JP2012033755A - Superconducting device protective operation method and superconducting device - Google Patents

Superconducting device protective operation method and superconducting device Download PDF

Info

Publication number
JP2012033755A
JP2012033755A JP2010172635A JP2010172635A JP2012033755A JP 2012033755 A JP2012033755 A JP 2012033755A JP 2010172635 A JP2010172635 A JP 2010172635A JP 2010172635 A JP2010172635 A JP 2010172635A JP 2012033755 A JP2012033755 A JP 2012033755A
Authority
JP
Japan
Prior art keywords
temperature
oxide superconducting
layer
voltage
measurement area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010172635A
Other languages
Japanese (ja)
Other versions
JP5548549B2 (en
Inventor
Masanori Daiho
雅載 大保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2010172635A priority Critical patent/JP5548549B2/en
Publication of JP2012033755A publication Critical patent/JP2012033755A/en
Application granted granted Critical
Publication of JP5548549B2 publication Critical patent/JP5548549B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a superconducting device operation method and a superconducting device.SOLUTION: A standard measurement area and a first measurement area are partitioned on the surface of a stabilization layer, and voltages of these areas are measured. Regarding these voltages, the minimum voltage detectable by a voltmeter is set to Vd. An oxide superconductor is cooled to the critical temperature or lower, and power is supplied from a power supply. The temperature and the temperature rise rate of the oxide superconductor at a position in time and space where the minimum voltage Vd is detected are represented by Ta and dTa/dt, respectively. The interruption response time which a switching device may take to interrupt a current from the power supply is represented by Td. The temperature of the oxide superconductor at the point in time of the current interruption is set to Ts. Then, the power supply is disconnected to satisfy a condition of Ts=Ta+dTa/dt×Td≤500K(K: absolute temperature).

Description

本発明は、超電導装置の保護運転方法と超電導装置に関する。   The present invention relates to a protective operation method for a superconducting device and a superconducting device.

近年になって発見された希土類系酸化物超電導体(REBaCu7−X:REはYを含む希土類元素)は、液体窒素温度で超電導性を示し、電流損失が低いため、実用上極めて有望な高温超電導体として研究されており、これを線材に加工して電力供給用の高温超電導線ケーブルあるいは磁場発生用の高温超電導コイルなどとして使用することが要望されている。また、この種の酸化物超電導体を線材に加工するための方法として、強度が高く、耐熱性もあり、線材に加工することが容易な金属を長尺のテープ状に加工し、このテープ状の金属基材上に中間層を介し酸化物超電導層を形成する方法が研究されている。 Rare earth oxide superconductors (REBa 2 Cu 3 O 7-X, where RE is a rare earth element including Y) discovered in recent years exhibit superconductivity at liquid nitrogen temperatures and have low current loss. It has been studied as a very promising high-temperature superconductor, and it is desired to process it into a wire and use it as a high-temperature superconducting wire cable for power supply or a high-temperature superconducting coil for generating a magnetic field. Moreover, as a method for processing this type of oxide superconductor into a wire, a metal having high strength, heat resistance, and easy to be processed into a wire is processed into a long tape shape. A method for forming an oxide superconducting layer on an intermediate layer of metal via an intermediate layer has been studied.

上述の高温超電導体を用いた高温超電導ケーブルは、高価な液体ヘリウムを必要とする低温超電導体のケーブルと比べ、安価な液体窒素で運用することができ、送電時のエネルギー損失を低減できる有望な技術として研究開発が進められている。
前記液体ヘリウムにより冷却して使用する低温超電導体は、臨界温度が10K以下と低く、運転温度も4K程度であり、極めて低温で使用するため、比熱が小さい特徴がある。このため、低温超電導体を用いた超電導コイルにあっては、その一部に何らかの原因で超電導状態から常電導転移が生じると、常電導転移した部分において常電導転移に伴うジュール熱が発生し、該当部分とその周囲部分の温度が上昇し、超電導体の臨界電流が低下し、結果的に他の部分においても発熱が生じ、温度が上昇するという現象を繰り返し、急激に常電導転移(クエンチ)が発生する。従って、低温超電導体を冷却しながら通電使用する場合にあっては、常電導転移により発生した電圧を検知するか、または、バランス電圧を検知することでこれらクエンチの検出を行う手法が知られている。
High-temperature superconducting cables using the above-mentioned high-temperature superconductors can be operated with low-cost liquid nitrogen compared to low-temperature superconductor cables that require expensive liquid helium, and are promising to reduce energy loss during power transmission. Research and development is ongoing as a technology.
The low temperature superconductor used by cooling with liquid helium has a low critical temperature as low as 10K or less, an operating temperature of about 4K, and is characterized by low specific heat because it is used at a very low temperature. For this reason, in a superconducting coil using a low-temperature superconductor, when a normal conduction transition occurs from the superconducting state for some reason, Joule heat associated with the normal conduction transition occurs in the part where the normal conduction transition occurs. The temperature of the relevant part and the surrounding part rises, the critical current of the superconductor decreases, and as a result, heat is generated in other parts, and the temperature rises repeatedly, and suddenly the normal conduction transition (quenching) Will occur. Therefore, in the case where the low temperature superconductor is energized while being cooled, there is a known method for detecting these quenches by detecting the voltage generated by the normal conduction transition or by detecting the balance voltage. Yes.

しかし、Bi系やY系に代表されるような臨界温度が100K程度の高温超電導体は、冷凍機などの消費電力を軽減可能な運転温度として知られる20K程度以上の温度で使用することが想定されている。従って、高温超電導体を低温超電導体と比較すると、運転状態での比熱が大きく、常電導転移した際の伝搬速度が遅いため、従来の低温超電導体用の測定技術によるクエンチの検出技術では高温超電導体のクエンチを良好には検出できない可能性があると指摘されている。
例えば、低温超電導体は、4Kで運転中に常電導転移が生じると、数10m〜100m/秒もの速度で常電導転移が伝播するとされているので、低温超電導体は自身の温度が上がる前に常電導状態に転移してしまうのに対し、本発明者の知見によれば、高温超電導体に部分的に常電導転移を生じると、常電導転移した領域が徐々に広がり、その間に高温超電導体は温度上昇することがわかっている。
However, it is assumed that high temperature superconductors with a critical temperature of about 100K as typified by Bi type and Y type are used at a temperature of about 20K or more, which is known as an operating temperature capable of reducing power consumption of a refrigerator or the like. Has been. Therefore, when comparing the high temperature superconductor with the low temperature superconductor, the specific heat in the operating state is large and the propagation speed at the normal conduction transition is slow. It has been pointed out that body quench may not be detected well.
For example, a low temperature superconductor is supposed to propagate at a speed of several tens of meters to 100 m / second when a normal conduction transition occurs during operation at 4K. According to the inventor's knowledge, when the normal conduction transition is partially generated in the high-temperature superconductor, the normal conduction transition region gradually expands, and the high-temperature superconductor is in the meantime. Is known to increase in temperature.

従来、高温超電導体からなる超電導機器の保護装置として、Bi系の高温超電導体に対する技術が種々開発されており、特許文献1に記載の如く電圧Vと電流Iの比と、1階微分値dV/dtと、2階微分値dV/dtを用いてクエンチの検知を行う技術と高温超電導体の保護技術が提案されている。 Conventionally, various technologies for Bi-based high-temperature superconductors have been developed as protection devices for superconducting equipment composed of high-temperature superconductors. As described in Patent Document 1, the ratio of voltage V to current I and the first-order differential value dV A technique for detecting a quench using / dt and a second-order differential value d 2 V / dt 2 and a technique for protecting a high-temperature superconductor have been proposed.

特開2006−41274号公報JP 2006-41274 A

先の特許文献1に記載された高温超電導導体のクエンチ検知技術は、Bi系の酸化物超電導導体における検討結果を反映してなされたものであるが、Bi系以外であってY系などの希土類系酸化物超電導体について、常電導転移に伴う熱管理などを把握して如何にクエンチを検知するかについての技術は、現状では提供されていないのが実情である。
例えば、図8に示す如くBi系の酸化物超電導導体100は、Bi系の酸化物超電導層101をAgのシース材102で被覆した状態となるようにロール圧延法などにより製造された構造となっているのに対し、Y系などの希土類系酸化物超電導導体103は、例えば図9に示す如く全く異なる構造とされている。
The quench detection technology for the high-temperature superconductor described in the above-mentioned Patent Document 1 is made by reflecting the results of studies on Bi-based oxide superconductors. Regarding the oxide superconductors, the current situation is that no technology has been provided on how to detect quenching by grasping thermal management associated with normal conduction transition.
For example, as shown in FIG. 8, the Bi-based oxide superconducting conductor 100 has a structure manufactured by a roll rolling method or the like so that the Bi-based oxide superconducting layer 101 is covered with an Ag sheath material 102. On the other hand, the rare earth-based oxide superconducting conductor 103 such as Y-based has a completely different structure as shown in FIG.

図9に示す酸化物超電導導体103は、テープ状の金属基材105上に中間層106とキャップ層107を介し成膜法により酸化物超電導層108を積層し、AgやCuなどの安定化層109、110を被覆した積層構造とされるので、図7に示す構造のBi系の酸化物超電導導体100に対するクエンチ検知技術が、Y系などの希土類系酸化物超電導導体103のクエンチ検知に有効であるか否かも検証されていないという背景がある。   The oxide superconducting conductor 103 shown in FIG. 9 is obtained by laminating an oxide superconducting layer 108 on a tape-like metal base material 105 by a film forming method through an intermediate layer 106 and a cap layer 107, and stabilizing layers such as Ag and Cu. Since the multilayer structure is formed by covering 109 and 110, the quench detection technology for the Bi-based oxide superconducting conductor 100 having the structure shown in FIG. 7 is effective for quench detection of the rare earth-based oxide superconducting conductor 103 such as Y-based. There is a background that it has not been verified whether it exists.

また、Y系などの希土類系酸化物超電導導体は、例えば図10に示す酸化物超電導導体111の如く、金属基材105、中間層106、キャップ層107、酸化物超電導層108、安定化層109、110を備えた積層体を形成後、積層体の側面や底面の保護のために安定化層112、113を更に被覆形成した構造なども検討されているので、図7に示す構造のBi系の酸化物超電導導体100に対するクエンチ検知技術が図10に示す構造の希土類系酸化物超電導導体111のクエンチ検知に有効であるか否かも知られていない。   Further, the rare earth-based oxide superconductor such as Y-based material is, for example, a metal substrate 105, an intermediate layer 106, a cap layer 107, an oxide superconducting layer 108, and a stabilizing layer 109, like an oxide superconducting conductor 111 shown in FIG. , 110, and a structure in which the stabilizing layers 112 and 113 are further formed to protect the side and bottom surfaces of the laminated body are being studied. Therefore, the Bi-based structure having the structure shown in FIG. It is not known whether the quench detection technique for the oxide superconducting conductor 100 is effective for quench detection of the rare earth oxide superconducting conductor 111 having the structure shown in FIG.

本発明は、以上のような従来の実情に鑑みなされたものであり、Y系などの希土類系酸化物超電導導体のクエンチ検知に有効な技術の提供を目的とする。   The present invention has been made in view of the above-described conventional situation, and an object thereof is to provide a technique effective for quench detection of rare earth-based oxide superconducting conductors such as Y-based.

本発明の超電導装置の運転方法は、上記課題を解決するために、テープ状の基材と、該基材上に設けられた中間層と酸化物超電導層と、該酸化物超電導層上に設けられた安定化層とを備えてなる積層構造の酸化物超電導導体と、この酸化物超電導導体の酸化物超電導層に通電するための電源装置と、この電源装置から前記酸化物超電導導体の酸化物超電導層への通電を制御するスイッチ装置を備えた超電導装置を運転する際、前記酸化物超電導層上に積層されている安定化層の表面に酸化物超電導導体の長さ方向に沿って所定の間隔をあけて規定した基準測定エリアと、先の所定の間隔よりも長い第1の間隔をあけて前記基準測定エリアを挟むように規定した第1測定エリアとを少なくとも区画し、前記基準測定エリア両端部の電圧または前記第1測定エリア両端部の電圧を測定し、前記基準測定エリア両端部の電圧または前記第1測定エリア両端の電圧について電圧測定器が検知可能な最低電圧をVdに設定し、前記酸化物超電導導体を臨界温度以下に冷却し前記電源装置から通電している場合、前記最低電圧Vdを検知した時点と位置における前記酸化物超電導導体の温度をTa、その時点と位置における温度上昇率をdTa/dtとした場合、前記スイッチ装置が前記電源装置からの電流を遮断可能な遮断応答時間をTd、前記電流遮断時点における酸化物超電導導体の温度をTs、Kを絶対温度と設定した場合、Ts=Ta+dTa/dt×Td≦500Kとなる条件を満たすように前記電源装置からの通電を遮断することを特徴とする。   In order to solve the above problems, a method of operating a superconducting device of the present invention is provided on a tape-like base material, an intermediate layer provided on the base material, an oxide superconducting layer, and the oxide superconducting layer. An oxide superconducting conductor having a laminated structure comprising a stabilized layer, a power supply for energizing the oxide superconducting layer of the oxide superconducting conductor, and an oxide of the oxide superconducting conductor from the power supply When operating a superconducting device having a switch device for controlling energization to the superconducting layer, a predetermined length along the length direction of the oxide superconducting conductor is formed on the surface of the stabilizing layer laminated on the oxide superconducting layer. At least a reference measurement area defined with an interval and a first measurement area defined to sandwich the reference measurement area with a first interval longer than the predetermined interval, the reference measurement area Voltage at both ends or front The voltage at both ends of the first measurement area is measured, and the minimum voltage that can be detected by a voltage measuring device is set to Vd for the voltage at both ends of the reference measurement area or the voltage at both ends of the first measurement area, and the oxide superconductor Is cooled to below the critical temperature and energized from the power supply device, the temperature of the oxide superconducting conductor at the time and position at which the minimum voltage Vd is detected is Ta, and the rate of temperature increase at that time and position is dTa / dt. In the case where the switch device is set to Td as the response time for interrupting the current from the power supply device, Ts is the temperature of the oxide superconductor at the time of current interruption, and K is the absolute temperature, Ts = Ta + dTa It is characterized in that energization from the power supply device is cut off so as to satisfy the condition of / dt × Td ≦ 500K.

本発明の超電導装置の運転方法は、前記安定化層について室温から前記酸化物超電導層の臨界温度より下の運転温度域までにいたる温度と抵抗値の関連性を示す温度−抵抗特性を測定して把握しておき、前記最低電圧計測後の電圧上昇状態から温度に換算して前記温度上昇率dTa/dtを求めることを特徴とする。   The operation method of the superconducting device of the present invention is to measure a temperature-resistance characteristic indicating a relationship between a temperature ranging from room temperature to an operating temperature range below the critical temperature of the oxide superconducting layer and a resistance value for the stabilization layer. The temperature rise rate dTa / dt is calculated by converting the voltage rise state after the minimum voltage measurement into a temperature.

本発明の超電導装置は、テープ状の基材と、該基材上に設けられた中間層と酸化物超電導層と、該酸化物超電導層上に設けられた安定化層とを備えてなる積層構造の酸化物超電導導体と、この酸化物超電導導体の酸化物超電導層に通電するための電源装置と、この電源装置から前記酸化物超電導導体の酸化物超電導層への通電を制御するスイッチ装置を備え、前記酸化物超電導層上に積層されている安定化層の表面に酸化物超電導導体の長さ方向に沿って所定の間隔をあけて規定した基準測定エリアと、先の所定の間隔よりも長い第1の間隔をあけて前記基準測定エリアを挟むように規定した第1測定エリアとを少なくとも区画し、前記基準測定エリア両端部の電圧または前記第1測定エリア両端部の電圧を測定する電圧測定器を備え、前記基準測定エリア両端部の電圧または前記第1測定エリア両端の電圧について電圧測定器が検知可能な最低電圧をVdに設定し、前記酸化物超電導導体を臨界温度以下に冷却し前記電源装置から通電している場合、前記最低電圧Vdを検知した時点と位置における前記酸化物超電導導体の温度をTa、その時点と位置における温度上昇率をdTa/dtとした場合、前記スイッチ装置が前記電源装置からの電流を遮断可能な遮断応答時間をTd、前記電流遮断時点における酸化物超電導導体の温度をTsと、Kを絶対温度と設定した場合、Ts=Ta+dTa/dt×Td≦500Kとなる条件を満たすように前記電源装置からの通電を前記スイッチ装置により遮断する制御装置を具備したことを特徴とする。   The superconducting device of the present invention is a laminate comprising a tape-like substrate, an intermediate layer provided on the substrate, an oxide superconducting layer, and a stabilization layer provided on the oxide superconducting layer. An oxide superconducting conductor having a structure, a power supply device for energizing the oxide superconducting layer of the oxide superconducting conductor, and a switch device for controlling energization from the power supply device to the oxide superconducting layer of the oxide superconducting conductor A reference measurement area defined with a predetermined interval along the length direction of the oxide superconducting conductor on the surface of the stabilization layer laminated on the oxide superconducting layer, and more than a predetermined interval above A voltage that measures at least a voltage at both ends of the reference measurement area or a voltage at both ends of the first measurement area by partitioning at least a first measurement area defined to sandwich the reference measurement area with a long first interval Comprising a measuring instrument, For the voltage at both ends of the semi-measurement area or the voltage at both ends of the first measurement area, the lowest voltage that can be detected by the voltage measuring device is set to Vd, the oxide superconductor is cooled to a critical temperature or less, and the power supply device is energized. If the temperature of the oxide superconductor at the time and position at which the minimum voltage Vd is detected is Ta, and the rate of temperature increase at that time and position is dTa / dt, the switch device is connected to the power supply device from the power supply device. When the interruption response time capable of interrupting the current is set to Td, the temperature of the oxide superconductor at the time of the current interruption is set to Ts, and K is set to the absolute temperature, the condition of Ts = Ta + dTa / dt × Td ≦ 500K is satisfied. And a control device that cuts off power from the power supply device by the switch device.

本発明の超電導装置は、前記安定化層について室温から前記酸化物超電導層の臨界温度より下の運転温度域までにいたる温度と抵抗値の関連性を示す温度−抵抗特性を測定して前記制御装置に記憶しておき、前記最低電圧計測後の電圧上昇状態から温度に換算して前記温度上昇率dTa/dtを求める機能を前記制御装置に備えたことを特徴とする。   In the superconducting device of the present invention, the control is performed by measuring a temperature-resistance characteristic indicating a relationship between a temperature ranging from room temperature to an operating temperature range lower than the critical temperature of the oxide superconducting layer and a resistance value of the stabilization layer. The control device is provided with a function of storing in the device and calculating the temperature increase rate dTa / dt by converting the voltage increase state after the minimum voltage measurement into a temperature.

本発明の保護運転方法と超電導装置によれば、基材上に中間層と酸化物超電導層と安定化層を積層した構造の希土類系の酸化物超電導導体に対し、安定化層の表面に基準測定エリアとそれを囲む第1測定エリアを区画し、超電導状態の超電導層に通電している際、何らかの原因により酸化物超電導導体の一部に常電導転移が生じた場合、電圧測定器の測定可能な最低電圧を検知した時点での温度Taとして、この温度に対し、温度上昇率に電源装置からの遮断応答時間を掛けた値を加算して500K以上とならないように運転し、この条件から外れる場合は電源装置からの通電を遮断することで、酸化物超電導導体がクエンチした場合に酸化物超電導層が損傷するような温度上昇を加えないようにすることができる保護運転方法と超電導装置を提供できる。   According to the protection operation method and the superconducting device of the present invention, the surface of the stabilizing layer is used as a reference for the rare earth oxide superconducting conductor having a structure in which an intermediate layer, an oxide superconducting layer, and a stabilizing layer are laminated on a base material. When a normal conduction transition occurs in a part of the oxide superconductor for some reason when the measurement area and the first measurement area surrounding it are divided and the superconducting layer in the superconducting state is energized, the voltage meter measures As the temperature Ta at the time when the lowest possible voltage is detected, the temperature Ta is multiplied by the value obtained by multiplying the temperature rise rate by the shut-off response time from the power supply device so that it does not exceed 500K. Protective operation method and superconducting device capable of preventing temperature rise from damaging oxide superconducting layer when oxide superconducting conductor is quenched by shutting off current from power supply device when disconnected It can be provided.

また、本発明によれば、安定化層の温度−抵抗特性を臨界温度〜運転温度域まで計測しておき、常電導転移が生じて常電導転移部分に電圧が生じた場合、この生じた電圧を温度−抵抗特性から換算して温度上昇率に換算するので、安定化層の上に基準測定領域と第1の測定領域を区画してそれらに発生する電圧をモニターすることで、常電導転移を検知して電源装置からの通電を遮断することができ、酸化物超電導導体がクエンチした場合に酸化物超電導層が損傷するような温度上昇を加えないようにすることができる。   Further, according to the present invention, when the temperature-resistance characteristic of the stabilization layer is measured from the critical temperature to the operating temperature range, when the normal conduction transition occurs and a voltage is generated in the normal conduction transition portion, the generated voltage Is converted from the temperature-resistance characteristics into a rate of temperature rise, and the normal measurement transition is performed by dividing the reference measurement region and the first measurement region on the stabilization layer and monitoring the voltage generated in them. Can be detected to cut off the energization from the power supply device, and when the oxide superconducting conductor is quenched, it is possible to prevent a temperature rise from damaging the oxide superconducting layer.

本発明に係る超電導装置に備えられる酸化物超電導導体の一例構造を示す概略断面図。The schematic sectional drawing which shows an example structure of the oxide superconducting conductor with which the superconducting apparatus which concerns on this invention is equipped. 図1に示す酸化物超電導導体に接続された電圧測定器と電源装置並びに制御装置を示す概略構成図。The schematic block diagram which shows the voltage measuring device, power supply device, and control apparatus which were connected to the oxide superconducting conductor shown in FIG. 図2に示す酸化物超電導導体と電圧測定器と電源装置並びに制御装置を組み込んでなる超電導装置の一例を示す構成図。The block diagram which shows an example of the superconducting apparatus incorporating the oxide superconducting conductor shown in FIG. 2, a voltage measuring device, a power supply device, and a control apparatus. 図3に示す超電導装置に組み込まれた酸化物超電導導体とそれに区画された測定エリアの一例を示す構成図。The block diagram which shows an example of the oxide superconducting conductor built in the superconducting apparatus shown in FIG. 3, and the measurement area divided by it. 図3に示す超電導装置を用いて実施例において計測した酸化物超電導導体のクエンチ発生時の時間毎の電圧挙動測定結果の一例を示す線図。The diagram which shows an example of the voltage behavior measurement result for every time at the time of quench generation | occurrence | production of the oxide superconducting conductor measured in the Example using the superconducting apparatus shown in FIG. 図4に示す電圧挙動を基に時間と温度の関係を実施例において求めた結果の一例を示す線図。The diagram which shows an example of the result of having calculated | required the relationship between time and temperature in the Example based on the voltage behavior shown in FIG. 実施例で用いた安定化層の温度−抵抗特性の測定結果を示す線図。The diagram which shows the measurement result of the temperature-resistance characteristic of the stabilization layer used in the Example. 従来のBi系酸化物超電導導体の一例構造を示す部分断面図。The fragmentary sectional view which shows an example structure of the conventional Bi type oxide superconducting conductor. 従来の希土類系酸化物超電導導体の一例構造を示す部分断面図。The fragmentary sectional view which shows an example structure of the conventional rare earth type oxide superconducting conductor. 従来の希土類系酸化物超電導導体の他の例の構造を示す部分断面図。The fragmentary sectional view which shows the structure of the other example of the conventional rare earth type oxide superconducting conductor.

以下、本発明に係る超電導装置およびその運転方法の第1実施形態について図面に基づいて説明する。
図1は本発明に係る超電導装置に備えられる希土類系酸化物超電導導体の一例構造を示す概略断面図であり、この酸化物超電導導体に図2に示す如く複数の測定点が規定され、それらが図3に示す超電導装置に組み込まれている。
図1に示す本実施形態の酸化物超電導導体1は、テープ状の長尺の金属製の基材2の上に、拡散防止層3とベッド層4と第1の中間層5と第2の中間層(キャップ層)6と酸化物超電導層7と第1の安定化層8と第2の安定化層9を積層した構成とされている。なお、本発明において拡散防止層3とベッド層4は必須ではなく、場合によってはこれらの一方あるいは両方を略しても良い。
Hereinafter, a first embodiment of a superconducting device and an operation method thereof according to the present invention will be described with reference to the drawings.
FIG. 1 is a schematic cross-sectional view showing an example structure of a rare earth oxide superconducting conductor provided in the superconducting device according to the present invention. A plurality of measurement points are defined in the oxide superconducting conductor as shown in FIG. It is incorporated in the superconducting device shown in FIG.
The oxide superconducting conductor 1 of this embodiment shown in FIG. 1 has a diffusion prevention layer 3, a bed layer 4, a first intermediate layer 5, and a second layer on a tape-like long metal base 2. The intermediate layer (cap layer) 6, the oxide superconducting layer 7, the first stabilizing layer 8, and the second stabilizing layer 9 are laminated. In the present invention, the diffusion preventing layer 3 and the bed layer 4 are not essential, and one or both of them may be omitted depending on circumstances.

前記基材2は、通常の超電導線材の基材として使用することができ、高強度であれば良く、長尺のケーブルとするためにテープ状であることが好ましく、耐熱性の金属からなるものが好ましい。例えば、ステンレス鋼、ハステロイ等のニッケル合金等の各種金属材料、もしくはこれら各種金属材料上にセラミックスを配したもの、等が挙げられる。各種耐熱性の金属の中でも、ニッケル合金が好ましい。なかでも、市販品であれば、ハステロイ(米国ヘインズ社製商品名)が好適であり、ハステロイとして、モリブデン、クロム、鉄、コバルト等の成分量が異なる、ハステロイB、C、G、N、W等のいずれの種類も使用できる。基材3の厚さは、目的に応じて適宜調整すれば良く、通常は、10〜500μmの範囲とすることができる。   The base material 2 can be used as a base material for a normal superconducting wire, has only to be high strength, and is preferably in the form of a tape for making a long cable, and is made of a heat-resistant metal. Is preferred. Examples thereof include various metal materials such as nickel alloys such as stainless steel and hastelloy, or ceramics arranged on these various metal materials. Among various heat resistant metals, nickel alloys are preferable. Especially, if it is a commercial item, Hastelloy (trade name made by US Haynes Co., Ltd.) is suitable, and Hastelloy B, C, G, N, W, which have different amounts of components such as molybdenum, chromium, iron, cobalt, etc. Any type can be used. What is necessary is just to adjust the thickness of the base material 3 suitably according to the objective, Usually, it can be set as the range of 10-500 micrometers.

前記拡散防止層3は、基材2の構成元素拡散を防止する目的で形成されたもので、窒化ケイ素(Si)、酸化アルミニウム(Al、「アルミナ」とも呼ぶ)、あるいは、GZO(GdZr)等から構成され、その厚さは例えば10〜400nmである。拡散防止層3の厚さが10nm未満となると、基材2の構成元素の拡散を十分に防止できなくなる虞がある。一方、拡散防止層3の厚さが400nmを超えると、拡散防止層3の内部応力が増大し、これにより、他の層を含めて全体が基材2から剥離しやすくなる虞がある。また、拡散防止層3の結晶性は特に問われないので、通常のスパッタ法等の成膜法により形成すれば良い。
ベッド層4は、耐熱性が高く、界面反応性を低減するためのものであり、その上に配される膜の配向性を得るために用いる。このようなベッド層4は、例えば、イットリア(Y)などの希土類酸化物であり、組成式(α2x(β(1−x)で示されるものが例示できる。より具体的には、Er、CeO、Dy3、Er、Eu、Ho、La等を例示することができる。このベッド層4は、例えばスパッタリング法等の成膜法により形成され、その厚さは例えば10〜100nmである。また、ベッド層4の結晶性は特に問われないので、通常のスパッタ法等の成膜法により形成すれば良い。
The diffusion prevention layer 3 is formed for the purpose of preventing the diffusion of the constituent elements of the base material 2, and silicon nitride (Si 3 N 4 ), aluminum oxide (Al 2 O 3 , also referred to as “alumina”), or , GZO (Gd 2 Zr 2 O 7 ) and the like, and its thickness is, for example, 10 to 400 nm. When the thickness of the diffusion preventing layer 3 is less than 10 nm, there is a possibility that the diffusion of the constituent elements of the substrate 2 cannot be sufficiently prevented. On the other hand, if the thickness of the diffusion preventing layer 3 exceeds 400 nm, the internal stress of the diffusion preventing layer 3 increases, and this may cause the entire layer including other layers to be easily peeled off from the substrate 2. Further, since the crystallinity of the diffusion preventing layer 3 is not particularly limited, it may be formed by a film forming method such as a normal sputtering method.
The bed layer 4 has high heat resistance and is used for reducing interfacial reactivity, and is used for obtaining the orientation of a film disposed thereon. Such a bed layer 4 is, for example, a rare earth oxide such as yttria (Y 2 O 3 ), and is represented by a composition formula (α 1 O 2 ) 2x2 O 3 ) (1-x). It can be illustrated. More specifically, Er 2 O 3, CeO 2 , Dy 2 O 3, Er 2 O 3, Eu 2 O 3, Ho 2 O 3, can be exemplified La 2 O 3 and the like. The bed layer 4 is formed by a film forming method such as a sputtering method, and has a thickness of 10 to 100 nm, for example. Further, since the crystallinity of the bed layer 4 is not particularly limited, it may be formed by a film forming method such as a normal sputtering method.

第1の中間層5は、単層構造あるいは複層構造のいずれでも良く、その上に積層されるキャップ層としての第2の中間層6の結晶配向性を制御するために2軸配向する物質から選択される。第1の中間層5の好ましい材質として具体的には、GdZr、MgO、ZrO−Y(YSZ)、SrTiO、CeO、Y、Al、Gd、Zr、Ho、Nd等の金属酸化物を例示することができる。
この第1の中間層5をIBAD(Ion-Beam-Assisted Deposition)法により良好な結晶配向性(例えば結晶配向度16゜以下)で成膜するならば、その上に形成する第2の中間層6の結晶配向性を良好な値(例えば結晶配向度5゜前後)とすることができ、これにより第2の中間層6の上に成膜する酸化物超電導層7の結晶配向性を良好なものとして優れた超電導特性を発揮できる酸化物超電導層7を得るようにすることができる。
例えば、GdZr、MgO又はZrO−Y(YSZ)からなる第1の中間層5は、IBAD法における結晶配向度を表す指標であるΔψ(FWHM:半値全幅)の値を小さくできるため、特に好適である。
The first intermediate layer 5 may be either a single layer structure or a multi-layer structure, and is a biaxially oriented substance for controlling the crystal orientation of the second intermediate layer 6 as a cap layer laminated thereon. Selected from. Specifically, preferred materials for the first intermediate layer 5 include Gd 2 Zr 2 O 7 , MgO, ZrO 2 —Y 2 O 3 (YSZ), SrTiO 3 , CeO 2 , Y 2 O 3 , Al 2 O 3. Examples thereof include metal oxides such as Gd 2 O 3 , Zr 2 O 3 , Ho 2 O 3 , and Nd 2 O 3 .
If the first intermediate layer 5 is formed with a good crystal orientation (for example, a crystal orientation degree of 16 ° or less) by an IBAD (Ion-Beam-Assisted Deposition) method, the second intermediate layer formed thereon is formed. The crystal orientation of the oxide superconducting layer 7 formed on the second intermediate layer 6 can be improved. As a result, it is possible to obtain the oxide superconducting layer 7 that can exhibit excellent superconducting properties.
For example, the first intermediate layer 5 made of Gd 2 Zr 2 O 7 , MgO or ZrO 2 —Y 2 O 3 (YSZ) has Δψ (FWHM: full width at half maximum) which is an index representing the degree of crystal orientation in the IBAD method. Since the value can be reduced, it is particularly suitable.

前記IBAD法による第1の中間層5であれば、目的とする層の構成粒子をスパッタ法により堆積させつつ、所定の入射角度でイオン照射を行うことにより、形成されるスパッタ膜の特定の結晶軸がイオンの入射方向に固定され、結晶のc軸が金属基板の表面に対して垂直方向に配向するとともに、結晶のa軸及びb軸が面内において一定方向に配向する。このため、IBAD法によってベッド層4上に形成された第1の中間層5は、高い面内配向度、例えばΔφ=12〜16゜程度を得ることができる。   In the case of the first intermediate layer 5 by the IBAD method, a specific crystal of the sputtered film formed by performing ion irradiation at a predetermined incident angle while depositing the constituent particles of the target layer by the sputtering method. The axis is fixed in the ion incident direction, the c-axis of the crystal is oriented in a direction perpendicular to the surface of the metal substrate, and the a-axis and b-axis of the crystal are oriented in a certain direction in the plane. Therefore, the first intermediate layer 5 formed on the bed layer 4 by the IBAD method can obtain a high degree of in-plane orientation, for example, Δφ = 12 to 16 °.

次に、キャップ層としての第2の中間層6は、上述のように面内結晶軸が配向した第1の中間層5の表面に成膜されることによってエピタキシャル成長し、その後、横方向に粒成長して、結晶粒が面内方向に自己配向し得る材料、であれば特に限定されないが、好ましいものとして具体的には、CeO、Y、Al、Gd、ZrO、Ho、Nd等が例示できる。第2の中間層6の材質がCeOである場合、第2の中間層6は、Ceの一部が他の金属原子又は金属イオンで置換されたCe−M−O系酸化物を含んでいても良い。例えばCeOによって構成される第2の中間層6は、上述のように自己配向していることにより、第1の中間層5よりも更に高い面内配向度、例えばΔφ=4〜6゜程度を得ることができる。 Next, the second intermediate layer 6 as the cap layer is epitaxially grown by being formed on the surface of the first intermediate layer 5 in which the in-plane crystal axes are oriented as described above, and then the grains in the lateral direction. growing, materials crystal grains can self-orientation in the plane direction, a is not particularly limited as long as it, specifically as preferred, CeO 2, Y 2 O 3 , Al 2 O 3, Gd 2 O 3 , ZrO 2 , Ho 2 O 3 , Nd 2 O 3 and the like. When the material of the second intermediate layer 6 is CeO 2 , the second intermediate layer 6 includes a Ce—M—O-based oxide in which part of Ce is substituted with another metal atom or metal ion. May be. For example, since the second intermediate layer 6 made of CeO 2 is self-oriented as described above, the in-plane orientation degree is higher than that of the first intermediate layer 5, for example, Δφ = about 4 to 6 °. Can be obtained.

例えば、CeO層は、PLD法(パルスレーザ蒸着法)、スパッタリング法等で成膜することができるが、大きな成膜速度を得られる点でPLD法を用いることが望ましい。PLD法によるCeO層の成膜条件としては、基材温度約500〜1000℃、約0.6〜100Paの酸素ガス雰囲気中で行うことができる。
CeO層の膜厚は、50nm以上であればよいが、十分な配向性を得るには100nm以上が好ましい。但し、厚すぎると結晶配向性が悪くなるので、50〜5000nmの範囲、より好ましくは100〜5000nmの範囲とすることができる。
For example, the CeO 2 layer can be formed by a PLD method (pulse laser deposition method), a sputtering method, or the like, but it is desirable to use the PLD method in that a high film formation rate can be obtained. The film formation conditions for the CeO 2 layer by the PLD method can be performed in an oxygen gas atmosphere at a substrate temperature of about 500 to 1000 ° C. and about 0.6 to 100 Pa.
The film thickness of the CeO 2 layer may be 50 nm or more, but is preferably 100 nm or more in order to obtain sufficient orientation. However, if it is too thick, the crystal orientation deteriorates, so that it can be in the range of 50 to 5000 nm, more preferably in the range of 100 to 5000 nm.

酸化物超電導層7は高温超電導体として公知のもので良く、具体的には、REBaCu(REはY、La、Nd、Sm、Er、Gd等の希土類元素を表す)なる材質のものを例示できる。この酸化物超電導層7として、Y123(YBaCu7−X)又はGd123(GdBaCu7−X)などを例示することができる。
酸化物超電導層7は、スパッタ法、真空蒸着法、レーザ蒸着法、電子ビーム蒸着法、化学気相成長法(CVD法)等の物理的蒸着法;熱塗布分解法(MOD法)等で積層することができ、なかでも生産性の観点から、PLD(パルスレーザー蒸着)法、TFA−MOD法(トリフルオロ酢酸塩を用いた有機金属堆積法、塗布熱分解法)又はCVD法を用いることができる。
The oxide superconducting layer 7 may be a known high-temperature superconductor, and specifically, a material made of REBa 2 Cu 3 O y (RE represents a rare earth element such as Y, La, Nd, Sm, Er, Gd). Can be illustrated. Examples of the oxide superconducting layer 7 include Y123 (YBa 2 Cu 3 O 7-X ) or Gd123 (GdBa 2 Cu 3 O 7-X ).
The oxide superconducting layer 7 is laminated by a physical vapor deposition method such as sputtering, vacuum vapor deposition, laser vapor deposition, electron beam vapor deposition, chemical vapor deposition (CVD), or thermal coating decomposition (MOD). In particular, from the viewpoint of productivity, the PLD (pulse laser deposition) method, the TFA-MOD method (organic metal deposition method using trifluoroacetate, coating pyrolysis method) or the CVD method may be used. it can.

ここで前述のように、良好な配向性を有する第2の中間層6上に酸化物超電導層7を形成すると、この第2の中間層上に積層される酸化物超電導層7も第2の中間層6の配向性に整合するように結晶化する。よって前記第2の中間層6上に形成された酸化物超電導層7は、結晶配向性に乱れが殆どなく、この酸化物超電導層7を構成する結晶粒の1つ1つにおいては、基材2の厚さ方向に電気を流しにくいc軸が配向し、基材2の長さ方向にa軸どうしあるいはb軸どうしが配向している。従って得られた酸化物超電導層7は、結晶粒界における量子的結合性に優れ、結晶粒界における超電導特性の劣化が殆どないので、基材2の長さ方向に電気を流し易くなり、十分に高い臨界電流密度が得られる。   Here, as described above, when the oxide superconducting layer 7 is formed on the second intermediate layer 6 having good orientation, the oxide superconducting layer 7 laminated on the second intermediate layer is also in the second state. Crystallization is performed so as to match the orientation of the intermediate layer 6. Therefore, the oxide superconducting layer 7 formed on the second intermediate layer 6 is hardly disturbed in crystal orientation, and in each of the crystal grains constituting the oxide superconducting layer 7, a base material is used. The c-axis in which electricity does not easily flow is oriented in the thickness direction 2, and the a-axis or the b-axis is oriented in the length direction of the substrate 2. Therefore, the obtained oxide superconducting layer 7 is excellent in quantum connectivity at the crystal grain boundary, and hardly deteriorates in the superconducting characteristics at the crystal grain boundary. High critical current density can be obtained.

前記酸化物超電導層7の上に積層されている第1の安定化層8はAgあるいは貴金属などの良電導性かつ酸化物超電導層7と接触抵抗が低くなじみの良い金属材料からなる層として形成される。なお、第1の安定化層8をAgから構成する理由として、酸化物超電導層7に酸素をドープするアニール工程においてドープした酸素を酸化物超電導層7から逃避し難くする性質を有する点を挙げることができる。Agの第1の安定化層8を成膜するには、スパッタ法などの成膜法を採用し、その厚さを1〜30μm程度に形成できる。
第2の安定化層9は、良導電性の金属材料からなることが好ましく、酸化物超電導層7が超電導状態から常電導状態に遷移しようとした時に、第1の安定化層8とともに、超電導層7の電流が転流するバイパスとして機能する。
The first stabilization layer 8 laminated on the oxide superconducting layer 7 is formed as a layer made of a metal material having good conductivity, such as Ag or a noble metal, having a low contact resistance with the oxide superconducting layer 7 and a familiarity. Is done. The reason why the first stabilization layer 8 is made of Ag is that it has the property of making it difficult for the doped oxygen to escape from the oxide superconducting layer 7 in the annealing step of doping the oxide superconducting layer 7 with oxygen. be able to. In order to form the Ag first stabilizing layer 8, a film forming method such as a sputtering method can be employed, and the thickness thereof can be formed to about 1 to 30 μm.
The second stabilization layer 9 is preferably made of a highly conductive metal material. When the oxide superconducting layer 7 attempts to transition from the superconducting state to the normal conducting state, the second stabilizing layer 9 together with the first stabilizing layer 8 is superconducting. It functions as a bypass where the current of the layer 7 commutates.

第2の安定化層9を構成する金属材料としては、良導電性を有するものであればよく、特に限定されないが、銅、黄銅(Cu−Zn合金)等の銅合金、ステンレス等の比較的安価なものを用いるのが好ましく、中でも高い導電性を有し、安価であることから銅がより好ましい。銅を用いることにより、材料コストを低く抑えながら第2の安定化層9を厚膜化することが可能となり、事故電流に耐える酸化物超電導導体を安価に得ることができる。第2の安定化層9の厚さは10〜300μmとすることが好ましい。第2の安定化層9は、公知の方法で形成することができ、めっき法、スパッタ法あるいは銅などの金属テープを第1の安定化層8上に半田付けする方法などにより形成することができる。   The metal material constituting the second stabilization layer 9 is not particularly limited as long as it has good conductivity, but is relatively limited to copper alloys such as copper and brass (Cu-Zn alloy), stainless steel, and the like. It is preferable to use an inexpensive material, and copper is more preferable because it has high conductivity and is inexpensive. By using copper, it is possible to increase the thickness of the second stabilization layer 9 while keeping the material cost low, and it is possible to obtain an oxide superconductor that can withstand accident currents at low cost. The thickness of the second stabilization layer 9 is preferably 10 to 300 μm. The second stabilization layer 9 can be formed by a known method, and can be formed by a plating method, a sputtering method, or a method of soldering a metal tape such as copper on the first stabilization layer 8. it can.

なお、前記テープ状の基材2の上に拡散防止層3とベッド層4と第1の中間層5と第2の中間層6と酸化物超電導層7と第1の安定化層8と第2の安定化層9を形成した積層構造の酸化物超電導導体1は、通常、その全周を取り囲むようにポリイミドテープなどを重ね巻きしてなる絶縁材料製の保護層を形成し、絶縁構造としてから超電導コイル用などの超電導機器用途に使用される。   Note that the diffusion preventing layer 3, the bed layer 4, the first intermediate layer 5, the second intermediate layer 6, the oxide superconducting layer 7, the first stabilizing layer 8, and the first layer are formed on the tape-like base material 2. The oxide superconducting conductor 1 having a laminated structure in which two stabilizing layers 9 are formed usually forms a protective layer made of an insulating material formed by wrapping a polyimide tape or the like so as to surround the entire circumference thereof, thereby forming an insulating structure. Used for superconducting equipment such as for superconducting coils.

本実施形態では、長尺の酸化物超電導導体1において、その長さ方向任意の位置の第2の安定化層9の表面に、図2に示す如く酸化物超電導導体1の長さ方向に沿って所定長さの基準測定エリアS0が区画され、その両端部分に基準電圧測定点10、11が設置されるとともに、基準測定エリアS0の中央部に加熱ヒータ12が設置されている。また、長尺の酸化物超電導導体1において、基準測定エリアS0を含んで酸化物超電導導体1の長さ方向(図2の左右方向)に同等距離拡張するように第1測定エリアS1が区画され、その両端部分に第1電圧測定点17、18が設置されている。
なお、この加熱ヒータ12は酸化物超電導導体を超電導状態から常電導状態に強制的に転移させるために設置されているので、通常の例えば超電導コイルの運転等では設置されない。
酸化物超電導導体1に沿って設けるS0およびS1の距離は任意でよいが、酸化物超電導導体1の接続部分が含まれないように設定することが好ましい。
In the present embodiment, in the long oxide superconducting conductor 1, the surface of the second stabilizing layer 9 at an arbitrary position in the length direction is along the length direction of the oxide superconducting conductor 1 as shown in FIG. A reference measurement area S0 having a predetermined length is partitioned, reference voltage measurement points 10 and 11 are installed at both ends thereof, and a heater 12 is installed at the center of the reference measurement area S0. Further, in the long oxide superconductor 1, the first measurement area S1 is defined so as to extend the same distance in the length direction (left and right direction in FIG. 2) of the oxide superconductor 1 including the reference measurement area S0. The first voltage measurement points 17 and 18 are provided at both end portions.
The heater 12 is installed to forcibly transfer the oxide superconducting conductor from the superconducting state to the normal conducting state, and thus is not installed in a normal operation of the superconducting coil, for example.
The distance between S0 and S1 provided along the oxide superconducting conductor 1 may be arbitrary, but is preferably set so that the connecting portion of the oxide superconducting conductor 1 is not included.

前記酸化物超電導導体1に対し、基準電圧測定点10、11間に発生する電圧V0と、第1電圧測定点17、18間に発生する電圧V1を個々に測定するための電圧測定器19が接続されている。前記各測定点10、11、17、18はそれらに接続される配線10a、11a、17a、18aを介して電圧測定装置19に接続され、各測定点に生じる電圧を計測できるように構成されている。
なお、前記電圧測定器19は上述のV0とV1の測定ができるようになっている。また、図2において符号24で示すものは、第2の安定化層9の表面において基準電圧測定点10の近傍に設置されて酸化物超電導導体1の温度を計測するための熱電対である。
A voltage measuring device 19 for individually measuring the voltage V0 generated between the reference voltage measuring points 10 and 11 and the voltage V1 generated between the first voltage measuring points 17 and 18 with respect to the oxide superconductor 1 is provided. It is connected. Each of the measurement points 10, 11, 17, 18 is connected to a voltage measuring device 19 through wirings 10a, 11a, 17a, 18a connected to them, and is configured to measure a voltage generated at each measurement point. Yes.
The voltage measuring device 19 can measure the above-described V0 and V1. Also, what is indicated by reference numeral 24 in FIG. 2 is a thermocouple that is installed near the reference voltage measurement point 10 on the surface of the second stabilization layer 9 and measures the temperature of the oxide superconductor 1.

次に、長尺の酸化物超電導導体1の両端側には接続線20、21を介してスイッチ装置22と電源装置23とが接続されていて、電源装置23から酸化物超電導導体1の酸化物超電導層7に通電できるようになっているとともに、必要に応じスイッチ装置22により電源装置23から酸化物超電導導体1への通電開始と通電停止を切り替えることができるようになっている。また、これらのスイッチ装置22と電源装置23には制御装置25が接続線26、27を介し電気的に接続されていて、制御装置25によりスイッチ装置22の入切動作を切り替えることで酸化物超電導導体1の酸化物超電導層7に対する通電の入切を制御できるように構成されている。   Next, the switch device 22 and the power supply device 23 are connected to both ends of the long oxide superconducting conductor 1 via connection wires 20 and 21, and the oxide of the oxide superconducting conductor 1 is connected from the power supply device 23. The superconducting layer 7 can be energized, and the switch device 22 can switch between starting and stopping energization from the power supply device 23 to the oxide superconducting conductor 1 as necessary. Further, a control device 25 is electrically connected to the switch device 22 and the power supply device 23 via connection lines 26 and 27, and the control device 25 switches the on / off operation of the switch device 22 to switch the oxide superconductivity. The conductor 1 is configured so as to be able to control on / off of energization to the oxide superconducting layer 7.

次に、図2に示す酸化物超電導導体1、スイッチ装置22、電源装置23、制御装置25は、より具体的には図3に示す構造の超電導装置30に組み込まれている。
本実施形態の超電導装置30は、真空容器などの収容容器31の内部に超電導コイル32を備え、収容容器31の内部の超電導コイル32を臨界温度以下に冷却するための冷凍機33を備えて構成されている。本実施形態の収容容器31は、真空ポンプ34に接続されていて、内部を目的の真空度に減圧できるように構成されている。
Next, the oxide superconducting conductor 1, the switch device 22, the power supply device 23, and the control device 25 shown in FIG. 2 are more specifically incorporated in the superconducting device 30 having the structure shown in FIG.
The superconducting device 30 according to the present embodiment includes a superconducting coil 32 inside a storage container 31 such as a vacuum container, and includes a refrigerator 33 for cooling the superconducting coil 32 inside the storage container 31 to a critical temperature or lower. Has been. The storage container 31 of this embodiment is connected to a vacuum pump 34 and configured to be able to depressurize the interior to a desired degree of vacuum.

超電導コイル32は、巻胴36と鍔板37とからなるボビンに先に説明した酸化物超電導導体1をコイル状に巻回して構成され、巻胴36の両端側に形成されている鍔板37を水平向きに巻胴36を鉛直向きとして収容容器31の底部側に設置されている。なお、巻胴36に巻回されているのは、先の積層構造の酸化物超電導導体1を被覆層で覆って絶縁処理したものであるが、図2を基に先に説明した測定点への配線や加熱ヒータの配線などは被覆層から適宜外部に引き出すように延出配線されている。   The superconducting coil 32 is configured by winding the oxide superconducting conductor 1 described above in a coil shape around a bobbin composed of a winding drum 36 and a flange plate 37, and the flange plates 37 formed on both ends of the winding drum 36. Is installed on the bottom side of the container 31 with the winding cylinder 36 in the vertical direction. The winding body 36 is wound around the oxide superconducting conductor 1 having the above laminated structure covered with a coating layer, and insulated, but to the measurement point described above with reference to FIG. The wiring of the heater, the wiring of the heater, etc. are extended so as to be appropriately drawn out from the coating layer.

次に、収容容器31には、超電導コイル32の酸化物超電導導体1に通電するための直流の電源装置23が接続され、この電源装置23と収容容器31の内部の酸化物超電導導体1とが接続線20、21で接続され、酸化物超電導導体1に電源装置23から通電できるように構成されている。なお、この形態の電源装置23にはスイーパー23aが付属されていて、酸化物超電導導体1に印加する電流値を段階的に調整しつつ通電試験できるように構成されている。
また、超電導コイル32において酸化物超電導導体1の基準測定エリアS0に設置されている加熱ヒータ11については、収容容器31の外部に別途設けられたヒータ用電源37に接続線38を介し接続され、このヒータ用電源37から与えられる電圧値に応じて目的の発熱量でもって酸化物超電導導体1の基準測定エリアS0を加熱できるように構成されている。
前記収容容器31の内部には、超電導コイル32を構成する酸化物超電導導体1の全体の温度制御のための加熱ヒータ40と同温度制御のための温度センサ41とが設けられ、これらは収容容器31の外部に設けられた温度調節器42に接続線42aでもって電気的に接続されていて、温度調節器42の制御により酸化物超電導導体1の全体の温度を制御できるように構成されている。
Next, the container 31 is connected to a DC power supply 23 for energizing the oxide superconducting conductor 1 of the superconducting coil 32, and the power supply 23 and the oxide superconducting conductor 1 inside the container 31 are connected. The connection is made by connecting wires 20 and 21, and the oxide superconducting conductor 1 can be energized from the power supply device 23. Note that a sweeper 23a is attached to the power supply device 23 of this embodiment so that an energization test can be performed while adjusting the value of the current applied to the oxide superconductor 1 stepwise.
In addition, the heater 11 installed in the reference measurement area S0 of the oxide superconductor 1 in the superconducting coil 32 is connected to a heater power source 37 separately provided outside the container 31 via a connection line 38. The reference measurement area S0 of the oxide superconducting conductor 1 can be heated with a target calorific value according to the voltage value supplied from the heater power source 37.
Inside the storage container 31, there are provided a heater 40 for temperature control of the whole oxide superconducting conductor 1 constituting the superconducting coil 32 and a temperature sensor 41 for temperature control. 31 is electrically connected to a temperature controller 42 provided outside 31 by a connection line 42 a, and is configured to be able to control the entire temperature of the oxide superconductor 1 by the control of the temperature controller 42. .

前記収容容器31の外部には記録装置43と計測器(データロガー)44が設置され、これらが接続線45を介して収容容器31の内部の酸化物超電導導体1の測定エリアS0〜S1の各測定点10〜18に接続され、各測定エリアS0〜S1の電圧を個別に測定して記録できるように構成され、これらの測定結果は計測器44に接続されたデータ処理装置46に接続されている。
なお、データ処理装置46と制御装置25は接続線47により電気的に接続されていて、制御装置25においてデータ処理する際、データ処理装置46が記憶している各測定エリアS0〜S3の電圧測定結果を参照できるように構成されるとともに、接続線47は温度調節器42にも接続されている。
以上の構成により、制御装置25は直流電源23の作動制御とヒータ用電源37の作動制御と温度調節器42の作動制御もできるように構成されている。
A recording device 43 and a measuring instrument (data logger) 44 are installed outside the storage container 31, and these are connected to each of the measurement areas S 0 to S 1 of the oxide superconducting conductor 1 inside the storage container 31 via a connection line 45. Connected to measurement points 10 to 18 and configured to be able to individually measure and record the voltages of the measurement areas S0 to S1, and these measurement results are connected to a data processing device 46 connected to a measuring instrument 44. Yes.
The data processing device 46 and the control device 25 are electrically connected by a connection line 47, and when data processing is performed in the control device 25, voltage measurement of each measurement area S0 to S3 stored in the data processing device 46 is performed. The connection line 47 is also connected to the temperature controller 42 while being configured so that the result can be referred to.
With the above configuration, the control device 25 is configured to be able to perform operation control of the DC power source 23, operation control of the heater power source 37, and operation control of the temperature regulator 42.

次に、図3に示す構成の超電導装置30を用いて酸化物超電導導体1のクエンチ時の温度挙動、電圧挙動を評価し、運転する方法について以下に説明する。
超電導装置30を運転して評価を行う前の準備として、先の構造の酸化物超電導導体1に適用されている第2の安定化層9と同等幅で同等厚みの銅テープであって、第2の安定化層9を第1の安定化層上に固着するために用いられたSn半田めっきと同じSn半田めっき付きの銅テープを用意し、このSn半田めっき付きの銅テープを冷却しながら通電する試験を別途行い、該当する酸化物超電導層7の臨界温度より低い実使用時の運転温度域までの銅テープに対する温度−抵抗特性を測定しておく。
これは、超電導装置30を用いて酸化物超電導導体1に通電試験を行う際、酸化物超電導層7が超電導状態になると、抵抗が0となり、第2の安定化層9の抵抗を測定できなくなるためである。例えば酸化物超電導導体1を運転しようとする温度が77Kであれば、酸化物超電導層7を構成する希土類系酸化物超電導体の臨界温度〜77Kまでの温度−抵抗特性を測定するものとし、酸化物超電導導体1を運転しようとする温度が50Kであれば、酸化物超電導層7を構成する希土類系酸化物超電導体の臨界温度〜55Kまでの温度−抵抗特性を測定するものとし、酸化物超電導導体1を運転しようとする温度が20Kであれば、酸化物超電導層7を構成する希土類系酸化物超電導体の臨界温度〜20Kまでの温度−抵抗特性を測定するものとする。これらの温度−抵抗特性を測定してその結果を制御装置25のメモリに記憶させておく。
Next, a method of evaluating and operating the temperature behavior and voltage behavior during quenching of the oxide superconducting conductor 1 using the superconducting device 30 having the configuration shown in FIG. 3 will be described below.
As a preparation before operating the superconducting device 30 for evaluation, a copper tape having the same width and the same thickness as the second stabilization layer 9 applied to the oxide superconducting conductor 1 having the above structure, A copper tape with Sn solder plating, which is the same as the Sn solder plating used to fix the second stabilization layer 9 on the first stabilization layer, is prepared, while cooling the copper tape with Sn solder plating. A test for energization is performed separately, and the temperature-resistance characteristics for the copper tape up to the operating temperature range in actual use lower than the critical temperature of the corresponding oxide superconducting layer 7 are measured.
This is because when the oxide superconducting conductor 1 is subjected to an energization test using the superconducting device 30, the resistance becomes 0 when the oxide superconducting layer 7 is in a superconducting state, and the resistance of the second stabilizing layer 9 cannot be measured. Because. For example, if the temperature at which the oxide superconductor 1 is to be operated is 77K, the temperature-resistance characteristics of the rare earth oxide superconductor constituting the oxide superconductor layer 7 from the critical temperature to 77K are measured. If the temperature at which the superconductor 1 is to be operated is 50K, the temperature-resistance characteristics of the rare earth oxide superconductor constituting the oxide superconductor layer 7 from the critical temperature to 55K shall be measured. If the temperature at which the conductor 1 is to be operated is 20K, the temperature-resistance characteristics of the rare earth oxide superconductor constituting the oxide superconducting layer 7 from the critical temperature to 20K are measured. These temperature-resistance characteristics are measured and the results are stored in the memory of the control device 25.

この後、前記超電導装置30の冷凍機33を作動させて温度調節器42の制御の基で酸化物超電導導体1の温度を室温から90Kまで徐々に下降する。この際、酸化物超電導導体1の安定化層9に電源装置23から通電しておき、室温〜90Kまでの温度−抵抗特性を測定する。酸化物超電導導体1は希土類系酸化物超電導体からなる酸化物超電導層7を有するので、その臨界温度90Kまでは絶縁体であり、臨界温度以下にまで冷却されると抵抗が0となり超電導電流が流れるようになる。従って、室温〜90Kまでの温度域では酸化物超電導導体1に流した電流は殆ど全部が安定化層9を流れ、安定化層9は銅からなるので、抵抗があり、この抵抗値は温度の下降に応じて変化するので、温度と抵抗の関係として計測しておく。   Thereafter, the refrigerator 33 of the superconducting device 30 is operated, and the temperature of the oxide superconducting conductor 1 is gradually lowered from room temperature to 90K under the control of the temperature controller 42. At this time, the stabilization layer 9 of the oxide superconductor 1 is energized from the power supply device 23, and the temperature-resistance characteristics from room temperature to 90K are measured. Since the oxide superconductor 1 has the oxide superconductor layer 7 made of a rare earth oxide superconductor, the oxide superconductor 1 is an insulator up to its critical temperature of 90K, and when cooled to below the critical temperature, its resistance becomes 0 and the superconducting current flows. It begins to flow. Accordingly, in the temperature range from room temperature to 90K, almost all of the current flowing through the oxide superconductor 1 flows through the stabilization layer 9, and the stabilization layer 9 is made of copper, so that there is resistance, and this resistance value is the temperature. Since it changes according to the descent, it is measured as a relationship between temperature and resistance.

次に、超電導装置30の酸化物超電導導体1を臨界温度以下の目的とするべき運転温度、例えば77K、50Kあるいは20Kの一定温度に維持したまま通電する定常運転を行い、酸化物超電導導体1に目的の超電導電流が流れることを確認する。
この後、制御装置25によりヒータ用電源37を作動させて加熱ヒータ12を作動させ、酸化物超電導導体1の安定化層9を加熱してその下の酸化物超電導層7を常電導状態に転移させる。酸化物超電導層7を部分的に常電導転移させると、酸化物超電導層7の常電導転移した部分は酸化物超電導層7に沿って徐々に伝搬して広がり、その伝搬状態に合わせて基準測定エリアS0、第1測定エリアS1に抵抗が生じるようになる。
Next, the oxide superconductor 1 of the superconducting device 30 is subjected to a steady operation in which it is energized while maintaining the target operating temperature below the critical temperature, for example, a constant temperature of 77K, 50K, or 20K. Confirm that the desired superconducting current flows.
Thereafter, the heater power source 37 is activated by the control device 25 to activate the heater 12, and the stabilization layer 9 of the oxide superconducting conductor 1 is heated to change the oxide superconducting layer 7 below to the normal conducting state. Let When the oxide superconducting layer 7 is partially subjected to normal conduction transition, the normal conduction transition portion of the oxide superconducting layer 7 gradually propagates and spreads along the oxide superconducting layer 7, and the reference measurement is performed according to the propagation state. Resistance is generated in the area S0 and the first measurement area S1.

図5に示すグラフは後述する実施例において、特定厚さの銅の安定化層を備えた酸化物超電導導体1を77Kに冷却し酸化物超電導層7に100A通電している状態から、加熱ヒータに通電して基準測定エリアS0の酸化物超電導層7を常電導状態に強制的に転移(クエンチ)させた場合、時間経過とともに第1測定エリアの電圧V1の電圧が上昇する状態を示している。
図5に示すグラフから時間経過後、各測定エリアV0、V1のいずれにおいても徐々に電圧値が大きくなっていることが分かる。このように酸化物超電導層7の一部に一端常電導転移が生じると、常電導転移は止まることなく確実に酸化物超電導導体1の長さ方向に伝播する。ここで、加熱ヒータへの通電を停止しても、常電導転移は止まることなく確実に酸化物超電導導体1の長さ方向に伝播する。
この後、制御装置25は、先に測定してメモリに記憶しておいた室温〜90Kまでの温度−抵抗特性の測定結果、90K〜運転温度、例えば50K、20Kまでの温度−抵抗特性の測定結果と参照し、図5の縦軸の電圧を図6に示すように温度に換算して例えば第1測定エリアS1の電圧V1を図6に示すグラフとして表示する。なお、先に測定してメモリに記憶しておいた室温〜90Kまでの温度−抵抗特性の測定結果の一例を図7に示す。
The graph shown in FIG. 5 shows a heating heater in the example described later from a state in which the oxide superconducting conductor 1 having a copper stabilization layer having a specific thickness is cooled to 77 K and 100 A is energized to the oxide superconducting layer 7. When the oxide superconducting layer 7 in the reference measurement area S0 is forcibly transferred (quenched) to the normal conducting state by energizing the current, the voltage V1 in the first measuring area increases with time. .
From the graph shown in FIG. 5, it can be seen that the voltage value gradually increases in each of the measurement areas V0 and V1 after the elapse of time. As described above, when the normal conduction transition occurs once in part of the oxide superconducting layer 7, the normal conduction transition is surely propagated in the length direction of the oxide superconducting conductor 1 without stopping. Here, even when the energization to the heater is stopped, the normal conduction transition is surely propagated in the length direction of the oxide superconducting conductor 1 without stopping.
Thereafter, the control device 25 measures the temperature-resistance characteristics from the room temperature to 90K, which have been measured and stored in the memory, and measures the temperature-resistance characteristics from 90K to the operating temperature, for example, 50K and 20K. With reference to the result, the voltage on the vertical axis in FIG. 5 is converted into temperature as shown in FIG. 6 and, for example, the voltage V1 in the first measurement area S1 is displayed as a graph shown in FIG. FIG. 7 shows an example of measurement results of temperature-resistance characteristics from room temperature to 90 K that have been measured and stored in the memory.

ここで、酸化物超電導導体1に通電してクエンチが発生し、この場合に酸化物超電導導体1への通電を停止する装置を設計する場合、超電導状態であって抵抗が0の場合から、抵抗が生じて常電導状態になっていることを検知するための電圧測定装置では一般的には電圧最小検出感度を0.01mVとすることができる。従って、超電導状態であって抵抗が0の状態から0.01mVの電圧が発生した時点を常電導転移した時点と見極め、図5では横軸の時間軸の0点としている。   Here, when the oxide superconducting conductor 1 is energized to cause quenching, and in this case, when designing a device that stops energizing the oxide superconducting conductor 1, the resistance starts from the case where the resistance is 0 in the superconducting state. In general, in a voltage measuring device for detecting that a normal conducting state is generated, the minimum voltage detection sensitivity can be set to 0.01 mV. Therefore, the time point at which a voltage of 0.01 mV is generated from the state where the resistance is 0 in the superconducting state is regarded as the time point when the normal conducting transition is made, and in FIG.

次に、酸化物超電導導体1のクエンチ時にそれを電圧で検出するとして、電圧検出器19が超電導状態から確実に電気の流れを生じたと認識できる電位差は余裕を見て0.1V程度であるので、図5のグラフにおいて0.1Vとなる時間が4.1秒となり、図6において4.1秒では温度換算値135Kとなる。
この時点における100msecのあたりの上昇温度は後述の実施例の如く例えば3Kとなるが、電源装置23を制御装置25が停止させて通電を停止するまでの時間は、現状の技術において、300msec程度必要であるので、300msec程度の時間経過後、常電導転移した部分は、135K+3K×3の関係式から、144Kに温度上昇することになる。
ここで、上述の積層構造とされた希土類系の酸化物超電導体からなる酸化物超電導層7にあっては、酸化物超電導導体1を250℃以上の恒温槽に投入して高温環境に設置すると、酸化物超電導層7の結晶から酸素が抜け易くなり、あるいは、基材側の構成元素が酸化物超電導層7側に拡散して超電導特性が劣化するなどの知見が得られているので、上述の如く144Kに温度上昇しても酸化物超電導層7は劣化しない。
従って、前記特定厚さの銅の安定化層を備えた酸化物超電導導体1にあっては、仮に何らかの要因により常電導転移を起こしても、酸化物超電導層7が劣化するおそれは少ないと評価できる。
Next, when the oxide superconductor 1 is quenched, it is detected as a voltage. Since the voltage detector 19 can recognize that the flow of electricity has surely occurred from the superconducting state, the potential difference is about 0.1 V with a margin. In the graph of FIG. 5, the time for 0.1V is 4.1 seconds, and in FIG. 6 the temperature converted value is 135K at 4.1 seconds.
The temperature rise around 100 msec at this time is 3K, for example, as will be described later. However, the time required for the power supply device 23 to be stopped after the control device 25 is stopped and the power supply is stopped is about 300 msec in the current technology. Therefore, after a time of about 300 msec, the temperature of the portion that has undergone the normal conduction transition rises to 144 K from the relational expression of 135 K + 3 K × 3.
Here, in the oxide superconducting layer 7 made of the rare earth-based oxide superconductor having the above-described laminated structure, when the oxide superconductor 1 is placed in a constant temperature bath at 250 ° C. or higher and installed in a high temperature environment. In addition, since it is easy to escape oxygen from the crystal of the oxide superconducting layer 7, or the constituent elements on the base material side diffuse to the oxide superconducting layer 7 side and the superconducting characteristics are deteriorated, the above-mentioned knowledge is obtained. Thus, even if the temperature rises to 144 K, the oxide superconducting layer 7 does not deteriorate.
Therefore, it is evaluated that the oxide superconducting conductor 1 including the copper stabilization layer having the specific thickness is less likely to deteriorate the oxide superconducting layer 7 even if the normal conducting transition is caused by some factor. it can.

これに対し、先に用いた酸化物超電導導体1よりも薄い銅の安定化層を備えた酸化物超電導導体を用い、常電導転移が生じて銅の安定化層に電流がバイパスされた場合、銅の厚みが不十分な場合は、安定化層における発熱量が多くなる結果、安定化層に接触している酸化物超電導層7の温度上昇率が高くなり、先の例と同じように0.1V電位差に電圧が到達した時点から、300msec後に電流を遮断したとしても、酸化物超電導層7が500Kを超える温度に上昇すると、酸化物超電導層7の熱劣化のおそれが大きくなる。
このように酸化物超電導導体1を把握して評価するならば、常電導転移した場合を想定して温度上昇を予測し、酸化物超電導層7の熱履歴として酸化物超電導導体が劣化しないような安定化層の厚さを決定することができ、常電導転移しても、電源装置23から上述の条件で通電停止しておけば、酸化物超電導層7が熱劣化することのない酸化物超電導導体を得ることができる。
On the other hand, when an oxide superconducting conductor having a copper stabilization layer thinner than the oxide superconducting conductor 1 used earlier is used, when a normal conduction transition occurs and current is bypassed to the copper stabilization layer, When the copper thickness is insufficient, the amount of heat generated in the stabilization layer increases, and as a result, the rate of temperature rise of the oxide superconducting layer 7 in contact with the stabilization layer increases, and 0 as in the previous example. Even if the current is cut off after 300 msec from the time when the voltage reaches the 1 V potential difference, if the oxide superconducting layer 7 rises to a temperature exceeding 500 K, the oxide superconducting layer 7 is likely to be thermally deteriorated.
If the oxide superconducting conductor 1 is grasped and evaluated in this way, the temperature rise is predicted assuming the normal conducting transition, and the oxide superconducting conductor does not deteriorate as the thermal history of the oxide superconducting layer 7. The thickness of the stabilization layer can be determined. Even if the normal conduction transition is made, the oxide superconducting layer 7 will not be thermally deteriorated if the power supply 23 is deenergized under the above-mentioned conditions. A conductor can be obtained.

上述の超電導装置30を用いて図5に示す如く電圧挙動を測定し、温度−抵抗値の関係から電圧を温度に換算し、電圧挙動のグラフを温度換算し、そこから0.1V時到達温度(Ta:K)を求め、100msecあたりの温度上昇(dTa/dt)を求め、電圧測定装置が電圧発生を検知して電源装置からの通電を停止させることは、以下の関係式に合致するように超電導装置30を運転することになる。   The voltage behavior is measured as shown in FIG. 5 using the superconducting device 30 described above, the voltage is converted into temperature from the temperature-resistance relationship, the voltage behavior graph is converted into temperature, and the temperature reached at 0.1 V is obtained therefrom. (Ta: K) is obtained, the temperature rise per 100 msec (dTa / dt) is obtained, and the voltage measurement device detects voltage generation and stops energization from the power supply device so that the following relational expression is satisfied. Therefore, the superconducting device 30 is operated.

即ち、テープ状の基材2と、該基材上に設けられた中間層5、6と酸化物超電導層7と、該酸化物超電導層上に設けられた安定化層8、9とを備えてなる積層構造の酸化物超電導導体1と、この酸化物超電導導体1の酸化物超電導層7に通電するための電源装置23と、この電源装置23から前記酸化物超電導導体1の酸化物超電導層7への通電を制御するスイッチ装置22を備えた超電導装置30を運転する際、
前記酸化物超電導層7上に積層されている安定化層9の表面に酸化物超電導導体1の長さ方向に沿って所定の間隔をあけて規定した基準測定エリアS0と、先の所定の間隔よりも長い第1の間隔をあけて前記基準測定エリアS0を挟むように規定した第1測定エリアS1とを区画し、前記第1測定エリアS1両端部の電圧を測定し、
前記第1測定エリア両端の電圧について電圧測定装置19が検知可能な最低電圧をVdに設定し、前記酸化物超電導導体1を臨界温度以下に冷却し前記電源装置23から通電している場合、前記最低電圧Vdを検知した時点と位置における前記酸化物超電導導体1の温度をTa、その時点と位置における温度上昇率をdTa/dtとした場合、前記スイッチ装置22が前記電源装置23からの電流を遮断可能な遮断応答時間をTd、前記電流遮断時点における酸化物超電導導体の温度をTs、Kを絶対温度と設定した場合、
Ts=Ta+dTa/dt×Td≦500の条件を満たすようであると酸化物超電導層7の劣化を防止することができる。
That is, it comprises a tape-like base material 2, intermediate layers 5 and 6 and oxide superconducting layer 7 provided on the base material, and stabilizing layers 8 and 9 provided on the oxide superconducting layer. The oxide superconducting conductor 1 having a laminated structure, a power supply device 23 for energizing the oxide superconducting layer 7 of the oxide superconducting conductor 1, and the oxide superconducting layer of the oxide superconducting conductor 1 from the power supply device 23 When operating the superconducting device 30 provided with the switch device 22 that controls energization to the
A reference measurement area S0 defined at a predetermined interval along the length direction of the oxide superconducting conductor 1 on the surface of the stabilization layer 9 laminated on the oxide superconducting layer 7, and a predetermined predetermined interval. A first measurement area S1 defined so as to sandwich the reference measurement area S0 with a longer first interval, and measure voltages at both ends of the first measurement area S1,
When the minimum voltage that can be detected by the voltage measuring device 19 is set to Vd with respect to the voltage across the first measurement area, the oxide superconductor 1 is cooled below the critical temperature and energized from the power supply device 23, When the temperature of the oxide superconductor 1 at the time and position at which the minimum voltage Vd is detected is Ta, and the rate of temperature increase at that time and position is dTa / dt, the switch device 22 generates a current from the power supply device 23. When the interruption response time that can be interrupted is set to Td, the temperature of the oxide superconductor at the time of current interruption is set to Ts, and K is set to an absolute temperature,
When the condition of Ts = Ta + dTa / dt × Td ≦ 500 is satisfied, deterioration of the oxide superconducting layer 7 can be prevented.

ハステロイC276(米国ヘインズ社商品名)からなる幅10mm、厚さ0.1mmのテープ状の基材上にAlからなる厚さ100nmの拡散防止層とYからなる厚さ30nmのベッド層と、イオンビームアシストスパッタ装置を用いてIBAD法により得られた厚さ5〜10nmのMgOの第1の中間層と、パルスレーザー蒸着法(PLD法)を用いてMgOの配向層上に形成されたCeOの厚さ500nmのキャップ層と、パルスレーザー蒸着法により得られたGdBaCu7−xの厚さ1μmの酸化物超電導層と、スパッタ法により得られた厚さ8μmのAgの第1の安定化層と、片面半田(厚さ5μm)付きの銅テープ(厚さ0.1mm)の貼り合わせにより得られた第2の安定化層からなる積層構造の酸化物超電導導体を用意した。

前記構造の酸化物超電導導体1を巻胴36に巻き付けて超電導コイルを構成し、一部被覆を除去して図4に示す如く第2の安定化層9の表面に加熱ヒータ12を取り付け、各測定点10、11、17、18を規定した。
本実施例において、基準測定エリアS0の長さを10mm、第1測定エリアの長さを300mmとした。
On a tape-shaped substrate made of Hastelloy C276 (trade name of Haynes, USA) having a width of 10 mm and a thickness of 0.1 mm, a diffusion preventing layer made of Al 2 O 3 with a thickness of 100 nm and Y 2 O 3 made of 30 nm A first intermediate layer of MgO having a thickness of 5 to 10 nm obtained by an IBAD method using an ion beam assisted sputtering device, and an alignment layer of MgO using a pulsed laser deposition method (PLD method) A cap layer of CeO 2 having a thickness of 500 nm, a GdBa 2 Cu 3 O 7-x oxide superconducting layer having a thickness of 1 μm obtained by pulse laser deposition, and a thickness obtained by sputtering. A laminated structure acid comprising a first stabilization layer of 8 μm Ag and a second stabilization layer obtained by bonding a copper tape (0.1 mm thickness) with a single-sided solder (thickness 5 μm). A superconducting conductor was prepared.

The oxide superconducting conductor 1 having the above-described structure is wound around a winding drum 36 to form a superconducting coil, a portion of the coating is removed, and a heater 12 is attached to the surface of the second stabilizing layer 9 as shown in FIG. Measurement points 10, 11, 17, 18 were defined.
In this example, the length of the reference measurement area S0 was 10 mm, and the length of the first measurement area was 300 mm.

図3に示す装置において、収容容器の内部を減圧し、冷凍機を作動させて室温〜90Kに温度を下げる際、第2の安定化層に通電しておき、温度−抵抗特性を測定した。
その結果を図7に示す。なお、この温度−抵抗特性については、使用する材料の抵抗率ρから算出して求めることも可能である。
In the apparatus shown in FIG. 3, when the inside of the container was depressurized and the refrigerator was operated to lower the temperature from room temperature to 90K, the second stabilization layer was energized and the temperature-resistance characteristics were measured.
The result is shown in FIG. This temperature-resistance characteristic can also be calculated from the resistivity ρ of the material used.

図3に示す超電導装置30にて77Kの運転温度に設定し、超電導状態として100A通電し、超電導電流が流れることを確認した後、基準測定エリアに設置した加熱ヒータに通電して基準測定エリアの酸化物超電導導層を常電導転移させ、常電導転移部分の電圧挙動を調査した。   The operating temperature is set to 77 K in the superconducting device 30 shown in FIG. 3, 100 A is energized as a superconducting state, and it is confirmed that the superconducting current flows, and then the heater installed in the standard measuring area is energized to The oxide superconducting layer was subjected to normal conducting transition, and the voltage behavior of the normal conducting transition was investigated.

次に、酸化物超電導層が常電状態に転移すると絶縁体になるので、その領域において酸化物超電導導体に印加している電流が全て安定化層に流れたと仮定し、第1の測定エリアの電圧V1を先に測定した温度−抵抗特性から温度に換算し、温度とした。
なお、温度計測用の熱電対による測定温度は電圧から換算した値とほぼ同じであることを確認した。
測定系の電圧最小感度は0.001mVであり、電圧発生した時点(=常電導転移した)を0secとした。各測定点における電圧挙動を図5に示す、縦軸の電圧を温度換算した結果を図6に示す。
Next, since the oxide superconducting layer becomes an insulator when transitioning to the normal state, it is assumed that all the current applied to the oxide superconducting conductor in that region has flowed to the stabilization layer, and the first measurement area The voltage V1 was converted into temperature from the previously measured temperature-resistance characteristic and was defined as temperature.
It was confirmed that the temperature measured by the thermocouple for temperature measurement was almost the same as the value converted from the voltage.
The minimum voltage sensitivity of the measurement system was 0.001 mV, and the time when the voltage was generated (= normal conduction transition) was set to 0 sec. FIG. 5 shows the voltage behavior at each measurement point, and FIG. 6 shows the result of temperature conversion of the voltage on the vertical axis.

図5にV0とV1の各電圧挙動を示す。図6に先の温度−抵抗特性から図5の縦軸の電圧を温度に換算した結果を示す。   FIG. 5 shows the voltage behavior of V0 and V1. FIG. 6 shows the result of converting the voltage on the vertical axis of FIG. 5 into temperature based on the temperature-resistance characteristics.

次に以下の表1に酸化物超電導導体の運転温度、酸化物超電導導体の厚さ、第1の安定化層の厚さ(μm)、第2の安定化層の厚さ(μm)、通電電流(A)、0.1V時到達温度(Ta:K)、100msec当たり温度上昇(dTa/dt)遮断応答300msec後の温度、遮断後超電導特性劣化の有無、検知可否の結果を示す。   Next, Table 1 below shows the operating temperature of the oxide superconductor, the thickness of the oxide superconductor, the thickness of the first stabilizing layer (μm), the thickness of the second stabilizing layer (μm), and energization. Current (A), temperature reached at 0.1 V (Ta: K), temperature rise per 100 msec (dTa / dt) temperature after 300 msec cut-off response, presence / absence of superconducting property deterioration after cut-off, and detection result.

Figure 2012033755
Figure 2012033755

表1に示す結果から、Ts=Ta+dTa/dt×Td≦500Kの条件を満たすようであると遮断後超電導特性劣化が生じないことがわかる。
また、表1に示す測定結果から、Ts=Ta+dTa/dt×Td≦400Kの条件を満たすことがより好ましいと思われる。
更に、表1に示す結果から、電圧測定器が検知可能な電圧Vdは0.05V以上であることが好ましい。また、温度上昇率dTa/dtの値は、100msecあたり100K以下であることが好ましく、50K以下であることがより好ましく、20K以下であることが最も好ましい。
なお、表1の結果から、試験例4の試料の如く400Aの通電においては第2の安定化層の厚さを0.1mmとすると温度上昇が激しいので、試験例5の如く安定化層の厚さをより厚い0.3mmとすることで、良好な条件にできることがわかる。従って上述の方法を利用すれば、常電導転移を考慮した場合に酸化物超電導導体に必要な安定化層の厚さを検査できる方法として利用できることが判明した。
From the results shown in Table 1, it can be seen that if the condition of Ts = Ta + dTa / dt × Td ≦ 500K is satisfied, deterioration of superconducting characteristics after interruption does not occur.
Further, from the measurement results shown in Table 1, it seems more preferable that the condition of Ts = Ta + dTa / dt × Td ≦ 400K is satisfied.
Further, from the results shown in Table 1, the voltage Vd that can be detected by the voltage measuring device is preferably 0.05 V or more. Further, the value of the temperature increase rate dTa / dt is preferably 100 K or less per 100 msec, more preferably 50 K or less, and most preferably 20 K or less.
From the results shown in Table 1, the temperature rises drastically when the thickness of the second stabilizing layer is 0.1 mm when energized at 400 A as in the sample of Test Example 4, so It can be seen that a favorable condition can be obtained by setting the thickness to 0.3 mm. Therefore, it has been found that if the above-described method is used, it can be used as a method for inspecting the thickness of the stabilization layer necessary for the oxide superconducting conductor in consideration of the normal conduction transition.

本発明は、例えば超電導モータ、限流器など、各種電力機器に用いられる酸化物超電導導体を適用した超電導装置の保護運転方法に利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be used for a protection operation method of a superconducting device to which an oxide superconducting conductor used in various power devices such as a superconducting motor and a current limiter is applied.

1…酸化物超電導導体、2…基材、3…拡散防止層、4…ベッド層、5…第1の中間層、6…第2の中間層、7…酸化物超電導層、8…第1の安定化層、9…第2の安定化層、10、11…基準電圧測定点、12…加熱ヒータ、13、14…第1電圧測定点、15、16…第2電圧測定点、17、18…第3電圧測定点、19…電圧測定器、S0…基準測定エリア、S1…第1測定エリア、22…スイッチ装置、23…電源装置、25…制御装置。 DESCRIPTION OF SYMBOLS 1 ... Oxide superconducting conductor, 2 ... Base material, 3 ... Diffusion prevention layer, 4 ... Bed layer, 5 ... 1st intermediate | middle layer, 6 ... 2nd intermediate | middle layer, 7 ... Oxide superconducting layer, 8 ... 1st 9, second stabilization layer, 10, 11, reference voltage measurement point, 12, heater, 13, 14, first voltage measurement point, 15, 16, second voltage measurement point, 17, DESCRIPTION OF SYMBOLS 18 ... 3rd voltage measurement point, 19 ... Voltage measuring device, S0 ... Reference | standard measurement area, S1 ... 1st measurement area, 22 ... Switch apparatus, 23 ... Power supply device, 25 ... Control apparatus.

Claims (4)

テープ状の基材と、該基材上に設けられた中間層と酸化物超電導層と、該酸化物超電導層上に設けられた安定化層とを備えてなる積層構造の酸化物超電導導体と、この酸化物超電導導体の酸化物超電導層に通電するための電源装置と、この電源装置から前記酸化物超電導導体の酸化物超電導層への通電を制御するスイッチ装置を備えた超電導装置を運転する際、
前記酸化物超電導層上に積層されている安定化層の表面に酸化物超電導導体の長さ方向に沿って所定の間隔をあけて規定した基準測定エリアと、先の所定の間隔よりも長い第1の間隔をあけて前記基準測定エリアを挟むように規定した第1測定エリアとを少なくとも区画し、前記基準測定エリア両端部の電圧または前記第1測定エリア両端部の電圧を測定し、
前記基準測定エリア両端部の電圧または前記第1測定エリア両端の電圧について電圧測定器が検知可能な最低電圧をVdに設定し、前記酸化物超電導導体を臨界温度以下に冷却し前記電源装置から通電している場合、前記最低電圧Vdを検知した時点と位置における前記酸化物超電導導体の温度をTa、その時点と位置における温度上昇率をdTa/dtとした場合、前記スイッチ装置が前記電源装置からの電流を遮断可能な遮断応答時間をTd、前記電流遮断時点における酸化物超電導導体の温度をTs、Kを絶対温度と設定した場合、
Ts=Ta+dTa/dt×Td≦500Kとなる条件を満たすように前記電源装置からの通電を遮断することを特徴とする超電導装置の保護運転方法。
An oxide superconducting conductor having a laminated structure comprising a tape-shaped base material, an intermediate layer and an oxide superconducting layer provided on the base material, and a stabilization layer provided on the oxide superconducting layer; And operating a superconducting device including a power supply device for energizing the oxide superconducting layer of the oxide superconducting conductor and a switch device for controlling energization from the power supply device to the oxide superconducting layer of the oxide superconducting conductor. When
A reference measurement area defined at a predetermined interval along the length direction of the oxide superconducting conductor on the surface of the stabilization layer stacked on the oxide superconducting layer, and a reference measurement area longer than the predetermined interval. At least a first measurement area defined so as to sandwich the reference measurement area with an interval of 1, and measure a voltage at both ends of the reference measurement area or a voltage at both ends of the first measurement area;
The lowest voltage that can be detected by a voltage measuring device is set to Vd for the voltage at both ends of the reference measurement area or the voltage at both ends of the first measurement area, and the oxide superconductor is cooled to a critical temperature or less and energized from the power supply device. When the minimum voltage Vd is detected and the temperature of the oxide superconducting conductor at the time and position is Ta, and the temperature rise rate at the time and position is dTa / dt, the switch device is connected to the power supply device. When the interruption response time capable of interrupting the current of Td is set as Td, the temperature of the oxide superconductor at the time of current interruption is set as Ts, and K is set as the absolute temperature
A superconducting device protective operation method, wherein energization from the power supply device is cut off so as to satisfy a condition of Ts = Ta + dTa / dt × Td ≦ 500K.
前記安定化層について室温から前記酸化物超電導層の臨界温度より下の運転温度域までにいたる温度と抵抗値の関連性を示す温度−抵抗特性を測定して把握しておき、前記最低電圧計測後の電圧上昇状態から温度に換算して前記温度上昇率dTa/dtを求めることを特徴とする請求項1に記載の超電導装置の保護運転方法。   Measuring and grasping the temperature-resistance characteristic indicating the relationship between the temperature and the resistance value from room temperature to the operating temperature range below the critical temperature of the oxide superconducting layer for the stabilization layer, and measuring the minimum voltage The protective operation method for a superconducting device according to claim 1, wherein the temperature increase rate dTa / dt is obtained by converting into a temperature from a subsequent voltage increase state. テープ状の基材と、該基材上に設けられた中間層と酸化物超電導層と、該酸化物超電導層上に設けられた安定化層とを備えてなる積層構造の酸化物超電導導体と、この酸化物超電導導体の酸化物超電導層に通電するための電源装置と、この電源装置から前記酸化物超電導導体の酸化物超電導層への通電を制御するスイッチ装置を備え、
前記酸化物超電導層上に積層されている安定化層の表面に酸化物超電導導体の長さ方向に沿って所定の間隔をあけて規定した基準測定エリアと、先の所定の間隔よりも長い第1の間隔をあけて前記基準測定エリアを挟むように規定した第1測定エリアとを少なくとも区画し、前記基準測定エリア両端部の電圧または前記第1測定エリア両端部の電圧を測定する電圧測定器を備え、
前記基準測定エリア両端部の電圧または前記第1測定エリア両端の電圧について電圧測定器が検知可能な最低電圧をVdに設定し、前記酸化物超電導導体を臨界温度以下に冷却し前記電源装置から通電している場合、前記最低電圧Vdを検知した時点と位置における前記酸化物超電導導体の温度をTa、その時点と位置における温度上昇率をdTa/dtとした場合、前記スイッチ装置が前記電源装置からの電流を遮断可能な遮断応答時間をTd、前記電流遮断時点における酸化物超電導導体の温度をTs、Kを絶対温度と設定した場合、
Ts=Ta+dTa/dt×Td≦500Kとなる条件を満たすように前記電源装置からの通電を前記スイッチ装置により遮断する制御装置を具備したことを特徴とする超電導装置。
An oxide superconducting conductor having a laminated structure comprising a tape-shaped base material, an intermediate layer and an oxide superconducting layer provided on the base material, and a stabilization layer provided on the oxide superconducting layer; A power supply device for energizing the oxide superconducting layer of the oxide superconducting conductor, and a switch device for controlling energization from the power supply device to the oxide superconducting layer of the oxide superconducting conductor,
A reference measurement area defined at a predetermined interval along the length direction of the oxide superconducting conductor on the surface of the stabilization layer stacked on the oxide superconducting layer, and a reference measurement area longer than the predetermined interval. A voltage measuring device that at least divides the first measurement area so as to sandwich the reference measurement area with an interval of 1 and measures the voltage at both ends of the reference measurement area or the voltage at both ends of the first measurement area With
The lowest voltage that can be detected by a voltage measuring device is set to Vd for the voltage at both ends of the reference measurement area or the voltage at both ends of the first measurement area, and the oxide superconductor is cooled to a critical temperature or less and energized from the power supply device. When the minimum voltage Vd is detected and the temperature of the oxide superconducting conductor at the time and position is Ta, and the temperature rise rate at the time and position is dTa / dt, the switch device is connected to the power supply device. When the interruption response time capable of interrupting the current of Td is set as Td, the temperature of the oxide superconductor at the time of current interruption is set as Ts, and K is set as the absolute temperature
A superconducting device comprising a control device that cuts off power from the power supply device by the switch device so as to satisfy a condition of Ts = Ta + dTa / dt × Td ≦ 500K.
前記安定化層について室温から前記酸化物超電導層の臨界温度より下の運転温度域までにいたる温度と抵抗値の関連性を示す温度−抵抗特性を測定して前記制御装置に記憶しておき、前記最低電圧計測後の電圧上昇状態から温度に換算して前記温度上昇率dTa/dtを求める機能を前記制御装置に備えたことを特徴とする請求項3に記載の超電導装置。   A temperature-resistance characteristic indicating a relationship between a temperature ranging from room temperature to an operating temperature range lower than the critical temperature of the oxide superconducting layer and a resistance value is measured and stored in the control device. 4. The superconducting device according to claim 3, wherein the control device has a function of obtaining the temperature increase rate dTa / dt by converting the voltage increase state after the minimum voltage measurement into a temperature. 5.
JP2010172635A 2010-07-30 2010-07-30 Superconducting device protection operation method and superconducting device Expired - Fee Related JP5548549B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010172635A JP5548549B2 (en) 2010-07-30 2010-07-30 Superconducting device protection operation method and superconducting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010172635A JP5548549B2 (en) 2010-07-30 2010-07-30 Superconducting device protection operation method and superconducting device

Publications (2)

Publication Number Publication Date
JP2012033755A true JP2012033755A (en) 2012-02-16
JP5548549B2 JP5548549B2 (en) 2014-07-16

Family

ID=45846799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010172635A Expired - Fee Related JP5548549B2 (en) 2010-07-30 2010-07-30 Superconducting device protection operation method and superconducting device

Country Status (1)

Country Link
JP (1) JP5548549B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014216412A (en) * 2013-04-24 2014-11-17 株式会社フジクラ Operation method of high-temperature superconducting coil
CN110534322A (en) * 2019-10-14 2019-12-03 浙江宝威电气有限公司 A kind of superconducting current-limiting transformer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01206830A (en) * 1988-02-10 1989-08-21 Toshiba Corp Superconducting current limiter
JP2003203531A (en) * 2001-12-28 2003-07-18 Fujikura Ltd Oxide superconductor and its manufacturing method
JP2006041274A (en) * 2004-07-28 2006-02-09 Toshiba Corp High temperature superconducting coil protecting device and high temperature superconducting magnet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01206830A (en) * 1988-02-10 1989-08-21 Toshiba Corp Superconducting current limiter
JP2003203531A (en) * 2001-12-28 2003-07-18 Fujikura Ltd Oxide superconductor and its manufacturing method
JP2006041274A (en) * 2004-07-28 2006-02-09 Toshiba Corp High temperature superconducting coil protecting device and high temperature superconducting magnet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014216412A (en) * 2013-04-24 2014-11-17 株式会社フジクラ Operation method of high-temperature superconducting coil
CN110534322A (en) * 2019-10-14 2019-12-03 浙江宝威电气有限公司 A kind of superconducting current-limiting transformer

Also Published As

Publication number Publication date
JP5548549B2 (en) 2014-07-16

Similar Documents

Publication Publication Date Title
US8218272B2 (en) Early quench detection in a superconducting article
WO2006036537A2 (en) Critical current testing techniques for superconducting conductors
JP4844458B2 (en) Superconducting coil and superconducting conductor used therefor
CA2715891A1 (en) Method of forming an hts article
US20090156409A1 (en) Fault current limiter incorporating a superconducting article
JP2012074340A (en) High-temperature superconducting cable
JP5548549B2 (en) Superconducting device protection operation method and superconducting device
Thieme et al. Stability of second generation HTS pancake coils at 4.2 K for high heat flux applications
JP6163348B2 (en) Operating method of high temperature superconducting coil
WO2011129245A1 (en) Superconducting wire material, superconducting coil, and superconducting protective device
JP2011238455A (en) Superconducting wire rod, superconducting coil, and superconductivity protective device
US11749434B2 (en) Strain—or magnetic field-based quench detection
KR20200128509A (en) Field coil with peeled tape
US7522393B2 (en) Fault current limiter
US7854057B2 (en) Method of facilitating superconducting tape manufacturing
CN108365082A (en) Superconductive tape and forming method thereof
Na et al. Experimental analysis of bifilar pancake type fault current limiting coil using stabilizer-free coated conductor
JP2012150914A (en) High-resistance material composite oxide superconducting wire material
JP2007273201A (en) Superconductive device
Han et al. Transport critical-current and voltage-current characteristics of Bi (2223) silver-clamped thick films
JPH08161983A (en) Current limiter and its manufacture
JP2014075307A (en) Oxide superconductive conductor and production method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140519

R151 Written notification of patent or utility model registration

Ref document number: 5548549

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees