通科技有限公司 Glass reinforcer and glass reinforcing method
JP7458902B2 (en) 2020-05-21 2024-04-01 日鉄ステンレス株式会社 Ferritic Stainless Steel

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60121285A (en) * 1983-12-02 1985-06-28 Nisshin Steel Co Ltd Molten salt composition for pretreating stainless steel before pickling
JPS6261113B2 (en) * 1982-05-15 1987-12-19 Nippon Stainless Steel Co
JPH10324986A (en) * 1997-05-26 1998-12-08 Sumitomo Metal Ind Ltd Alkaline molten salt bath for descaling high-chromium stainless steel
JP2000144462A (en) * 1998-11-09 2000-05-26 Sumitomo Metal Ind Ltd METHOD OF SURFACE FINISH FOR HIGH Cr STAINLESS STEEL SHEET
JP2001348690A (en) * 2000-06-09 2001-12-18 Sumitomo Metal Ind Ltd Method for pretreating stainless steel strip for pickling
JP2003073869A (en) * 2001-09-07 2003-03-12 Sumitomo Metal Ind Ltd Pretreatment method for pickling of stainless steel strip
JP3387051B2 (en) * 2000-09-18 2003-03-17 新日本製鐵株式会社 Molten salt composition and its replenishing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6261113B2 (en) * 1982-05-15 1987-12-19 Nippon Stainless Steel Co
JPS60121285A (en) * 1983-12-02 1985-06-28 Nisshin Steel Co Ltd Molten salt composition for pretreating stainless steel before pickling
JPH10324986A (en) * 1997-05-26 1998-12-08 Sumitomo Metal Ind Ltd Alkaline molten salt bath for descaling high-chromium stainless steel
JP2000144462A (en) * 1998-11-09 2000-05-26 Sumitomo Metal Ind Ltd METHOD OF SURFACE FINISH FOR HIGH Cr STAINLESS STEEL SHEET
JP2001348690A (en) * 2000-06-09 2001-12-18 Sumitomo Metal Ind Ltd Method for pretreating stainless steel strip for pickling
JP3387051B2 (en) * 2000-09-18 2003-03-17 新日本製鐵株式会社 Molten salt composition and its replenishing method
JP2003073869A (en) * 2001-09-07 2003-03-12 Sumitomo Metal Ind Ltd Pretreatment method for pickling of stainless steel strip

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7458902B2 (en) 2020-05-21 2024-04-01 日鉄ステンレス株式会社 Ferritic Stainless Steel
CN113292969A (en) * 2021-05-12 2021-08-24 北京工业大学 Medium-high temperature mixed molten salt heat storage system with high latent heat and preparation method
CN113292969B (en) * 2021-05-12 2022-03-15 北京工业大学 Medium-high temperature mixed molten salt heat storage system with high latent heat and preparation method
CN115893871A (en) * 2022-11-03 2023-04-04 青岛中兴通轨道交通科技有限公司 Glass reinforcer and glass reinforcing method

Also Published As

Publication number Publication date
JP5356332B2 (en) 2013-12-04

Similar Documents

Publication Publication Date Title
JP2819378B2 (en) Pickling method for stainless steel
JP5768141B2 (en) Eco-friendly high-speed pickling process for producing low chromium ferritic stainless steel cold rolled steel sheets with excellent surface quality
US2395694A (en) Processes for removing oxide from the surface of metals
US2134457A (en) Metal treatment
JP5356332B2 (en) Oxide scale modified molten salt bath
JP6105167B2 (en) Pickling method of high chromium ferritic stainless cold rolled steel sheet
CA1046387A (en) Method and composition for cleaning the surface of ferrous metal
JP2015523469A (en) High speed pickling process for producing austenitic stainless cold rolled steel sheet
JP3216571B2 (en) Alkali molten salt bath for descaling high Cr stainless steel
JP4352190B2 (en) Descaling method of titanium material
Jandova et al. Treatment of sulphate leach liquors to recover cobalt from waste dusts generated by the glass industry
JP2007131885A (en) Method for pickling steel and steel pickling liquid
JP2002371395A (en) High-speed descaling method for stainless steel
CN106517116A (en) Industrial waste nitric acid comprehensive utilization process
Narvaez et al. Hydrogen peroxide decomposition in an environmentally friendly pickling solution for AISI 316L stainless steel
JP2002348700A (en) DESCALING METHOD FOR COLD-ROLLED AND ANNEALED Cr-BASED STAINLESS STEEL SHEET
JP2577619B2 (en) Method and apparatus for descaling alloy steel strip
JP3503576B2 (en) Pre-pickling method for stainless steel strip
US3653979A (en) Process for the production of a steel exhibiting consistently low weight loss test values
JP4037743B2 (en) Method for producing stainless steel with excellent surface gloss
JP7217901B2 (en) Stainless steel descaling liquid and stainless steel descaling method
CN108677122B (en) Preparation method of high-hardness aluminized steel
JP4322726B2 (en) Manufacturing method of stainless steel sheet with excellent surface gloss
JP2000144462A (en) METHOD OF SURFACE FINISH FOR HIGH Cr STAINLESS STEEL SHEET
KR100368207B1 (en) Electrolytic pickling solution for cold annealed austenitic stainless steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130828

R150 Certificate of patent or registration of utility model

Ref document number: 5356332

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250