JP2012033685A5 - - Google Patents

Download PDF

Info

Publication number
JP2012033685A5
JP2012033685A5 JP2010171632A JP2010171632A JP2012033685A5 JP 2012033685 A5 JP2012033685 A5 JP 2012033685A5 JP 2010171632 A JP2010171632 A JP 2010171632A JP 2010171632 A JP2010171632 A JP 2010171632A JP 2012033685 A5 JP2012033685 A5 JP 2012033685A5
Authority
JP
Japan
Prior art keywords
pipe
cup
generation device
power generation
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010171632A
Other languages
Japanese (ja)
Other versions
JP5598138B2 (en
JP2012033685A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2010171632A priority Critical patent/JP5598138B2/en
Priority claimed from JP2010171632A external-priority patent/JP5598138B2/en
Publication of JP2012033685A publication Critical patent/JP2012033685A/en
Publication of JP2012033685A5 publication Critical patent/JP2012033685A5/ja
Application granted granted Critical
Publication of JP5598138B2 publication Critical patent/JP5598138B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Claims (14)

積層方向に貫通する貫通孔を内部に有するよう、金属と熱電材料が交互に積層され、前記貫通孔の貫通方向に平行な断面において、前記貫通方向に対して、前記金属と熱電材料の積層面が傾斜している積層体を用意する第1工程と、
前記金属と前記熱電材料を接合する第2工程と、
前記積層体の両端に第1電極と第2電極とを配置する第3工程と、
を具備する、熱発電デバイスの製造方法。
Metals and thermoelectric materials are alternately laminated so as to have through holes penetrating in the laminating direction, and in a cross section parallel to the through direction of the through holes, the metal and thermoelectric material laminated surface with respect to the through direction. A first step of preparing a laminated body having a slope;
A second step of joining the metal and the thermoelectric material;
A third step of disposing a first electrode and a second electrode at both ends of the laminate;
A method for manufacturing a thermoelectric power generation device.
前記第2工程を前記第1工程と共に行う、請求項1に記載の熱発電デバイスの製造方法。 The method for manufacturing a thermoelectric power generation device according to claim 1, wherein the second step is performed together with the first step. 前記金属および熱電材料が、内側面、外側面および貫通孔の軸に対して一定の角度を有する2つのテーパー面からなる、請求項2に記載の熱発電デバイスの製造方法。 The method for manufacturing a thermoelectric generation device according to claim 2, wherein the metal and the thermoelectric material include two tapered surfaces having a certain angle with respect to the inner surface, the outer surface, and the axis of the through hole. 前記積層された金属と熱電材料の塑性加工を行うことで、前記第2工程を前記第1工程と共に行う、請求項1または2に記載の熱発電デバイスの製造方法。 The method for manufacturing a thermoelectric power generation device according to claim 1 or 2, wherein the second step is performed together with the first step by performing plastic working of the laminated metal and the thermoelectric material. 積層方向に貫通する貫通孔を内部に有するよう、金属と熱電材料が交互に積層され、前記貫通孔の貫通方向に平行な断面において、前記貫通方向に対して、前記金属と熱電材料と傾斜している積層体を用意する工程と、
前記金属と前記熱電材料を接合する工程と、
を具備する、熱発電デバイスの積層体の製造方法。
The metal and the thermoelectric material are alternately laminated so as to have a through hole penetrating in the stacking direction, and the metal and the thermoelectric material are inclined with respect to the through direction in a cross section parallel to the through direction of the through hole. Preparing a laminated body,
Bonding the metal and the thermoelectric material;
The manufacturing method of the laminated body of the thermoelectric power generation device which comprises this.
積層方向に貫通する貫通孔を内部に有し、前記貫通孔の貫通方向に平行な断面において、
前記貫通方向に対して、積層面が傾斜している金属を、前記積層方向に空間を設けて積層する工程と、
前記空間に熱電材料を充填する工程と、
前記積層体の両端に第1電極と第2電極とを配置する工程と、
を具備する、熱発電デバイスの製造方法。
It has a through hole that penetrates in the stacking direction inside, and in a cross section parallel to the through direction of the through hole,
A step of laminating a metal whose laminating surface is inclined with respect to the penetrating direction by providing a space in the laminating direction;
Filling the space with a thermoelectric material;
Disposing a first electrode and a second electrode on both ends of the laminate;
A method for manufacturing a thermoelectric power generation device.
パイプ型熱発電デバイスの製造方法であって、  A method for manufacturing a pipe-type thermoelectric power generation device, comprising:
下端に第1貫通孔を有し、その下端の方向に断面積が減少する、金属からなる複数の第1カップ状部材と、下端に第2貫通孔を有し、その下端の方向に断面積が減少する、熱電材料からなる複数の第2カップ状部材とを交互に繰り返し配置することにより、複数の第1貫通孔および複数の第2貫通孔から構成される内部貫通孔を有するパイプを形成する工程(a)と、  A plurality of first cup-shaped members made of metal having a first through hole at the lower end and a cross-sectional area decreasing in the direction of the lower end, and a second through hole at the lower end and having a cross-sectional area in the direction of the lower end A pipe having an internal through-hole composed of a plurality of first through-holes and a plurality of second through-holes is formed by alternately and repeatedly arranging a plurality of second cup-shaped members made of thermoelectric materials. Step (a) to perform,
前記パイプを、前記パイプの長手方向に沿って前記パイプが圧縮される方向に圧力を印加しながら焼結することにより、積層体を形成する工程(b)と、  (B) forming a laminate by sintering the pipe while applying pressure in a direction in which the pipe is compressed along the longitudinal direction of the pipe;
前記積層体の一端に第1電極を、他端に第2電極を配置することにより、パイプ型熱発電デバイスを形成する工程(c)と、  (C) forming a pipe-type thermoelectric power generation device by disposing a first electrode on one end of the laminate and a second electrode on the other end;
を有するパイプ型熱発電デバイスの製造方法。  A method for manufacturing a pipe-type thermoelectric power generation device.
工程(a)において、前記パイプは、  In step (a), the pipe is
第1内面および第1外面を有する複数の前記第1カップ状部材と、第2内面および第2外面を有する複数の前記第2カップ状部材とを、    A plurality of the first cup-shaped members having a first inner surface and a first outer surface; and a plurality of the second cup-shaped members having a second inner surface and a second outer surface;
各第1カップ状部材が、各第1カップ状部材の第1外面が隣接する一方の第2カップ状部材の第2内面に接するように、隣接する一方の第2カップ状部材に挿入され、    Each first cup-shaped member is inserted into one adjacent second cup-shaped member such that the first outer surface of each first cup-shaped member is in contact with the second inner surface of one second cup-shaped member adjacent to each other,
前記隣接する他方の第2カップ状部材が、各第1カップ状部材の第1内面が隣接する他方の第2カップ状部材の第2外面に接するように、各第1カップ状部材に挿入されることにより形成される、    The other adjacent second cup-shaped member is inserted into each first cup-shaped member such that the first inner surface of each first cup-shaped member is in contact with the second outer surface of the other adjacent second cup-shaped member. Formed by
請求項7に記載のパイプ型熱発電デバイスの製造方法。  A method for manufacturing a pipe-type thermoelectric power generation device according to claim 7.
パイプ型熱発電デバイスの製造方法であって、  A method for manufacturing a pipe-type thermoelectric power generation device, comprising:
第1貫通孔を有し、金属からなる複数の第1平板状部材と、第2貫通孔を有し、熱電材料からなる複数の第2平板状部材とを交互に繰り返し配置することにより、複数の第1貫通孔および複数の第2貫通孔から構成される内部貫通孔を有するパイプを準備する工程(d)と、  A plurality of first flat plate members having a first through hole and made of metal and a plurality of second flat plate members having a second through hole and made of a thermoelectric material are alternately arranged. A step (d) of preparing a pipe having an internal through hole composed of the first through hole and the plurality of second through holes;
前記パイプを焼結する間、前記パイプの長手方向に沿って前記パイプが圧縮される方向と同時に、前記パイプの長手方向に沿って前記内部貫通孔の中心が押し出される方向または引き抜かれる方向に圧力を印加することにより、積層体を形成する工程(e)と、  While sintering the pipe, pressure is applied in the direction in which the center of the internal through hole is pushed out or pulled out along the longitudinal direction of the pipe, simultaneously with the direction in which the pipe is compressed along the longitudinal direction of the pipe. A step (e) of forming a laminate by applying
前記積層体の一端に第1電極を、他端に第2電極を配置することにより、パイプ型熱発電デバイスを形成する工程(f)と、  A step (f) of forming a pipe-type thermoelectric power generation device by disposing a first electrode on one end of the laminate and a second electrode on the other end;
を有するパイプ型熱発電デバイスの製造方法。  A method for manufacturing a pipe-type thermoelectric power generation device.
工程(e)において、前記パイプを構成する第1平板状部材および第2平板状部材の各接合面が前記パイプの長手方向に沿って傾斜する、前記積層体が形成される、  In the step (e), the laminated body is formed in which the joining surfaces of the first flat plate member and the second flat plate member constituting the pipe are inclined along the longitudinal direction of the pipe.
請求項9に記載のパイプ型熱発電デバイスの製造方法。  A method for manufacturing a pipe-type thermoelectric power generation device according to claim 9.
パイプ型熱発電デバイスの製造方法であって、  A method for manufacturing a pipe-type thermoelectric power generation device, comprising:
第1貫通孔を有し、金属からなる複数の第1平板状部材と、第2貫通孔を有し、熱電材料からなる複数の第2平板状部材とを交互に繰り返し配置することにより、複数の第1貫通孔および複数の第2貫通孔から構成される内部貫通孔を有するパイプを準備する工程(g)と、  A plurality of first flat plate members having a first through hole and made of metal and a plurality of second flat plate members having a second through hole and made of a thermoelectric material are alternately arranged. A step (g) of preparing a pipe having an internal through-hole composed of the first through-hole and a plurality of second through-holes;
前記パイプを焼結する間、前記パイプの長手方向に沿って前記パイプが圧縮される方向に圧力を印加することにより、第1積層体を形成する工程(h)と、  Forming a first laminate by applying pressure in a direction in which the pipe is compressed along the longitudinal direction of the pipe while the pipe is sintered (h);
前記第1積層体を塑性加工する間、前記パイプの長手方向に沿って前記内部貫通孔の中心が押し出されるまたは引き抜かれる方向に圧力を印加することにより、第2積層体を形成する工程(i)と、  A step of forming a second laminate by applying pressure in a direction in which the center of the internal through-hole is pushed out or pulled out along the longitudinal direction of the pipe during plastic processing of the first laminate (i) )When,
前記第2積層体の一端に第1電極を、他端に第2電極を配置することにより、パイプ型熱発電デバイスを形成する工程(j)と、  A step (j) of forming a pipe-type thermoelectric power generation device by disposing a first electrode on one end of the second laminate and a second electrode on the other end;
を有するパイプ型熱発電デバイスの製造方法。  A method for manufacturing a pipe-type thermoelectric power generation device.
工程(i)において、前記パイプを構成する第1平板状部材および第2平板状部材の各接合面が前記パイプの長手方向に沿って傾斜する、前記第2積層体が形成される、  In the step (i), the second laminate is formed in which the joining surfaces of the first flat plate member and the second flat plate member constituting the pipe are inclined along the longitudinal direction of the pipe.
請求項11に記載のパイプ型熱発電デバイスの製造方法。  The manufacturing method of the pipe-type thermoelectric power generation device according to claim 11.
パイプ型熱発電デバイスの製造方法であって、  A method for manufacturing a pipe-type thermoelectric power generation device, comprising:
下端に貫通孔を有し、その下端の方向に断面積が減少する金属からなる複数のカップ状部材を、空間を設けながら配置することにより、複数の貫通孔から構成される内部貫通孔を有するパイプを形成する工程(k)と、  By having a through hole at the lower end and arranging a plurality of cup-shaped members made of a metal whose cross-sectional area decreases in the direction of the lower end while providing a space, it has an internal through hole composed of a plurality of through holes. Forming a pipe (k);
前記パイプの各前記空間に熱電材料からなる流動体を充填することにより、積層体を形成する工程(l)と、  A step (l) of forming a laminate by filling each space of the pipe with a fluid made of a thermoelectric material;
前記積層体の一端に第1電極を、他端に第2電極を配置することにより、パイプ型熱発電デバイスを形成する工程(m)と、  Forming a pipe-type thermoelectric power generation device by disposing a first electrode on one end of the laminate and a second electrode on the other end (m);
を有するパイプ型熱発電デバイスの製造方法。  A method for manufacturing a pipe-type thermoelectric power generation device.
工程(k)において、前記パイプは、  In step (k), the pipe is
第1内面および第1外面を有する複数の前記カップ状部材を、    A plurality of the cup-shaped members having a first inner surface and a first outer surface,
各カップ状部材が、各カップ状部材の第1外面と隣接する一方のカップ状部材の第1内面との間に空間が設けられるように、隣接する一方のカップ状部材に挿入され、    Each cup-shaped member is inserted into one adjacent cup-shaped member such that a space is provided between the first outer surface of each cup-shaped member and the first inner surface of one cup-shaped member adjacent to each cup-shaped member,
前記隣接する他方のカップ状部材が、各カップ状部材の第1内面と隣接する他方のカップ状部材の第1外面との間に空間が設けられるように、各カップ状部材に挿入されることにより形成される、    The other adjacent cup-shaped member is inserted into each cup-shaped member such that a space is provided between the first inner surface of each cup-shaped member and the first outer surface of the other adjacent cup-shaped member. Formed by,
請求項13に記載のパイプ型熱発電デバイスの製造方法。  A method for manufacturing a pipe-type thermoelectric power generation device according to claim 13.
JP2010171632A 2010-07-30 2010-07-30 Method for manufacturing pipe-type thermoelectric power generation device, and method for manufacturing the laminate Active JP5598138B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010171632A JP5598138B2 (en) 2010-07-30 2010-07-30 Method for manufacturing pipe-type thermoelectric power generation device, and method for manufacturing the laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010171632A JP5598138B2 (en) 2010-07-30 2010-07-30 Method for manufacturing pipe-type thermoelectric power generation device, and method for manufacturing the laminate

Publications (3)

Publication Number Publication Date
JP2012033685A JP2012033685A (en) 2012-02-16
JP2012033685A5 true JP2012033685A5 (en) 2013-08-15
JP5598138B2 JP5598138B2 (en) 2014-10-01

Family

ID=45846758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010171632A Active JP5598138B2 (en) 2010-07-30 2010-07-30 Method for manufacturing pipe-type thermoelectric power generation device, and method for manufacturing the laminate

Country Status (1)

Country Link
JP (1) JP5598138B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5662490B2 (en) * 2012-03-07 2015-01-28 パナソニックIpマネジメント株式会社 Thermoelectric converter
WO2013150773A1 (en) * 2012-04-03 2013-10-10 パナソニック株式会社 Method for manufacturing pipe-shaped thermal power generation device
JP5834256B2 (en) * 2013-03-12 2015-12-16 パナソニックIpマネジメント株式会社 Thermoelectric generator, thermoelectric generator unit and thermoelectric generator system
JP5866533B2 (en) 2013-03-12 2016-02-17 パナソニックIpマネジメント株式会社 Thermoelectric generator unit, thermoelectric generator system and thermoelectric generator module
CN106684235B (en) * 2015-11-09 2019-04-02 北京卫星环境工程研究所 Space solar radiation electricity generation material porous structure and its device and manufacturing method
CN106684237B (en) * 2015-11-10 2019-05-31 北京卫星环境工程研究所 Space solar radiation electricity generation material grading structure and its device and manufacturing method
CN115188877A (en) * 2022-07-27 2022-10-14 武汉理工大学 Method for preparing flexible thermoelectric film with strong texture and high thermoelectric performance

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH098363A (en) * 1995-06-26 1997-01-10 Kubota Corp Thermoelectric conversion element and module thereof
DE19804487C2 (en) * 1998-02-05 1999-11-25 Hans Lengfellner Thermoelectric detector for the detection of continuous and pulsed radiation and method of manufacture
JP2001217469A (en) * 2000-02-04 2001-08-10 Sumitomo Special Metals Co Ltd Thermoelectric conversion element and its manufacturing method
JP2004319944A (en) * 2003-04-17 2004-11-11 Shizuoka Prefecture Cylindrical multilayer thermoelectric transducer
US20060048809A1 (en) * 2004-09-09 2006-03-09 Onvural O R Thermoelectric devices with controlled current flow and related methods
JP4078392B1 (en) * 2006-11-10 2008-04-23 松下電器産業株式会社 Power generation method using thermoelectric power generation element, thermoelectric power generation element and manufacturing method thereof, and thermoelectric power generation device
EP2165074B1 (en) * 2007-06-08 2017-03-15 Carver Scientific, Inc. Device and method for converting thermal energy into electrical energy

Similar Documents

Publication Publication Date Title
JP2012033685A5 (en)
EP1808908A3 (en) Multilayer piezoelectric devices and method of producing the same
EP3018711A8 (en) Semiconductor device and manufacturing method for the semiconductor device
EP2803480A3 (en) Production method of multilayer clad material
EP2500702A3 (en) Vibration transducer
JP2011176038A5 (en)
JP2009027039A5 (en)
WO2010000261A8 (en) A transducer comprising a composite material and method of making such a composite material
WO2008105382A1 (en) Laminated piezoelectric element
TW200715322A (en) Multilayer capaction
EP2211383A3 (en) Metal bonded nanotube array
EP2418297A3 (en) A method of manufacturing a fibre reinforced metal matrix composite article
JP2005168281A5 (en)
EP2213391A3 (en) A method of joining plates of material to form a structure
EP2629343A3 (en) Thermoelectric conversion module and method for manufacturing thermoelectric conversion module
JP2010159997A5 (en) Contact probe
EP2226133A3 (en) Method of manufacturing an aerofoil
JP5598138B2 (en) Method for manufacturing pipe-type thermoelectric power generation device, and method for manufacturing the laminate
EP2733590A3 (en) Touch sensor and method of manufacturing the same
KR20160026499A (en) Piezoelectric element and piezoelectric vibration module including the same
JP5482063B2 (en) Thermoelectric conversion element and manufacturing method thereof
EP3059073A3 (en) Manufacture of thermoplastic core
JP2015145124A5 (en)
JP2005108989A5 (en)
EP2233223A3 (en) A method of forming an internal structure in a hollow component