JP2012035237A - Powder production apparatus - Google Patents

Powder production apparatus Download PDF

Info

Publication number
JP2012035237A
JP2012035237A JP2010180363A JP2010180363A JP2012035237A JP 2012035237 A JP2012035237 A JP 2012035237A JP 2010180363 A JP2010180363 A JP 2010180363A JP 2010180363 A JP2010180363 A JP 2010180363A JP 2012035237 A JP2012035237 A JP 2012035237A
Authority
JP
Japan
Prior art keywords
nozzle
exhaust gas
raw material
powder production
combustion exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010180363A
Other languages
Japanese (ja)
Inventor
Kenichi Tomosawa
健一 友澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugai Ro Co Ltd
Original Assignee
Chugai Ro Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugai Ro Co Ltd filed Critical Chugai Ro Co Ltd
Priority to JP2010180363A priority Critical patent/JP2012035237A/en
Priority to TW100120851A priority patent/TW201221251A/en
Priority to KR1020110072358A priority patent/KR20120015264A/en
Priority to CN2011102303397A priority patent/CN102423661A/en
Publication of JP2012035237A publication Critical patent/JP2012035237A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/02Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by dividing the liquid material into drops, e.g. by spraying, and solidifying the drops
    • B01J2/04Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by dividing the liquid material into drops, e.g. by spraying, and solidifying the drops in a gaseous medium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/26Nozzle-type reactors, i.e. the distribution of the initial reactants within the reactor is effected by their introduction or injection through nozzles

Abstract

PROBLEM TO BE SOLVED: To provide a powder production apparatus in which heat histories of powders to be heat-treated in suspended states can be uniformized.SOLUTION: The powder production apparatus 1 includes: a powder production furnace 2 in which a treatment space is formed; a combustion chamber 3 including a burner 6; a combustion exhaust gas nozzle 4 for introducing the combustion exhaust gas generated in the combustion chamber 3 into the powder production furnace 2; and a raw material nozzle 5 which is arranged in the combustion exhaust gas nozzle 4 and used for blowing a raw material into the powder production furnace 2. It is preferable that the cross-sectional area of a flow passage of the combustion exhaust gas nozzle 4 is smaller than that of the flow passage of the combustion chamber 3.

Description

本発明は、粉体製造装置に関する。   The present invention relates to a powder manufacturing apparatus.

従来、リチウムイオン2次電池の極の材料となる粉体等は、例えば、原料水溶液を噴霧乾燥して粉体化し、それらの粉体を容器に入れて炉内で焼成して熱変性させることによって製造されている。このような方法では、セラミック容器へのダメージを考慮して、焼成に30分から数時間が必要であり効率がよくない。また、このような方法では、粉体を堆積して静置した状態で焼成するため、焼成する際に粒子同士が溶着するという問題もある。   Conventionally, powders or the like that are the material of the electrodes of lithium ion secondary batteries are, for example, spray-dried raw material aqueous solutions to form powders, and these powders are placed in a container and baked in a furnace to be thermally denatured. Is manufactured by. In such a method, considering the damage to the ceramic container, it takes 30 minutes to several hours for firing, and is not efficient. In addition, in such a method, since the powder is deposited and fired in a standing state, there is a problem that particles are welded during firing.

特許文献1には、プラズマ放電を行う電極を有する粉体生成炉内に原料水溶液を噴霧し、プラズマ放電によって形成する超高温のプラズマ空間において、原料水溶液を乾燥するとともに、さらには熱分解して融合させる粉体製造装置が開示されている。   In Patent Document 1, a raw material aqueous solution is sprayed into a powder production furnace having an electrode for performing plasma discharge, and the raw aqueous solution is dried and further thermally decomposed in an ultra-high temperature plasma space formed by plasma discharge. A powder production apparatus for fusing is disclosed.

このような粉体製造装置で製造した粉体粒子は、形状がいびつで、不均一である。これは、原料水溶液の液滴が超高温のプラズマ空間で瞬間的に加熱され、粒子内の水分が一瞬のうちに気化膨張することで、粒子が水蒸気爆発して破壊されるためである。   The powder particles produced by such a powder production apparatus are irregular in shape and non-uniform. This is because the droplets of the raw material aqueous solution are instantaneously heated in the ultra-high temperature plasma space, and the water in the particles evaporates and expands instantaneously, so that the particles are destroyed by steam explosion and destroyed.

また、このような粉体製造装置では、プラズマ空間の容積が小さく、プラズマ空間内の温度にもムラがあるために、粒子毎に熱履歴が大きく異なるので、変性温度や加熱時間などが品質に大きく影響する粉体を製造するのには適さない。   Moreover, in such a powder manufacturing apparatus, the volume of the plasma space is small and the temperature in the plasma space is also uneven, so the heat history varies greatly from particle to particle, so the denaturation temperature, heating time, etc. are of quality. Not suitable for producing highly influential powders.

また、特許文献2には、火炎によって粉体原料を溶融し、球状粒子を製造する装置が記載されている。火炎によって加熱する粉体製造装置でも、火炎内部の温度ムラが大きいため、処理温度や処理時間を均一にすることができない。   Patent Document 2 describes an apparatus for producing spherical particles by melting a powder raw material with a flame. Even in a powder manufacturing apparatus heated by a flame, the temperature unevenness inside the flame is large, so the processing temperature and processing time cannot be made uniform.

特開2004−263257号明細書Japanese Patent Application Laid-Open No. 2004-263257 特開2010−75810号明細書JP 2010-75810 A Specification

前記問題点に鑑みて、本発明は、浮遊状態で熱処理される粉体の熱履歴を均一にすることができる粉体製造装置を提供することを課題とする。   In view of the above problems, an object of the present invention is to provide a powder manufacturing apparatus that can make the thermal history of powder heat-treated in a floating state uniform.

前記課題を解決するために、本発明による粉体製造装置は、内部に処理空間を形成する粉体生成炉と、バーナを備える燃焼室と、前記燃焼室で発生した燃焼排ガスを前記粉体生成炉に導入する燃焼排ガスノズルと、前記燃焼排ガスノズルの中に配置され、前記粉体生成炉に原料を吹き込む原料ノズルとを有するものとする。   In order to solve the above problems, a powder production apparatus according to the present invention includes a powder production furnace that forms a processing space therein, a combustion chamber that includes a burner, and combustion powder generated in the combustion chamber. A combustion exhaust gas nozzle to be introduced into the furnace and a raw material nozzle that is disposed in the combustion exhaust gas nozzle and blows the raw material into the powder production furnace are provided.

この構成によれば、粉体生成炉内に導入された燃焼排ガスは、処理空間の広い範囲をムラなく高温に維持する。この高温の燃焼排ガス中に原料を浮遊させることで、原料を均等に加熱して熱変性させられる。   According to this configuration, the combustion exhaust gas introduced into the powder production furnace maintains a wide range of the processing space at a high temperature without unevenness. By suspending the raw material in this high-temperature combustion exhaust gas, the raw material can be uniformly heated and thermally denatured.

また、本発明の粉体製造装置において、前記燃焼排ガスノズルは、前記燃焼室よりも流路断面積が小さくてもよい。   In the powder production apparatus of the present invention, the combustion exhaust gas nozzle may have a flow path cross-sectional area smaller than that of the combustion chamber.

この構成によれば、燃焼室内では流速を低くして、狭い燃焼室内で完全な燃焼を行い、燃焼排ガスノズルにおける燃焼排ガスの流速を十分に大きくすることで、燃焼排ガスの偏った流れを防止し、温度ムラを低減して粉体生成炉内に導入できる。   According to this configuration, the flow rate is reduced in the combustion chamber, complete combustion is performed in the narrow combustion chamber, and the flow rate of the flue gas in the flue gas nozzle is sufficiently increased to prevent uneven flow of the flue gas. The temperature unevenness can be reduced and introduced into the powder production furnace.

また、本発明の粉体製造装置において、前記燃焼室は水平方向に長く、前記バーナは前記燃焼室の水平方向一端から水平方向に火炎を形成し、前記燃焼排ガスノズルは、前記燃焼室の他端近傍から垂直に前記燃焼排ガスを引き出し、直線的に前記粉体生成炉に導入してもよい。   In the powder production apparatus of the present invention, the combustion chamber is long in the horizontal direction, the burner forms a flame in the horizontal direction from one end in the horizontal direction of the combustion chamber, and the combustion exhaust gas nozzle is disposed in addition to the combustion chamber. The combustion exhaust gas may be drawn vertically from the vicinity of the end and linearly introduced into the powder production furnace.

この構成によれば、燃焼室の小型化と、燃焼排ガスノズルの流路の短縮とが可能であり、熱損失を最小化できる。また、燃焼排ガスの流れ方向を直角に変更するので、燃焼排ガスの撹拌を促進し、温度ムラをなくすことができる。   According to this configuration, the combustion chamber can be downsized and the flow path of the combustion exhaust gas nozzle can be shortened, and heat loss can be minimized. Further, since the flow direction of the combustion exhaust gas is changed to a right angle, the stirring of the combustion exhaust gas can be promoted and temperature unevenness can be eliminated.

また、本発明の粉体製造装置は、前記原料ノズルは、前記原料を噴霧する原料噴霧ノズルと、前記原料噴霧ノズルを取り囲むように配置され、噴霧された前記原料の周囲に冷却空気を吹き込む冷却ノズルとを備えてもよい。   Further, in the powder production apparatus of the present invention, the raw material nozzle is disposed so as to surround the raw material spray nozzle for spraying the raw material, and cooling for blowing cooling air around the sprayed raw material. And a nozzle.

この構成によれば、冷却空気によって原料が極めて短時間に加熱されることを防止し、粉体粒子の水蒸気爆発による破裂を防止して、均質な粒子を形成できる。   According to this configuration, it is possible to prevent the raw material from being heated by the cooling air in a very short time, to prevent the powder particles from bursting due to the steam explosion, and to form homogeneous particles.

また、本発明の粉体製造装置において、前記冷却ノズルは、多重管からなり、前記冷却空気を多重に吹き込んでもよい。   In the powder production apparatus of the present invention, the cooling nozzle may be composed of a multiple tube, and the cooling air may be blown in multiple times.

この構成によれば、複数の冷却空気の層が段階的な温度分布を形成し、原料を段階的に昇温できるので、粉体粒子の水蒸気爆発を防止する効果がさらに高い。   According to this configuration, the plurality of layers of cooling air form a stepwise temperature distribution, and the temperature of the raw material can be increased stepwise. Therefore, the effect of preventing the steam explosion of the powder particles is further enhanced.

また、本発明の粉体製造装置において、前記冷却ノズルは、冷却水によって冷却されるジャケットを備えてもよく、さらに、隙間を空けて前記ジャケットを覆う外層板を備えてもよい。   In the powder production apparatus of the present invention, the cooling nozzle may include a jacket that is cooled by cooling water, and may further include an outer layer plate that covers the jacket with a gap.

この構成によれば、水冷ジャケットによって燃焼排ガスノズル内で冷却空気および原料が高温になることを防止できる。これにより、少ない冷却空気で粉体粒子の水蒸気爆発を確実に防止でき、燃焼排ガスの希釈が抑制される。また、水冷ジャケットの周囲に断熱効果を発揮する空気の層を介して外層板を配設することで、冷却水と燃焼排ガスとの間の熱交換が抑制されるので、燃焼排ガスノズル内における燃焼排ガスの熱損失も小さい。したがって、この構成により、高い熱効率を維持しながら、粉体粒子の水蒸気爆発を防止できる。   According to this configuration, the cooling air and the raw material can be prevented from becoming high temperature in the combustion exhaust gas nozzle by the water cooling jacket. Thereby, the steam explosion of the powder particles can be reliably prevented with a small amount of cooling air, and the dilution of the combustion exhaust gas is suppressed. In addition, the heat exchange between the cooling water and the flue gas is suppressed by arranging the outer layer plate around the water cooling jacket through an air layer that exhibits a heat insulation effect. The heat loss of exhaust gas is also small. Therefore, with this configuration, the steam explosion of the powder particles can be prevented while maintaining high thermal efficiency.

本発明の第1実施形態である粉体製造装置の概略図である。It is the schematic of the powder manufacturing apparatus which is 1st Embodiment of this invention. 図1の原料ノズルの詳細断面図である。It is a detailed sectional view of the raw material nozzle of FIG. 本発明の第2実施形態に係る原料ノズルの断面図である。It is sectional drawing of the raw material nozzle which concerns on 2nd Embodiment of this invention.

図1に、本発明の第1実施形態の粉体製造装置1を示す。粉体製造装置1は、鏡板状の上端と、円錐状に縮径した下部とを有し、内部に隔離された処理空間を形成する直立筒状の粉体生成炉2と、粉体生成炉2の上方に配置され、水平方向に延伸する円筒状の燃焼室3と、燃焼室3と粉体生成炉2とを接続し、燃焼室3内に生成された燃焼排ガスを粉体生成炉2の上端から下向きに吹き込む燃焼排ガスノズル4と、燃焼室3を貫通し、燃焼排ガスノズル4の内部に延伸するように配置され、粉体生成炉2の上端から下向きに粉体原料を含有したスラリーを噴霧するための原料ノズル5とを有する。   In FIG. 1, the powder manufacturing apparatus 1 of 1st Embodiment of this invention is shown. The powder production apparatus 1 has an end plate-like upper end and a conical lower diameter lower part, and an upright cylindrical powder production furnace 2 that forms a processing space isolated inside, and a powder production furnace The cylindrical combustion chamber 3 that is disposed above 2 and extends in the horizontal direction is connected to the combustion chamber 3 and the powder generating furnace 2, and the combustion exhaust gas generated in the combustion chamber 3 is connected to the powder generating furnace 2. A flue gas nozzle 4 that blows downward from the upper end of the powder, and a slurry that passes through the combustion chamber 3 and extends into the flue gas nozzle 4, and contains a powder raw material downward from the upper end of the powder production furnace 2 And a raw material nozzle 5 for spraying.

燃焼室3は、一端にバーナ6が設けられ、一端から他端に向けて水平方向の火炎が形成される。バーナ6は、例えば天然ガスのような燃料と燃焼用空気とを任意の比率で供給できるものであり、公知の点火装置やパイロットバーナを備えてもよい。当然ながら、燃料は、ガス燃料、液体燃料、固体燃料のいずれであってもよい。   The combustion chamber 3 is provided with a burner 6 at one end, and a horizontal flame is formed from one end to the other end. The burner 6 can supply a fuel such as natural gas and combustion air at an arbitrary ratio, and may include a known ignition device or a pilot burner. Of course, the fuel may be any of gas fuel, liquid fuel, and solid fuel.

燃焼室3は、バーナ6が形成する火炎を収容でき、燃料を完全燃焼させるのに必要最低限度の容積を有するものとすることで、小さくすることが好ましい。燃焼室3の炉壁からの熱損失を最低限度に留めることができるからである。例えば、本実施形態の燃焼室3は、バーナ6の燃焼容量116Kwに対して、好ましくは、内径130〜250mm、長さ500〜1000mm、より好ましくは、内径150〜200mm、長さ600〜800mmの細長い形状を有する。   It is preferable to make the combustion chamber 3 small by accommodating the flame formed by the burner 6 and having a minimum volume necessary for complete combustion of the fuel. This is because heat loss from the furnace wall of the combustion chamber 3 can be kept to a minimum. For example, the combustion chamber 3 of the present embodiment preferably has an inner diameter of 130 to 250 mm and a length of 500 to 1000 mm, more preferably an inner diameter of 150 to 200 mm and a length of 600 to 800 mm with respect to the combustion capacity 116 Kw of the burner 6. It has an elongated shape.

燃焼排ガスノズル4は、燃焼室3のバーナ6と反対側の端部近傍に開口し、垂直に燃焼排ガスを引き出し、噴霧装置5の外側から、直線的に粉体生成炉2に吹き込むように配設されている。また、燃焼排ガスノズル4は、燃焼室3よりも流路断面積が小さく、好ましくは、内径70〜120mm、より好ましくは、内径90〜110mmである。これにより、熱風ノズル4における燃焼排ガスの流速を、燃焼室3の下流側における流速の1.5倍から2.5倍にすることが好ましい。   The combustion exhaust gas nozzle 4 opens near the end of the combustion chamber 3 opposite to the burner 6, and draws the combustion exhaust gas vertically, and is linearly blown from the outside of the spray device 5 into the powder production furnace 2. It is installed. Moreover, the combustion exhaust gas nozzle 4 has a smaller flow path cross-sectional area than the combustion chamber 3, and preferably has an inner diameter of 70 to 120 mm, more preferably an inner diameter of 90 to 110 mm. Thereby, it is preferable that the flow rate of the combustion exhaust gas in the hot air nozzle 4 is 1.5 to 2.5 times the flow rate on the downstream side of the combustion chamber 3.

比較的流れの遅い燃焼室3から流路面積の小さい燃焼燃焼排ガスノズル4に燃焼排ガスを引き抜くことで、燃焼排ガスノズル4に流れ込む際に燃焼排ガスの流速が急激に高まる。この流速変化によって、燃焼室3内において燃焼排ガスの温度に偏りがあったとしても、燃焼排ガスの流れ方向を直角に変更するので、燃焼排ガスを撹拌し、温度を均一にすることができる。また、燃焼排ガスノズル4内において、燃焼排ガスは、略流速の均一な直線的な流れに整流されて、粉体生成炉2に吹き込まれる。   By extracting the combustion exhaust gas from the combustion chamber 3 having a relatively slow flow to the combustion combustion exhaust gas nozzle 4 having a small flow path area, the flow rate of the combustion exhaust gas rapidly increases when flowing into the combustion exhaust gas nozzle 4. Even if the temperature of the combustion exhaust gas is biased in the combustion chamber 3 due to this change in flow velocity, the flow direction of the combustion exhaust gas is changed to a right angle, so that the combustion exhaust gas can be stirred and the temperature can be made uniform. Further, in the combustion exhaust gas nozzle 4, the combustion exhaust gas is rectified into a linear flow having a uniform flow velocity and blown into the powder production furnace 2.

さらに、図2に、原料ノズル5の詳細を示す。原料ノズル5は、原料スラリーが供給され、先端にスプレーチップ7が設けられた原料噴霧ノズル8と、原料噴霧ノズル8を覆うように配設され、原料噴霧ノズル8との隙間を通して、原料噴霧ノズル8から噴霧された原料の周囲に冷却空気を供給するための冷却ノズル9と、冷却ノズル9の外周に設けられた水冷ジャケット10と、水冷ジャケット10の外側に隙間を空けて配設された外層板11とを有する。   Furthermore, the detail of the raw material nozzle 5 is shown in FIG. The raw material nozzle 5 is provided so as to cover the raw material spray nozzle 8 to which the raw material slurry is supplied and the spray tip 7 is provided at the tip and the raw material spray nozzle 8. A cooling nozzle 9 for supplying cooling air around the raw material sprayed from 8, a water cooling jacket 10 provided on the outer periphery of the cooling nozzle 9, and an outer layer disposed with a gap outside the water cooling jacket 10 Plate 11.

水冷ジャケット10には冷却水が循環され、水冷ジャケット10内における冷却水温度は約50℃に保持される。水冷ジャケット10と外層板11との間の空気は断熱層として機能するため、約1200℃の燃焼排ガスに晒される外層板11の裏面の温度は、約960℃になるが、水冷ジャケット10と燃焼排ガスとの間の熱交換量は僅かである。したがって、外層板11がなく水冷ジャケット10の外面に直接燃焼排ガスが接触する場合と比較して、燃焼排ガスが原料ノズル8に奪われる熱量が非常に小さい。このため、冷却ノズル9には、常温の空気が供給されるが、殆ど温度上昇しないまま、粉体生成炉2に吹き込まれる。これにより、噴霧直後の原料液滴の水蒸気爆発を防止する効果が高くなる。   Cooling water is circulated through the water cooling jacket 10, and the cooling water temperature in the water cooling jacket 10 is maintained at about 50 ° C. Since the air between the water cooling jacket 10 and the outer layer plate 11 functions as a heat insulating layer, the temperature of the back surface of the outer layer plate 11 exposed to the combustion exhaust gas at about 1200 ° C. is about 960 ° C. The amount of heat exchange with the exhaust gas is small. Therefore, compared with the case where there is no outer layer plate 11 and the combustion exhaust gas is in direct contact with the outer surface of the water cooling jacket 10, the amount of heat taken by the combustion exhaust gas to the raw material nozzle 8 is very small. For this reason, normal temperature air is supplied to the cooling nozzle 9 but is blown into the powder production furnace 2 with almost no increase in temperature. Thereby, the effect which prevents the steam explosion of the raw material droplet immediately after spraying becomes high.

冷却空気は、原料噴霧ノズル8から噴霧された原料を覆い、直接高温(例えば1200℃)の燃焼排ガスに原料液滴が晒されて、瞬時に昇温して爆発的に水分が蒸発することにより粒子が破壊されることを防止する。   The cooling air covers the raw material sprayed from the raw material spray nozzle 8, and the raw material droplets are directly exposed to combustion exhaust gas at a high temperature (eg, 1200 ° C.). Prevent the particles from being destroyed.

原料液滴の温度上昇を僅かに遅らせれば粒子の破壊を防止できるので、冷却空気は、燃焼排ガスの希釈を避けるために、少量でよく、燃焼排ガス190mN/hに対しては、5〜20mN/hが好ましく、10〜15mN/hがより好ましい。また、冷却空気は、噴霧直後の原料液滴のみを覆えばよいので、その流速は燃焼排ガスよりも遅くてよく、本実施形態では、燃焼排ガスの流速の40%程度である。 Since the destruction of the particles can be prevented by slightly delaying the temperature rise of the raw material droplets, the cooling air may be a small amount in order to avoid dilution of the combustion exhaust gas, and 5% for the combustion exhaust gas 190 m 3 N / h. to 20 m 3 N / h are preferred, 10~15m 3 N / h is more preferable. Further, since the cooling air only needs to cover the raw material droplets immediately after spraying, the flow rate thereof may be slower than that of the combustion exhaust gas, and in this embodiment is about 40% of the flow rate of the combustion exhaust gas.

燃焼排ガスの熱量に比して原料スラリーの蒸発潜熱は数パーセントに過ぎないので、燃焼排ガスは、原料液滴の水分を全て蒸発させた後も、十分に高い温度を保持している。このため、原料液滴を乾燥した粒子を高温の燃焼排ガス中に浮遊させた状態で、さらに、燃焼排ガスによって所望の温度(本実施形態では、700〜1200℃)に加熱して、溶融、焼成、発泡化、熱変性等の要求される熱処理を行うことができる。   Since the latent heat of vaporization of the raw material slurry is only a few percent as compared with the calorific value of the combustion exhaust gas, the combustion exhaust gas maintains a sufficiently high temperature even after all the water in the raw material droplets is evaporated. For this reason, in a state where the particles obtained by drying the raw material droplets are suspended in the high-temperature combustion exhaust gas, the particles are further heated to a desired temperature (700 to 1200 ° C. in this embodiment) by the combustion exhaust gas, and then melted and fired. , Required heat treatment such as foaming and heat denaturation can be performed.

本実施形態において、燃焼排ガスは、粉体製造塔2内の広い範囲において略均一な高温環境を形成するので、粉体粒子の熱履歴にばらつきが少なく、均質な熱処理ができる。また、燃焼排ガス中に分散浮遊した状態で粉体を高温に加熱するので、粒子同士が干渉せず、粒子形状が均一になる。   In the present embodiment, the combustion exhaust gas forms a substantially uniform high-temperature environment in a wide range in the powder production tower 2, so that there is little variation in the thermal history of the powder particles, and a uniform heat treatment can be performed. In addition, since the powder is heated to a high temperature while being dispersed and suspended in the combustion exhaust gas, the particles do not interfere with each other and the particle shape becomes uniform.

また、本実施形態において、原料ノズル5は、粉体を空気とともに粉体生成炉2内に原料粉体を吹き込むものであってもよい。この場合、水蒸気爆発による粉体粒子の破壊の心配がないため、冷却空気ノズル9、水冷ジャケット10および外層板11は省略できる。   In the present embodiment, the raw material nozzle 5 may blow the raw material powder into the powder production furnace 2 together with air. In this case, the cooling air nozzle 9, the water cooling jacket 10, and the outer layer plate 11 can be omitted because there is no fear of destruction of the powder particles due to the steam explosion.

続いて、第1実施形態の原料ノズル5に替えて使用可能な、本発明の第2実施形態に係る原料ノズル21を図3に示す。本実施形態の原料ノズル21は、原料スラリーが供給され、先端にスプレーチップ22が設けられた原料噴霧ノズル23と、原料噴霧ノズル23を覆うように配設され、原料噴霧ノズル23との隙間を通して、原料噴霧ノズル23から噴霧された原料の周囲に冷却空気を供給するための第1冷却ノズル24と、第1冷却ノズル24をさらに覆うように配設され、第1冷却ノズル24との隙間を通して、第1冷却ノズル24から供給される冷却空気の外側にさらなる冷却空気を供給する第2冷却ノズル25とを有する。   Next, a raw material nozzle 21 according to a second embodiment of the present invention that can be used in place of the raw material nozzle 5 of the first embodiment is shown in FIG. The raw material nozzle 21 of the present embodiment is provided so as to cover the raw material spray nozzle 23 to which the raw material slurry is supplied and the spray tip 22 is provided at the tip, and through the gap between the raw material spray nozzle 23. The first cooling nozzle 24 for supplying cooling air around the raw material sprayed from the raw material spray nozzle 23 and the first cooling nozzle 24 are disposed so as to further cover the first cooling nozzle 24 and pass through the gap between the first cooling nozzle 24 and the first cooling nozzle 24. And a second cooling nozzle 25 for supplying further cooling air to the outside of the cooling air supplied from the first cooling nozzle 24.

このように、冷却ノズルを多重にすることで、段階的に温度が変化する複数の冷却空気の層を形成できる。これにより、少ない冷却空気によって、燃焼室3および燃焼排ガスノズル4内における原料噴霧ノズル23の温度上昇、および、噴霧直後の原料液滴の瞬間的な昇温による水蒸気爆発を防止できる。   In this way, by providing multiple cooling nozzles, a plurality of layers of cooling air whose temperature changes stepwise can be formed. Thus, with a small amount of cooling air, it is possible to prevent a temperature explosion of the raw material spray nozzle 23 in the combustion chamber 3 and the combustion exhaust gas nozzle 4 and a steam explosion due to an instantaneous temperature rise of the raw material droplets immediately after spraying.

1…粉体製造装置
2…粉体生成炉
3…燃焼室
4…燃焼排ガスノズル
5…原料ノズル
6…バーナ
7…スプレーチップ
8…原料噴霧ノズル
9…冷却ノズル
10…水冷ジャケット
11…外層板
21…原料ノズル
22…スプレーチップ
23…原料噴霧ノズル
24…第1冷却ノズル
25…第2冷却ノズル
DESCRIPTION OF SYMBOLS 1 ... Powder manufacturing apparatus 2 ... Powder production furnace 3 ... Combustion chamber 4 ... Combustion exhaust gas nozzle 5 ... Raw material nozzle 6 ... Burner 7 ... Spray tip 8 ... Raw material spray nozzle 9 ... Cooling nozzle 10 ... Water cooling jacket 11 ... Outer layer board 21 ... Raw material nozzle 22 ... Spray tip 23 ... Raw material spray nozzle 24 ... First cooling nozzle 25 ... Second cooling nozzle

Claims (7)

内部に処理空間を形成する粉体生成炉と、
バーナを備える燃焼室と、
前記燃焼室で発生した燃焼排ガスを前記粉体生成炉に導入する燃焼排ガスノズルと、
前記燃焼排ガスノズルの中に配置され、前記粉体生成炉に原料を吹き込む原料ノズルとを有することを特徴とする粉体製造装置。
A powder production furnace that forms a processing space inside;
A combustion chamber with a burner;
A combustion exhaust gas nozzle for introducing the combustion exhaust gas generated in the combustion chamber into the powder production furnace;
A powder production apparatus comprising: a raw material nozzle disposed in the combustion exhaust gas nozzle and for blowing a raw material into the powder production furnace.
前記燃焼排ガスノズルは、前記燃焼室よりも流路断面積が小さいことを特徴とする請求項1に記載の粉体製造装置。   The powder production apparatus according to claim 1, wherein the combustion exhaust gas nozzle has a flow passage cross-sectional area smaller than that of the combustion chamber. 前記燃焼室は水平方向に長く、前記バーナは前記燃焼室の水平方向一端から水平方向に火炎を形成し、
前記燃焼排ガスノズルは、前記燃焼室の他端近傍から垂直に前記燃焼排ガスを引き出し、直線的に前記粉体生成炉に導入することを特徴とする請求項1または2に記載の粉体製造装置。
The combustion chamber is long in the horizontal direction, and the burner forms a flame in the horizontal direction from one horizontal end of the combustion chamber,
The powder production apparatus according to claim 1 or 2, wherein the combustion exhaust gas nozzle draws the combustion exhaust gas vertically from the vicinity of the other end of the combustion chamber and linearly introduces the combustion exhaust gas into the powder production furnace. .
前記原料ノズルは、前記原料を噴霧する原料噴霧ノズルと、前記原料噴霧ノズルを取り囲むように配置され、噴霧された前記原料の周囲に冷却空気を吹き込む冷却ノズルとを備えることを特徴とする請求項1から3のいずれかに記載の粉体製造装置。   The raw material nozzle includes a raw material spray nozzle that sprays the raw material, and a cooling nozzle that is disposed so as to surround the raw material spray nozzle and blows cooling air around the sprayed raw material. The powder production apparatus according to any one of 1 to 3. 前記冷却ノズルは、多重管からなり、前記冷却空気を多重に吹き込むことを特徴とする請求項4に記載の粉体製造装置。   The powder manufacturing apparatus according to claim 4, wherein the cooling nozzle is composed of a multiple pipe and blows the cooling air in multiples. 前記冷却ノズルは、外側に、冷却水によって冷却されるジャケットを備えることを特徴とする請求項4または5に記載の粉体製造装置。   The powder manufacturing apparatus according to claim 4, wherein the cooling nozzle includes a jacket that is cooled by cooling water on an outer side. 隙間を空けて前記ジャケットを覆う外層板をさらに備えることを特徴とする請求項6に記載の粉体製造装置。   The powder manufacturing apparatus according to claim 6, further comprising an outer layer plate that covers the jacket with a gap.
JP2010180363A 2010-08-11 2010-08-11 Powder production apparatus Pending JP2012035237A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010180363A JP2012035237A (en) 2010-08-11 2010-08-11 Powder production apparatus
TW100120851A TW201221251A (en) 2010-08-11 2011-06-15 Powder production equipment
KR1020110072358A KR20120015264A (en) 2010-08-11 2011-07-21 Powder production equipment
CN2011102303397A CN102423661A (en) 2010-08-11 2011-08-05 Powder production device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010180363A JP2012035237A (en) 2010-08-11 2010-08-11 Powder production apparatus

Publications (1)

Publication Number Publication Date
JP2012035237A true JP2012035237A (en) 2012-02-23

Family

ID=45838074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010180363A Pending JP2012035237A (en) 2010-08-11 2010-08-11 Powder production apparatus

Country Status (4)

Country Link
JP (1) JP2012035237A (en)
KR (1) KR20120015264A (en)
CN (1) CN102423661A (en)
TW (1) TW201221251A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015077545A (en) * 2013-10-16 2015-04-23 中外炉工業株式会社 Powder production apparatus
JP2015196156A (en) * 2014-04-02 2015-11-09 小林 博 Heat treatment apparatus for continuously heat-treating powder or particles

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5128249A (en) * 1974-09-03 1976-03-10 Takasago Thermal Engineering FUNMUNOSHUKUSOCHITSUKIFUNMUKANSOSOCHI
JPH0290957A (en) * 1988-09-26 1990-03-30 Freunt Ind Co Ltd Spray nozzle and granule coating device using same
JPH05309201A (en) * 1992-05-08 1993-11-22 Morinaga Milk Ind Co Ltd Spray dryer
JP2004230243A (en) * 2003-01-29 2004-08-19 Denki Kagaku Kogyo Kk Method and apparatus for spraying
JP2006346609A (en) * 2005-06-17 2006-12-28 Nippon Pneumatic Mfg Co Ltd Spheroidizing treatment apparatus
JP2009006312A (en) * 2007-05-29 2009-01-15 Ibiden Co Ltd Honeycomb filter

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3589385B2 (en) * 1998-06-05 2004-11-17 株式会社豊田中央研究所 Powder synthesis equipment
JP2002058981A (en) * 2000-08-23 2002-02-26 Murata Mfg Co Ltd Spray drier and granulating method using this

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5128249A (en) * 1974-09-03 1976-03-10 Takasago Thermal Engineering FUNMUNOSHUKUSOCHITSUKIFUNMUKANSOSOCHI
JPH0290957A (en) * 1988-09-26 1990-03-30 Freunt Ind Co Ltd Spray nozzle and granule coating device using same
JPH05309201A (en) * 1992-05-08 1993-11-22 Morinaga Milk Ind Co Ltd Spray dryer
JP2004230243A (en) * 2003-01-29 2004-08-19 Denki Kagaku Kogyo Kk Method and apparatus for spraying
JP2006346609A (en) * 2005-06-17 2006-12-28 Nippon Pneumatic Mfg Co Ltd Spheroidizing treatment apparatus
JP2009006312A (en) * 2007-05-29 2009-01-15 Ibiden Co Ltd Honeycomb filter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015077545A (en) * 2013-10-16 2015-04-23 中外炉工業株式会社 Powder production apparatus
JP2015196156A (en) * 2014-04-02 2015-11-09 小林 博 Heat treatment apparatus for continuously heat-treating powder or particles

Also Published As

Publication number Publication date
CN102423661A (en) 2012-04-25
KR20120015264A (en) 2012-02-21
TW201221251A (en) 2012-06-01

Similar Documents

Publication Publication Date Title
JP2012035235A (en) Spray device and powder production apparatus
CN102032594B (en) For the interior panelling of fuel injector
CN107314397A (en) Plasma torch device and plasma kitchen range
TW200909744A (en) Combustive destruction of noxious substances
CN105430863A (en) Plasma generator based on glide arc discharge principle
JP2012035237A (en) Powder production apparatus
CN107144664B (en) Drop evaporation and fire test device based on dielectric barrier discharge
WO2002098190A1 (en) Plasma torch
JP4555199B2 (en) Powder production equipment
JP2004515741A (en) Catalytic combustion device for vaporizing liquid fuel on hot walls
CN111491437B (en) Non-jet normal-pressure large-volume microwave plasma generation method
KR20120136019A (en) Combustion apparatus having structure for cooling combustion chamber
JP2007083113A (en) Powder production apparatus
JP2016091683A (en) Fuel cell device
CN105940765A (en) Method for operating an electric arc furnace, and electric arc furnace
JP2010243145A (en) Device and method of cooling rotary kiln
CN214065282U (en) Submerged combustion heating equipment
CN112047373B (en) Self-heating zinc oxide production method
CN112512965B (en) Reactor and method for sulfur combustion
US20230184429A1 (en) Heat pipe for submerged combustion burner
CN211588530U (en) High-temperature heat preservation device
KR101181363B1 (en) Steam generator for burning apparatus
TWI793816B (en) Gas treatment furnace and exhaust gas treatment device using the furnace
CN112047375B (en) Self-heating zinc oxide apparatus for producing
RU2286033C1 (en) Plasmatron with liquid electrolytic cathode

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120719

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130326