JP2014216412A - Operation method of high-temperature superconducting coil - Google Patents

Operation method of high-temperature superconducting coil Download PDF

Info

Publication number
JP2014216412A
JP2014216412A JP2013091243A JP2013091243A JP2014216412A JP 2014216412 A JP2014216412 A JP 2014216412A JP 2013091243 A JP2013091243 A JP 2013091243A JP 2013091243 A JP2013091243 A JP 2013091243A JP 2014216412 A JP2014216412 A JP 2014216412A
Authority
JP
Japan
Prior art keywords
layer
oxide superconducting
current
superconducting wire
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013091243A
Other languages
Japanese (ja)
Other versions
JP6163348B2 (en
Inventor
雅載 大保
Masanori Daibo
雅載 大保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2013091243A priority Critical patent/JP6163348B2/en
Publication of JP2014216412A publication Critical patent/JP2014216412A/en
Application granted granted Critical
Publication of JP6163348B2 publication Critical patent/JP6163348B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an operation method of a high-temperature superconducting coil which can be operated in such a manner that an oxide superconducting wire rod can be prevented from being burnt even in the case of normal conduction transition of a superconducting wire rod.SOLUTION: The present invention relates to an operation method of a high-temperature superconducting coil which is characterized that, when operating the high-temperature superconducting coil by setting an electrification current to an oxide superconducting layer while using the high-temperature superconducting coil formed from an oxide superconducting wire rod including an intermediate layer, the oxide superconducting layer and a metal stabilization layer on a substrate, such a maximum current is grasped as to prevent superconducting characteristics of the oxide superconducting layer from being deteriorated by heat generated by a diversion of the electrification current to the metal stabilization layer during normal conduction transition, and the high-temperature superconducting coil is operated with a current equal to or lower than the maximum current as the electrification current.

Description

本発明は高温超電導コイルの運転方法に関する。   The present invention relates to a method for operating a high temperature superconducting coil.

NbTiなどの低温超電導線材を備えた低温超電導コイルは該コイルを構成する低温超電導線材の臨界温度が10K以下と低く、運転温度も4K程度と低い温度であるため、低温超電導コイルは比熱が小さい。このため、低温超電導コイルの一部で何らかの原因により超電導状態から常電導転移が発生すると、常電導転移によるジュール熱の発生→温度上昇→臨界電流の低下→発熱→温度上昇を繰り返すこととなり、急激な常電導転移が発生する。従って、低温超電導コイルを運転する場合、常電導転移により発生した電圧を検知する、あるいは、バランス電圧を検知することにより常電導転移の検出を行う手法が実用化されている。   The low-temperature superconducting coil provided with a low-temperature superconducting wire such as NbTi has a low critical temperature of the low-temperature superconducting wire constituting the coil as low as 10K or less and an operating temperature as low as about 4K. Therefore, the low-temperature superconducting coil has a small specific heat. For this reason, if a normal conduction transition occurs from a superconducting state for some reason in a part of a low-temperature superconducting coil, Joule heat generation due to the normal conduction transition → temperature rise → decrease in critical current → heat generation → temperature rise repeatedly, Normal conduction transition occurs. Therefore, when a low temperature superconducting coil is operated, a method for detecting a normal conduction transition by detecting a voltage generated by the normal conduction transition or detecting a balance voltage has been put into practical use.

しかし、Y系に代表されるRE−123系超電導線材(REBaCu7−x:REはYやGdなどを含む希土類元素)のような臨界温度90K程度の高温超電導線材は、冷凍機などの消費電力を軽減できる運転温度、例えば20K程度で運転することが想定されている。運転温度を20Kと想定すると、高温超電導線材の比熱は大きく、仮に部分的に常電導転位が生じたとしてもその伝搬速度は遅い。また、常電導転位は一般的に局所的に発生するため、高温超電導線材では電圧を発生する十分な長さまで常電導転位が伝搬しないと想定される。このため、従来の低温超電導線材で研究されてきた電圧測定による常電導転移の検出方法を利用しても、高温超電導線材の常電導転移は良好に検出できない可能性が高いと指摘されている。 However, high-temperature superconducting wires having a critical temperature of about 90K such as RE-123-based superconducting wires represented by Y-based (REBa 2 Cu 3 O 7-x : RE is a rare earth element including Y and Gd) are used as refrigerators. It is assumed that the motor is operated at an operating temperature that can reduce power consumption, such as about 20K. Assuming that the operating temperature is 20 K, the specific heat of the high-temperature superconducting wire is large, and even if the normal conduction dislocation occurs partially, its propagation speed is slow. In addition, since normal conduction dislocations are generally generated locally, it is assumed that normal conduction dislocations do not propagate to a sufficient length for generating a voltage in a high-temperature superconducting wire. For this reason, it has been pointed out that there is a high possibility that the normal conduction transition of the high temperature superconducting wire cannot be detected satisfactorily even if the method for detecting the normal conduction transition by voltage measurement, which has been studied for conventional low temperature superconducting wires, is used.

従来から、高温超電導線材の常電導転移検出方法の一例として、Bi系超電導線材(BiSrCaCu8+δ:Bi2212、BiSrCaCu10+δ:Bi2223)を用いた超電導コイルに対する保護装置が研究されている。例えば、高温超電導コイルの全電圧または一部の電圧を全域若しくは各領域間の差となる電圧部Vを検出する電圧検出器と、高温超電導コイルを流れる電圧Iを検出する電流検出器を備えた保護装置が知られている(特許文献1参照)。
この保護装置には、電流Iと電圧Vとの比、V/Iに基づき、高温超電導コイルの保護動作を行う保護装置と電流遮断器と転流回路としての保護抵抗が備えられている。
Conventionally, as an example of a normal conductive transition detection method of high-temperature superconducting wire, Bi-based superconducting wires (Bi 2 Sr 2 CaCu 2 O 8 + δ: Bi2212, Bi 2 Sr 2 Ca 2 Cu 3 O 10 + δ: Bi2223) superconducting coil using an Protection devices against this have been studied. For example, a voltage detector that detects a voltage portion V that is the difference between the entire voltage or a part of the voltage of the high-temperature superconducting coil or a region, and a current detector that detects the voltage I flowing through the high-temperature superconducting coil are provided. A protection device is known (see Patent Document 1).
This protective device is provided with a protective device that performs a protective operation of the high-temperature superconducting coil, a current breaker, and a protective resistor as a commutation circuit based on the ratio of current I to voltage V, V / I.

特開2006−041274号公報JP 2006-041274 A

先の特許文献1に記載の保護装置は、電流Iと電圧Vとの比、V/Iの他に、1階微分値dV/dtを監視して高温超電導コイルの異常を判断する機能と、2階微分値dV/dtを監視して高温超電導コイルの異常を判断する機能を備え、検査精度を向上させている。
しかし、特許文献1に記載の保護装置は、Bi系酸化物超電導線材を備えた超電導コイルについて検討した結果を反映した技術であり、この技術を構造が異なるRE123系の酸化物超電導線材を備えた高温超電導コイルについて適用できるか否かは不明である。加えて、RE123系の酸化物超電導線材は、テープ状の基材上に中間層と酸化物超電導層を積層した構造であり、酸化物超電導層の上に金属安定化層を被覆した構造とされているが、現状ではこの金属安定化層の厚さの選定方法も確立されていない。特に、RE123系の酸化物超電導線材において金属安定化層をどの程度の厚さとしてどの程度の運転電流とするならば、常電導転移した場合に酸化物超電導線材の焼損を防止できるか否かについての議論が未だ十分にはなされていない状況である。
The protective device described in the above-mentioned Patent Document 1 has a function of monitoring the first-order differential value dV / dt in addition to the ratio of the current I and the voltage V, V / I, and determining the abnormality of the high-temperature superconducting coil, The second-order differential value d 2 V / dt 2 is monitored to determine the abnormality of the high-temperature superconducting coil, and the inspection accuracy is improved.
However, the protection device described in Patent Document 1 is a technology reflecting the result of study on a superconducting coil provided with a Bi-based oxide superconducting wire, and this technology includes an RE123-based oxide superconducting wire having a different structure. It is unclear whether it can be applied to high-temperature superconducting coils. In addition, the RE123-based oxide superconducting wire has a structure in which an intermediate layer and an oxide superconducting layer are laminated on a tape-shaped substrate, and a metal stabilizing layer is coated on the oxide superconducting layer. However, at present, a method for selecting the thickness of the metal stabilizing layer has not been established. In particular, with regard to the RE123-based oxide superconducting wire, what is the thickness of the metal stabilizing layer and what is the operating current, whether burnout of the oxide superconducting wire can be prevented when the normal conducting transition occurs. The situation has not yet been fully discussed.

本発明は、前記事情に鑑みなされたもので、酸化物超電導線材が仮に常電導転移した場合であっても酸化物超電導線材の焼損を防止できるような運転ができる高温超電導コイルの運転方法の提供を目的とする。   The present invention has been made in view of the above circumstances, and provides a method for operating a high-temperature superconducting coil that can be operated so as to prevent burning of the oxide superconducting wire even if the oxide superconducting wire undergoes normal conduction transition. With the goal.

本発明に係る高温超電導コイルの運転方法は、基材上に中間層と酸化物超電導層と金属安定化層を備えた酸化物超電導線材からなる高温超電導コイルを用い、前記酸化物超電導層に対する通電電流を設定して高温超電導コイルを運転する際、常電導転移時に前記酸化物超電導層を劣化させることなく前記金属安定化層に流し得る最大電流以下の電流を通電電流として運転することを特徴とする。
常電導転移時に金属安定化層に生じる抵抗発熱によって酸化物超電導層の特性を劣化させない最大電流以下の通電電流で高温超電導コイルを運転するので、万が一、常電導転移を生じて金属安定化層に通電電流が流れた場合であっても、酸化物超電導層の特性が劣化しない。よって、金属安定化層を備えた酸化物超電導線材からなる高温超電導コイルを安全に運転できる。
The operation method of the high-temperature superconducting coil according to the present invention uses a high-temperature superconducting coil made of an oxide superconducting wire having an intermediate layer, an oxide superconducting layer, and a metal stabilizing layer on a base material, and supplies the current to the oxide superconducting layer. When operating a high-temperature superconducting coil with a current set, it is characterized in that a current equal to or less than the maximum current that can be passed through the metal stabilization layer without degrading the oxide superconducting layer during normal conduction transition is operated as an energizing current. To do.
The high-temperature superconducting coil is operated with a current that is less than the maximum current that does not degrade the characteristics of the oxide superconducting layer due to the resistance heating that occurs in the metal stabilizing layer during the normal conducting transition. Even when a current flows, the characteristics of the oxide superconducting layer do not deteriorate. Therefore, a high temperature superconducting coil made of an oxide superconducting wire provided with a metal stabilizing layer can be operated safely.

本発明に係る高温超電導コイルの運転方法は、前記常電導転移時に前記金属安定化層に流し得る最大電流に対応する最大電流密度を1780A/mm以下とする通電電流として運転することを特徴とする。
常電導転移時に金属安定化層に流れる最大電流密度を1780A/mm以下とする通電電流として高温超電導コイルを運転しているので、万が一、常電導転移を生じて酸化物超電導層が常電導状態となり、金属安定化層に通電電流が流れた場合であっても、酸化物超電導層の特性が劣化しない。よって、金属安定化層を備えた酸化物超電導線材からなる高温超電導コイルを安全に運転できる。
The operation method of the high-temperature superconducting coil according to the present invention is characterized in that it is operated as an energized current having a maximum current density corresponding to the maximum current that can be passed through the metal stabilizing layer during the normal conducting transition is 1780 A / mm 2 or less. To do.
Since the high-temperature superconducting coil is operated as an energizing current with a maximum current density of 1780 A / mm 2 or less flowing through the metal stabilization layer during the normal conducting transition, the oxide superconducting layer is in a normal conducting state by any chance. Thus, even when an energizing current flows through the metal stabilizing layer, the characteristics of the oxide superconducting layer do not deteriorate. Therefore, a high temperature superconducting coil made of an oxide superconducting wire provided with a metal stabilizing layer can be operated safely.

前記金属安定化層に前記酸化物超電導線材の常電導転移に伴う50mV以上の電圧発生を検出する電圧検出手段を接続し、この電圧検出手段の電圧検出結果に基づいて前記酸化物超電導線材への通電を停止する通電停止手段を接続していることを特徴とする。
常電導転移の際、50mV以上の電圧発生を検出し、酸化物超電導線材への通電を停止することにより、酸化物超電導線材の超電導特性を損なうことなく運転停止できる。常電導転移に伴い金属安定化層に電流が流れ、金属安定化層の抵抗発熱が生じたとしても、50mV以上の電圧発生を検出することにより、発熱による酸化物超電導層の特性劣化前に通電停止できる。このため、常電導転移が発生した後に再度酸化物超電導線材に通電して支障なく利用することができる。即ち、高温超電導コイルの安全な運転ができる。
A voltage detecting means for detecting a voltage generation of 50 mV or more accompanying the normal conduction transition of the oxide superconducting wire is connected to the metal stabilizing layer, and the oxide superconducting wire is connected to the oxide superconducting wire based on the voltage detection result of the voltage detecting means. An energization stopping means for stopping energization is connected.
By detecting the generation of a voltage of 50 mV or more during the normal conduction transition and stopping the energization of the oxide superconducting wire, the operation can be stopped without impairing the superconducting characteristics of the oxide superconducting wire. Even if a current flows through the metal stabilization layer due to the normal conduction transition and resistance heat generation occurs in the metal stabilization layer, it is energized before the deterioration of the characteristics of the oxide superconducting layer due to heat generation by detecting the generation of a voltage of 50 mV or more. You can stop. For this reason, after the normal conducting transition occurs, the oxide superconducting wire can be energized again and used without any trouble. That is, the safe operation of the high temperature superconducting coil can be performed.

本発明に係る高温超電導コイルの運転方法は、前記電圧検出手段の電圧検出結果に基づいて前記酸化物超電導線材への通電を100msec以内に停止する通電停止手段を接続していることを特徴とする。
常電導転移時に、50mV以上の電圧発生を検出し、酸化物超電導線材への通電を100msec以内に停止することにより、酸化物超電導層の超電導特性を損なうことなく運転停止できる。常電導転移に伴い金属安定化層に電流が流れ、常電導転移に伴い金属安定化層の抵抗発熱が生じたとしても、50mV以上の電圧発生を検出し、100msec以内に通電停止することにより酸化物超電導層の特性が劣化する前に確実に通電停止できる。このため、常電導転移後に再度酸化物超電導線材に通電して支障なく利用することができる。即ち、高温超電導コイルの安全な運転ができる。
The operation method of the high-temperature superconducting coil according to the present invention is characterized by connecting an energization stopping unit that stops energization to the oxide superconducting wire within 100 msec based on a voltage detection result of the voltage detecting unit. .
By detecting the generation of a voltage of 50 mV or more at the normal conduction transition and stopping the energization to the oxide superconducting wire within 100 msec, the operation can be stopped without impairing the superconducting characteristics of the oxide superconducting layer. Even if current flows in the metal stabilization layer with the normal conduction transition and resistance heat generation of the metal stabilization layer with the normal conduction transition occurs, the voltage generation of 50 mV or more is detected, and the current is stopped within 100 msec. Energization can be reliably stopped before the characteristics of the superconducting layer deteriorate. Therefore, the oxide superconducting wire can be energized again after the normal conducting transition and used without any trouble. That is, the safe operation of the high temperature superconducting coil can be performed.

本発明によれば、常電導転移時に金属安定化層に生じる抵抗発熱によって酸化物超電導層の超電導特性を劣化させない通電電流で高温超電導コイルを運転するので、万が一、常電導転移を生じて酸化物超電導層が常電導状態となり、金属安定化層に通電電流が流れた場合であっても、酸化物超電導層の劣化を生じないように高温超電導コイルを運転することができる。よって、高温超電導コイルを安全に運転できる。   According to the present invention, the high-temperature superconducting coil is operated with an energizing current that does not deteriorate the superconducting characteristics of the oxide superconducting layer due to the resistance heat generated in the metal stabilizing layer during the normal conducting transition. Even when the superconducting layer is in a normal conducting state and an energizing current flows through the metal stabilizing layer, the high-temperature superconducting coil can be operated so that the oxide superconducting layer does not deteriorate. Therefore, the high temperature superconducting coil can be operated safely.

図1(A)は本発明に係る高温超電導コイルに備えられる酸化物超電導線材の一例構造を示す概略断面図、図1(B)は同酸化物超電導線材が巻胴に巻回されてなる高温超電導コイルの一例構造を示す側面図。FIG. 1A is a schematic cross-sectional view showing an example structure of an oxide superconducting wire provided in a high-temperature superconducting coil according to the present invention, and FIG. 1B is a high temperature obtained by winding the oxide superconducting wire around a winding drum. The side view which shows an example structure of a superconducting coil. 図1に示す酸化物超電導線材に接続された電圧測定器と電源装置並びに制御装置を示す概略構成図。The schematic block diagram which shows the voltage measuring device, power supply device, and control apparatus which were connected to the oxide superconducting wire shown in FIG. 図1に示す酸化物超電導線材と同等構造の模擬酸化物超電導線材からなる高温超電導コイルと電圧測定器と電源装置並びに制御装置を組み込んでなる超電導装置の一例を示す構成図。The block diagram which shows an example of the superconducting apparatus incorporating the high-temperature superconducting coil which consists of the simulation oxide superconducting wire of the structure equivalent to the oxide superconducting wire shown in FIG. 1, a voltage measuring device, a power supply device, and a control apparatus.

以下、本発明に適用する高温超電導コイルおよびその運転方法の第1実施形態について図面に基づき説明する。
図1(A)は本発明に適用する高温超電導コイルを構成するための酸化物超電導線材の一例構造を示す概略断面図であり、この酸化物超電導線材1を用いて図1(B)に示す高温超電導コイル29を構成し、この高温超電導コイル29を運転対象とする場合について以下に説明する。
運転対象の高温超電導コイル29の安全な運転電流を求めるためには、この酸化物超電導線材と同等構造の模擬酸化物超電導線材に図2に示す如く複数の測定点を規定し、これら複数の測定点を規定した模擬酸化物超電導線材を図3に示す超電導装置30に組み込み試験することで求められる。
Hereinafter, a first embodiment of a high-temperature superconducting coil and its operating method applied to the present invention will be described with reference to the drawings.
FIG. 1A is a schematic cross-sectional view showing an example of the structure of an oxide superconducting wire for constituting a high-temperature superconducting coil applied to the present invention, and this oxide superconducting wire 1 is shown in FIG. A case where the high-temperature superconducting coil 29 is configured and the high-temperature superconducting coil 29 is an operation target will be described below.
In order to obtain a safe operating current of the high temperature superconducting coil 29 to be operated, a plurality of measurement points are defined on the simulated oxide superconducting wire having the same structure as that of the oxide superconducting wire as shown in FIG. This is obtained by incorporating a simulated oxide superconducting wire having defined points into the superconducting device 30 shown in FIG.

図1(A)に示す本実施形態の酸化物超電導線材1は、テープ状の長尺の金属製の基材2の上に、拡散防止層3とベッド層4と配向層5とキャップ層6と酸化物超電導層7と第1の金属安定化層8と第2の金属安定化層9を積層した構成とされている。なお、本実施形態において拡散防止層3とベッド層4と配向層5とキャップ層6から中間層Tが構成され、この実施形態では基材2上に中間層Tを介し酸化物超電導層7が積層されている。なお、中間層Tにおいて拡散防止層3とベッド層4は必須ではなく、場合によってはこれらの一方あるいは両方を略しても良い。
なお、図1(A)に示す酸化物超電導線材1は、本発明の特徴をわかりやすくするため、便宜上、各層の厚さを誇張して記載しているが、本実施形態の酸化物超電導線材1は全体として薄いテープ形状とされている。また、以下の実施形態を示す各図においても本発明の特徴をわかりやすくするため、要部となる部分を拡大して示している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らない。
An oxide superconducting wire 1 according to this embodiment shown in FIG. 1 (A) has a diffusion prevention layer 3, a bed layer 4, an orientation layer 5, and a cap layer 6 on a tape-like long metal base 2. The oxide superconducting layer 7, the first metal stabilizing layer 8, and the second metal stabilizing layer 9 are laminated. In this embodiment, the diffusion prevention layer 3, the bed layer 4, the alignment layer 5, and the cap layer 6 constitute an intermediate layer T. In this embodiment, the oxide superconducting layer 7 is formed on the substrate 2 via the intermediate layer T. Are stacked. In the intermediate layer T, the diffusion preventing layer 3 and the bed layer 4 are not essential, and one or both of them may be omitted depending on circumstances.
Note that the oxide superconducting wire 1 shown in FIG. 1A is exaggerated for the sake of convenience in order to make the characteristics of the present invention easier to understand, but the oxide superconducting wire of the present embodiment is shown. 1 has a thin tape shape as a whole. Also, in each of the drawings showing the following embodiments, in order to make the features of the present invention easier to understand, the main part may be shown in an enlarged manner, and the dimensional ratio of each component is the same as the actual one. Not always.

前記基材2は、長尺とするためにテープ状であることが好ましく、ハステロイ(米国ヘインズ社製商品名)に代表されるニッケル合金などの耐熱性に優れた高強度の金属材料からなる。なかでも、ハステロイとして、モリブデン、クロム、鉄、コバルト等の成分量が異なる、ハステロイB、C、G、N、W等のいずれの種類も使用できる。また、基材2として、ニッケル合金に集合組織を導入した配向Ni−W合金テープ基材を適用することもできる。基材2の厚さは、目的に応じて適宜調整すれば良く、10〜500μmの範囲とすることができる。   The substrate 2 is preferably in the form of a tape in order to be long, and is made of a high-strength metal material excellent in heat resistance such as a nickel alloy typified by Hastelloy (trade name, manufactured by Haynes, USA). Among them, any type of Hastelloy, such as Hastelloy B, C, G, N, and W, having different component amounts such as molybdenum, chromium, iron, and cobalt can be used. Moreover, as the base material 2, an oriented Ni—W alloy tape base material in which a texture is introduced into a nickel alloy can also be applied. What is necessary is just to adjust the thickness of the base material 2 suitably according to the objective, and it can be set as the range of 10-500 micrometers.

前記拡散防止層3は、基材2の構成元素拡散を防止する目的で形成されたもので、窒化ケイ素(Si)、酸化アルミニウム(Al)、GZO(GdZr)等から構成され、スパッタ法などの成膜法により例えば厚さ10〜400nmに形成される。
ベッド層4は、耐熱性が高く、界面反応性を低減するためのものであり、その上に形成される膜の配向性を得るために用いる。ベッド層4は、Y、Er、CeO、Dy3、Er、Eu、Ho、La等からなる。ベッド層4は、スパッタリング法等の成膜法により形成され、その厚さは例えば10〜100nmである。
The diffusion preventing layer 3 is formed for the purpose of preventing the diffusion of the constituent elements of the base material 2, and silicon nitride (Si 3 N 4 ), aluminum oxide (Al 2 O 3 ), GZO (Gd 2 Zr 2 O). 7 ) and the like, and is formed to a thickness of, for example, 10 to 400 nm by a film forming method such as a sputtering method.
The bed layer 4 has high heat resistance and is used for reducing interfacial reactivity, and is used for obtaining the orientation of a film formed thereon. The bed layer 4 is made of Y 2 O 3 , Er 2 O 3 , CeO 2 , Dy 2 O 3, Er 2 O 3 , Eu 2 O 3 , Ho 2 O 3 , La 2 O 3 or the like. The bed layer 4 is formed by a film forming method such as a sputtering method, and the thickness thereof is, for example, 10 to 100 nm.

配向層5は、その上のキャップ層6の結晶配向性を制御するために2軸配向する物質から形成される。配向層5の材質として具体的には、GdZr、MgO、ZrO−Y(YSZ)、SrTiO、CeO、Y、Al、Gd、Zr、Ho、Nd等の金属酸化物を例示することができる。
この配向層5をIBAD(Ion-Beam-Assisted Deposition)法により良好な2軸配向性で成膜するならば、キャップ層6の結晶配向性を良好にすることができ、その上に成膜する酸化物超電導層7の結晶配向性を良好にして優れた超電導特性を発揮できる。
キャップ層6は、上述の配向層5の表面に成膜されて結晶粒が面内方向に自己配向し得る材料からなり、具体的には、CeO、Y、Al、Gd、ZrO、YSZ、Ho、Nd、LaMnO等からなる。
中でもCeO層は、PLD法(パルスレーザー蒸着法)、スパッタリング等により大きな成膜速度で形成でき、良好な結晶配向性を得ることができる。キャップ層6の膜厚は50〜5000nmの範囲に形成できる。
The orientation layer 5 is formed from a biaxially oriented material in order to control the crystal orientation of the cap layer 6 thereon. Specifically, the alignment layer 5 is made of Gd 2 Zr 2 O 7 , MgO, ZrO 2 —Y 2 O 3 (YSZ), SrTiO 3 , CeO 2 , Y 2 O 3 , Al 2 O 3 , Gd 2 O. 3 , metal oxides such as Zr 2 O 3 , Ho 2 O 3 and Nd 2 O 3 can be exemplified.
If the alignment layer 5 is formed with good biaxial orientation by IBAD (Ion-Beam-Assisted Deposition) method, the crystal orientation of the cap layer 6 can be improved, and the film is formed thereon. The superconducting property can be exhibited by improving the crystal orientation of the oxide superconducting layer 7.
The cap layer 6 is formed on the surface of the alignment layer 5 and is made of a material that allows crystal grains to self-orient in the in-plane direction. Specifically, CeO 2 , Y 2 O 3 , Al 2 O 3 , It consists of Gd 2 O 3 , ZrO 2 , YSZ, Ho 2 O 3 , Nd 2 O 3 , LaMnO 3 and the like.
Among them, the CeO 2 layer can be formed at a high film formation rate by PLD method (pulse laser deposition method), sputtering or the like, and good crystal orientation can be obtained. The film thickness of the cap layer 6 can be formed in the range of 50 to 5000 nm.

酸化物超電導層7は高温超電導体として公知のもので良く、具体的には、REBaCu(REはSc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luのうち1種または2種以上の希土類元素を示す。)なる材質のものを例示できる。この酸化物超電導層7として、Y123(YBaCu7−X)又はGd123(GdBaCu7−X)などを例示できる。
酸化物超電導層7は、スパッタ法、真空蒸着法、レーザー蒸着法、電子ビーム蒸着法、化学気相成長法(CVD法)等の物理的蒸着法、熱塗布分解法(MOD法)等で積層することができ、なかでも生産性の観点から、PLD(パルスレーザー蒸着)法、TFA−MOD法(トリフルオロ酢酸塩を用いた有機金属堆積法、塗布熱分解法)又はCVD法を用いることができる。
The oxide superconducting layer 7 may be a known high-temperature superconductor, specifically, REBa 2 Cu 3 O y (RE is Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, An example is a material made of Tb, Dy, Ho, Er, Tm, Yb, and Lu. Examples of the oxide superconducting layer 7 include Y123 (YBa 2 Cu 3 O 7-X ) or Gd123 (GdBa 2 Cu 3 O 7-X ).
The oxide superconducting layer 7 is laminated by a physical vapor deposition method such as sputtering, vacuum vapor deposition, laser vapor deposition, electron beam vapor deposition, chemical vapor deposition (CVD), or thermal coating decomposition (MOD). In particular, from the viewpoint of productivity, the PLD (pulse laser deposition) method, the TFA-MOD method (organic metal deposition method using trifluoroacetate, coating pyrolysis method) or the CVD method may be used. it can.

第1の金属安定化層8(保護層)はAgまたはAg合金などの良電導性かつ酸化物超電導層7と接触抵抗が低くなじみの良い層として形成される。なお、第1の金属安定化層8をAgから構成する理由として、酸化物超電導層7に酸素をドープする酸素アニール工程において酸素を酸化物超電導層7側に透過し易くする点を挙げることができる。成膜法により製造する酸化物超電導層の母物質は絶縁体であるが、酸素アニール処理により酸素を取り込むことで結晶構造の整った酸化物超電導層となり、超電導特性を示す。第1の金属安定化層8を成膜するには、スパッタ法などの成膜法を採用し、その厚さを1〜30μm程度に形成できる。   The first metal stabilizing layer 8 (protective layer) is formed as a layer having good conductivity, such as Ag or an Ag alloy, having a low contact resistance with the oxide superconducting layer 7, and a good compatibility. The reason why the first metal stabilizing layer 8 is made of Ag is that oxygen is easily transmitted to the oxide superconducting layer 7 side in the oxygen annealing step of doping the oxide superconducting layer 7 with oxygen. it can. The base material of the oxide superconducting layer manufactured by the film formation method is an insulator. However, when oxygen is incorporated by oxygen annealing, the oxide superconducting layer has a well-structured crystal structure and exhibits superconducting properties. In order to form the first metal stabilizing layer 8, a film forming method such as a sputtering method is employed, and the thickness can be formed to about 1 to 30 μm.

第2の金属安定化層9は、銅、Cu−Zn合金、Cu−Ni合金等の銅合金、アルミニウムまたはその合金、ステンレス等の比較的安価な導電性の金属材料からなることが好ましい。第2の金属安定化層9は、酸化物超電導層7が超電導状態から常電導状態に転位しようとした時、第1の金属安定化層8とともに、酸化物超電導層7の電流を転流するバイパスとして機能する。また、酸化物超電導線材1を超電導限流器に使用する場合、安定化層は、常電導転移が起こり常電導状態に転移した時に発生する過電流を瞬時に抑制するために用いられる。この用途の場合、第2の金属安定化層9に用いられる材料は、例えば、Ni−Cr等のNi系合金等の高抵抗金属が挙げられる。第2の金属安定化層9の厚さは例えば10〜300μmとすることができる。
第2の金属安定化層9を形成するには、例えば上述の材料からなるテープ材の裏面側に接続用のSnめっき半田層を形成した安定化テープを用い、第1の金属安定化層8上に第2の金属安定化層9を半田付けするなどの方法により形成できる。あるいは、基材2から第1の金属安定化層8までを形成した積層体の全周をCuめっきで被覆して第2の金属安定化層を形成することもできる。または、基材2から第1の金属安定化層8までを形成した積層体を前述の材料からなるテープ材で囲むようにテープ材を塑性加工して第2の金属安定化層を形成することもできる。
The second metal stabilizing layer 9 is preferably made of a relatively inexpensive conductive metal material such as copper, a copper alloy such as a Cu—Zn alloy or a Cu—Ni alloy, aluminum or an alloy thereof, or stainless steel. The second metal stabilizing layer 9 commutates the current of the oxide superconducting layer 7 together with the first metal stabilizing layer 8 when the oxide superconducting layer 7 tries to shift from the superconducting state to the normal conducting state. Acts as a bypass. Further, when the oxide superconducting wire 1 is used for a superconducting fault current limiter, the stabilization layer is used to instantaneously suppress an overcurrent that occurs when the normal conducting transition occurs and shifts to the normal conducting state. In the case of this application, examples of the material used for the second metal stabilization layer 9 include high-resistance metals such as Ni-based alloys such as Ni—Cr. The thickness of the 2nd metal stabilization layer 9 can be 10-300 micrometers, for example.
In order to form the second metal stabilization layer 9, for example, a stabilization tape in which a Sn plating solder layer for connection is formed on the back surface side of the tape material made of the above-described material is used, and the first metal stabilization layer 8 is formed. The second metal stabilization layer 9 can be formed thereon by soldering. Alternatively, the second metal stabilization layer can be formed by covering the entire periphery of the laminate on which the substrate 2 to the first metal stabilization layer 8 are formed with Cu plating. Alternatively, the second metal stabilization layer is formed by plastic processing of the tape material so that the laminate formed from the base material 2 to the first metal stabilization layer 8 is surrounded by the tape material made of the aforementioned material. You can also.

以上説明の如く構成された酸化物超電導線材1は、通常、その全周を取り囲むようにポリイミドテープなどの絶縁テープを重ね巻きするか、縦添えてなる絶縁保護層を形成し、絶縁構造としてから超電導コイル用などの超電導機器用途に使用される。
図1(B)は酸化物超電導線材1を用いて構成された一例としての高温超電導コイル29を示し、この例の高温超電導コイル29は、巻胴36と鍔板37とからなるボビン35に絶縁構造の酸化物超電導線材1が巻回されてなる。この例の高温超電導コイル29は、酸化物超電導線材1を巻回して構成したパンケーキコイルPを複数巻胴36の長さ方向に積層した構造のコイルとされている。図1(B)に示す高温超電導コイル29においてパンケーキコイルPは6つ重ねられ、2つのパンケーキコイルPを重ねる度にこれらの間に金属円板製の冷却板28が介装されて構成されている。なお、上述の高温超電導コイル29は1つの例であるので、本実施形態において適用できる高温超電導コイルは図1(B)に示す構造に限らず、1本の酸化物超電導線材1を巻胴36の全体に巻装した構成でも良く、パンケーキコイルPの積層数も任意の数でよい。
The oxide superconducting wire 1 configured as described above is usually formed by winding an insulating tape such as a polyimide tape so as to surround the entire circumference or by forming an insulating protective layer attached vertically to form an insulating structure. Used for superconducting equipment applications such as superconducting coils.
FIG. 1B shows an example high-temperature superconducting coil 29 configured using the oxide superconducting wire 1, and the high-temperature superconducting coil 29 in this example is insulated from a bobbin 35 including a winding drum 36 and a flange plate 37. An oxide superconducting wire 1 having a structure is wound. The high-temperature superconducting coil 29 in this example is a coil having a structure in which a pancake coil P formed by winding the oxide superconducting wire 1 is laminated in the length direction of a plurality of winding drums 36. In the high-temperature superconducting coil 29 shown in FIG. 1 (B), six pancake coils P are stacked, and each time two pancake coils P are stacked, a metal disk cooling plate 28 is interposed therebetween. Has been. Note that the above-described high-temperature superconducting coil 29 is an example, and the high-temperature superconducting coil applicable in the present embodiment is not limited to the structure shown in FIG. 1B, and the single oxide superconducting wire 1 is wound on the winding drum 36. The whole structure may be wound, and the number of laminated pancake coils P may be any number.

図1(B)に示す構造の高温超電導コイル29を運転する場合に安全な運転電流を把握するために本実施形態では、図3に示すように巻胴36に前述の酸化物超電導線材1と同等構造の模擬酸化物超電導線材1Aをコイル巻きした構成の模擬高温超電導コイル32を用いる。本実施形態の模擬酸化物超電導線材1Aは、酸化物超電導線材1と同等構造の酸化物超電導線材であり、巻胴36に数周、例えば、3周ほど巻回されてなる。即ち、模擬酸化物超電導線材1Aは、高温超電導コイル29を構成する酸化物超電導線材1の一部を切り出して用意した全く同じ構成のものあるいは、酸化物超電導線材1の積層構造と同等の積層構造であり、各層の厚さや必要な超電導特性も同等とした模擬酸化物超電導線材1Aを用いる。   In order to grasp the safe operating current when operating the high temperature superconducting coil 29 having the structure shown in FIG. 1B, in the present embodiment, the above-described oxide superconducting wire 1 and A simulated high temperature superconducting coil 32 having a structure in which a simulated oxide superconducting wire 1A having an equivalent structure is wound is used. The simulated oxide superconducting wire 1A of the present embodiment is an oxide superconducting wire having the same structure as that of the oxide superconducting wire 1, and is wound around the winding drum 36 several times, for example, three times. That is, the simulated oxide superconducting wire 1A has the same structure prepared by cutting out part of the oxide superconducting wire 1 constituting the high-temperature superconducting coil 29, or a laminated structure equivalent to the laminated structure of the oxide superconducting wire 1 The simulated oxide superconducting wire 1A having the same thickness and required superconducting characteristics is used.

本実施形態では、図3に示す巻胴36に巻き付けられた模擬酸化物超電導線材1Aにおいて、その長さ方向任意の位置の第2の安定化層9の表面に、図2に示す如く模擬酸化物超電導線材1Aの長さ方向に沿って所定長さの基準測定エリアS0を区画し、その両端部分に基準電圧測定点10、11を設置するとともに、基準測定エリアS0の中央部に加熱ヒーター12を設置する。また、模擬酸化物超電導線材1Aにおいて、基準測定エリアS0を含んで模擬酸化物超電導線材1Aの長さ方向(図2の左右方向)に同等距離拡張するように第1測定エリアS1を区画し、その両端部分に第1電圧測定点17、18を設置する。
なお、前記加熱ヒーター12は模擬酸化物超電導線材1Aを超電導状態から常電導状態に強制的に転移させるために設置されている。
模擬酸化物超電導線材1Aに沿って設ける測定エリアS0、S1の距離は任意でよい。
In the present embodiment, in the simulated oxide superconducting wire 1A wound around the winding drum 36 shown in FIG. 3, the surface of the second stabilizing layer 9 at an arbitrary position in the longitudinal direction is simulated oxidation as shown in FIG. A reference measurement area S0 having a predetermined length is defined along the length direction of the superconductor wire 1A, reference voltage measurement points 10 and 11 are provided at both ends thereof, and a heater 12 is provided at the center of the reference measurement area S0. Is installed. Further, in the simulated oxide superconducting wire 1A, the first measurement area S1 is partitioned so as to extend the same distance in the length direction (left and right direction in FIG. 2) of the simulated oxide superconducting wire 1A including the reference measurement area S0. First voltage measurement points 17 and 18 are installed at both ends.
The heater 12 is installed to forcibly transfer the simulated oxide superconducting wire 1A from the superconducting state to the normal conducting state.
The distance between the measurement areas S0 and S1 provided along the simulated oxide superconducting wire 1A may be arbitrary.

前記模擬酸化物超電導線材1Aに対し、基準電圧測定点10、11間に発生する電圧V0と、第1電圧測定点17、18間に発生する電圧V1とを個々に測定するための電圧測定装置19が接続されている。前記各測定点10、11、17、18はそれらに接続される配線10a、11a、17a、18aを介して電圧測定装置19に接続され、各測定点に生じる電圧を計測できるように構成されている。
なお、前記電圧測定装置19は上述の電圧V0、V1の測定ができるようになっている。また、図2において符号24で示すものは、基準電圧測定点10の近傍に設置されて第2の金属安定化層9の表面温度(模擬酸化物超電導線材1の温度)を計測するための熱電対である。
本実施形態の構造において、電圧測定点10、11、17、18とこれらに接続された配線10a、11a、17a、18aと電圧測定装置19により電圧測定手段が構成されている。この電圧測定手段は、模擬酸化物超電導線材1Aの金属安定化層8、9に電流が流れた場合に発生する電圧を測定するためのものである。
A voltage measuring device for individually measuring the voltage V0 generated between the reference voltage measuring points 10 and 11 and the voltage V1 generated between the first voltage measuring points 17 and 18 with respect to the simulated oxide superconducting wire 1A. 19 is connected. Each of the measurement points 10, 11, 17, 18 is connected to a voltage measuring device 19 through wirings 10a, 11a, 17a, 18a connected to them, and is configured to measure a voltage generated at each measurement point. Yes.
The voltage measuring device 19 can measure the voltages V0 and V1. Also, what is indicated by reference numeral 24 in FIG. 2 is a thermoelectric device that is installed in the vicinity of the reference voltage measurement point 10 and measures the surface temperature of the second metal stabilization layer 9 (temperature of the simulated oxide superconducting wire 1). It is a pair.
In the structure of the present embodiment, voltage measurement means are configured by the voltage measurement points 10, 11, 17, 18, the wirings 10 a, 11 a, 17 a, 18 a connected thereto, and the voltage measurement device 19. This voltage measuring means is for measuring a voltage generated when a current flows through the metal stabilizing layers 8 and 9 of the simulated oxide superconducting wire 1A.

次に、模擬酸化物超電導線材1Aの両端側には接続線20、21を介してスイッチ装置(通電停止手段)22と電源装置23とが接続されていて、電源装置23から模擬酸化物超電導線材1Aの酸化物超電導層7に通電できるようになっている。また、これらのスイッチ装置22と電源装置23には制御装置25が接続線26、27を介し電気的に接続されていて、制御装置25によりスイッチ装置22の入切動作を切り替えることで模擬酸化物超電導線材1Aの酸化物超電導層7に対する通電の入切を制御できるように構成されている。   Next, a switch device (energization stopping means) 22 and a power supply device 23 are connected to both ends of the simulated oxide superconducting wire 1A via connection wires 20 and 21, and the simulated oxide superconducting wire is connected from the power supply device 23. The 1A oxide superconducting layer 7 can be energized. In addition, a control device 25 is electrically connected to the switch device 22 and the power supply device 23 via connection lines 26 and 27, and the control device 25 switches the on / off operation of the switch device 22 to simulate the oxide. The superconducting wire 1 </ b> A is configured so as to be able to control the on / off of energization to the oxide superconducting layer 7.

次に、図2に示す模擬酸化物超電導線材1A、スイッチ装置22、電源装置23、制御装置25は、より具体的には図3に示す構造の超電導装置30に接続されている。
本実施形態の超電導装置30は、真空容器などの収容容器31の内部に模擬高温超電導コイル32を備え、収容容器31の内部の模擬高温超電導コイル32を臨界温度以下に冷却するための冷凍機33を備えて構成されている。本実施形態の収容容器31は、真空ポンプ34に接続されていて、内部を目的の真空度に減圧できるように構成されている。
Next, the simulated oxide superconducting wire 1A, the switch device 22, the power supply device 23, and the control device 25 shown in FIG. 2 are more specifically connected to the superconducting device 30 having the structure shown in FIG.
The superconducting device 30 of the present embodiment includes a simulated high temperature superconducting coil 32 inside a storage container 31 such as a vacuum container, and a refrigerator 33 for cooling the simulated high temperature superconducting coil 32 inside the storage container 31 to a critical temperature or lower. It is configured with. The storage container 31 of this embodiment is connected to a vacuum pump 34 and configured to be able to depressurize the interior to a desired degree of vacuum.

模擬高温超電導コイル32は、巻胴36と鍔板37とからなるボビンに先に説明した模擬酸化物超電導線材1Aをコイル状に巻回して構成され、巻胴36の両端側に形成されている鍔板37を水平向きに巻胴36を鉛直向きとして収容容器31の底部側に設置されている。なお、巻胴36に巻回されているのは、先の積層構造の模擬酸化物超電導線材1Aを被覆層で覆って絶縁処理したものであるが、図2を基に先に説明した測定点への配線や加熱ヒーターの配線などは被覆層から適宜外部に引き出すように配線されている。   The simulated high temperature superconducting coil 32 is formed by winding the simulated oxide superconducting wire 1A described above around a bobbin composed of a winding drum 36 and a saddle plate 37 in a coil shape, and is formed on both ends of the winding drum 36. It is installed on the bottom side of the receiving container 31 with the gutter plate 37 oriented horizontally and the winding drum 36 oriented vertically. The winding body 36 is wound by covering the simulated oxide superconducting wire 1A having the above laminated structure with a coating layer and performing insulation treatment, but the measurement points described above with reference to FIG. The wiring to the heater, the wiring of the heater, and the like are wired so as to be appropriately drawn out from the coating layer.

次に、収容容器31には、模擬高温超電導コイル32の模擬酸化物超電導線材1Aに通電するための直流の電源装置23が接続され、この電源装置23と収容容器31の内部の模擬酸化物超電導線材1Aとが接続線20、21で接続され、模擬酸化物超電導線材1Aに電源装置23から通電できるように構成されている。なお、この実施形態の電源装置23には電流制御器23aが付属されていて、模擬酸化物超電導線材1Aに印加する電流値を段階的に調整しつつ通電試験できるように構成されている。
また、模擬高温超電導コイル32において模擬酸化物超電導線材1Aの基準測定エリアS0に設置されている加熱ヒーター12については、収容容器31の外部に別途設けられたヒーター用電源37に接続線38を介し接続され、このヒーター用電源37から与えられる電圧値に応じて目的の発熱量でもって模擬酸化物超電導線材1Aの基準測定エリアS0を加熱できるように構成されている。
前記収容容器31の内部には、模擬高温超電導コイル32を構成する模擬酸化物超電導線材1Aの全体温度制御のための全体加熱ヒーター40と同温度制御のための全体温度センサ41とが設けられ、これらは収容容器31の外部に設けられた温度調節器42に接続線42aでもって電気的に接続されていて、温度調節器42の制御により模擬酸化物超電導線材1Aの全体の温度を制御できるように構成されている。
Next, a direct current power supply device 23 is connected to the container 31 for energizing the simulated oxide superconducting wire 1A of the simulated high temperature superconducting coil 32, and the simulated oxide superconductivity inside the power supply device 23 and the container 31 is connected. The wire 1 </ b> A is connected by connecting wires 20, 21 so that the simulated oxide superconducting wire 1 </ b> A can be energized from the power supply device 23. In addition, the current controller 23a is attached to the power supply apparatus 23 of this embodiment, and it is comprised so that an electricity supply test can be performed, adjusting the electric current value applied to the simulation oxide superconducting wire 1A in steps.
Further, the heater 12 installed in the reference measurement area S0 of the simulated oxide superconducting wire 1A in the simulated high temperature superconducting coil 32 is connected via a connecting line 38 to a heater power source 37 separately provided outside the container 31. The reference measurement area S0 of the simulated oxide superconducting wire 1A can be heated with a target calorific value according to the voltage value supplied from the heater power supply 37.
Inside the container 31, an overall heater 40 for controlling the overall temperature of the simulated oxide superconducting wire 1A constituting the simulated high temperature superconducting coil 32 and an overall temperature sensor 41 for controlling the temperature are provided. These are electrically connected to a temperature controller 42 provided outside the container 31 by a connection line 42a so that the overall temperature of the simulated oxide superconducting wire 1A can be controlled by the control of the temperature controller 42. It is configured.

前記収容容器31の外部には記録装置43とデータ収集測定器44が設置され、これらが接続線45を介し収容容器31の内部の模擬酸化物超電導線材1Aの測定エリアS0〜S1の各測定点10、11、17、18に接続され、各測定エリアS0〜S1の電圧を個別に測定して記録できるように構成され、これらの測定結果はデータ収集測定器44に接続されたデータ処理装置46に入力される。
なお、データ処理装置46と制御装置25は接続線47により電気的に接続されていて、制御装置25においてデータ処理する際、データ処理装置46が記憶している各測定エリアS0〜S3の電圧測定結果を参照できるように構成されるとともに、接続線47は温度調節器42にも接続されている。
以上の構成により、制御装置25は電源装置23の作動制御とヒーター用電源37の作動制御と温度調節器42の作動制御もできるように構成されている。
A recording device 43 and a data collecting / measuring instrument 44 are installed outside the storage container 31, and these are each measurement points in the measurement areas S 0 to S 1 of the simulated oxide superconducting wire 1 A inside the storage container 31 via a connection line 45. 10, 11, 17, and 18, and configured to be able to individually measure and record the voltages of the measurement areas S <b> 0 to S <b> 1, and these measurement results are data processing devices 46 connected to the data collection measuring instrument 44. Is input.
The data processing device 46 and the control device 25 are electrically connected by a connection line 47, and when data processing is performed in the control device 25, voltage measurement of each measurement area S0 to S3 stored in the data processing device 46 is performed. The connection line 47 is also connected to the temperature controller 42 while being configured so that the result can be referred to.
With the above configuration, the control device 25 is configured to be able to perform operation control of the power supply device 23, operation control of the heater power supply 37, and operation control of the temperature regulator 42.

次に、図3に示す構成の超電導装置30を用いて模擬酸化物超電導線材1Aの常電導転移時の電圧挙動を評価し、高温超電導コイル29を運転する方法について以下に説明する。
超電導装置30の模擬酸化物超電導線材1Aを臨界温度以下の目的とするべき運転温度、例えば77K、50Kあるいは20Kの一定温度に維持したまま通電する定常運転を行い、模擬酸化物超電導線材1Aに目的の超電導電流が流れることを確認する。
この後、制御装置25によりヒーター用電源37を作動させて加熱ヒーター12を作動させ、模擬酸化物超電導線材1Aの第2の金属安定化層9を加熱してその下の酸化物超電導層7を常電導状態に転移させる。
加熱ヒーター12に通電して基準測定エリアS0の酸化物超電導層7を常電導状態に強制的に常電導転移させた場合、時間経過とともに基準測定エリアS0の電圧V0が上昇する。
Next, a method of operating the high-temperature superconducting coil 29 by evaluating the voltage behavior of the simulated oxide superconducting wire 1A during normal conduction transition using the superconducting device 30 having the configuration shown in FIG. 3 will be described below.
The simulated oxide superconducting wire 1A of the superconducting device 30 is operated at a constant operating temperature lower than the critical temperature, for example, 77K, 50K, or 20K while maintaining a constant temperature, and the simulated oxide superconducting wire 1A is used for the purpose. Confirm that the superconducting current flows.
After that, the heater 25 is operated by operating the heater power source 37 by the control device 25, the second metal stabilizing layer 9 of the simulated oxide superconducting wire 1A is heated, and the oxide superconducting layer 7 underneath is heated. Transition to normal conducting state.
When the heater 12 is energized and the oxide superconducting layer 7 in the reference measurement area S0 is forcibly changed to the normal conduction state, the voltage V0 in the reference measurement area S0 increases with time.

次に、以下に説明するように試験することにより、模擬酸化物超電導線材1Aにおいて常電導転移時に安定化層8、9にバイパス電流が流れた場合、安定化層8、9が抵抗発熱により温度上昇しても酸化物超電導層7が特性劣化しない限界の最大電流密度を求めることができる。
安定化層の最大電流密度測定のためには、模擬酸化物超電導線材1Aからなる超電導コイル32を備えた図3に示す超電導装置30を用い、図2に示すように模擬酸化物超電導線材1Aに設けた測定点10、11を利用する。
図3に示す超電導装置30で冷凍機33の伝導冷却により模擬酸化物超電導線材1Aの温度を臨界温度以下の所定の温度に維持し、電源装置23から所定の電流を流して模擬酸化物超電導線材1Aに安定した超電導電流が流れることを確認する。
Next, when a bypass current flows through the stabilization layers 8 and 9 during the normal conduction transition in the simulated oxide superconducting wire 1A by performing a test as described below, the stabilization layers 8 and 9 are heated by resistance heating. The maximum current density at which the oxide superconducting layer 7 does not deteriorate even if it rises can be obtained.
In order to measure the maximum current density of the stabilization layer, the superconducting device 30 shown in FIG. 3 provided with the superconducting coil 32 made of the simulated oxide superconducting wire 1A is used, and the simulated oxide superconducting wire 1A is used as shown in FIG. The provided measurement points 10 and 11 are used.
In the superconducting device 30 shown in FIG. 3, the temperature of the simulated oxide superconducting wire 1 </ b> A is maintained at a predetermined temperature lower than the critical temperature by conducting cooling of the refrigerator 33, and a predetermined current is supplied from the power supply device 23 to simulate the superoxide superconducting wire Confirm that a stable superconducting current flows at 1A.

その後、加熱ヒーター12に通電して模擬酸化物超電導線材1Aの一部を強制的に常電導転移させ、電圧挙動を調査する。図2に示す測定系を利用し、電圧V0を測定する。
なお、熱電対24は、熱伝導により電圧からの温度換算と比較して数100msec応答が遅れるが、上述の測定において応答の遅れ以外は熱電対による測定温度は電圧から換算した値とほぼ同じであることを確認できた。この測定系の電圧最小検出感度は、0.01mvであり、電圧発生した時点(=常電導転位した時点)を0secとする。
Thereafter, the heater 12 is energized to forcibly transfer a part of the simulated oxide superconducting wire 1A to normal conduction, and the voltage behavior is investigated. The voltage V0 is measured using the measurement system shown in FIG.
The thermocouple 24 is delayed in response by several hundred msec compared to the temperature conversion from the voltage due to heat conduction, but the measured temperature by the thermocouple in the above measurement is almost the same as the value converted from the voltage except for the response delay. I was able to confirm that there was. The minimum voltage detection sensitivity of this measurement system is 0.01 mV, and the time when the voltage is generated (= time when the normal conduction rearrangement occurs) is 0 sec.

上述のように発生した電圧が50mV〜100mVに達した時点で電源装置23のスイッチ装置22をOFFにする。電源装置23からの通電をOFFにするまでのごく短い時間、模擬酸化物超電導線材1Aの第1の金属安定化層8と第2の金属安定化層9に酸化物超電導層6に流れていた通電電流を分流させる。第1の金属安定化層8と第2の金属安定化層9は固有の抵抗を有するので、通電電流により抵抗発熱し、模擬酸化物超電導線材1Aはこの抵抗発熱により加熱されることとなる。
上述のように通電を停止した後、模擬酸化物超電導線材1Aの超電導特性劣化の有無を確認する。劣化有無の確認のために、模擬酸化物超電導線材1Aを再度超電導状態として模擬酸化物超電導線材1Aの臨界電流値Icを測定することで確認する。
臨界電流値Icは、電源装置23より通電して模擬酸化物超電導線材1Aに設けた電圧測定点10、11あるいは17、18を用いた4端子法を実施すれば測定できる。
When the voltage generated as described above reaches 50 mV to 100 mV, the switch device 22 of the power supply device 23 is turned off. For a very short time until the power supply from the power supply device 23 was turned off, the oxide superconducting layer 6 was flowing in the first metal stabilizing layer 8 and the second metal stabilizing layer 9 of the simulated oxide superconducting wire 1A. Shunt current. Since the first metal stabilizing layer 8 and the second metal stabilizing layer 9 have inherent resistances, they generate resistance by an energizing current, and the simulated oxide superconducting wire 1A is heated by this resistance heating.
After stopping energization as described above, the presence or absence of deterioration of the superconducting characteristics of the simulated oxide superconducting wire 1A is confirmed. In order to confirm the presence or absence of deterioration, the simulated oxide superconducting wire 1A is again put into a superconducting state and is confirmed by measuring the critical current value Ic of the simulated oxide superconducting wire 1A.
The critical current value Ic can be measured by carrying out the four-terminal method using the voltage measurement points 10, 11 or 17, 18 provided in the simulated oxide superconducting wire 1A by energizing from the power supply device 23.

以上説明のように特定構造の模擬酸化物超電導線材1Aを用いた図3に示す高温超電導コイル32を用いて通電試験を行い、加熱ヒーター12により模擬酸化物超電導線材1Aの一部を強制的に常電導転移させて通電を停止するまでごく短い時間、第1の金属安定化層8と第2の金属安定化層9に通電試験する測定操作を行うことで、該当する通電電流が高温超電導コイル32の運転に安全な電流であるのか否か、把握することができる。
模擬酸化物超電導線材1Aに通電する電流値を種々変更して繰り返し同様の測定操作を行い、いずれの通電電流であれば、模擬酸化物超電導線材1Aの超電導特性が劣化するか否か調査する。
通電する電流値を徐々に上昇させて繰り返し同様の測定操作を行い、模擬酸化物超電導線材1Aの臨界電流値が低下するならば、その測定操作に使用した通電電流が、該当する模擬酸化物超電導線材1Aを運転する場合の限界の通電電流となる。従って模擬酸化物超電導線材1Aと同等構造の酸化物超電導線材1を用いて構成される高温超電導コイル29を運転する場合の運転電流を上述の模擬酸化物超電導線材1Aを用いた試験から得た限界の通電電流とすることで、酸化物超電導線材1により構成される実用の高温超電導コイル29を安全運転できる。
As described above, an energization test is performed using the high-temperature superconducting coil 32 shown in FIG. 3 using the simulated oxide superconducting wire 1A having a specific structure, and a part of the simulated oxide superconducting wire 1A is forced by the heater 12. By performing a measurement operation for conducting a current test on the first metal stabilization layer 8 and the second metal stabilization layer 9 for a very short time until the current conduction is stopped after the normal conduction transition, the corresponding current is applied to the high temperature superconducting coil. It is possible to grasp whether the current is safe for the operation of 32.
The current value to be passed through the simulated oxide superconducting wire 1A is changed variously and the same measurement operation is repeated, and it is investigated whether the superconducting characteristic of the simulated oxide superconducting wire 1A is deteriorated at any current.
If the current value to be energized is gradually increased and the same measurement operation is repeated, and the critical current value of the simulated oxide superconducting wire 1A decreases, the energized current used for the measurement operation corresponds to the corresponding simulated oxide superconductivity. This is the limit of the energization current when operating the wire 1A. Therefore, the operating current when operating the high-temperature superconducting coil 29 constructed using the oxide superconducting wire 1 having the same structure as the simulated oxide superconducting wire 1A is the limit obtained from the test using the above-described simulated oxide superconducting wire 1A. Therefore, the practical high-temperature superconducting coil 29 composed of the oxide superconducting wire 1 can be safely operated.

図1(A)に示す積層構造の酸化物超電導線材1において、第1の金属安定化層8と第2の金属安定化層9は形成材料に応じて固有抵抗が異なり、各層の幅、膜厚に応じて通電電流をバイパスさせた場合に生じる発熱量に差異を生じる。
このため、実際に運転するべき超電導コイルに適用する酸化物超電導線材と同等構造(第1の金属安定化層8と第2の金属安定化層9の材料、膜厚、幅を同等とした構造)の模擬酸化物超電導線材1Aを用意して図3に示すボビン32の巻胴36に複数ターン巻き付けて模擬試験用の模擬高温超電導コイル32を構成し、この模擬高温超電導コイル32を用いて上述の通電試験を繰り返し、模擬高温超電導コイル32の金属安定化層における限界電流密度を把握するならば、実用運転に使用する高温超電導コイルの安全な運転電流を求めることができる。
このように求めた運転電流に従い、実用の高温超電導コイル用の運転電流を決定して運転するならば、何らかの原因により不意に常電導転移を生じて運転電流が第1の金属安定化層8と第2の金属安定化層9に流れたとしても、金属安定化層に流れる電流が50mVを超えることを検出した時点で運転電流を遮断することにより、酸化物超電導線材1が特性劣化する前に通電を停止することができ、高温超電導コイル29は超電導特性が劣化しない。このため、上述のように決めた運転電流を適用することで高温超電導コイル29の安全運転ができる。
In the oxide superconducting wire 1 having a laminated structure shown in FIG. 1A, the first metal stabilizing layer 8 and the second metal stabilizing layer 9 have different specific resistances depending on the forming material, and the width and film thickness of each layer. There is a difference in the amount of heat generated when the energization current is bypassed according to the thickness.
For this reason, the structure equivalent to the oxide superconducting wire applied to the superconducting coil to be actually operated (the structure in which the material, film thickness, and width of the first metal stabilizing layer 8 and the second metal stabilizing layer 9 are equivalent) 3) and a plurality of turns are wound around the bobbin 32 of the bobbin 32 shown in FIG. 3 to form a simulated high temperature superconducting coil 32 for simulation testing. If the current test is repeated and the limit current density in the metal stabilization layer of the simulated high-temperature superconducting coil 32 is grasped, the safe operating current of the high-temperature superconducting coil used for practical operation can be obtained.
If the operation current for the practical high-temperature superconducting coil is determined and operated in accordance with the operation current thus obtained, the normal conduction transition will occur unexpectedly for some reason, and the operation current will be different from that of the first metal stabilizing layer 8. Even if the current flows in the second metal stabilization layer 9, the operating current is cut off when it is detected that the current flowing in the metal stabilization layer exceeds 50 mV before the oxide superconducting wire 1 deteriorates in characteristics. The energization can be stopped, and the superconducting characteristics of the high temperature superconducting coil 29 do not deteriorate. For this reason, the high temperature superconducting coil 29 can be safely operated by applying the operating current determined as described above.

以下に、実用構造の酸化物超電導線材を用いて高温超電導コイルの安全な運転電流を求めた実施例について説明するが、本発明は下記の実施例に限定されるものではない。
ハステロイC−276(商品名:米国ヘインズ社製)からなる幅5mmあるいは幅10mm、厚さ100μmのテープ状の基材上に、Alからなる膜厚100nmの拡散防止層と膜厚20nmのYのベッド層とMgOからなる膜厚10nmのIBAD配向層とCeOからなる膜厚400nmのキャップ層とYBaCu7−xなる組成の厚さ1μmの酸化物超電導層と厚さ2μmのAgからなる第1の金属安定化層を積層した複数の積層体を用意した。これらの積層体を500℃で10時間酸素雰囲気中において酸素アニール処理した。
得られた複数の積層体のそれぞれに後の表1に示す種々の厚さ(0.04〜0.3mm)の銅製の金属安定化テープをSnめっき半田層を介し貼り合わせ接合して試験用の模擬酸化物超電導線材を得た。
これらの模擬酸化物超電導線材を内径110mm、真鍮製の円筒状の巻胴の周囲に3ターン巻回し、試験用の高温超電導模擬コイルを構成した。この高温超電導模擬コイルを用いて図3に示す構成の超電導装置に組み込み、以下に説明する通電試験を行い、金属安定化層に流し得る限界の最大電流密度を求めた。
Hereinafter, examples in which a safe operating current of a high-temperature superconducting coil is obtained using an oxide superconducting wire having a practical structure will be described. However, the present invention is not limited to the following examples.
On a tape-like base material having a width of 5 mm or 10 mm and a thickness of 100 μm made of Hastelloy C-276 (trade name: manufactured by Haynes, USA), a diffusion preventing layer having a thickness of 100 nm made of Al 2 O 3 and a thickness of 20 nm. Y 2 O 3 bed layer, MgO 10 nm thick IBAD alignment layer, CeO 2 400 nm thick cap layer, and YBa 2 Cu 3 O 7-x composition 1 μm thick oxide superconducting layer A plurality of laminates were prepared by laminating a first metal stabilizing layer made of Ag having a thickness of 2 μm. These laminates were subjected to oxygen annealing treatment in an oxygen atmosphere at 500 ° C. for 10 hours.
For each of the obtained laminates, a metal stabilization tape made of copper having various thicknesses (0.04 to 0.3 mm) shown in Table 1 below is bonded and bonded via an Sn plating solder layer. A simulated oxide superconducting wire was obtained.
These simulated oxide superconducting wires were wound three turns around a cylindrical cylindrical body made of brass having an inner diameter of 110 mm to constitute a high-temperature superconducting simulated coil for testing. The high-temperature superconducting simulated coil was incorporated into a superconducting device having the configuration shown in FIG. 3, and an energization test described below was performed to obtain the maximum current density that could be passed through the metal stabilizing layer.

巻胴に3ターン巻回した模擬酸化物超電導線材には、図2に示す基準電圧測定点10、11からなる基準測定エリアS0を設け、基準測定エリアS0の幅を10mmに設定し、この基準測定エリアS0の中央部に加熱ヒーターを配置した。   The simulated oxide superconducting wire wound around the winding drum is provided with a reference measurement area S0 including reference voltage measurement points 10 and 11 shown in FIG. 2, and the width of the reference measurement area S0 is set to 10 mm. A heater was placed in the center of the measurement area S0.

図3に示す超電導装置の冷凍機を作動させ伝導冷却により表1に示す所定の温度に維持し、所定の電流を模擬酸化物超電導線材に通電して安定した超電導電流が流れることを確認した。その後、模擬酸化物超電導線材の基準測定エリアに設けたヒーターを作動させて模擬酸化物超電導線材を強制的に常電導転移させて電圧挙動を調査した。
図2に示す装置の電圧最小検出感度は0.01mVであり、電圧が発生した時点(=常電導転位した時点)を0secとしている。
The refrigerator of the superconducting device shown in FIG. 3 was operated and maintained at the predetermined temperature shown in Table 1 by conduction cooling, and a predetermined current was passed through the simulated oxide superconducting wire to confirm that a stable superconducting current flowed. Thereafter, the heater provided in the reference measurement area of the simulated oxide superconducting wire was operated to forcibly transfer the simulated oxide superconducting wire to normal conduction, and the voltage behavior was investigated.
The voltage minimum detection sensitivity of the apparatus shown in FIG. 2 is 0.01 mV, and the time when the voltage is generated (= the time when the normal conduction rearrangement occurs) is set to 0 sec.

電圧が50mV〜100mV発生した時点で電源装置から模擬酸化物超電導線材への通電を停止し、試験後、模擬酸化物超電導線材の劣化の有無を調べた。超電導特性劣化の有無は、模擬酸化物超電導線材を臨界温度以下に冷却した場合に測定できる臨界電流値(Ic)を調べることで判定した。
臨界電流は、電源装置23より通電して電圧測定点10、11あるいは17、18を用いて4端子法で測定した。臨界電流の測定基準(電圧)は1μV/cmとしている。
When the voltage was generated from 50 mV to 100 mV, power supply from the power supply device to the simulated oxide superconducting wire was stopped, and after the test, the presence or absence of deterioration of the simulated oxide superconducting wire was examined. The presence or absence of superconducting property deterioration was determined by examining the critical current value (Ic) that can be measured when the simulated oxide superconducting wire is cooled below the critical temperature.
The critical current was measured by the four-terminal method using the voltage measurement points 10, 11 or 17, 18 after energization from the power supply device 23. The critical current measurement standard (voltage) is 1 μV / cm.

以上の結果を以下の表1に記載する。以下の実施例1〜15、17、試験例13、18いずれも幅5mmの模擬酸化物超電導線材を用いた試験結果であり、実施例16は幅10mmの模擬酸化物超電導線材を用いた試験結果である。なお、実施例1〜17の場合の通電停止は、50mVを超える電圧が発生した場合に0.5S後に通電を停止する電流遮断器を用いたスイッチ操作、実施例19、試験例20の場合は50mVを超える電圧が発生した場合に100msec後に通電を停止する電流遮断器を用いたスイッチ操作による試験結果である。   The above results are listed in Table 1 below. The following Examples 1 to 15, 17 and Test Examples 13 and 18 are test results using a simulated oxide superconducting wire having a width of 5 mm, and Example 16 is a test result using a simulated oxide superconducting wire having a width of 10 mm. It is. In the case of Examples 1 to 17, the energization stop is a switch operation using a current breaker that stops energization after 0.5 S when a voltage exceeding 50 mV is generated. It is a test result by a switch operation using a current breaker that stops energization after 100 msec when a voltage exceeding 50 mV is generated.

また、表1に、冷凍機により酸化物超電導線材を冷却した場合の運転温度を示す。運転温度は77K、65K、50K、20Kの4通りに設定した。
表1に、模擬酸化物超電導線材を作製する場合の基板厚(ハステロイC−276(商品名:米国ヘインズ社製)製テープ基材の厚さ)、安定化銅厚さ(第2の金属安定化層を構成するCuテープの厚さ)、安定化層厚さ(Agの第1の金属安定化層厚さ+Cuの第2の金属安定化層の厚さ)、通電電流、安定化銅電流密度(Cuテープのみの電流密度)、安定化層電流密度(CuテープとAgの安定化層の総合値)を記載した。
また、通電試験する際、一部の高温超電導コイルの近傍に超電導磁石を設置し、表1に示す強さの外部磁場を印加して同様の試験を行い、外部磁場の影響を調べた。
Table 1 shows operating temperatures when the oxide superconducting wire is cooled by a refrigerator. The operating temperature was set to four types of 77K, 65K, 50K, and 20K.
Table 1 shows the substrate thickness (the thickness of the tape substrate made of Hastelloy C-276 (trade name: manufactured by Haynes, USA)) and the stabilized copper thickness (second metal stability) when a simulated oxide superconducting wire is produced. The thickness of the Cu tape constituting the stabilization layer), the stabilization layer thickness (the thickness of the first metal stabilization layer of Ag + the thickness of the second metal stabilization layer of Cu), the energization current, the stabilization copper current The density (current density of Cu tape only) and stabilization layer current density (total value of Cu tape and Ag stabilization layer) are described.
Further, when conducting an energization test, a superconducting magnet was installed in the vicinity of some of the high-temperature superconducting coils, an external magnetic field having the strength shown in Table 1 was applied, and a similar test was performed to examine the influence of the external magnetic field.

Figure 2014216412
Figure 2014216412

表1に示す結果から、実施例1〜12、実施例14〜17のいずれの模擬酸化物超電導線材を用いた高温超電導コイルであっても、通電電流をOFFにした後、再度臨界電流を測定しても異常は見られず、常電導転移後に再使用しても問題がないことを確認できた。
表1に示す結果から、安定化銅厚さ0.04mm〜0.3mm、換言すると、安定化層厚さ0.05mm〜0.31mmの模擬酸化物超電導線材に対し、通電電流80A〜400Aの範囲で支障なく高温超電導コイルを運転することができた。これらの試料において金属安定化層に流れた電流密度は65A/mm〜545A/mmであり、これら実施例の模擬酸化物超電導線材からなる高温超電導コイルは常電導転移後の臨界電流値の低下が見られないので、安全運転ができたと判断できる。
From the results shown in Table 1, even in the high-temperature superconducting coil using any of the simulated oxide superconducting wires of Examples 1 to 12 and Examples 14 to 17, the critical current was measured again after turning off the energizing current. However, no abnormality was found, and it was confirmed that there was no problem even if it was reused after transition to normal conduction.
From the results shown in Table 1, the stabilized copper thickness of 0.04 mm to 0.3 mm, in other words, for the simulated oxide superconducting wire with the stabilization layer thickness of 0.05 mm to 0.31 mm, The high-temperature superconducting coil could be operated without any problem in the range. In these samples, the current density flowing in the metal stabilization layer is 65 A / mm 2 to 545 A / mm 2 , and the high-temperature superconducting coil made of the simulated oxide superconducting wire of these examples has a critical current value after the normal conducting transition. Since no decrease is seen, it can be determined that safe driving has been achieved.

これらに対し、安定化層電流密度を727A/mmまで上昇させた試験例13の試料、安定化層電流密度を1000A/mmまで上昇させた試験例18の試料は常電導転移後の臨界電流値低下が見られた。
以上の結果から、50mVを超える電圧が生じてから0.5Sで電流を遮断した実施例1〜17の場合、金属安定化層に対し、常電導転移後に作用する電流密度を727A/mm未満、例えば65A/mm〜545A/mmの範囲とするならば、模擬酸化物超電導線材の異常加熱や焼損には繋がらず、良好な超電導特性を維持できることが判明した。よって基材上に中間層と酸化物超電導層と第1の金属安定化層と第2の金属安定化層を積層した模擬酸化物超電導線材からなる高温超電導コイルを運転する場合、金属安定化層に対し、常電導転移後に作用する電流密度を727A/mm未満とするように通電して運転するならば、安全な運転ができていると判断できる。
For these, samples increased the stabilizing layer current density to 727A / mm 2 Test Example 13, samples increased the stabilizing layer current density up to 1000A / mm 2 Test Example 18 critical after normal conductive transition A decrease in current value was observed.
From the above results, in Examples 1 to 17 where the current was cut off at 0.5 S after the voltage exceeding 50 mV was generated, the current density acting after the normal conduction transition on the metal stabilizing layer was less than 727 A / mm 2. For example, it was found that if the range is from 65 A / mm 2 to 545 A / mm 2 , the simulated oxide superconducting wire will not be abnormally heated or burned, and good superconducting characteristics can be maintained. Therefore, when operating a high-temperature superconducting coil made of a simulated oxide superconducting wire in which an intermediate layer, an oxide superconducting layer, a first metal stabilizing layer, and a second metal stabilizing layer are laminated on a base material, On the other hand, if the operation is performed by energizing the current density acting after the normal conduction transition to be less than 727 A / mm 2 , it can be determined that a safe operation is possible.

表1に示す実施例1〜17、試験例13、18は、0.5S後に遮断可能な遮断器による電流遮断であったが、市販の一般的な電流遮断器を用いた場合、50〜100msecの処理時間がかかる。表1の実施例19と試験例20の試料は、50mVの電圧を検出後、100msecで電流を遮断できる電流遮断器を用いて試験した結果を示す。この条件の場合、電流密度が1780A/mmになるように通電しても問題は無かったが、電流密度を2590A/mmになるように通電した試験例20では超電導特性が劣化した。
なお、表1に示す試験例13の試料と同等構造の試料に対し、50mVの電圧を検出後、100msecで電流を遮断できる電流遮断器を用いて試験例13で行った条件と同等条件で再度試験したところ、電流OFF後の超電導特性に劣化は生じなかった。また、表1に示す試験例18の試料と同等構造の試料に対し、50mVの電圧を検出後、100msecで電流を遮断できる電流遮断器を用いて試験例18で行った条件と同等条件で再度試験したところ、電流OFF後の超電導特性に劣化は生じなかった。
Examples 1 to 17 and Test Examples 13 and 18 shown in Table 1 were current interruptions by circuit breakers that could be interrupted after 0.5 S. However, when a commercially available general current circuit breaker was used, 50 to 100 msec. Processing time. The samples of Example 19 and Test Example 20 in Table 1 show the results of testing using a current breaker that can cut off the current at 100 msec after detecting a voltage of 50 mV. Under this condition, there was no problem even if the current density was 1780 A / mm 2 , but the superconducting characteristics deteriorated in Test Example 20 in which the current density was 2590 A / mm 2 .
In addition, for a sample having the same structure as the sample of Test Example 13 shown in Table 1, after detecting a voltage of 50 mV, again using a current breaker capable of interrupting current at 100 msec, again under the same conditions as those in Test Example 13 When tested, no deterioration occurred in the superconducting characteristics after the current was turned off. Further, for a sample having the same structure as the sample of Test Example 18 shown in Table 1, after detecting a voltage of 50 mV, again using a current breaker capable of interrupting current at 100 msec, again under the same conditions as those of Test Example 18 When tested, no deterioration occurred in the superconducting characteristics after the current was turned off.

電流遮断のために、0.5Sの時間を要するか、100msecの時間を要するかにより、金属安定化層の抵抗発熱量は異なり、遮断時間が長い場合に酸化物超電導層はより高温に加熱される。酸化物超電導層は300K程度に加熱されても劣化は生じない。酸化物超電導層は500K程度に温度上昇しても簡単に劣化はしないと考えられるが、現実的にはマージンを見て300Kとすることが望ましい。よって、0.5Sによる電流遮断ではなく一般市販の標準的な電流遮断器の能力を勘案し、100msecで電流遮断ができる場合に、遮断に要するまでに温度上昇する割合を勘案すると、金属安定化層に実施例19のように1780A/mm程度まで流しても、一般市販の電流遮断器であれば、金属安定化層が高温になって酸化物超電導層が劣化しないことがわかる。
以上の背景から、一般的な遮断速度(100msec)の電流遮断器を使用する場合に酸化物超電導線材の金属安定化層に流し得る限界電流密度は1780A/mmとみなすことができる。
Depending on whether 0.5S or 100msec is required to interrupt the current, the resistance heating value of the metal stabilizing layer varies. When the interruption time is long, the oxide superconducting layer is heated to a higher temperature. The The oxide superconducting layer does not deteriorate even when heated to about 300K. Although it is considered that the oxide superconducting layer does not easily deteriorate even when the temperature rises to about 500K, it is desirable that the oxide superconducting layer be 300K in view of the margin. Therefore, taking into consideration the ability of a standard commercially available current breaker instead of a current interruption by 0.5S, and taking into account the rate of temperature rise until the interruption is required when current interruption is possible at 100 msec, metal stabilization It can be seen that even when a current of up to about 1780 A / mm 2 is passed through the layer as in Example 19, the metal stabilizing layer becomes high temperature and the oxide superconducting layer does not deteriorate with a commercially available current breaker.
From the above background, the limit current density that can be passed through the metal stabilization layer of the oxide superconducting wire when using a current breaker with a general breaking speed (100 msec) can be regarded as 1780 A / mm 2 .

1…酸化物超電導線材、1A…模擬酸化物超電導線材、2…基材、3…拡散防止層、4…ベッド層、5…第1の中間層、6…第2の中間層、7…酸化物超電導層、8…第1の安定化層、9…第2の安定化層、10、11…基準電圧測定点、12…加熱ヒーター、13、17、18…電圧測定点、19…電圧測定装置、S0…基準測定エリア、S1…第1測定エリア、22…スイッチ装置、23…電源装置、25…制御装置、29…模擬高温超電導コイル、31…収容容器、32…模擬高温超電導コイル、33…冷凍機、35…ボビン、36…巻胴、37…鍔板、P…パンケーキコイル、44…データ収集測定器、46…データ処理装置。   DESCRIPTION OF SYMBOLS 1 ... Oxide superconducting wire, 1A ... Simulated oxide superconducting wire, 2 ... Base material, 3 ... Diffusion prevention layer, 4 ... Bed layer, 5 ... 1st intermediate | middle layer, 6 ... 2nd intermediate | middle layer, 7 ... Oxidation Superconducting layer, 8 ... first stabilization layer, 9 ... second stabilization layer, 10, 11 ... reference voltage measurement point, 12 ... heater, 13, 17, 18 ... voltage measurement point, 19 ... voltage measurement Device: S0 ... Reference measurement area, S1 ... First measurement area, 22 ... Switch device, 23 ... Power supply device, 25 ... Control device, 29 ... Simulated high temperature superconducting coil, 31 ... Container, 32 ... Simulated high temperature superconducting coil, 33 Refrigerator, 35 ... Bobbin, 36 ... Winding drum, 37 ... Plate, P ... Pancake coil, 44 ... Data collection measuring instrument, 46 ... Data processing device.

Claims (4)

基材上に中間層と酸化物超電導層と金属安定化層を備えた酸化物超電導線材からなる高温超電導コイルを用い、前記酸化物超電導層に対する通電電流を設定して高温超電導コイルを運転する際、常電導転移時に前記酸化物超電導層を劣化させることなく前記金属安定化層に流し得る最大電流以下の電流を通電電流として運転することを特徴とする高温超電導コイルの運転方法。   When operating a high-temperature superconducting coil using a high-temperature superconducting coil made of an oxide superconducting wire provided with an intermediate layer, an oxide superconducting layer, and a metal stabilizing layer on a base material, and setting an energizing current to the oxide superconducting layer A method for operating a high-temperature superconducting coil, wherein a current equal to or less than a maximum current that can be passed through the metal stabilization layer without deteriorating the oxide superconducting layer during normal conduction transition is operated as an energizing current. 前記常電導転移時に前記金属安定化層に流し得る最大電流に対応する最大電流密度を1780A/mm以下とする通電電流として運転することを特徴とする請求項1に記載の高温超電導コイルの運転方法。 The operation of the high-temperature superconducting coil according to claim 1, wherein the operation is performed as an energized current having a maximum current density corresponding to a maximum current that can flow through the metal stabilizing layer at the time of the normal conducting transition is 1780 A / mm 2 or less. Method. 前記金属安定化層に前記酸化物超電導線材の常電導転移に伴う50mV以上の電圧発生を検出する電圧検出手段を接続し、この電圧検出手段の電圧検出結果に基づいて前記酸化物超電導線材への通電を停止する通電停止手段を接続していることを特徴とする請求項1または請求項2に記載の高温超電導コイルの運転方法。   A voltage detecting means for detecting a voltage generation of 50 mV or more accompanying the normal conduction transition of the oxide superconducting wire is connected to the metal stabilizing layer, and the oxide superconducting wire is connected to the oxide superconducting wire based on the voltage detection result of the voltage detecting means. The method for operating a high-temperature superconducting coil according to claim 1 or 2, wherein an energization stopping means for stopping energization is connected. 前記電圧検出手段の電圧検出結果に基づいて前記酸化物超電導線材への通電を100msec以内に停止する通電停止手段を接続していることを特徴とする請求項2または請求項3に記載の高温超電導コイルの運転方法。   4. The high-temperature superconductivity according to claim 2, further comprising an energization stop unit that stops energization of the oxide superconducting wire within 100 msec based on a voltage detection result of the voltage detection unit. How to operate the coil.
JP2013091243A 2013-04-24 2013-04-24 Operating method of high temperature superconducting coil Active JP6163348B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013091243A JP6163348B2 (en) 2013-04-24 2013-04-24 Operating method of high temperature superconducting coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013091243A JP6163348B2 (en) 2013-04-24 2013-04-24 Operating method of high temperature superconducting coil

Publications (2)

Publication Number Publication Date
JP2014216412A true JP2014216412A (en) 2014-11-17
JP6163348B2 JP6163348B2 (en) 2017-07-12

Family

ID=51941928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013091243A Active JP6163348B2 (en) 2013-04-24 2013-04-24 Operating method of high temperature superconducting coil

Country Status (1)

Country Link
JP (1) JP6163348B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4033551A4 (en) * 2019-09-20 2022-11-23 Sumitomo Electric Industries, Ltd. Permanent current switch and superconducting device
JP7422780B2 (en) 2019-03-06 2024-01-26 トカマク エナジー リミテッド Transport current saturation HTS magnet

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62293703A (en) * 1986-06-13 1987-12-21 Ishikawajima Harima Heavy Ind Co Ltd Holder for superconducting coil
JP2002520881A (en) * 1998-07-17 2002-07-09 シーメンス アクチエンゲゼルシヤフト Resistive short-circuit current limiter having conductor structure made of high Tc superconductor material and method of manufacturing current limiter
JP2005197539A (en) * 2004-01-09 2005-07-21 Toshiba Corp Superconductivity current limiting element
JP2009267298A (en) * 2008-04-30 2009-11-12 Mayekawa Mfg Co Ltd Superconducting current limiter
JP2010010632A (en) * 2008-06-30 2010-01-14 Toshiba Corp Superconducting coil
JP2010518582A (en) * 2007-02-09 2010-05-27 アメリカン スーパーコンダクター コーポレーション HTS wire
WO2011129245A1 (en) * 2010-04-12 2011-10-20 株式会社フジクラ Superconducting wire material, superconducting coil, and superconducting protective device
JP2012033755A (en) * 2010-07-30 2012-02-16 Fujikura Ltd Superconducting device protective operation method and superconducting device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62293703A (en) * 1986-06-13 1987-12-21 Ishikawajima Harima Heavy Ind Co Ltd Holder for superconducting coil
JP2002520881A (en) * 1998-07-17 2002-07-09 シーメンス アクチエンゲゼルシヤフト Resistive short-circuit current limiter having conductor structure made of high Tc superconductor material and method of manufacturing current limiter
JP2005197539A (en) * 2004-01-09 2005-07-21 Toshiba Corp Superconductivity current limiting element
JP2010518582A (en) * 2007-02-09 2010-05-27 アメリカン スーパーコンダクター コーポレーション HTS wire
JP2009267298A (en) * 2008-04-30 2009-11-12 Mayekawa Mfg Co Ltd Superconducting current limiter
JP2010010632A (en) * 2008-06-30 2010-01-14 Toshiba Corp Superconducting coil
WO2011129245A1 (en) * 2010-04-12 2011-10-20 株式会社フジクラ Superconducting wire material, superconducting coil, and superconducting protective device
JP2012033755A (en) * 2010-07-30 2012-02-16 Fujikura Ltd Superconducting device protective operation method and superconducting device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7422780B2 (en) 2019-03-06 2024-01-26 トカマク エナジー リミテッド Transport current saturation HTS magnet
EP4033551A4 (en) * 2019-09-20 2022-11-23 Sumitomo Electric Industries, Ltd. Permanent current switch and superconducting device
JP7452547B2 (en) 2019-09-20 2024-03-19 住友電気工業株式会社 Persistent current switch and superconducting device

Also Published As

Publication number Publication date
JP6163348B2 (en) 2017-07-12

Similar Documents

Publication Publication Date Title
Park et al. Analysis of a joint method between superconducting YBCO coated conductors
WO2006036537A2 (en) Critical current testing techniques for superconducting conductors
JP6163348B2 (en) Operating method of high temperature superconducting coil
JP2011508968A (en) Fault current limiter incorporating superconducting articles
JP2013175293A (en) Superconductive current lead, current lead device, and superconducting magnet device
Lamas et al. Electrical and magnetic characterization of BSCCO and YBCO HTS tapes for fault current limiter application
Bagrets et al. Thermal properties of ReBCO copper stabilized superconducting tapes
Kwon et al. The effects of a stabilizer thickness of the YBCO coated conductor (CC) on the quench/recovery characteristics
Kim et al. An effect of HTS wire configuration on quench recovery time in a resistive SFCL
JP6101490B2 (en) Oxide superconducting wire connection structure and superconducting equipment
JP5548549B2 (en) Superconducting device protection operation method and superconducting device
Kim et al. Determination of maximum permissible temperature rise considering repetitive over-current characteristics of YBCO coated conductors
Iannone et al. Quench propagation in commercial REBCO composite tapes
US20190181326A1 (en) Superconductive lead
Wu et al. Electromechanical performance study on silver diffusion joints of REBCO coated conductors under axial tensile stress
Yim et al. Electrical behavior of Bi-2223/Ag tapes under applied alternating over-currents
Prasad et al. Fabrication and characterization of BSCCO-2223 tape compact coils
JP4845141B2 (en) Fuel current limiter
US11631534B2 (en) Superconducting wires for quench detection
JP4634954B2 (en) Superconducting device
Sohn et al. Fabrication and characteristics of 2G HTS current leads
Young et al. Characteristics of AC Loss in Multifilamentary MgB $ _ {2} $ Tapes
Na et al. Experimental analysis of bifilar pancake type fault current limiting coil using stabilizer-free coated conductor
WO2021094333A1 (en) Strain- or magnetic field-based quench detection
Ali et al. Demonstration of a three-dimensional current mapping technique around a superconductor in a prototype of a conventional superconducting fault current limiter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170619

R151 Written notification of patent or utility model registration

Ref document number: 6163348

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250