JP2012034352A - ステレオ動画像符号化装置及びステレオ動画像符号化方法 - Google Patents

ステレオ動画像符号化装置及びステレオ動画像符号化方法 Download PDF

Info

Publication number
JP2012034352A
JP2012034352A JP2011142188A JP2011142188A JP2012034352A JP 2012034352 A JP2012034352 A JP 2012034352A JP 2011142188 A JP2011142188 A JP 2011142188A JP 2011142188 A JP2011142188 A JP 2011142188A JP 2012034352 A JP2012034352 A JP 2012034352A
Authority
JP
Japan
Prior art keywords
image
quantization
moving image
unit
generated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011142188A
Other languages
English (en)
Inventor
Hiroshi Arakawa
博 荒川
Hideyuki Okose
秀之 大古瀬
Hiroki Kobayashi
裕樹 小林
Seishi Abe
清史 安倍
Katsunori Urano
克紀 浦野
Hisaki Maruyama
悠樹 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2011142188A priority Critical patent/JP2012034352A/ja
Priority to US13/171,736 priority patent/US20120002723A1/en
Publication of JP2012034352A publication Critical patent/JP2012034352A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/124Quantisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/597Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding specially adapted for multi-view video sequence encoding

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

【課題】ステレオ動画像を符号化する際に、拡張チャンネルに発生する符号化歪みを抑制することで、画質の劣化を低減する。
【解決手段】第1視点動画像および第2視点動画像のうち、少なくとも第2視点動画像に含まれる第2画像を符号化するステレオ動画像符号化装置100であって、第2視点動画像に対して動き補償を適用することにより生成された予測画像と、前記第2視点動画像に対して視差補償を適用することにより生成された予測画像と、を選択的に切り替えて出力する判定部122および選択部315と、減算器202と、直交変換部203と、量子化部204と、量子化部204で利用する量子化幅を決定する制御部120とを備え、制御部120は、選択部315が視差補償を適用することにより生成された予測画像を選択した場合、第2画像に適用される量子化幅を、第2画像と対になる第1画像に適用される量子化幅より小さい値に決定する。
【選択図】図1

Description

本発明は、ステレオ動画像符号化装置及びステレオ動画像符号化方法に関し、特に、視差補償を用いて、ステレオ動画像を圧縮符号化する装置及び方法に関する。
近年、AV情報のデジタル化が進み、動画像信号をデジタル化して取り扱うことのできる機器が広く普及しつつある。動画像信号は膨大な情報量を有するので、記録容量や伝送効率を考慮して情報量を削減しつつ符号化するのが一般的である。動画像信号の圧縮符号化技術としては、MPEG(Moving Picture Experts Group)という作業部会により策定された国際規格が広く利用されている。
このような動画像圧縮符号化技術を用い、ステレオ動画像信号を符号化するステレオ動画像符号化装置が特許文献1に開示されている。特許文献1に記載の従来のステレオ動画像符号化装置は、立体視する際に用いる左眼用動画像と右眼用動画像とを含むステレオ動画像信号を符号化する。以下では、左眼用動画像(左チャンネルの動画像)が基本チャンネルであり、右眼用動画像(右チャンネルの動画像)が拡張チャンネルである場合について説明する。つまり、従来のステレオ動画像符号化装置は、拡張チャンネルである右眼用動画像を符号化する際に、基本チャンネルである左眼用動画像を参照する。
特許文献1に記載された従来のステレオ動画像符号化装置は、レート制御を行う。レート制御とは、ステレオ動画像信号を符号化することで発生する符号量に基づいて量子化の際の量子化幅を決定することで、ビットストリームのビットレートを制御する処理である。例えば、以下に示す(式1)〜(式7)に従って、レート制御は実行される。
(式1) d=d0+s−j×(T1/Nmb)
ここで、dは、仮想バッファ占有量である。Nmbは、ピクチャ内のマクロブロック数である。j(=0,1,・・・,Nmb―1)は、対象マクロブロックの位置を示す値である。T1は、1対の対象ピクチャである左眼用の第1ピクチャと右眼用の第2ピクチャとの両方での目標ビットレートである。また、d0は、前回のピクチャの符号化後のdの値である。
次に、(式1)で求めた値を用いて、(式2)によって、基本チャンネルである左眼用画像の量子化に用いるdLを求める。
(式2) dL=(1/2)×d
さらに、以下の(式3)〜(式6)に従った演算を行うことで、量子化パラメータmquantを算出する。
(式3) mquant=Qj×Nactj
(式4) Qj=32×dL/r
(式5) r=2×(ビットレート)×(ピクチャレート)
(式6) Nactj=
(2×actj+avg_act)/(actj+2×avg_act)
ここで、actjは、対象マクロブロックのアクティビティ、avg_actは、直前ピクチャのactjの平均値である。以上のように、(式2)〜(式6)に従って算出された量子化パラメータmquantが、左眼用画像の量子化に用いられる。
さらに、(式1)で求めた値を用いて、(式7)によって、拡張チャンネルである右眼用画像の量子化に用いるdRを算出する。
(式7) dR=(WR’)×d
ここで、WR’≧(1/2)である。さらに、以下の(式8)と、上記の(式3)、(式5)及び(式6)とにより、量子化パラメータmquantを算出する。
(式8) Qj=32×dR/r
以上のように、(式8)、(式3)、(式5)及び(式6)に従って算出された量子化パラメータmquantが、右眼用画像の量子化に用いられる。
従来のステレオ動画像符号化装置においては、右チャンネル(拡張チャンネル)に適用される量子化パラメータが、左チャンネル(基本チャンネル)に適用される量子化パラメータより大きくなる。その結果、右チャンネルでの発生符号量が少なくなり、高い符号化効率を実現できる。また、基本チャンネルの画質が、拡張チャンネルの画質よりも常に高く保たれるように制御されている。
また、特許文献2においては、符号化効率を向上させるために、左チャンネルと右チャンネルとの圧縮率を交互に切り替える方法が開示されている。
特許第3646849号公報 特許第3122191号公報
しかしながら、上記従来技術では、ステレオ動画像を符号化する際に、拡張チャンネルに符号化歪みが発生し、画質が劣化してしまうという課題がある。具体的には、以下の通りである。
上記従来の技術が行うような、拡張チャンネルの量子化パラメータを、基本チャンネルの量子化パラメータよりも大きくする制御を行うと、拡張チャンネルの画質の劣化(リンギング等)が生じ、エッジ付近に所謂モスキートノイズが現れる。
図10は、直方体を撮影した場合の(a)左眼用画像及び(b)右眼用画像の模式図と、破線で表した画素ラインでの画素値の水平分布とを表す図である。図10に示す例では、直方体の正面では画素値が大きく、直方体の側面(左側面及び右側面)では画素値が、正面の画素値のおよそ半分となっている。
また、図11は、左眼用画像を参照画像として視差補償を行うことで、右眼用画像を符号化する場合における、残差画素の分布を表す図である。なお、図11において、右眼用画像中の太線の正方形領域が符号化対象となるマクロブロックである。また、図11において、左眼用画像中の太線の正方形領域が参照画像である。
対象マクロブロックは、直方体の右側面を含むが、直方体の右側面の領域に対応する画素は、参照画像である左眼用画像には存在しない。このため、対応する画素のない区間について、残差画素値が非ゼロとなる。
そして、このような残差画素の直交変換結果を、不十分な量子化パラメータ(すなわち、大きな量子化パラメータ)で量子化すると、直交変換係数に量子化誤差が生じる。その結果、逆量子化及び逆直交変換を行うことで、量子化された直交変換係数を空間領域に戻した場合に、元の綺麗な矩形波には戻らず、リンギングを含む矩形波となる。
したがって、リンギングを含む矩形波と参照画素との加算により、結果として、図12の(b)に示すように、リンギングを伴う復号画素の分布となる。図12に示すように、リンギングは、エッジ部分だけではなく、その近傍の、画素値が本来一定の区間(A)及び(B)にも現れる。
また、画素位置(C)のように、参照画素での画素が不連続であった箇所には、より大きなリンギングが表れる場合がある。これは、符号化対象画像では画素値が一定の箇所に現れるノイズであり、また、立体視する場合の対応位置同士で比較した場合に、ステレオ画像の片側だけに現れるノイズである。このため、視聴者に違和感を与える、主観的に望ましくないノイズである。このようなノイズは、特に、ビットレートが高い高画質なステレオ画像の符号化において、許容できない程度の画質の劣化を生じさせる。
そこで、本発明は、ステレオ動画像を符号化する際に、拡張チャンネルに発生する符号化歪みを抑制することで、画質の劣化を低減することができるステレオ動画像符号化装置及びステレオ動画像符号化方法を提供することを目的とする。
上記課題を解決するために、本発明の一態様に係るステレオ動画像符号化装置は、立体視用の動画像を構成する第1視点における第1視点動画像および第2視点における第2視点動画像のうち、少なくとも前記第2視点動画像に含まれる第2画像を符号化するステレオ動画像符号化装置であって、前記第2視点動画像に含まれるピクチャに対して動き補償を適用することにより生成された予測画像と、前記第2視点動画像に含まれるピクチャに対して視差補償を適用することにより生成された予測画像と、を選択的に切り替えて出力する判定部と、前記判定部が出力する予測画像と、前記第2画像との差分を算出し、残差成分を生成する減算器と、前記減算器が生成した残差成分を直交変換し、直交変換係数を生成する直交変換部と、前記直交変換部が生成した直交変換係数を量子化し、量子化係数を生成する量子化部と、前記量子化部で利用する量子化幅を決定する制御部と、を備え、前記制御部は、前記判定部が前記視差補償を適用することにより生成された予測画像を選択した場合、前記第2画像に適用される量子化幅を、前記第2画像と対になる、前記第1視点動画像に含まれる第1画像に適用される量子化幅より小さい値に決定する。
これにより、第2画像(拡張チャンネル)の符号化の際に視差補償を用いる場合、第2画像の量子化に用いる量子化幅を、第2画像と対になる第1画像(基本チャンネル)の量子化に用いる量子化幅より小さくすることができる。その結果、符号化歪みの発生が抑制され、画質の劣化が低減される。特に、視差補償を行った場合に、ステレオ画像の一方の画像のみに現れるリンギングの発生を抑制することができるので、画質の劣化をより抑制することができる。
また、本発明の一態様に係るステレオ動画像符号化装置において、前記判定部は、前記動き補償を適用することにより生成された予測画像および前記視差補償を適用することにより生成された予測画像のいずれを選択するかを、ピクチャ単位で判定し、前記制御部は、前記判定部が前記視差補償を適用することにより生成された予測画像を選択した場合、前記第2画像に適用される量子化幅を、前記第1画像に適用される量子化幅より小さい値に決定するレート制御部を備えてもよい。
これにより、ピクチャ単位で量子化幅を調整することで、拡張チャンネルのピクチャに発生する符号化歪みを抑制し、画質の劣化を低減することができる。なお、視差補償を行う場合、ピクチャ内では大半の領域の差分(予測誤差)が0、又は、ほとんど無視できる程小さい値である。そのため、小さな量子化幅を利用することによる符号量の増加は極めて少ない。従って、本態様のステレオ動画像符号化装置によれば、僅かな符号量の増加で画質を向上させることができる。
また、本発明の一態様に係るステレオ動画像符号化装置において、前記第1画像は、前記第1視点動画像に含まれる第1ピクチャの一部の領域の画像であり、前記第2画像は、前記第2視点動画像に含まれる第2ピクチャの一部の領域の画像であり、前記判定部は、前記第2画像を符号化する際に、前記動き補償を適用することにより生成された予測画像および前記視差補償を適用することにより生成された予測画像のいずれを選択するかを判定し、前記制御部は、前記判定部が前記視差補償を適用することにより生成された予測画像を選択した場合、前記第2画像に適用される量子化幅を、前記第1画像に適用される量子化幅より小さい値に決定するとしてもよい。
これにより、動き補償と視差補償とがピクチャ内に混在する場合であっても、リンギングの発生を抑制することができるので、画質の劣化を抑制することができる。また、ピクチャ全体で小さな量子化幅を用いる場合に比べて、小さな量子化幅を用いる領域が少なくなるので、符号化効率を高めることもできる。
また、本発明の一態様に係るステレオ動画像符号化装置はさらに、前記判定部が前記視差補償を適用することにより生成された予測画像を選択した場合、選択された前記予測画像と前記第2画像との差分である差分画像の特徴を示すスカラー量を算出するスカラー量算出部を備え、前記制御部は、さらに、前記判定部が前記視差補償を適用することにより生成された予測画像を選択した場合、前記スカラー量に基づいて、前記第2画像に適用される量子化幅を決定するとしてもよい。
これにより、差分画像の特徴量を示すスカラー量に応じて、量子化幅の値を可変にすることができる。その結果、主観的な画質をより向上させることができる。
また、本発明の一態様に係るステレオ動画像符号化装置において、前記スカラー量は、前記差分画像の絶対値和であり、前記制御部は、前記第2画像に適用される量子化幅を、前記スカラー量が大きい程、値が小さくなるように決定するとしてもよい。
一般に、スカラー量が大きい場合、残差画像を符号化した際に発生する符号量が大きく、リンギングノイズなどがより目立ってしまう。しかし、本態様のステレオ動画像符号化装置によれば、スカラー量が大きい場合に、値が小さい量子化幅を用いることで、リンギングの発生を抑制することができる。つまり、リンギングが目立つ場合には、より小さな量子化幅を用いることができ、これにより、主観的な画質をより向上させることができる。
また、本発明の一態様に係るステレオ動画像符号化装置において、前記量子化幅は、量子化マトリクス及び量子化パラメータの少なくとも一方によって決定される値であり、前記制御部は、前記判定部が前記視差補償を適用することにより生成された予測画像を選択した場合、前記第2画像の量子化に用いる量子化マトリクスの係数値の少なくとも1つを、前記第1画像の量子化に用いる量子化マトリクスの係数値より小さい値に決定するとしてもよい。
これにより、量子化マトリクスは周波数変換係数の位置毎に値を設定することができるので、精度の高い量子化を行うことができ、画質の劣化を抑制することができる。
また、本発明の一態様に係るステレオ動画像符号化装置において、前記量子化幅は、量子化マトリクス及び量子化パラメータの少なくとも一方によって決定される値であり、前記制御部は、前記判定部が前記視差補償を適用することにより生成された予測画像を選択した場合、前記第2画像の量子化に用いる量子化パラメータを、前記第1画像の量子化に用いる量子化パラメータより小さい値に決定するとしてもよい。
これにより、量子化パラメータは、例えば、マクロブロック単位で調整することができるので、符号化対象のマクロブロックに応じて量子化パラメータを変更することができ、画質の劣化を抑制することができる。
なお、本発明は、ステレオ動画像符号化装置として実現できるだけではなく、当該ステレオ動画像符号化装置を構成する処理部をステップとする方法として実現することもできる。また、これらステップをコンピュータに実行させるプログラムとして実現してもよい。さらに、当該プログラムを記録したコンピュータ読み取り可能なCD−ROM(Compact Disc−Read Only Memory)などの記録媒体、並びに、当該プログラムを示す情報、データ又は信号として実現してもよい。そして、それらプログラム、情報、データ及び信号は、インターネットなどの通信ネットワークを介して配信してもよい。
また、上記の各ステレオ動画像符号化装置を構成する構成要素の一部又は全部は、1個のシステムLSI(Large Scale Integration:大規模集積回路)から構成されていてもよい。システムLSIは、複数の構成部を1個のチップ上に集積して製造された超多機能LSIであり、具体的には、マイクロプロセッサ、ROM及びRAM(Random Access Memory)などを含んで構成されるコンピュータシステムである。
本発明によれば、ステレオ動画像を符号化する際に、拡張チャンネルに発生する符号化歪みを抑制することで、画質の劣化を低減することができる。
図1は、実施の形態1に係るステレオ動画像符号化装置の構成の一例を示すブロック図である。 図2は、実施の形態1に係るステレオ動画像符号化装置の符号化処理部及び制御部の詳細の一例を示すブロック図である。 図3Aは、実施の形態1に係るステレオ動画像符号化装置の基本的な動作の一例を示すフローチャートである。 図3Bは、実施の形態1に係るステレオ動画像符号化装置の動作の一例を示すフローチャートである。 図4は、実施の形態2に係るステレオ動画像符号化装置の構成の一例を示すブロック図である。 図5は、実施の形態2に係るステレオ動画像符号化装置の動作の一例を示すフローチャートである。 図6は、実施の形態3に係るステレオ動画像符号化装置の構成の一例を示すブロック図である。 図7は、実施の形態3に係るスカラー量とWRとの関係の一例を示す図である。 図8は、実施の形態3に係るステレオ動画像符号化装置の動作の一例を示すフローチャートである。 図9は、実施の形態1の変形例に係るステレオ動画像符号化装置の構成の一例を示すブロック図である。 図10は、従来のステレオ動画像符号化装置の動作を説明するための、左眼用画像及び右眼用画像の一例と、その画素値の分布を示す図である。 図11は、従来のステレオ動画像符号化装置の動作を説明するための、左眼用画像及び右眼用画像の一例と、視差補償を行った場合の残差画素の分布とを示す図である。 図12は、従来のステレオ動画像符号化装置が視差補償を行った場合の残差画素における量子化誤差により、復号画像に表れるリンギングを示す図である。
以下、本発明に係るステレオ動画像符号化装置及びステレオ動画像符号化方法の実施の形態に関して、図面を用いて詳細に説明する。
(実施の形態1)
本発明の実施の形態1に係るステレオ動画像符号化装置は、立体視用の動画像を構成する第1視点における第1視点動画像(基本チャンネルの動画像)および第2視点における第2視点動画像(拡張チャンネルの動画像)のうち、少なくとも前記第2視点動画像に含まれる第2画像を符号化するステレオ動画像符号化装置である。本発明の実施の形態1に係る符号化装置は、第2視点動画像に含まれるピクチャに対して動き補償を適用することにより生成された予測画像と、第2視点動画像に含まれるピクチャに対して視差補償を適用することにより生成された予測画像と、を選択的に切り替えて出力する判定部と、判定部が出力する予測画像と、第2画像との差分を算出し、残差成分を生成する減算器と、減算器が生成した残差成分を直交変換し、直交変換係数を生成する直交変換部と、直交変換部が生成した直交変換係数を量子化し、量子化係数を生成する量子化部と、量子化部で利用する量子化幅を決定する制御部とを備える。制御部は、判定部が視差補償を適用することにより生成された予測画像を選択した場合、第2画像に適用される量子化幅を、第2画像と対になる、第1視点動画像に含まれる第1画像に適用される量子化幅より小さい値に決定することを特徴とする。
要するに、拡張チャンネルの符号化において、視差補償を行う場合に、拡張チャンネルに適用される量子化幅を、基本チャンネルに適用される量子化幅より小さくすることが、実施の形態1に係るステレオ動画像符号化装置の特徴である。具体的には、実施の形態1に係るステレオ動画像符号化装置は、ピクチャ単位で視差補償を行うか、それとも動き補償を行うかの判定を行う。
なお、実施の形態1においては、第1画像は、第1視点動画像に含まれる第1ピクチャを構成する画像であり、第2画像は、第2視点動画像に含まれる第2ピクチャを構成する画像を意味する。
図1は、実施の形態1に係るステレオ動画像符号化装置100の構成の一例を示すブロック図である。実施の形態1に係るステレオ動画像符号化装置100は、立体視用のステレオ動画像を符号化する。より具体的には、ステレオ動画像符号化装置100は、立体視用の動画像を構成する第1視点における第1視点動画像および第2視点における第2視点動画像のうち、少なくとも第2視点動画像に含まれる第2画像を符号化する。
例えば、第1視点動画像は、左眼用の動画像であって、左眼用の第1ピクチャを含んでいる。第2視点動画像は、右眼用の動画像であって、右眼用の第2ピクチャを含んでいる。なお、実施の形態1において、第1視点動画像が基本チャンネルの動画像であり、第2視点動画像が拡張チャンネルの動画像である。
基本チャンネルの動画像は、画面内予測、及び/又は、動き補償が行われることで符号化される。また、拡張チャンネルの動画像は、画面内予測、動き補償、及び/又は、視差補償が行われることで符号化される。視差補償が行われる場合は、基本チャンネルの動画像に含まれる画像が参照画像として用いられる。
実施の形態1に係るステレオ動画像符号化装置100は、拡張チャンネルの動画像を符号化する際に視差補償を行うか否かを、ピクチャ単位で判定する。図1に示すように、ステレオ動画像符号化装置100は、符号化処理部110と、制御部120とを備える。
符号化処理部110は、画面内予測、動き補償又は視差補償と、量子化とを行うことで、第1視点動画像と第2視点動画像とを符号化する。図1に示すように、符号化処理部110は、基本チャンネル符号化部111と、拡張チャンネル符号化部112とを備える。
基本チャンネル符号化部111は、基本チャンネルの動画像、すなわち、第1視点動画像を符号化する。基本チャンネル符号化部111は、第1視点動画像に含まれる左眼用の入力画像(第1ピクチャ)を取得し、画面内予測、又は、動き補償と、量子化とを行うことで、第1ピクチャを符号化する。
拡張チャンネル符号化部112は、拡張チャンネルの動画像、すなわち、第2視点動画像を符号化する。拡張チャンネル符号化部112は、第2視点動画像に含まれる右眼用の入力画像(第2ピクチャ)を取得し、画面内予測、動き補償、又は、視差補償と、量子化とを行うことで、第2ピクチャを符号化する。
制御部120は、符号化処理部110による量子化に用いる量子化幅を決定する。具体的には、制御部120は、符号化処理部110が第2視点動画像に含まれる第2画像を符号化する際に視差補償を行う場合、第2画像に適用される量子化幅を、第2画像と対になる、第1視点動画像に含まれる第1画像に適用される量子化幅より小さい値に決定する。
また、符号化処理部110が第2画像を符号化する際に視差補償を行わない場合、制御部120は、第1画像に適用される量子化幅、及び、第2画像に適用される量子化幅のそれぞれを、互いに独立して決定することができる。
ここで、“第2画像と対になる第1画像”とは、第1画像が、少なくとも下記の条件(i)を満たす場合のことである。
(i)第1画像が、左右の視差を利用した立体視における左右一方の第2画像に対応する他方の画像である。
つまり、言い換えると、視聴者の視覚において立体映像が形成されるように、第1画像と第2画像とが連続してまたは同時に表示される場合、当該第1画像は、第2画像と対になる画像である。
なお、この場合は、当該第1画像は当該第2画像との相関が高い。そのため、一般に、当該第1画像は、当該第2画像を符号化する際の視差補償における参照画像として用いられる場合が多い。
例えば、第1画像は、第2画像と同一の撮影時刻に撮影された画像である。具体的には、第1画像は、左眼用の第1ピクチャの画像であり、第2画像は、第1ピクチャと同一の撮影時刻に撮影された右眼用の第2ピクチャの画像である。視聴者は、第1ピクチャを左眼で、第2ピクチャを右眼で見ることで、第1ピクチャと第2ピクチャとで構成される画像を立体視することができる。
図1に示すように、制御部120は、レート制御部121と、判定部122とを備える。
レート制御部121は、判定部122によって第2画像の符号化の際に視差補償を用いると判定された場合に、第2画像に適用される量子化幅を、第1画像に適用される量子化幅より小さい値に決定する。具体的には、レート制御部121は、符号化処理部110が第1視点動画像及び第2視点動画像を符号化することで発生する符号量に基づいて、量子化の際の量子化幅を決定することで、ビットストリームのビットレートを制御する。
例えば、レート制御部121は、符号化処理部110が第2画像を符号化する際に視差補償を行う場合、第2画像の量子化に用いる量子化パラメータを、第1画像の量子化に用いる量子化パラメータより小さい値に決定する。量子化パラメータの値を調整することで、量子化幅の値を調整することができる。
なお、基本チャンネル符号化部111、拡張チャンネル符号化部112及びレート制御部121の詳細な構成及び動作については、後で、図2を用いて説明する。
判定部122は、第2視点動画像に含まれるピクチャに対して動き補償を適用することにより生成された予測画像と、第2視点動画像に含まれるピクチャに対して視差補償を適用することにより生成された予測画像のいずれを選択するかを判定する。
判定部122はさらに、後述する、拡張チャンネル符号化部112が備える選択部315に判定結果を通知することで、動き補償を適用することにより生成された予測画像および視差補償を適用することにより生成された予測画像の一方を選択し出力させる。
つまり、判定部122と選択部315との組み合わせは、本発明の一態様に係るステレオ動画像符号化装置における判定部の一例である。
また、判定部122は、符号化処理部110が第2視点動画像を符号化する際に、視差補償及び動き補償のいずれを行うかをピクチャ単位で判定する。例えば、判定部122は、第1視点動画像に含まれる第1ピクチャと、第2視点動画像に含まれる第2ピクチャとの相関、言い換えると、画像の類似度に基づいて、視差補償と動き補償との一方を選択する。
具体的には、判定部122は、視差補償において参照ピクチャとなる第1画像と符号化対象画像との相関値と、動き補償において参照ピクチャとなる第2画像と符号化対象画像との相関値とに基づいて、相関が高い一方の補償方法を選択し、拡張チャンネル符号化部112に指示する。
ここで、符号化対象画像と参照画像との相関が高い場合、補償後の残差がより小さくなる。つまり、上記選択方法によれば、より少ない符号量での符号化が可能な補償方法を選択することができる。そして、判定部122は、視差補償及び動き補償のいずれかを示す信号を、拡張チャンネル符号化部112及びレート制御部121に出力する。
図2は、実施の形態1に係るステレオ動画像符号化装置100の符号化処理部110及び制御部120の詳細の一例を示すブロック図である。
まず、基本チャンネル符号化部111について説明する。基本チャンネル符号化部111は、基本チャンネルの動画像である第1視点動画像を符号化する。すなわち、図2に示すように、基本チャンネル符号化部111には、基本チャンネルの入力画像(左眼用画像)が入力される。
基本チャンネル符号化部111は、画像並替部201と、減算器202と、直交変換部203と、量子化部204と、可変長符号化部205と、逆量子化部206と、逆直交変換部207と、加算器208と、デブロッキングフィルタ部209と、フレームメモリ210と、動きベクトル検出部211と、動き補償部212と、画面内予測方向検出部213と、画面内予測部214と、選択部215とを備える。
画像並替部201は、基本チャンネル符号化部111に入力される映像信号(第1視点動画像)を、符号化処理順のフレーム順序に並び替え、さらに、符号化単位に分割し、出力する。画像並替部201は、例えば、輝度信号を符号化する場合、当該輝度信号を符号化処理順のフレーム順序に並び替え、16×16画素のマクロブロック(以下、MBと称する場合もある)単位に分割し、減算器202、画面内予測部214及び画面内予測方向検出部213に出力する。
減算器202は、画像並替部201から出力された対象MBと、選択部215から出力される画面内予測部214又は動き補償部212によって生成された予測MBとの差分を算出することで、残差MBを生成する。そして、減算器202は、生成した残差MBを直交変換部203に出力する。
直交変換部203は、減算器202から出力される残差MBを直交変換することで、直交変換係数(以下、DCT係数と称す)を生成する。そして、直交変換部203は、量子化部204に出力する。
量子化部204は、直交変換部203から出力されるDCT係数を、量子化ステップサイズで除算する。ここで、量子化ステップサイズは、レート制御部121によって決定される量子化幅の一例であり、直交変換係数の位置毎に定まる量子化マトリクスの係数値と、レート制御部121によって設定される量子化パラメータとの乗算により求められる。さらに、量子化部204は、除算した結果を整数値に丸めることで、量子化係数を生成し、生成した量子化係数を可変長符号化部205及び逆量子化部206に出力する。
可変長符号化部205は、量子化部204から出力される、多値データで表現される量子化係数を可変長符号化(例えば、算術符号化)することで、基本チャンネルのビットストリーム(左眼用画像の符号化結果)を生成する。そして、可変長符号化部205は、生成したビットストリームをレート制御部121に出力する。
逆量子化部206は、量子化部204から出力される量子化係数を逆量子化することでDCT係数を復元する。そして、逆量子化部206は、復元したDCT係数を逆直交変換部207に出力する。
逆直交変換部207は、逆量子化部206から出力されるDCT係数を逆直交変換することで、残差MBを復元する。そして、逆直交変換部207は、復元した残差MBを加算器208に出力する。
加算器208は、逆直交変換部207から出力された残差MBと、選択部215から出力される画面内予測部214又は動き補償部212によって生成された予測MBとを加算することで、復号MBを生成する。そして、加算器208は、生成した復号MBを、デブロッキングフィルタ部209、画面内予測方向検出部213及び画面内予測部214に出力する。
デブロッキングフィルタ部209は、加算器208から出力される複数の復号MBのMB境界に対し、デブロッキングフィルタ処理を行う。そして、デブロッキングフィルタ部209は、デブロッキングフィルタ処理された復号MBをフレームメモリ210に出力する。
フレームメモリ210は、デブロッキングフィルタ部209から出力される復号MBを蓄積するためのメモリである。フレームメモリ210は、フラッシュメモリ、DRAM(Dynamic Random Access Memory)、強誘電体メモリ等の記録可能な要素で構成される。
動きベクトル検出部211は、現在符号化対象であるMBを基に、フレームメモリ210に蓄積されている復号MBに対する動きベクトルを検出する。なお、動きベクトル検出部211において処理されるMBの処理サイズは、例えば、H.264規格であれば、7種類のMBサイズが規定されている。動きベクトル検出部211は、この7種類からMB毎に1つのサイズを選択する。
動き補償部212は、動きベクトル検出部211によって検出した動きベクトルを基に、フレームメモリ210に蓄積される復号MBに対して動き補償を行うことで、予測MBを生成する。そして、動き補償部212は、生成した予測MBを選択部215に出力する。
画面内予測方向検出部213は、加算器208から出力される復号MBと、画像並替部201から出力される符号化対象のMBとを基に、画面内予測に適用する予測モードを検出する。そして、画面内予測方向検出部213は、検出した予測モードを画面内予測部214に出力する。
画面内予測部214は、加算器208から出力される復号MBに対して画面内予測を行うことで、予測MBを生成する。そして、画面内予測部214は、生成した予測MBを、選択部215に出力する。
選択部215は、画面内予測部214及び動き補償部212から出力される予測MBのうち、一方の予測MBを選択し、減算器202に出力する。例えば、選択部215は、対象MBと予測MBとの差分絶対値和(SAD:Sum of Absolute Difference)が小さくなる予測MBを選択する。
以上のようにして、基本チャンネル符号化部111は、画面内予測又は動き補償と、量子化とを行うことで、基本チャンネルの動画像である第1視点動画像を符号化する。符号化により生成された基本チャンネルのビットストリームは、レート制御部121に出力される。
次に、拡張チャンネル符号化部112について説明する。拡張チャンネル符号化部112は、拡張チャンネルの動画像である第2視点動画像を符号化する。すなわち、図2に示すように、拡張チャンネル符号化部112には、拡張チャンネルの入力画像(右眼用画像)が入力される。
拡張チャンネル符号化部112は、画像並替部201と、減算器202と、直交変換部203と、量子化部204と、可変長符号化部205と、逆量子化部206と、逆直交変換部207と、加算器208と、デブロッキングフィルタ部209と、フレームメモリ210と、動きベクトル検出部211と、動き補償部212と、画面内予測方向検出部213と、画面内予測部214と、選択部315と、視差ベクトル検出部316と、視差補償部317とを備える。
拡張チャンネルでは、動き補償以外に、基本チャンネルの画像を参照した視差補償も用いて符号化を行うことが可能である。したがって、拡張チャンネル符号化部112は、基本チャンネル符号化部111の一部が変更された構成をとる。すなわち、図2に示すように、拡張チャンネル符号化部112は、基本チャンネル符号化部111と比べて、選択部215の代わりに選択部315を備え、新たに、視差ベクトル検出部316と、視差補償部317とを備える点が異なっている。それ以外については、基本チャンネル符号化部111と同じ構成である。以下では、基本チャンネル符号化部111と同じ点は説明を省略し、異なる点を中心に説明する。
選択部315は、画面内予測部214、動き補償部212及び視差補償部317のそれぞれから出力される予測MBのうち、いずれか1つを選択する。そして、選択部315は、選択した予測MBを減算器202及び加算器208に出力する。
具体的には、選択部315は、外部からの信号に応じて、視差補償と動き補償とのいずれかを選択する。より具体的には、選択部315は、判定部122によって視差補償が選択された場合には、視差補償部317によって生成された予測MBを選択する。選択部315は、判定部122によって動き補償が選択された場合には、動き補償部212によって生成された予測MBを選択する。
そして、選択部315は、選択した視差補償又は動き補償による予測MBと、画面内予測部214によって生成された予測MBとのいずれかを選択する。例えば、選択部315は、2つの予測MBのうち、予測誤差が小さい方の予測MBを選択する。具体的には、選択部315は、対象MBとの差分絶対値和が他方よりも小さくなる、一方の予測MBを選択する。
視差ベクトル検出部316は、基本チャンネルの復号画像を蓄積するフレームメモリ210(基本チャンネル符号化部111が備えるフレームメモリ210)の画像を入力とし(図中のA)、さらに、画像並替部201から入力される右眼用の入力画像を用いて、視差ベクトルを算出する。そして、視差ベクトル検出部316は、算出した視差ベクトルを視差補償部317に出力する。
視差補償部317は、視差ベクトル検出部316によって検出した視差ベクトルを基に、基本チャンネル用のフレームメモリ210に蓄積された復号画像に対して視差補償を行うことで、予測MBを生成する。そして、視差補償部317は、生成した予測MBを選択部315に出力する。
以上のようにして、拡張チャンネル符号化部112は、画面内予測、動き補償又は視差補償と、量子化とを行うことで、拡張チャンネルの動画像である第2視点動画像を符号化する。符号化により生成された拡張チャンネルのビットストリームは、レート制御部121に出力される。
次に、レート制御部121について説明する。レート制御部121は、バッファ401と、発生ビット数算出部402と、仮想バッファ占有量算出部403と、1/2掛算器404と、WR掛算器405とを備える。
バッファ401は、拡張チャンネルのビットストリームと、基本チャンネルのビットストリームとを、基本チャンネル符号化部111と拡張チャンネル符号化部112とから受け取り、受け取った2つのビットストリームを多重化して、出力する。
発生ビット数算出部402は、バッファ401からの情報(例えば、バッファ401に蓄積されたビット量)に基づき、ピクチャの符号化の開始時からの発生符号量等の計数を行う。
仮想バッファ占有量算出部403は、上述の(式1)によって、仮想バッファ占有量dを算出する。
1/2掛算器404は、(式1)で求めた値を用いて、上述の(式2)によって、基本チャンネルである左眼用画像の量子化に用いるdLを求める。さらに、上述の(式3)〜(式6)に従った演算を行うことで、量子化パラメータmquantを算出し、算出したmquantを基本チャンネル符号化部111に出力する。以上のように、(式2)〜(式6)に従って算出された量子化パラメータmquantが、左眼用画像の量子化に用いられる。
WR掛算器405は、(式1)で求めた値を用いて、以下の(式9)によって、拡張チャンネルである右眼用画像の量子化に用いるdRを算出する。
(式9) dR=(WR)×d
ここで、WRは、拡張チャンネル符号化部112において、視差補償及び動き補償のいずれを行うかに応じて決定されるパラメータである。さらに、WR掛算器405は、上述の(式8)、(式3)、(式5)及び(式6)によって、量子化パラメータmquantを算出し、算出したmquantを拡張チャンネル符号化部112に出力する。なお、WR掛算器405の具体的な動作については、後で図3を用いて説明する。
以上のように、(式3)、(式5)、(式6)、(式8)及び(式9)に従って算出された量子化パラメータmquantが、右眼用画像の量子化に用いられる。
以下では、実施の形態1に係るステレオ動画像符号化装置100において、拡張チャンネルの量子化幅を決定する動作について、図3Aおよび図3Bを用いて説明する。
図3Aは、実施の形態1に係るステレオ動画像符号化装置100の基本的な動作の一例を示すフローチャートである。
なお、図3Aに示される基本的な動作は、後述する実施の形態2および3に係るステレオ動画像符号化装置500および800においても共通して実行される。
まず、判定部122は、拡張チャンネルの対象ピクチャに視差補償を行うか否かを判定する(S110)。例えば、判定部122は、拡張チャンネルである右眼用の入力画像と符号化対象画像との相関値C1を算出する。判定部122はさらに、基本チャンネルである左眼用の入力画像と符号化対象画像との相関値C2を算出する。
判定部122は、相関値C1と相関値C2とに基づいて、視差補償と動き補償とのうちのどちらが、より符号量が少なくなる予測方法であるかを判定する。例えば、相関値C2が相関値C1よりも大きい場合、拡張チャンネルの画像を用いた動き補償よりも、基本チャンネルの画像を用いた視差補償を用いる方が少ない符号量となる。そのため、判定部122は視差補償を選択する。
判定部122によって視差補償を行うと判定された場合(S110でYes)、レート制御部121は、基本チャンネルの量子化幅より拡張チャンネルの量子化幅を小さくする(S120)。具体的には、WR掛算器405が、WR<(1/2)となる値を用いて、(式9)によってdRを算出する。
例えば、WRの値は、1/2より小さい値と1/2以上の値とが予め定められており、WR掛算器405は、判定部122から視差補償を示す信号を受け取った場合に、1/2より小さい値を選択して利用する。
なお、判定部122によって動き補償を行うと判定された場合(S110でNo)、レート制御部121は、例えば、基本チャンネルの量子化幅、及び、拡張チャンネルの量子化幅のそれぞれを、互いに独立して決定することができる。
本実施の形態では、判定部122によって動き補償を行うと判定された場合(S110でNo)、レート制御部121は、図3Bに示すように、拡張チャンネルの量子化幅を決定する。
図3Bは、実施の形態1に係るステレオ動画像符号化装置100の動作の一例を示すフローチャートである。
具体的には、レート制御部121は、判定部122によって動き補償を行うと判定された場合(S110でNo)、基本チャンネルの量子化幅より拡張チャンネルの量子化幅を大きく、又は、同じにする(S130)。WR掛算器405は、WR≧(1/2)となる値を用いて、dRを算出する。例えば、WR掛算器405は、判定部122から動き補償を示す信号を受け取った場合に、1/2以上の値を選択して利用する。
視差補償を行うことで拡張チャンネルを符号化する場合の仮想バッファ占有量dに対する乗数WR(<(1/2))は、基本チャンネルでの乗数である1/2より小さい。このため、(式3)及び(式4)等の関係より、拡張チャンネルの量子化パラメータは、基本チャンネルの量子化パラメータよりも小さな値となる。この結果、十分に小さな量子化パラメータを拡張チャンネルの量子化に用いることができ、これにより、リンギングが発生する課題を解決することができる。
なお、実施の形態1では、画面全体で、すなわち、ピクチャ単位で小さな量子化パラメータを用いるようにしているため、符号量が大きく増加するようにも思える。しかし、実際には、画面中の大半を占める視差のない領域については、誤差がほぼゼロになる。このため、小さな量子化パラメータを用いることによる、視差の小さい領域での符号量の増加は、大きくない。特に、アニメーション等の画像においては、誤差がゼロになるので、符号量の増加分は、従来リンギング等が発生していた箇所の改善にのみ用いられることとなる。
以上のように、実施の形態1に係るステレオ動画像符号化装置100は、拡張チャンネルの動画像を符号化する場合に、視差補償及び動き補償のいずれを行うかをピクチャ単位で判定する。そして、視差補償を行う場合は、基本チャンネルの量子化幅より小さな量子化幅で、拡張チャンネルの量子化を行う。
これにより、ステレオ動画像を符号化する際に、拡張チャンネルに発生する符号化歪みを抑制することで、画質の劣化を低減することができる。具体的には、符号化対象の画素に対応する画素が参照画像に存在しないことにより生じる残差成分を不適切な量子化幅により量子化した場合に生じるリンギングを、除去することができる。
したがって、特に、視差補償を行った場合にステレオ画像の片側だけに現れる、主観的に望ましくないノイズを除去した、より高画質なステレオ動画像の符号化データを生成することができる。また、小さな量子化幅を利用することによる符号量の増加は極めて少ないので、僅かな符号量の増加で画質を向上させることができる。なお、以上の効果は、ビットレートが高い場合により効果を奏する。
なお、実施の形態1においては、レート制御部121は、仮想バッファ占有量dに基づくレート制御方式を用いる例について記載しているが、これ以外のレート制御方式により、量子化パラメータを決定してもよい。
この方式以外のレート制御方式としては、仮想バッファ占有量dに対して、WR<(1/2)を乗算等する代わりに、決定した量子化パラメータに対して、係数を乗算する方式が例示される。すなわち、決定した量子化パラメータに対し、基本チャンネルについては、1/2倍、拡張チャンネルについては、WR(<(1/2))倍するようにすればよい。
すなわち、拡張チャンネルに視差補償を行う場合に、拡張チャンネルに適用される量子化幅が、基本チャンネルに適用される量子化幅より小さくなるようにすれば、いかなる方式を利用してもよい。
(実施の形態2)
本発明の実施の形態2に係るステレオ動画像符号化装置は、ピクチャ単位ではなく、ピクチャの一部の領域である小領域単位で、視差補償と動き補償とを切り替えることを特徴とする。
小領域は、例えば、マクロブロックであり、具体的には、実施の形態2に係るステレオ動画像符号化装置では、符号化処理部が、視差補償及び動き補償のいずれを行うかを小領域単位で決定する。そして、視差補償を行うと決定された場合、制御部が、第2ピクチャ(拡張チャンネル)の小領域の画像である第2画像に適用される量子化幅を、第1ピクチャ(基本チャンネル)の小領域の画像である第1画像に適用される量子化幅より小さい値に決定することを特徴とする。
すなわち、実施の形態2では、第1画像は、第1視点動画像に含まれる第1ピクチャの一部の領域(例えば、MB)を構成する画像であり、第2画像は、第2視点動画像に含まれる第2ピクチャの一部の領域を構成する画像である。
図4は、実施の形態2に係るステレオ動画像符号化装置500の構成の一例を示すブロック図である。ステレオ動画像符号化装置500は、実施の形態1に係るステレオ動画像符号化装置100と同様に、立体視する際に用いる第1視点の第1視点動画像(基本チャンネル)と、第2視点の第2視点動画像(拡張チャンネル)とを符号化する。図4に示すように、ステレオ動画像符号化装置500は、符号化処理部510と、制御部520とを備える。
符号化処理部510は、画面内予測、動き補償又は視差補償と、量子化とを行うことで、第1視点動画像と第2視点動画像とを符号化する。図4に示すように、符号化処理部510は、基本チャンネル符号化部111と、拡張チャンネル符号化部512とを備える。なお、以下では、実施の形態1と同じ構成要素については同じ参照符号を付し、説明を省略する場合がある。
基本チャンネル符号化部111は、実施の形態1と同じであり、基本チャンネルの動画像、すなわち、第1視点動画像(例えば、左眼用の動画像)を符号化する。
拡張チャンネル符号化部512は、拡張チャンネルの動画像、すなわち、第2視点動画像(例えば、右眼用の動画像)を符号化する。実施の形態2に係る拡張チャンネル符号化部512は、実施の形態1に係る拡張チャンネル符号化部112と比較して、選択部315の代わりに、選択部615を備える点が異なる。その他の構成要素については、図2に示す構成要素と同じであるため、以下では、説明を省略する(図4にも示していない)。
選択部615は、拡張チャンネルの第2ピクチャの一部の領域である第2画像を符号化する際に、画面内予測、動き補償及び視差補償のいずれを行うかを決定する。具体的には、選択部615は、画面内予測部214、動き補償部212及び視差補償部317のそれぞれが出力する予測MBのうち、いずれか1つを選択する。
例えば、選択部615は、予測誤差を符号化した際に生じる符号量が最小となる予測MBを選択する。これは、例えば、予測誤差MB内の画素値の絶対値和が最小となるものを選択することで、実現可能である。そして、選択部615は、3つの予測方法(画面内予測、動き補償及び視差補償)のうち、どの予測方法を選択したかを示す信号を制御部520に出力する。
制御部520は、符号化処理部510によって第2画像を符号化する際に視差補償を用いると決定された場合に、第2画像に適用される量子化幅を、第1画像に適用される量子化幅より小さい値に決定する。なお、第1画像は、基本チャンネルの第1ピクチャの一部の領域であり、第2画像と対になる画像である。例えば、第1画像と第2画像とは、同一の撮影時刻に撮影された画像である。
図4に示すように、制御部520は、レート制御部521と、WR値選択部523とを備える。
WR値選択部523は、符号化処理部510によって視差補償又は動き補償が選択される処理単位毎に、WRの値を選択して、WR掛算器705に出力する。例えば、WR値選択部523は、選択部615によって視差補償が選択された場合には、WR<(1/2)となる値を、それ以外の場合には、WR≧(1/2)となる値を、マクロブロック毎に出力する。
レート制御部521は、符号化処理部510によって視差補償を用いると決定された場合に、第2画像に適用される量子化幅を、第1画像に適用される量子化幅より小さい値に決定する。実施の形態2に係るレート制御部521は、実施の形態1に係るレート制御部121と比較して、WR掛算器405の代わりにWR掛算器705を備える点が異なっている。その他の構成要素については、図2に示す構成要素と同じであるため、以下では説明を省略する(図4にも示していない)。
WR掛算器705は、WR値選択部523からのWRを用いて、(式9)等に従って、実施の形態1と同様の動作を行うことで、量子化パラメータmquantを決定する。このとき、WR掛算器705は、マクロブロック毎にWRが異なるため、マクロブロック毎に量子化パラメータmquantの計算を行う。
以下では、実施の形態2に係るステレオ動画像符号化装置500において、拡張チャンネルの量子化幅を決定する動作の一例の詳細について、図5を用いて説明する。
図5は、実施の形態2に係るステレオ動画像符号化装置500の動作の一例を示すフローチャートである。
まず、拡張チャンネル符号化部512は、拡張チャンネルの対象MBの予測方法を評価する(S210)。具体的には、選択部615が、画面内予測、動き補償及び視差補償のうち、予測誤差が最も小さい予測MBを生成する予測方法を選択する。選択部615は、選択した予測方法を示す信号をWR値選択部523に出力する。
このとき、選択部615によって視差補償が選択された場合(S220でYes)、制御部520は、基本チャンネルの量子化幅より拡張チャンネルの量子化幅を小さくする(S230)。具体的には、WR値選択部523が、視差補償を示す信号を受け取った場合、1/2より小さいWR値を、WR掛算器705に出力する。
また、選択部615によって視差補償が選択されなかった場合(S220でNo)、本実施の形態では、制御部520は、基本チャンネルの量子化幅より拡張チャンネルの量子化幅を大きく、又は、同じにする(S240)。例えば、WR値選択部523が、動き補償を示す信号を受け取った場合、1/2以上となるWR値を、WR掛算器705に出力する。
なお、WR値選択部523は、例えば、1/2より小さい値と、1/2以上の値とを予め保持しており、視差補償を示す信号を受け取った場合に、1/2より小さい値をWR値としてWR掛算器705に出力する。
以上の構成により、実施の形態2に係るステレオ動画像符号化装置500は、拡張チャンネルの動画像を符号化する場合に、視差補償を行うか否かを、ピクチャの一部の領域である小領域単位で決定する。そして、視差補償を行う場合は、基本チャンネルの量子化幅より小さな量子化幅で、拡張チャンネルの量子化を行う。
これにより、動き補償と視差補償とが、ピクチャ内に混在する場合においても、視差補償を行うブロックについてのみ、拡張チャンネルで用いる量子化幅を、基本チャンネルで用いる量子化幅よりも小さくすることができる。したがって、リンギング等の発生を抑えることができ、画質の劣化を低減することができる。
なお、実施の形態2に係るステレオ動画像符号化装置500によれば、画面全体で小さな量子化幅を用いる場合よりも、小さな量子化幅を用いる領域が少なくなるので、符号化効率をより高めることもできる。
なお、実施の形態2では、小領域は、マクロブロックであるとしたが、これに限られない。例えば、小領域は、スライスでもよい。
(実施の形態3)
本発明の実施の形態3に係るステレオ動画像符号化装置は、視差補償によって生成される予測画像と第2画像との差分である差分画像の特徴を示すスカラー量に基づいて、第2画像に適用される量子化幅を決定することを特徴とする。
要するに、実施の形態3に係るステレオ動画像符号化装置は、第2画像に適用される量子化幅として、第1画像に適用される量子化幅より小さい固定の値ではなく、可変の値を用いることを特徴とする。
なお、実施の形態3では、第1画像は、第1視点動画像に含まれる第1ピクチャの一部の領域(例えば、MB)を構成する画像であり、第2画像は、第2視点動画像に含まれる第2ピクチャの一部の領域を構成する画像である。
図6は、実施の形態3に係るステレオ動画像符号化装置800の構成の一例を示すブロック図である。ステレオ動画像符号化装置800は、実施の形態2に係るステレオ動画像符号化装置500と同様に、立体視する際に用いる第1視点の第1視点動画像(基本チャンネル)と、第2視点の第2視点動画像(拡張チャンネル)とを符号化する。図6に示すように、ステレオ動画像符号化装置800は、符号化処理部810と、制御部820とを備える。
符号化処理部810は、画面内予測、動き補償又は視差補償と、量子化とを行うことで、第1視点動画像と第2視点動画像とを符号化する。図6に示すように、符号化処理部810は、基本チャンネル符号化部111と、拡張チャンネル符号化部812とを備える。なお、以下では、実施の形態1及び2と同じ構成要素については同じ参照符号を付し、説明を省略する場合がある。
基本チャンネル符号化部111は、実施の形態1及び2と同じであり、基本チャンネルの動画像、すなわち、第1視点動画像(例えば、左眼用の動画像)を符号化する。
拡張チャンネル符号化部812は、拡張チャンネルの動画像、すなわち、第2視点動画像(例えば、右眼用の動画像)を符号化する。実施の形態3に係る拡張チャンネル符号化部812は、実施の形態2に係る拡張チャンネル符号化部512と比較して、選択部615の代わりに選択部915を備える点が異なる。その他の構成要素については、図2に示す構成要素と同じであるため、以下では、説明を省略する(図6にも示していない)。
選択部915は、選択部615と同様に、拡張チャンネルの第2ピクチャの一部である第2画像を符号化する際に、画面内予測、動き補償及び視差補償のいずれを行うかを決定する。具体的には、選択部915は、マクロブロック毎に、視差補償MB、画面内予測MB及び動き補償MBのうち、符号量が最小となる予測MBを選択する。そして、選択した予測方法を示す信号を出力する。
さらに、選択部915は、視差補償MBを選択した場合には、視差補償によって生成される予測画像と第2画像との差分である差分画像の特徴を示すスカラー量を出力する。
つまり、選択部915は、スカラー量算出部として機能する。具体的には、選択部915は、残差画像を符号化した時の符号量の大きさを表すスカラー量を同時に出力する。例えば、スカラー量が大きい程、残差画像を符号化した際に発生する符号量が大きくなり、スカラー量が小さい程、残差画像を符号化した際に発生する符号量は小さくなる。
例えば、選択部915は、実際に、視差補償MBと符号化対象MBとの残差を直交変換、量子化及び可変長符号化した場合の符号量をスカラー量として出力してもよい。また、量子化及び可変長符号化を簡略化して処理量を削減してもよい。また、例えば、残差画素の絶対値和、又は、直交変換後の変換係数の絶対値和などをスカラー量として出力してもよい。
また、本来の量子化では、量子化マトリクスを用いることで、直交変換係数毎に量子化幅が異なるのであるが、量子化マトリクスが均一であるとして単一の量子化幅で量子化してもよい。この場合、量子化前の値について、差分絶対値和を計算し、これを量子化幅で除算することで、除算の回数を大幅に削減することができる。
制御部820は、符号化処理部810によって第2画像を符号化する際に視差補償を用いると決定された場合に、第2画像に適用される量子化幅を、第1画像に適用される量子化幅より小さい値に決定する。なお、第1画像は、基本チャンネルの第1ピクチャの一部の領域であり、第2画像と対になる画像である。
図6に示すように、制御部820は、レート制御部821と、WR値決定部824とを備える。
WR値決定部824は、符号化処理部810によって視差補償を用いると決定された場合に、符号化処理部810から出力されるスカラー量に基づいて、第2画像に適用される量子化幅を決定する。具体的には、WR値決定部824は、視差補償が選択された場合に、WRの値を、選択部915から出力されるスカラー量に基づいて決定する。
WR値決定部824は、例えば、WRのを、スカラー量に対して単調減少する図7のような折線グラフに基づいて決定してもよい。つまり、WR値決定部824は、スカラー量が大きい程、値が小さくなるようにWR値を決定する。言い換えると、スカラー量が大きい程、値が小さくなるように、拡張チャンネルの第2画像に適用される量子化幅が決定される。
ここで、一般に、スカラー量が大きい場合、残差画像を符号化した際に発生する符号量が大きく、その結果、リンギングノイズなどがより目立ってしまう。しかしながら、本実施の形態に係るステレオ動画像符号化装置800は、スカラー量が大きい場合に、値が小さい量子化幅を用いることで、リンギングの発生を抑制することができる。
レート制御部821が備えるWR掛算器705は、WR値決定部824によって決定されたWR値を用いて、実施の形態1及び2と同様にして、量子化マトリクスmquantを決定する。なお、レート制御部821が備える他の構成要素については、実施の形態1及び2と同様であるため、説明を省略する(図6にも示していない)。
以下では、実施の形態3に係るステレオ動画像符号化装置800において、拡張チャンネルの量子化幅を決定する動作の一例の詳細について、図8を用いて説明する。
図8は、実施の形態3に係るステレオ動画像符号化装置800の動作の一例を示すフローチャートである。なお、実施の形態2と同じ動作については、同じ参照符号を付し、以下では、説明を省略する。
選択部915によって視差補償が選択された場合(S220でYes)、制御部820は、選択部915から出力されるスカラー量に基づいて、基本チャンネルの量子化幅より拡張チャンネルの量子化幅を小さくする(S330)。
つまり、制御部820は、スカラー量が大きい程、値が小さくなり、スカラー量が小さいほど、値が大きくなるように量子化幅を決定する。具体的には、WR値決定部824が、例えば、図7に示すグラフに従って、WR値を決定する。そして、WR値決定部824は、決定したWR値をWR掛算器705に出力し、WR掛算器705は、量子化パラメータmquantを算出する。
以上の構成により、実施の形態3に係るステレオ動画像符号化装置800は、視差補償によって生成される予測画像と第2画像との差分である差分画像の特徴を示すスカラー量に基づいて、第2画像に適用される量子化幅を決定する。
要するに、実施の形態3に係るステレオ動画像符号化装置は、第2画像に適用される量子化幅として、第1画像に適用される量子化幅より小さい固定の値ではなく、第1画像に適用される量子化幅より小さい可変の値を用いる。
これにより、リンギングがより目立つことが予想される場合に、より小さな量子化幅で量子化することができ、画質の劣化をより抑制することができる。
以上、本発明に係るステレオ動画像符号化装置及びステレオ動画像符号化方法について、実施の形態に基づいて説明したが、本発明は、これらの実施の形態に限定されるものではない。本発明の趣旨を逸脱しない限り、当業者が思いつく各種変形を当該実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、本発明の範囲内に含まれる。
例えば、第1画像と第2画像との視差に基づいて、視差補償を行うか否かを決定してもよい。
図9は、本発明の実施の形態1の変形例に係るステレオ動画像符号化装置1000の構成の一例を示すブロック図である。図9に示すように、ステレオ動画像符号化装置1000は、実施の形態1に係るステレオ動画像符号化装置100と比較して、制御部120の代わりに制御部1020を備える点が異なっている。具体的には、制御部1020が、判定部122の代わりに判定部1022を備える点が異なっている。
判定部1022は、符号化処理部110が拡張チャンネルの第2画像を符号化する際に視差補償を行うか否かを、第1画像と第2画像との視差に基づいて判定する。図9に示すように、判定部1022は、視差検出部1101を備える。
視差検出部1101は、基本チャンネルの第1画像と、拡張チャンネルの第2画像との視差を検出する。例えば、視差検出部1101は、基本チャンネルの第1視点動画像に含まれる第1ピクチャと、拡張チャンネルの第2視点動画像に含まれる第2ピクチャとを取得し、視差マップを生成する。視差マップは、1対の対象ピクチャ(第1ピクチャ及び第2ピクチャ)の領域(例えば、MB)毎に、視差量を示すものである。
判定部1022は、視差検出部1101が生成した視差マップの信頼度が高いか否かを判定する。そして、判定部1022は、視差マップの信頼度が所定の閾値より高い場合に、視差補償を行うと判定し、視差マップの信頼度が上記閾値より低い場合に、動き補償を行うと判定する。
視差マップの信頼度は、例えば、第1ピクチャと第2ピクチャとの差分絶対値和(SAD)に基づいて決定される。具体的には、SADが小さい程、視差マップの信頼度は高く、SADが大きい程、視差マップの信頼度は小さくなる。これは、SADが小さいということは、第1ピクチャと第2ピクチャとが類似していることを意味し、視差の検出が正しく行われる可能性が高いことを意味するためである。
なお、視差補償及び動き補償のいずれかを決定した場合の処理は、上記の各実施の形態と同様である。
また、上記の各実施の形態では、量子化パラメータと量子化マトリクスとの乗算によって決定される値である量子化幅ステップサイズを、量子化幅の一例として用いたが、量子化幅は、これに限られない。量子化パラメータと量子化マトリクスの少なくとも一方によって決定される値を、量子化幅として用いてもよい。
例えば、量子化マトリクスの値は、ピクチャ又はスライス単位で設定することが可能である。また、量子化パラメータの値は、スライス単位で、基準となる基準量子化パラメータを設定し、基準量子化パラメータをマクロブロック単位で調整することで、マクロブロック単位で設定することが可能である。
したがって、本発明の各実施の形態において、ピクチャ単位又はスライス単位で基準量子化パラメータを変更してもよく、また、マクロブロック単位で、基準量子化パラメータからの調整量を変更してもよい。いずれの方法を用いても、量子化パラメータの値を小さくすることで、量子化幅を小さくすることができる。
また、上記の各実施の形態では、量子化パラメータの値を変更することで、量子化幅の値を変更したが、量子化マトリクスを変更してもよい。つまり、第2画像を符号化する際に視差補償を行う場合、第2画像の量子化に用いる量子化マトリクスの係数値の少なくとも1つを、第1画像の量子化に用いる量子化マトリクスの係数値より小さい値に決定してもよい。
例えば、実施の形態1において、判定部122が第2ピクチャに視差補償を行うと判定した場合、レート制御部121は、第1ピクチャの量子化に利用する量子化マトリクスより係数値が小さい量子化マトリクスを、第2ピクチャの量子化に用いる量子化マトリクスとして決定してもよい。このとき、量子化マトリクスの全ての係数値を小さくしなくてもよく、例えば、低周波成分又は高周波成分のみの係数値を小さくしてもよい。
これにより、量子化幅の調整の自由度を高めることができるので、画質の劣化の防止と符号化効率の向上とを実現することができる。
また、上記の各実施の形態では、ステレオ動画像は、基本チャンネルである第1視点の第1視点動画像と、拡張チャンネルである第2視点の第2視点動画像とを含む例について示した。しかし、ステレオ動画像は、複数の拡張チャンネルの動画像を含んでいてもよい。
なお、本発明は、上述したように、ステレオ動画像符号化装置及びステレオ動画像符号化方法として実現できるだけではなく、本実施の形態のステレオ動画像符号化方法をコンピュータに実行させるためのプログラムとして実現してもよい。また、当該プログラムを記録するコンピュータ読み取り可能なCD−ROMなどの記録媒体として実現してもよい。さらに、当該プログラムを示す情報、データ又は信号として実現してもよい。そして、これらプログラム、情報、データ及び信号は、インターネットなどの通信ネットワークを介して配信されてもよい。
また、本発明は、ステレオ動画像符号化装置を構成する構成要素の一部又は全部を、1個のシステムLSIから構成してもよい。システムLSIは、複数の構成部を1個のチップ上に集積して製造された超多機能LSIであり、具体的には、マイクロプロセッサ、ROM及びRAMなどを含んで構成されるコンピュータシステムである。
本発明に係るステレオ動画像符号化装置は、ステレオ動画像を符号化する際に、拡張チャンネルに発生する符号化歪みを抑制することで、画質の劣化を低減することができるという効果を奏し、例えば、デジタルテレビ、デジタルビデオレコーダ、デジタルカメラなどに利用することができる。
100、500、800、1000 ステレオ動画像符号化装置
110、510、810 符号化処理部
111 基本チャンネル符号化部
112、512、812 拡張チャンネル符号化部
120、520、820、1020 制御部
121、521、821 レート制御部
122、1022 判定部
201 画像並替部
202 減算器
203 直交変換部
204 量子化部
205 可変長符号化部
206 逆量子化部
207 逆直交変換部
208 加算器
209 デブロッキングフィルタ部
210 フレームメモリ
211 動きベクトル検出部
212 動き補償部
213 画面内予測方向検出部
214 画面内予測部
215、315、615、915 選択部
316 視差ベクトル検出部
317 視差補償部
401 バッファ
402 発生ビット数算出部
403 仮想バッファ占有量算出部
404 1/2掛算器
405、705 WR掛算器
523 WR値選択部
824 WR値決定部
1101 視差検出部

Claims (10)

  1. 立体視用の動画像を構成する第1視点における第1視点動画像および第2視点における第2視点動画像のうち、少なくとも前記第2視点動画像に含まれる第2画像を符号化するステレオ動画像符号化装置であって、
    前記第2視点動画像に含まれるピクチャに対して動き補償を適用することにより生成された予測画像と、前記第2視点動画像に含まれるピクチャに対して視差補償を適用することにより生成された予測画像と、を選択的に切り替えて出力する判定部と、
    前記判定部が出力する予測画像と、前記第2画像との差分を算出し、残差成分を生成する減算器と、
    前記減算器が生成した残差成分を直交変換し、直交変換係数を生成する直交変換部と、
    前記直交変換部が生成した直交変換係数を量子化し、量子化係数を生成する量子化部と、
    前記量子化部で利用する量子化幅を決定する制御部と、を備え、
    前記制御部は、
    前記判定部が前記視差補償を適用することにより生成された予測画像を選択した場合、前記第2画像に適用される量子化幅を、前記第2画像と対になる、前記第1視点動画像に含まれる第1画像に適用される量子化幅より小さい値に決定する
    ステレオ動画像符号化装置。
  2. 前記判定部は、前記動き補償を適用することにより生成された予測画像および前記視差補償を適用することにより生成された予測画像のいずれを選択するかを、ピクチャ単位で判定し、
    前記制御部は、
    前記判定部が前記視差補償を適用することにより生成された予測画像を選択した場合、前記第2画像に適用される量子化幅を、前記第1画像に適用される量子化幅より小さい値に決定するレート制御部を備える
    請求項1記載のステレオ動画像符号化装置。
  3. 前記第1画像は、前記第1視点動画像に含まれる第1ピクチャの一部の領域の画像であり、
    前記第2画像は、前記第2視点動画像に含まれる第2ピクチャの一部の領域の画像であり、
    前記判定部は、前記第2画像を符号化する際に、前記動き補償を適用することにより生成された予測画像および前記視差補償を適用することにより生成された予測画像のいずれを選択するかを判定し、
    前記制御部は、前記判定部が前記視差補償を適用することにより生成された予測画像を選択した場合、前記第2画像に適用される量子化幅を、前記第1画像に適用される量子化幅より小さい値に決定する
    請求項1記載のステレオ動画像符号化装置。
  4. さらに、前記判定部が前記視差補償を適用することにより生成された予測画像を選択した場合、選択された前記予測画像と前記第2画像との差分である差分画像の特徴を示すスカラー量を算出するスカラー量算出部を備え、
    前記制御部は、さらに、前記判定部が前記視差補償を適用することにより生成された予測画像を選択した場合、前記スカラー量に基づいて、前記第2画像に適用される量子化幅を決定する
    請求項3記載のステレオ動画像符号化装置。
  5. 前記スカラー量は、前記差分画像の絶対値和であり、
    前記制御部は、前記第2画像に適用される量子化幅を、前記スカラー量が大きい程、値が小さくなるように決定する
    請求項4記載のステレオ動画像符号化装置。
  6. 前記量子化幅は、量子化マトリクス及び量子化パラメータの少なくとも一方によって決定される値であり、
    前記制御部は、前記判定部が前記視差補償を適用することにより生成された予測画像を選択した場合、前記第2画像の量子化に用いる量子化マトリクスの係数値の少なくとも1つを、前記第1画像の量子化に用いる量子化マトリクスの係数値より小さい値に決定する
    請求項1記載のステレオ動画像符号化装置。
  7. 前記量子化幅は、量子化マトリクス及び量子化パラメータの少なくとも一方によって決定される値であり、
    前記制御部は、前記判定部が前記視差補償を適用することにより生成された予測画像を選択した場合、前記第2画像の量子化に用いる量子化パラメータを、前記第1画像の量子化に用いる量子化パラメータより小さい値に決定する
    請求項1記載のステレオ動画像符号化装置。
  8. 立体視用の動画像を構成する第1視点における第1視点動画像および第2視点における第2視点動画像のうち、少なくとも前記第2視点動画像に含まれる第2画像を符号化するステレオ動画像符号化方法であって、
    前記第2視点動画像に含まれるピクチャに対して動き補償を適用することにより生成された予測画像と、前記第2視点動画像に含まれるピクチャに対して視差補償を適用することにより生成された予測画像と、を選択的に切り替えて出力する判定ステップと、
    前記判定ステップにおいて出力される予測画像と、前記第2画像との差分を算出し、残差成分を生成する減算ステップと、
    生成された残差成分を直交変換し、直交変換係数を生成する直交変換ステップと、
    生成された直交変換係数を量子化し、量子化係数を生成する量子化ステップと、
    前記量子化ステップにおいて利用される量子化幅を決定する量子化幅決定ステップとを含み、
    前記量子化幅決定ステップでは、
    前記判定ステップにおいて視差補償を適用することにより生成された予測画像が選択された場合、前記第2画像に適用される量子化幅を、前記第2画像と対になる、前記第1視点動画像に含まれる第1画像に適用される量子化幅より小さい値に決定する
    ステレオ動画像符号化方法。
  9. 請求項8記載のステレオ動画像符号化方法をコンピュータに実行させるためのプログラムを格納する記録媒体。
  10. 立体視用の動画像を構成する第1視点における第1視点動画像および第2視点における第2視点動画像のうち、少なくとも前記第2視点動画像に含まれる第2画像を符号化する集積回路であって、
    前記第2視点動画像に含まれるピクチャに対して動き補償を適用することにより生成された予測画像と、前記第2視点動画像に含まれるピクチャに対して視差補償を適用することにより生成された予測画像と、を選択的に切り替えて出力する判定部と、
    前記判定部が出力する予測画像と、前記第2画像との差分を算出し、残差成分を生成する減算器と、
    前記減算器が生成した残差成分を直交変換し、直交変換係数を生成する直交変換部と、
    前記直交変換部が生成した直交変換係数を量子化し、量子化係数を生成する量子化部と、
    前記量子化部で利用する量子化幅を決定する制御部とを備え、
    前記制御部は、
    前記判定部が前記視差補償を適用することにより生成された予測画像を選択した場合、前記第2画像に適用される量子化幅を、前記第2画像と対になる、前記第1視点動画像に含まれる第1画像に適用される量子化幅より小さい値に決定する
    集積回路。
JP2011142188A 2010-06-30 2011-06-27 ステレオ動画像符号化装置及びステレオ動画像符号化方法 Withdrawn JP2012034352A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011142188A JP2012034352A (ja) 2010-06-30 2011-06-27 ステレオ動画像符号化装置及びステレオ動画像符号化方法
US13/171,736 US20120002723A1 (en) 2010-06-30 2011-06-29 Stereo video coding apparatus and stereo video coding method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010150469 2010-06-30
JP2010150469 2010-06-30
JP2011142188A JP2012034352A (ja) 2010-06-30 2011-06-27 ステレオ動画像符号化装置及びステレオ動画像符号化方法

Publications (1)

Publication Number Publication Date
JP2012034352A true JP2012034352A (ja) 2012-02-16

Family

ID=45399706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011142188A Withdrawn JP2012034352A (ja) 2010-06-30 2011-06-27 ステレオ動画像符号化装置及びステレオ動画像符号化方法

Country Status (2)

Country Link
US (1) US20120002723A1 (ja)
JP (1) JP2012034352A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014059874A (ja) * 2012-09-14 2014-04-03 Samsung Electronics Co Ltd 連続撮影イメージデータを処理する方法と装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8885021B2 (en) * 2012-01-10 2014-11-11 Disney Enterprises, Inc. Optimized stereoscopic camera for real-time applications
EP2833634A4 (en) * 2012-03-30 2015-11-04 Sony Corp IMAGE PROCESSING DEVICE AND METHOD, AND RECORDING MEDIUM
US9225962B2 (en) * 2012-07-16 2015-12-29 Cisco Technology, Inc. Stereo matching for 3D encoding and quality assessment
US9294766B2 (en) 2013-09-09 2016-03-22 Apple Inc. Chroma quantization in video coding
US9979970B2 (en) * 2014-08-08 2018-05-22 Qualcomm Incorporated System and method for determining buffer fullness for display stream compression
WO2016120871A1 (en) * 2015-01-28 2016-08-04 Beamr Imaging Ltd. Method and system of controlling a video content system
CN106888374B (zh) * 2015-12-16 2018-11-20 联芯科技有限公司 一种三维视频编码方法、装置及视频处理设备
US10614609B2 (en) 2017-07-19 2020-04-07 Mediatek Inc. Method and apparatus for reduction of artifacts at discontinuous boundaries in coded virtual-reality images

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000511366A (ja) * 1995-10-25 2000-08-29 サーノフ コーポレイション 4分割ツリーベースの可変ブロックサイズ動き推定装置および方法
CA2208950A1 (en) * 1996-07-03 1998-01-03 Xuemin Chen Rate control for stereoscopic digital video encoding
ZA200805337B (en) * 2006-01-09 2009-11-25 Thomson Licensing Method and apparatus for providing reduced resolution update mode for multiview video coding

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014059874A (ja) * 2012-09-14 2014-04-03 Samsung Electronics Co Ltd 連続撮影イメージデータを処理する方法と装置

Also Published As

Publication number Publication date
US20120002723A1 (en) 2012-01-05

Similar Documents

Publication Publication Date Title
JP6074082B2 (ja) イントラ予測モードにおける映像復号化方法
JP2012034352A (ja) ステレオ動画像符号化装置及びステレオ動画像符号化方法
JP4755093B2 (ja) 画像符号化方法および画像符号化装置
US8363719B2 (en) Encoding apparatus, method of controlling thereof, and computer program
EP1999958B1 (en) Method of reducing computations in intra-prediction mode decision processes in a digital video encoder
JP4334768B2 (ja) 圧縮映像のブリージングアーチファクトを低減する方法および装置
US8204105B2 (en) Transcoder and coded image conversion method
JP5893002B2 (ja) ビデオ符号化におけるレート制御
KR102323427B1 (ko) 영상 부호화 방법 및 장치
KR100846512B1 (ko) 영상의 부호화, 복호화 방법 및 장치
US20140247890A1 (en) Encoding device, encoding method, decoding device, and decoding method
WO2008020687A1 (en) Image encoding/decoding method and apparatus
US20120287987A1 (en) Coding of Scene Changes Using Picture Dropping
JP5748463B2 (ja) 符号化装置およびプログラム
US20130058420A1 (en) Decoding apparatus, decoding method, and computer-readable storage medium
JPWO2010035505A1 (ja) 動画像符号化方法および動画像符号化装置
JP2021528877A (ja) イントラ予測におけるplanarモード及びdcモードの境界フィルタリング
JP7343817B2 (ja) 符号化装置、符号化方法、及び符号化プログラム
US8494047B2 (en) Encoding device, method for adjusting target amount of code and record medium
US20080080618A1 (en) Video decoding apparatus and method of the same
JP2007124580A (ja) 動画像符号化プログラム、プログラム記憶媒体、および符号化装置。
US9185420B2 (en) Moving image coding apparatus and moving image coding method
JP4942208B2 (ja) 符号化装置
WO2013073422A1 (ja) 動画像符号化装置
JP5421739B2 (ja) 動画像符号化装置、動画像復号化装置、および、動画像符号化方法

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140902