JP2012031752A - Heat insulating structure of internal combustion engine - Google Patents

Heat insulating structure of internal combustion engine Download PDF

Info

Publication number
JP2012031752A
JP2012031752A JP2010170094A JP2010170094A JP2012031752A JP 2012031752 A JP2012031752 A JP 2012031752A JP 2010170094 A JP2010170094 A JP 2010170094A JP 2010170094 A JP2010170094 A JP 2010170094A JP 2012031752 A JP2012031752 A JP 2012031752A
Authority
JP
Japan
Prior art keywords
heat insulating
structural member
combustion engine
internal combustion
insulating structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010170094A
Other languages
Japanese (ja)
Inventor
Takashi Sasajima
崇司 笹嶋
Daisaku Sawada
大作 澤田
Eiichi Kamiyama
栄一 神山
Hideo Yamashita
英男 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2010170094A priority Critical patent/JP2012031752A/en
Publication of JP2012031752A publication Critical patent/JP2012031752A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Thermal Insulation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a technique that is also applied to a part where a thin-film heat insulating material is required, in a heat insulating structure that is attached to a structural member of an internal combustion engine.SOLUTION: The structure includes: the heat insulating material 3 which connects to a plurality of porous materials; and an organic material 40 which has heating and disappearing characteristics and which is impregnated with the heat insulating material 3. The structure is also designed to be joined to the structural member 20 of the internal combustion engine via the organic material 40. The heat insulating structure 10 burns down the organic material 40 positioned on a surface of the heat insulating structure 10, and remains the organic material 40 positioned adjacent to a joint surface between the structural member 20 and itself without burning down it. As a result, the heat insulating structure 10 makes the thickness thereof thin without deteriorating a joining state between the heat insulating structure 10 and the structural member 20.

Description

本発明は、内燃機関の構造部材に接合される断熱構造体に関する。   The present invention relates to a heat insulating structure joined to a structural member of an internal combustion engine.

自動車などに搭載される内燃機関において、構造部材の耐熱性の向上や、冷却損失の低減などを目的として、断熱材が設けられる場合がある。ところで、断熱材と構造部材とが直接接合されると、それらの接合界面において剥離などが発生する可能性がある。このような問題に対し、接着剤が含浸された多孔質材を介して断熱材と構造部材とを接合する方法が提案されている(たとえば、特許文献1を参照)。   In an internal combustion engine mounted on an automobile or the like, a heat insulating material may be provided for the purpose of improving the heat resistance of a structural member or reducing cooling loss. By the way, when a heat insulating material and a structural member are directly joined, peeling or the like may occur at the joining interface between them. For such a problem, a method of joining a heat insulating material and a structural member via a porous material impregnated with an adhesive has been proposed (see, for example, Patent Document 1).

特開2009−257104号公報JP 2009-257104 A

ところで、上記した方法によると、断熱材と構造部材との間に介在する部材により厚さが増すため、薄膜の断熱材が必要な箇所に適用することができない可能性がある。   By the way, according to the above-described method, since the thickness is increased by a member interposed between the heat insulating material and the structural member, there is a possibility that the thin film heat insulating material cannot be applied to a necessary place.

本発明は、上記したような種々の実情に鑑みてなされたものであり、その目的は、内燃機関の断熱構造体において、薄膜の断熱材が必要な箇所にも適用し得る技術の提供にある。   The present invention has been made in view of various circumstances as described above, and an object of the present invention is to provide a technique that can be applied to a place where a thin-film heat insulating material is required in a heat insulating structure of an internal combustion engine. .

本発明は、上記した課題を解決するために、多孔質の断熱材に有機材を含浸させるとともに、断熱材が有機材を介して内燃機関の構造部材に接合されるようにした。   In order to solve the above-described problems, the present invention is made to impregnate a porous heat insulating material with an organic material and to bond the heat insulating material to a structural member of the internal combustion engine via the organic material.

詳細には、本発明に係わる内燃機関の断熱構造体は、
複数の多孔質材が連結された断熱材と、
加熱消失性を有し、前記断熱材に含浸される有機材と、
を含み、
前記有機材を介して内燃機関の構造部材に接合されるようにした。
In detail, the heat insulating structure of the internal combustion engine according to the present invention is:
A heat insulating material in which a plurality of porous materials are connected;
An organic material having heat dissipation properties and impregnated in the heat insulating material;
Including
It was made to join to the structural member of the internal combustion engine through the organic material.

このように構成された内燃機関の断熱構造体によれば、断熱構造体の表面に位置する有機材は、内燃機関が発生する熱を受けて消失する。その結果、断熱構造体の表面近傍に位置する断熱材が露出し、断熱機能が働くようになる。   According to the heat insulation structure of the internal combustion engine configured as described above, the organic material located on the surface of the heat insulation structure disappears in response to heat generated by the internal combustion engine. As a result, the heat insulating material located near the surface of the heat insulating structure is exposed, and the heat insulating function is activated.

また、断熱構造体において該断熱構造体の表面から離間した部位、特に構造部材との接合面近傍に位置する有機材は、露出した断熱材の断熱作用により加熱を免れるため、消失することなく残留する。その結果、断熱構造体と構造部材との接合状態が維持される。さらに、断熱材と構造部材との熱膨張差は有機材によって減衰されるため、接合界面の剥離も抑制される。   Further, in the heat insulation structure, the organic material located in the part away from the surface of the heat insulation structure, particularly in the vicinity of the joint surface with the structural member, escapes from the heat due to the heat insulation action of the exposed heat insulation material, and thus remains without disappearing. To do. As a result, the joined state between the heat insulating structure and the structural member is maintained. Furthermore, since the thermal expansion difference between the heat insulating material and the structural member is attenuated by the organic material, peeling of the bonding interface is also suppressed.

したがって、本発明に係わる内燃機関の断熱構造体によれば、断熱構造体と構造部材との接合状態の悪化を抑制しつつ、断熱構造体の厚みを抑えることができる。その結果、本発明の断熱構造体は、薄膜の断熱材が必要な箇所にも適用することができる。   Therefore, according to the heat insulating structure of the internal combustion engine according to the present invention, it is possible to suppress the thickness of the heat insulating structure while suppressing deterioration of the bonding state between the heat insulating structure and the structural member. As a result, the heat insulating structure of the present invention can be applied to a place where a thin film heat insulating material is required.

本発明の有機材としては、断熱材より高い熱伝導率を有する有機材を用いることができる。その場合、断熱構造体の表面において、有機材が均一に消失する。その結果、断熱構造体の表面において、断熱材の露出度合を均一にすることができる。   As the organic material of the present invention, an organic material having a higher thermal conductivity than the heat insulating material can be used. In that case, the organic material disappears uniformly on the surface of the heat insulating structure. As a result, the exposure degree of the heat insulating material can be made uniform on the surface of the heat insulating structure.

本発明において、断熱構造体が接合される構造部材は、樹脂成形材であってもよく、あるいは金属であってもよい。なお、構造部材が金属である場合は、本発明に係わる有機材として、有機系接着剤を用いることもできる。その場合、断熱構造体と金属製の構造部材との接合状態の悪化を抑制しつつ、断熱構造体の厚みを抑えることができる。   In the present invention, the structural member to which the heat insulating structure is joined may be a resin molded material or a metal. When the structural member is a metal, an organic adhesive can be used as the organic material according to the present invention. In that case, the thickness of the heat insulating structure can be suppressed while suppressing the deterioration of the bonding state between the heat insulating structure and the metal structural member.

また、本発明の断熱構造体が接合される構造部材としては、内燃機関の冷却水により冷却される構造部材が望ましい。これは、内燃機関が発生する熱、特に燃料が燃焼した際に発生する熱が冷却水へ放熱されると、冷却損失が大きくなり易いからである。   Moreover, as a structural member to which the heat insulation structure of this invention is joined, the structural member cooled with the cooling water of an internal combustion engine is desirable. This is because if the heat generated by the internal combustion engine, particularly the heat generated when the fuel burns, is radiated to the cooling water, the cooling loss tends to increase.

本発明において、有機材が含浸された断熱材の厚さ(加熱消失した部位を除く部分の厚さ)は、断熱材と金属製の構造部材との熱膨張差を吸収可能な範囲の最小値以上に設定されるようにしてもよい。その場合、断熱構造体の厚さは、断熱構造体と金属製の構造部材との接合状態が悪化しない範囲において可及的に薄くすることができる。   In the present invention, the thickness of the heat insulating material impregnated with the organic material (the thickness of the portion excluding the portion where the heat disappears) is the minimum value within a range in which the difference in thermal expansion between the heat insulating material and the metal structural member can be absorbed. It may be set as described above. In that case, the thickness of the heat insulating structure can be made as thin as possible within a range in which the bonding state between the heat insulating structure and the metal structural member does not deteriorate.

本発明の内燃機関の断熱構造体によれば、断熱構造体と構造部材との接合状態の悪化を抑制しつつ、断熱構造体の厚みを抑えることができる。その結果、本発明の内燃機関の断熱構造体は、薄膜の断熱材が必要な箇所にも適用することができる。   According to the heat insulating structure of the internal combustion engine of the present invention, it is possible to suppress the thickness of the heat insulating structure while suppressing deterioration of the joined state between the heat insulating structure and the structural member. As a result, the heat insulating structure of the internal combustion engine of the present invention can be applied to a place where a thin film heat insulating material is required.

第1の実施例において未使用時の断熱構造体の構成を示す図である。It is a figure which shows the structure of the heat insulation structure at the time of unused in a 1st Example. 第1の実施例において使用時の断熱構造体の構成を示す図である。It is a figure which shows the structure of the heat insulation structure at the time of use in a 1st Example. 第2の実施例において未使用時の断熱構造体の構成を示す図である。It is a figure which shows the structure of the heat insulation structure at the time of unused in a 2nd Example. 第2の実施例において使用時の断熱構造体の構成を示す図である。It is a figure which shows the structure of the heat insulation structure at the time of use in a 2nd Example.

以下、本発明の具体的な実施形態について図面に基づいて説明する。本実施形態に記載される構成部品の寸法、材質、形状、相対配置等は、特に記載がない限り発明の技術的範囲をそれらのみに限定する趣旨のものではない。   Hereinafter, specific embodiments of the present invention will be described with reference to the drawings. The dimensions, materials, shapes, relative arrangements, and the like of the components described in the present embodiment are not intended to limit the technical scope of the invention to those unless otherwise specified.

<実施例1>
先ず、本発明の第1の実施例について図1,2に基づいて説明する。図1は未使用時(新品状態)における断熱構造体の構成を示し、図2は使用時における断熱構造体の構成を示す。なお、本実施例では、樹脂製の構造部材(樹脂成形体)に断熱構造体を適用する場合について述べる。
<Example 1>
First, a first embodiment of the present invention will be described with reference to FIGS. FIG. 1 shows the structure of the heat insulation structure when not in use (new state), and FIG. 2 shows the structure of the heat insulation structure when in use. In addition, a present Example describes the case where a heat insulation structure is applied to a resin-made structural member (resin molding).

図1,2において、断熱構造体1は、樹脂製の構造部材2と一体成形されている。断熱構造体1は、複数の多孔質材を耐熱性の高い接合媒体によって連結させた断熱材3と、断熱材3に含浸されるとともに断熱材3を被覆する有機系樹脂4と、から形成されている。なお、断熱材3を形成する多孔質材としてはセラミックなどを用いることができる。有機系樹脂4としては、HやCを主成分とする合成樹脂などを用いることができる。また、構造部材2は、断熱構造体1の有機系樹脂4と同性状の樹脂で形成されてもよく、あるいは有機系樹脂4とは異なる性状の樹脂で形成されてもよい。   1 and 2, the heat insulating structure 1 is integrally formed with a resin structural member 2. The heat insulating structure 1 is formed of a heat insulating material 3 in which a plurality of porous materials are connected by a bonding medium having high heat resistance, and an organic resin 4 that is impregnated in the heat insulating material 3 and covers the heat insulating material 3. ing. In addition, as the porous material forming the heat insulating material 3, ceramic or the like can be used. As the organic resin 4, a synthetic resin mainly containing H or C can be used. The structural member 2 may be formed of a resin having the same property as the organic resin 4 of the heat insulating structure 1 or may be formed of a resin having a property different from that of the organic resin 4.

上記した断熱構造体1は、有機系樹脂4の中に断熱材3を浸した状態で成形される。なお、構造部材2が有機系樹脂4と同性状の樹脂で成形される場合は、樹脂の中に断熱材3
を浸した状態で断熱構造体1および構造部材2を一体成形してもよい。
The above-described heat insulating structure 1 is molded with the heat insulating material 3 immersed in the organic resin 4. In addition, when the structural member 2 is shape | molded with resin of the same property as the organic resin 4, the heat insulating material 3 is contained in resin.
The heat insulating structure 1 and the structural member 2 may be integrally molded in a state in which is immersed.

このように構成された断熱構造体1が内燃機関に取り付けられると、内燃機関が発生する熱により断熱構造体1の表面が加熱される。その場合、断熱構造体1の表面に位置する有機系樹脂4が焼失することになる。その結果、図2に示すように、断熱構造体1の表面付近に位置する断熱材3が露出する。   When the heat insulating structure 1 configured as described above is attached to the internal combustion engine, the surface of the heat insulating structure 1 is heated by the heat generated by the internal combustion engine. In that case, the organic resin 4 located on the surface of the heat insulating structure 1 is burned out. As a result, as shown in FIG. 2, the heat insulating material 3 located near the surface of the heat insulating structure 1 is exposed.

図2に示すように、断熱構造体1の表面付近の断熱材3が露出すると、当該断熱構造体1の断熱機能が働くようになる。その結果、構造部材2へ伝わる熱量を減少させることができる。さらに、露出した断熱材3は、断熱構造体1における構造部材2との接合部分(図1,2中の破線を参照)近傍に位置する有機系樹脂4へ伝わる熱量をも減少させる。そのため、前記した接合部分近傍に位置する有機系樹脂4は、消失せずに残留する。その結果、断熱構造体1と構造部材2との接合状態が適切に保たれる。   As shown in FIG. 2, when the heat insulating material 3 near the surface of the heat insulating structure 1 is exposed, the heat insulating function of the heat insulating structure 1 is activated. As a result, the amount of heat transferred to the structural member 2 can be reduced. Furthermore, the exposed heat insulating material 3 also reduces the amount of heat transmitted to the organic resin 4 located in the vicinity of the joint portion (see the broken line in FIGS. 1 and 2) of the heat insulating structure 1 with the structural member 2. Therefore, the organic resin 4 located in the vicinity of the above-described joining portion remains without disappearing. As a result, the bonding state between the heat insulating structure 1 and the structural member 2 is appropriately maintained.

したがって、本実施例によれば、断熱構造体1と構造部材2との接合状態の悪化を抑制しつつ、断熱構造体1の厚みを抑えることができる。そのため、本実施例の断熱構造体1は、薄膜の断熱材が必要な箇所に適用することが可能となる。   Therefore, according to the present Example, the thickness of the heat insulation structure 1 can be suppressed, suppressing the deterioration of the joining state of the heat insulation structure 1 and the structural member 2. FIG. Therefore, it becomes possible to apply the heat insulation structure 1 of a present Example to the location where a thin film heat insulating material is required.

<実施例2>
次に、本発明の第2の実施例について図3,4に基づいて説明する。ここでは、前述した第1の実施例と異なる構成について説明し、同様の構成については説明を省略する。
<Example 2>
Next, a second embodiment of the present invention will be described with reference to FIGS. Here, a configuration different from that of the first embodiment will be described, and description of the same configuration will be omitted.

前述した第1の実施例と本実施例との相違点は、断熱構造体が金属製の構造部材に接合される点にある。図3は未使用時における断熱構造体の構成を示し、図4は使用時における断熱構造体の構成を示す。   The difference between the first embodiment described above and this embodiment is that the heat insulating structure is joined to a metal structural member. FIG. 3 shows the structure of the heat insulating structure when not in use, and FIG. 4 shows the structure of the heat insulating structure when in use.

図3,4において、断熱構造体10は、金属製の構造部材20に接合されている。断熱構造体10は、複数の多孔質材を耐熱性の高い接合媒体によって連結させた断熱材3と、断熱材3に含浸された有機系接着剤40と、から形成されている。なお、有機系接着剤40としては、HやCを主成分とする接着剤を用いることができる。その際、有機系接着剤40の成分は、該有機系接着剤40のヤング率が断熱材3のヤング率の100分の1から20分の1の範囲に収まるように定められると好適である。また、断熱構造体10と構造部材20とは、前記した有機系接着剤40により接合されている。   3 and 4, the heat insulating structure 10 is joined to a metal structural member 20. The heat insulating structure 10 is formed of a heat insulating material 3 in which a plurality of porous materials are connected by a bonding medium having high heat resistance, and an organic adhesive 40 impregnated in the heat insulating material 3. As the organic adhesive 40, an adhesive mainly composed of H or C can be used. At that time, the component of the organic adhesive 40 is preferably determined so that the Young's modulus of the organic adhesive 40 falls within the range of 1/100 to 1/20 of the Young's modulus of the heat insulating material 3. . Further, the heat insulating structure 10 and the structural member 20 are joined by the organic adhesive 40 described above.

上記した断熱構造体10は、断熱材3に有機系接着剤40を含浸させることにより成形される。また、断熱構造体10と構造部材20との接合は、有機系接着剤40が含浸された断熱材3を構造部材20へ固定した状態で前記有機系接着剤40を固化させることにより成される。   The heat insulating structure 10 described above is molded by impregnating the heat insulating material 3 with the organic adhesive 40. The heat insulating structure 10 and the structural member 20 are joined by solidifying the organic adhesive 40 in a state where the heat insulating material 3 impregnated with the organic adhesive 40 is fixed to the structural member 20. .

このように構成された断熱構造体10が内燃機関に取り付けられると、内燃機関が発生する熱により断熱構造体10の表面が加熱される。その場合、断熱構造体10の表面に位置する有機系接着剤40が焼失することになる。その結果、図4に示すように、断熱構造体10の表面付近に位置する断熱材3が露出する。   When the heat insulating structure 10 configured as described above is attached to the internal combustion engine, the surface of the heat insulating structure 10 is heated by the heat generated by the internal combustion engine. In that case, the organic adhesive 40 located on the surface of the heat insulating structure 10 is burned away. As a result, as shown in FIG. 4, the heat insulating material 3 located near the surface of the heat insulating structure 10 is exposed.

図4に示すように、断熱構造体10の表面付近の断熱材3が露出すると、当該断熱構造体10の断熱機能が働くようになる。その結果、構造部材20へ伝わる熱量を減少させることができる。さらに、露出した断熱材3は、断熱構造体10における構造部材20との接合部分近傍に位置する有機系接着剤40へ伝わる熱量をも減少させる。そのため、前記した接合部分近傍に位置する有機系接着剤40は、消失せずに残留する。その結果、断熱構造体10と構造部材20との接合状態が適切に保たれる。   As shown in FIG. 4, when the heat insulating material 3 near the surface of the heat insulating structure 10 is exposed, the heat insulating function of the heat insulating structure 10 works. As a result, the amount of heat transferred to the structural member 20 can be reduced. Furthermore, the exposed heat insulating material 3 also reduces the amount of heat transferred to the organic adhesive 40 located in the vicinity of the joint portion of the heat insulating structure 10 with the structural member 20. Therefore, the organic adhesive 40 located in the vicinity of the joint portion described above remains without disappearing. As a result, the bonding state between the heat insulating structure 10 and the structural member 20 is appropriately maintained.

ところで、断熱構造体10(断熱材3)と構造部材20は、熱膨張率が相異する。よって、断熱構造体10の表面に位置する有機系接着剤40が消失した後において、有機系接着剤40が含浸された部分の厚さ(図4中のt)は、断熱構造体10と構造部材20との熱膨張差を吸収可能な最小の厚さtminに所定のマージンを加算した厚さになることが好ましい。なお、前記した最小の厚さtminは、以下に式によって演算することができる。   By the way, the thermal expansion coefficient of the heat insulation structure 10 (heat insulation material 3) and the structural member 20 are different. Therefore, after the organic adhesive 40 located on the surface of the heat insulating structure 10 disappears, the thickness of the portion impregnated with the organic adhesive 40 (t in FIG. 4) is the same as the structure of the heat insulating structure 10. It is preferable that a thickness obtained by adding a predetermined margin to the minimum thickness tmin that can absorb the thermal expansion difference from the member 20 is preferable. The minimum thickness tmin described above can be calculated by the following equation.

tmin=D*(E/E)*(α−α)*ΔT
上記の式において、Dは、断熱構造体10と構造部材20との接合面の長さ(図4中のD)である。E,Eは、断熱材3、有機系接着剤40のそれぞれのヤング率である。α0,αは、構造部材20、断熱材3のそれぞれの熱膨張率である。ΔTは、接合界面の温度変化量である。
tmin = D * (E 2 / E 1 ) * (α 0 −α 1 ) * ΔT
In said formula, D is the length (D in FIG. 4) of the joint surface of the heat insulation structure 10 and the structural member 20. As shown in FIG. E 1 and E 2 are Young's moduli of the heat insulating material 3 and the organic adhesive 40, respectively. α 0 and α 1 are the thermal expansion coefficients of the structural member 20 and the heat insulating material 3, respectively. ΔT is the amount of temperature change at the bonding interface.

前記した最小の厚さtminが求められると、それに消失部分の厚さtbとマージンtmとを加算することにより、新品時における断熱構造体10の適切な厚さを求めることができる。また、断熱材3の材質や有機系接着剤40の性状は、接合面の長さDに対する前記した厚さtの比率が100分の1から10分の1の範囲に収まるように定められてもよい。   When the minimum thickness tmin is obtained, the thickness tb of the disappearing portion and the margin tm are added to the minimum thickness tmin, so that an appropriate thickness of the heat insulating structure 10 when new can be obtained. Further, the material of the heat insulating material 3 and the properties of the organic adhesive 40 are determined so that the ratio of the thickness t to the length D of the joint surface falls within a range of 1/100 to 1/10. Also good.

このようにして断熱構造体10の厚さが定められると、断熱構造体10と構造部材20との接合状態が悪化しない範囲において、断熱構造体10の厚さを可及的に薄くすることができる。その結果、本実施例における断熱構造体10は、内燃機関の燃焼室を形成するピストン頂面、シリンダヘッドの内壁面、あるいはバルブの弁体などに取り付けることが可能となる。そのような場合は、燃焼室内で燃料が燃焼した際に発生する熱が冷却水へ放熱され難くなるため、内燃機関の冷却損失を少なく抑えることも可能になる。   When the thickness of the heat insulating structure 10 is determined in this way, the thickness of the heat insulating structure 10 can be made as thin as possible within a range where the bonded state between the heat insulating structure 10 and the structural member 20 does not deteriorate. it can. As a result, the heat insulating structure 10 in the present embodiment can be attached to the top surface of the piston forming the combustion chamber of the internal combustion engine, the inner wall surface of the cylinder head, the valve body of the valve, or the like. In such a case, the heat generated when the fuel burns in the combustion chamber is not easily dissipated to the cooling water, so that it is possible to reduce the cooling loss of the internal combustion engine.

1 断熱構造体
2 構造部材
3 断熱材
4 有機系樹脂
10 断熱構造体
20 構造部材
40 有機系接着剤
DESCRIPTION OF SYMBOLS 1 Thermal insulation structure 2 Structural member 3 Thermal insulation material 4 Organic resin 10 Thermal insulation structure 20 Structural member 40 Organic adhesive

Claims (6)

複数の多孔質材が連結された断熱材と、
加熱消失性を有し、前記断熱材に含浸される有機材と、
を含み、
前記有機材を介して内燃機関の構造部材に接合される内燃機関の断熱構造体。
A heat insulating material in which a plurality of porous materials are connected;
An organic material having heat dissipation properties and impregnated in the heat insulating material;
Including
The heat insulation structure of the internal combustion engine joined to the structural member of the internal combustion engine through the organic material.
請求項1において、前記有機材の熱伝導率は、前記断熱材の熱伝導率より高い内燃機関の断熱構造体。   2. The heat insulating structure for an internal combustion engine according to claim 1, wherein the organic material has a thermal conductivity higher than that of the heat insulating material. 請求項1又は2において、前記構造部材は、樹脂成形材である内燃機関の断熱構造体。   3. The heat insulating structure for an internal combustion engine according to claim 1, wherein the structural member is a resin molding material. 請求項1又は2において、前記構造部材は、金属成形材であり、
前記有機材は、有機系接着剤である内燃機関の断熱構造体。
In Claim 1 or 2, the structural member is a metal forming material,
The organic material is a heat insulating structure of an internal combustion engine which is an organic adhesive.
請求項1乃至4の何れか1項において、前記構造部材は、内燃機関の冷却水により冷却される部材である内燃機関の断熱構造体。   5. The heat insulating structure for an internal combustion engine according to claim 1, wherein the structural member is a member that is cooled by cooling water of the internal combustion engine. 請求項4において、有機材が含浸された断熱材の厚さは、前記断熱材と前記金属との熱膨張差を吸収可能な範囲の最小値以上に設定される内燃機関の断熱構造体。   5. The heat insulating structure for an internal combustion engine according to claim 4, wherein the thickness of the heat insulating material impregnated with the organic material is set to be equal to or greater than a minimum value in a range in which a difference in thermal expansion between the heat insulating material and the metal can be absorbed.
JP2010170094A 2010-07-29 2010-07-29 Heat insulating structure of internal combustion engine Withdrawn JP2012031752A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010170094A JP2012031752A (en) 2010-07-29 2010-07-29 Heat insulating structure of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010170094A JP2012031752A (en) 2010-07-29 2010-07-29 Heat insulating structure of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2012031752A true JP2012031752A (en) 2012-02-16

Family

ID=45845462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010170094A Withdrawn JP2012031752A (en) 2010-07-29 2010-07-29 Heat insulating structure of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2012031752A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014020300A (en) * 2012-07-19 2014-02-03 Mazda Motor Corp Heat insulation structure for engine combustion chamber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014020300A (en) * 2012-07-19 2014-02-03 Mazda Motor Corp Heat insulation structure for engine combustion chamber

Similar Documents

Publication Publication Date Title
JP2011149430A (en) Tube body and exhaust gas system
JP2010171350A (en) Heat dissipation structure
JP2008060381A (en) Semiconductor mounting substrate
JP2008020173A (en) Heat pipe structure
JP2009208009A (en) Insulator for internal-combustion engine and its manufacturing method
JP2012031752A (en) Heat insulating structure of internal combustion engine
JP2010098004A (en) Heat sink and method of manufacturing the same
JP2009209795A (en) Insulator for internal combustion engine
WO2009149275A3 (en) Improved multilayer electrostatic chuck wafer platen
JP2005233607A (en) Heat insulating box
JP2011064142A (en) Water jacket structure
JP7216368B2 (en) Manufacturing method of engine block
JP2011109808A (en) Cooling structure of motor
WO2010004662A1 (en) Heat dissipation sheet and process for producing heat dissipation sheet
JP2012045757A5 (en)
JP4573852B2 (en) control unit
US20100019380A1 (en) Integrated circuit with micro-pores ceramic heat sink
JP4623167B2 (en) Heat dissipation structure and vehicle inverter
JP2008196461A (en) Cylinder block
JPS6081420A (en) Exhaust manifold of internal-combustion engine
JP2009191677A (en) Insulator for internal combustion engine
JP2798656B2 (en) Circuit board
CN215765737U (en) Gas water heater
JP5365529B2 (en) Power module
JP2005264790A (en) Sound insulation cover

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20131001