JP2012031608A - Strengthening performance improvement method and strengthening performance improvement structure for floor slab - Google Patents

Strengthening performance improvement method and strengthening performance improvement structure for floor slab Download PDF

Info

Publication number
JP2012031608A
JP2012031608A JP2010170792A JP2010170792A JP2012031608A JP 2012031608 A JP2012031608 A JP 2012031608A JP 2010170792 A JP2010170792 A JP 2010170792A JP 2010170792 A JP2010170792 A JP 2010170792A JP 2012031608 A JP2012031608 A JP 2012031608A
Authority
JP
Japan
Prior art keywords
floor slab
reinforcing
test
test body
reinforcement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010170792A
Other languages
Japanese (ja)
Other versions
JP5664000B2 (en
Inventor
Toshio Nomura
敏雄 野村
Toshiki Takahashi
敏樹 高橋
Yoshinao Ina
義直 伊奈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2010170792A priority Critical patent/JP5664000B2/en
Publication of JP2012031608A publication Critical patent/JP2012031608A/en
Application granted granted Critical
Publication of JP5664000B2 publication Critical patent/JP5664000B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a strengthening performance improvement method and a strengthening performance improvement structure for a floor slab capable of improving shear capacity so as not to cause a shear fracture before the occurence of flexural fracture, so that a flexural reinforcement effect is exhibited and a flexural strength can be improved.SOLUTION: A floor slab 1 is provided with a floor slab body 10, a thickening portion 20 provided below the floor slab body 10, and a reinforcement material 30. The plurality of reinforcement materials 30 are nearly vertically provided from the lower end surface of the thickening portion 20 to immediately below a floor slab upper reinforcement 13. Each of the reinforcement materials 30 is provided in a hole 16 formed in the floor slab body 10 and the thickening portion 20 and the circumference thereof is covered with a quick-curing filler 17. Because the quick-curing filler 17 is in close contact with the circumference of the reinforcement material 30, the reinforcement material 30 is firmly fixed to the floor slab body 10 and the thickening portion 20.

Description

本発明は、床版の補強性能向上方法及び補強性能向上構造に関する。   The present invention relates to a method for improving a reinforcing performance of a floor slab and a reinforcing performance improving structure.

道路橋の床版には、上部を通行する自動車による繰り返し曲げ荷重が加わるため、コンクリートの下面に亀裂が発生するなど、補強が必要となることがある。このような床版の補強を行う際には、床版上の自動車の通行を妨げないことが望まれる。そこで、従来より、特許文献1の従来技術の欄に記載されているように、床版の下面に沿うように鋼板を配置し、この鋼板をアンカーと接着剤により固定する方法や、床版の下面に炭素繊維のような高強度繊維を接着剤により取り付ける方法が用いられている。   The bridge slab of the road bridge is subjected to repeated bending load from the automobile passing through the upper part, so reinforcement may be required, such as a crack on the lower surface of the concrete. When reinforcing such a floor slab, it is desirable not to obstruct the passage of the automobile on the floor slab. Therefore, conventionally, as described in the prior art column of Patent Document 1, a steel plate is disposed along the lower surface of the floor slab, and the method of fixing the steel plate with an anchor and an adhesive, A method of attaching high-strength fibers such as carbon fibers to the lower surface with an adhesive is used.

特開2002―167977号公報JP 2002-167777 A

しかしながら、本願出願人らは、特許文献1に記載の補強方法で補強された床版について載荷試験を実施するとともに、この載荷試験についての解析を行った結果、曲げ耐力は向上したもののせん断耐力はあまり向上せず、曲げ破壊よりも先にせん断破壊を生じる場合があるという知見を得た。なお、本願出願人らがこの知見を得た載荷試験及び解析については発明を実施するための形態の欄にて説明する。   However, the applicants of the present application conducted a loading test on the floor slab reinforced by the reinforcing method described in Patent Document 1 and analyzed the loading test. As a result, although the bending strength was improved, the shear strength was It has not been improved so much, and it has been found that shear fracture may occur before bending fracture. Note that the loading test and analysis by which the applicants of the present application have obtained this knowledge will be described in the section of the embodiment for carrying out the invention.

そこで、本発明は、上記の問題点を鑑みてなされたものであり、せん断耐力を向上させ、曲げ破壊が生じる前にせん断破壊を生じさせないことにより、曲げ補強効果を発揮させて曲げ強度を向上させることが可能な床版の補強性能向上方法及び補強性能向上構造を提供することを目的とする。   Therefore, the present invention has been made in view of the above-described problems, and improves the bending strength by improving the shear strength and not causing the shear failure before the bending failure occurs, thereby improving the bending strength. An object of the present invention is to provide a method for improving the reinforcement performance of a floor slab and a structure for improving the reinforcement performance.

本発明は、上面近傍及び下面近傍に鉄筋が埋設された床版の補強性能向上方法であって、
前記床版の上面側又は下面側から反対側の面へ向けてせん断補強の効果が得られる長さの補強材を前記床版内に設置することを特徴とする。
本発明によれば、せん断補強の効果が得られる長さの補強材を床版内に設置することで、せん断耐力を向上させることができる。したがって、床版に曲げ荷重が作用した際にせん断破壊が生じ難くなるので、曲げ強度を向上させることができる。
The present invention is a method for improving the reinforcing performance of a floor slab in which reinforcing bars are embedded in the vicinity of the upper surface and the vicinity of the lower surface,
A reinforcing material having a length capable of obtaining a shear reinforcement effect is provided in the floor slab from the upper surface side or the lower surface side of the floor slab to the opposite surface.
According to the present invention, the shear strength can be improved by installing a reinforcing material having a length capable of obtaining a shear reinforcement effect in the floor slab. Therefore, when a bending load is applied to the floor slab, it is difficult for shear fracture to occur, so that the bending strength can be improved.

また、本発明において、前記補強材をその先端が前記反対側の面の鉄筋近傍に達するように設置することとしてもよい。   Moreover, in this invention, it is good also as installing the said reinforcing material so that the front-end | tip may reach the reinforcing bar vicinity of the said opposite surface.

また、本発明において、前記床版の上面又は下面に孔を形成し、当該孔に速硬性充填剤を充填した後、前記孔内に前記補強材を挿入することとしてもよい。   Moreover, in this invention, after forming a hole in the upper surface or lower surface of the said floor slab, and filling the said hole with a quick-hardening filler, it is good also as inserting the said reinforcing material in the said hole.

また、本発明において、前記補強材を前記上面又は前記下面から打設することとしてもよい。   In the present invention, the reinforcing material may be driven from the upper surface or the lower surface.

本発明は、上面近傍及び下面近傍に鉄筋が埋設された床版の補強性能向上構造であって、
前記床版の上面側又は下面側から反対側の面へ向けて設置され、せん断補強の効果が得られる長さの補強材を前記床版内に備えることを特徴とする。
The present invention is a reinforcing performance improving structure of a floor slab in which reinforcing bars are embedded near the upper surface and the lower surface,
The floor slab is provided with a reinforcing material having a length that is installed from the upper surface side or the lower surface side of the floor slab toward the opposite surface and that can obtain the effect of shear reinforcement.

また、本発明において、前記補強材は、その先端が前記反対側の面の鉄筋近傍に達するように設置されていることとしてもよい。   Moreover, in this invention, the said reinforcing material is good also as being installed so that the front-end | tip may reach the reinforcing bar vicinity of the said opposite surface.

また、本発明において、前記補強材は、前記床版に形成された孔内に設置されており、その周囲は速硬性充填剤で充填されていることとしてもよい。   Moreover, in this invention, the said reinforcing material is installed in the hole formed in the said floor slab, It is good also as the circumference | surroundings being filled with the quick-hardening filler.

本発明によれば、せん断耐力を向上させ、曲げ破壊が生じる前にせん断破壊を生じさせないことにより、曲げ補強効果を発揮させて曲げ強度を向上させることが可能な床版の補強性能向上方法及び補強性能向上構造を提供することができる。   According to the present invention, there is provided a method for improving the reinforcing performance of a slab capable of improving the bending strength and improving the bending strength by improving the shear strength and not causing the shear fracture before the bending fracture occurs. A reinforcing performance improving structure can be provided.

本実施形態に係る道路橋の床版の補強構造を示す鉛直断面図である。It is a vertical sectional view showing the reinforcing structure of the floor slab of the road bridge according to the present embodiment. 床版の補強材付近を拡大した図である。It is the figure which expanded the reinforcement material vicinity of a floor slab. 道路橋RC床版を模擬した各試験体を構成する部位、部材等を示す図である。It is a figure which shows the site | part, member, etc. which comprise each test body which simulated the road bridge RC floor slab. 試験体42の側断面図である。3 is a side sectional view of a test body 42. FIG. 試験体43の側断面図である。3 is a side sectional view of a test body 43. FIG. 試験体44の側断面図である。3 is a side sectional view of a test body 44. FIG. 試験体45の側断面図である。4 is a side sectional view of a test body 45. FIG. 各試験体の解析モデルを示す図である。It is a figure which shows the analysis model of each test body. 各試験体の解析条件を示す図である。It is a figure which shows the analysis conditions of each test body. 各試験体の載荷状態を示す図である。It is a figure which shows the loading state of each test body. 各試験体に載荷した荷重と変位との関係を示す図である。It is a figure which shows the relationship between the load and displacement which were loaded on each test body. 各試験体42〜45の曲げ耐力、せん断耐力及び最大荷重の解析値、並びに載荷試験の試験結果を示す図である。It is a figure which shows the bending strength of each test body 42-45, the shear strength, and the analytical value of a maximum load, and the test result of a loading test. 補強材の長さの他の実施例を示す図である。It is a figure which shows the other Example of the length of a reinforcing material. 床版の下端面から補強材を設置した状態を示す図である。It is a figure which shows the state which installed the reinforcing material from the lower end surface of a floor slab.

以下、本発明に係る床版の補強性能向上方法及び補強性能向上構造の一実施形態を、道路橋RC床版に適用した例について図面を用いて詳細に説明する。   Hereinafter, an example in which an embodiment of a reinforcing performance improving method and a reinforcing performance improving structure of a floor slab according to the present invention is applied to a road bridge RC floor slab will be described in detail with reference to the drawings.

図1は、本実施形態に係る道路橋の床版1の補強構造2を示す鉛直断面図である。また、図2は、床版1の補強材30付近を拡大した図である。
両図に示すように、道路橋の床版1は、床版本体10と、床版本体10の下に設けられた増厚部20と、補強材30と、を備え、H型鋼からなる一対の桁材3により支持されている。
FIG. 1 is a vertical sectional view showing a reinforcing structure 2 of a floor slab 1 of a road bridge according to this embodiment. FIG. 2 is an enlarged view of the vicinity of the reinforcing material 30 of the floor slab 1.
As shown in both figures, a floor slab 1 of a road bridge includes a floor slab body 10, a thickened portion 20 provided under the floor slab body 10, and a reinforcing member 30, and is a pair of H-shaped steel. The spar 3 is supported.

床版本体10は、板状の普通コンクリート部12と、床版上側鉄筋13と、床版下側鉄筋14と、配力筋15と、から構成されている。   The floor slab main body 10 is composed of a plate-shaped ordinary concrete portion 12, a floor slab upper rebar 13, a floor slab lower rebar 14, and a distribution bar 15.

床版上側鉄筋13と配力筋15及び床版下側鉄筋14と配力筋15は、それぞれ普通コンクリート部12の上面近傍及び下面近傍に平面視格子状に配置されている。   The floor slab upper reinforcing bar 13 and the distributing bar 15 and the floor slab lower reinforcing bar 14 and the distributing bar 15 are arranged in a lattice pattern in plan view in the vicinity of the upper surface and the lower surface of the ordinary concrete portion 12, respectively.

増厚部20は、吹き付けコンクリート部21と、補強鉄筋22とから構成されている。
吹き付けコンクリート部21は、通常のコンクリートに比べて耐久性の高いポリマーセメントモルタルからなる。
補強鉄筋22は、吹き付けコンクリート部21内の適宜な被りを有する位置に平面視格子状に配置されている。
The thickened portion 20 includes a sprayed concrete portion 21 and a reinforcing reinforcing bar 22.
The shotcrete portion 21 is made of polymer cement mortar having higher durability than ordinary concrete.
The reinforcing reinforcing bars 22 are arranged in a lattice shape in a plan view at a position having an appropriate covering in the shot concrete part 21.

補強材30は、吹き付けコンクリート部21の下端面から床版上側鉄筋13のすぐ下まで略鉛直に複数設置されている。本実施形態では、補強材30として六角ボルトを用いたが、これに限定されるものではなく、アンカーボルト、鉄筋の両端をフック状に折り返したもの、寸切りボルトにナットを固定させたもの等を用いてもよい。   A plurality of reinforcing members 30 are installed substantially vertically from the lower end surface of the shotcrete part 21 to just below the floor slab upper rebar 13. In the present embodiment, hexagonal bolts are used as the reinforcing member 30, but the present invention is not limited to this. May be used.

補強材30は、増厚部20を貫通して床版本体10に形成された孔16内に設置され、周囲を速硬性充填剤17で覆われている。この速硬性充填剤17が補強材30の周囲に密着しているため、補強材30は、床版本体10及び増厚部20に強固に定着しており、抜けにくい。   The reinforcing material 30 passes through the thickened portion 20 and is installed in the hole 16 formed in the floor slab body 10, and the periphery is covered with the fast-hardening filler 17. Since the quick-hardening filler 17 is in close contact with the periphery of the reinforcing material 30, the reinforcing material 30 is firmly fixed to the floor slab body 10 and the thickened portion 20, and is difficult to come off.

補強材30を設置するための孔16は、床版1の下方側から上方へ向かって削孔することにより形成される。
孔16は、床版上側鉄筋13、床版下側鉄筋14、配力筋15及び補強鉄筋22を傷つけないように、これらの鉄筋間に形成される。したがって、孔16の位置は、既設の鉄筋13、14、15、22の位置によって適宜、決定される。
The hole 16 for installing the reinforcing member 30 is formed by drilling upward from the lower side of the floor slab 1.
The hole 16 is formed between these reinforcing bars so as not to damage the floor slab upper reinforcing bar 13, the floor slab lower reinforcing bar 14, the distribution reinforcing bar 15, and the reinforcing reinforcing bar 22. Therefore, the position of the hole 16 is appropriately determined depending on the positions of the existing reinforcing bars 13, 14, 15, and 22.

また、設置される補強材30の数が多くなると、せん断耐力も増加するが、削孔できる位置や削孔の手間等を考慮して所望のせん断耐力を確保できるように、補強材30の数が決定される。   In addition, as the number of reinforcing members 30 to be installed increases, the shear strength increases. Is determined.

補強材30は、孔16に速硬性充填剤17を充填した後、この速硬性充填剤17中に挿入される。本実施形態では、速硬性充填剤17としてエポキシ樹脂を用いたが、これに限定されるものではなく、その他の樹脂系やセメント系等を用いてもよい。要は、施工時は流動性を有し、所定の時間が経過したら硬化して所定の強度を発現するものであればよい。   The reinforcing material 30 is inserted into the fast-hardening filler 17 after filling the hole 16 with the quick-hardening filler 17. In the present embodiment, an epoxy resin is used as the fast-curing filler 17, but the present invention is not limited to this, and other resin systems, cement systems, and the like may be used. In short, any material may be used as long as it has fluidity at the time of construction and cures to exhibit a predetermined strength after a predetermined time.

上述したように、補強材30が吹き付けコンクリート部21の下端面から床版本体10の床版上側鉄筋13まで略鉛直に設置される構成とすることで、床版1のせん断耐力を向上できることを載荷試験及びこの載荷試験についての解析により確認した。以下に、その載荷試験及び解析の方法について説明する。   As described above, the configuration in which the reinforcing member 30 is installed substantially vertically from the lower end surface of the sprayed concrete portion 21 to the floor slab upper rebar 13 of the floor slab body 10 can improve the shear strength of the floor slab 1. This was confirmed by a loading test and an analysis of this loading test. The loading test and analysis method will be described below.

−−−載荷試験及び解析について−−−
図3は、床版1を模擬した各試験体42を構成する部位、部材等を示す図である。
本図に示すように、補強材30の長さ及び数の異なる複数の試験体42〜45を作製し、各試験体42〜45について載荷試験を実施するとともに、この載荷試験についての解析を行った。
載荷試験及び解析では、補強材30としてアンカーボルト31、32を用いた。詳細は後述するが、増厚部41の下端面から床版下側鉄筋14付近に設置したアンカーボルト31を図3中では「短」と表示し、増厚部20の下端面から床版上側鉄筋13のすぐ下に設置したアンカーボルト32を図3中では「長」と表示した。
なお、試験体42、43は、発明が解決しようとする課題の欄で記載した載荷試験及び解析に用いた試験体であり、比較検討のために記載した。
--- About loading test and analysis ---
FIG. 3 is a diagram showing the parts, members, and the like constituting each test body 42 simulating the floor slab 1.
As shown in this figure, a plurality of test bodies 42 to 45 having different lengths and numbers of the reinforcing members 30 are produced, and a loading test is performed on each of the test bodies 42 to 45, and an analysis of the loading test is performed. It was.
In the loading test and analysis, anchor bolts 31 and 32 were used as the reinforcing material 30. Although details will be described later, the anchor bolt 31 installed in the vicinity of the floor slab lower rebar 14 from the lower end surface of the thickened portion 41 is displayed as “short” in FIG. The anchor bolt 32 installed just below the reinforcing bar 13 is indicated as “long” in FIG. 3.
In addition, the test bodies 42 and 43 are the test bodies used for the loading test and analysis described in the column of the problem to be solved by the invention, and are described for comparison.

次に、各試験体42〜45について詳細に説明する。   Next, each test body 42 to 45 will be described in detail.

図4は、試験体42の側断面図である。
本図に示すように、試験体42は、床版本体10のみから構成されている。この床版本体10は、所定の強度を有する普通コンクリート部12と、普通コンクリート部12の上下面の近傍にそれぞれ格子状に埋設された床版上側鉄筋13、床版下側鉄筋14と、上下面の近傍に床版上側鉄筋13又は床版下側鉄筋14と直交するように埋設された配力筋15と、を備えている。
FIG. 4 is a side sectional view of the test body 42.
As shown in the figure, the test body 42 is composed only of the floor slab body 10. The floor slab body 10 includes a normal concrete portion 12 having a predetermined strength, a floor slab upper rebar 13 and a floor slab lower rebar 14 embedded in a lattice pattern in the vicinity of the upper and lower surfaces of the normal concrete portion 12, Near the lower surface, there is provided a distribution bar 15 embedded so as to be orthogonal to the floor slab upper rebar 13 or the floor slab lower rebar 14.

図5は、試験体43の側断面図である。
本図に示すように、試験体43は、床版本体10と、増厚部41と、アンカーボルト31、とから構成されている。
増厚部41は、床版本体10の下面に打設された補強鉄筋22と、この補強鉄筋22を覆うように吹き付けられた吹き付けコンクリート部21と、を備えている。
アンカーボルト31は、増厚部41の下方から上方へ向かって打設され、増厚部41の下端面を貫通して床版下側鉄筋14付近まで略鉛直に設置されている。このアンカーボルト31は、補強鉄筋22及び吹き付けコンクリート部21を床版本体10に固定するための固定手段として用いられている。なお、本実施形態では、アンカーボルト31を図5の左右方向に4列となるように設置した。
FIG. 5 is a side sectional view of the test body 43.
As shown in the figure, the test body 43 is composed of a floor slab body 10, a thickened portion 41, and anchor bolts 31.
The thickened portion 41 includes a reinforcing reinforcing bar 22 placed on the lower surface of the floor slab body 10 and a sprayed concrete portion 21 sprayed so as to cover the reinforcing reinforcing bar 22.
The anchor bolt 31 is driven from the lower side of the thickened portion 41 toward the upper side, passes through the lower end surface of the thickened portion 41 and is installed substantially vertically up to the vicinity of the floor slab lower rebar 14. The anchor bolt 31 is used as a fixing means for fixing the reinforcing steel bar 22 and the sprayed concrete portion 21 to the floor slab body 10. In this embodiment, the anchor bolts 31 are installed in four rows in the left-right direction in FIG.

図6は、試験体44の側断面図である。
本図に示すように、試験体44は、床版本体10と、増厚部20と、アンカーボルト32、とから構成されている。
増厚部20は、吹き付けコンクリート部21と、この吹き付けコンクリート部21内に設置された補強鉄筋22と、を備えている。
補強鉄筋22は、増厚部20の上面より下方へ5mmの位置に埋設されている。
アンカーボルト32は、増厚部20の下端面付近から床版上側鉄筋13のすぐ下まで略鉛直に4列となるように設置されている。
また、アンカーボルト32は、孔16内に設置され、周囲を速硬性充填剤17で覆われている。
FIG. 6 is a side sectional view of the test body 44.
As shown in the figure, the test body 44 includes the floor slab body 10, the thickened portion 20, and the anchor bolt 32.
The thickened portion 20 includes a shotcrete portion 21 and a reinforcing reinforcing bar 22 installed in the shotcrete portion 21.
The reinforcing steel bar 22 is embedded at a position 5 mm below the upper surface of the thickened portion 20.
The anchor bolts 32 are arranged so as to form four rows substantially vertically from the vicinity of the lower end surface of the thickened portion 20 to immediately below the floor slab upper rebar 13.
The anchor bolt 32 is installed in the hole 16, and the periphery is covered with the fast-hardening filler 17.

図7は、試験体45の側断面図である。
本図に示すように、試験体45は、試験体44のアンカーボルト32を7列に増やしたものである。
FIG. 7 is a side sectional view of the test body 45.
As shown in this figure, the test body 45 is obtained by increasing the anchor bolts 32 of the test body 44 in seven rows.

上述した構成からなる各試験体42〜45の中心軸に関して対称な2箇所に荷重を載荷する載荷試験について2次元有限要素法により解析した。このときの解析モデル及び解析条件をそれぞれ図8及び図9に示す。また、各試験体42〜45の曲げ耐力、せん断耐力及び最大荷重の解析結果、並びに載荷試験の試験結果(詳細は後述する)を図12に示す。なお、図12に記載している各試験体42〜45の荷重は、試験体42の載荷試験結果の最大荷重の実測値を1.00として無次元化したものである。
なお、上述したように、試験体43と試験体44、45とでは、補強鉄筋22の設置位置及びアンカーボルト31、32の下端位置に違いがあるものの、載荷試験及び解析の結果に大きな影響を及ぼすものではないため、載荷試験及び解析により得られた結果をそのまま比較した。
A loading test in which a load was loaded at two positions symmetrical about the central axis of each of the test bodies 42 to 45 having the above-described configuration was analyzed by a two-dimensional finite element method. The analysis model and analysis conditions at this time are shown in FIGS. 8 and 9, respectively. Moreover, the bending proof stress of each test body 42-45, the shearing proof strength, the analysis result of a maximum load, and the test result (it mentions later for details) of a loading test are shown in FIG. In addition, the load of each test body 42-45 described in FIG. 12 is made dimensionless by setting the actual measurement value of the maximum load of the loading test result of the test body 42 to 1.00.
As described above, the test body 43 and the test bodies 44 and 45 have a great influence on the results of the loading test and analysis, although the installation positions of the reinforcing reinforcing bars 22 and the lower end positions of the anchor bolts 31 and 32 are different. The results obtained from the loading test and analysis were directly compared.

<曲げ耐力について>
図12に示すように、各試験体42〜45の曲げ耐力予測値は、それぞれ1.03、1.60、1.60、1.60で、試験体43〜45の曲げ耐力予測値はすべて同じ値となった。
これらの結果より、増厚部41及びアンカーボルト31、32を備えることにより曲げ耐力は大きく向上すると考えられる。また、アンカーボルト31、32の長さ及び数の違いによる曲げ耐力への影響は小さいと考えられる。
<せん断耐力について>
各試験体42〜45のせん断耐力予測値は、それぞれ0.88、1.13、1.37、1.67となった。
まず、試験体42と試験体43の結果を比較すると、増厚部41を備えることによりせん断耐力は向上すると考えられる。
また、試験体43と試験体44の結果を比較すると、アンカーボルト31、32が長くなることによってせん断耐力は向上すると考えられる。
さらに、試験体44と試験体45の結果を比較すると、アンカーボルト32が増えることによってせん断耐力は向上すると考えられる。
<最大荷重について>
各試験体42〜45の最大荷重値は、それぞれ0.95、1.13、1.32、1.59となった。
ここで、試験体43、44の最大荷重値は、それぞれのせん断耐力予測値とほぼ同じ値である。一方、試験体45の最大荷重値は、曲げ耐力予測値とほぼ同じ値である。
まず、試験体42と試験体43の結果を比較すると、増厚部41を備えることにより最大荷重は向上すると考えられる。
また、試験体43と試験体44の結果を比較すると、アンカーボルト31、32が長くなることによって最大荷重は向上すると考えられる。
さらに、試験体44と試験体45の結果を比較すると、アンカーボルト32が増えることによって最大荷重は向上すると考えられる。
そして、試験体43、44の最大荷重値は、それぞれのせん断耐力予測値とほぼ同じ値なので、載荷試験において試験体43、44は、せん断破壊を生じると考えられる。一方、試験体45の最大荷重値は、曲げ耐力予測値とほぼ同じ値なので、載荷試験において試験体45は、曲げ破壊を生じると考えられる。
<About bending strength>
As shown in FIG. 12, the bending strength prediction values of the test bodies 42 to 45 are 1.03, 1.60, 1.60, and 1.60, respectively, and the bending strength prediction values of the test bodies 43 to 45 are all. It became the same value.
From these results, it is considered that the bending strength is greatly improved by providing the thickened portion 41 and the anchor bolts 31 and 32. Moreover, it is thought that the influence on bending strength by the difference in the length and number of anchor bolts 31 and 32 is small.
<About shear strength>
The predicted shear strength values of the test bodies 42 to 45 were 0.88, 1.13, 1.37, and 1.67, respectively.
First, when the results of the test body 42 and the test body 43 are compared, it is considered that the shear strength is improved by providing the thickened portion 41.
Moreover, when the results of the test body 43 and the test body 44 are compared, it is considered that the shear strength is improved as the anchor bolts 31 and 32 become longer.
Furthermore, when the results of the test body 44 and the test body 45 are compared, it is considered that the shear strength is improved by increasing the anchor bolt 32.
<About maximum load>
The maximum load values of the test bodies 42 to 45 were 0.95, 1.13, 1.32 and 1.59, respectively.
Here, the maximum load values of the test bodies 43 and 44 are substantially the same as the respective shear strength prediction values. On the other hand, the maximum load value of the test body 45 is almost the same value as the predicted bending strength.
First, when the results of the test body 42 and the test body 43 are compared, it is considered that the maximum load is improved by providing the thickened portion 41.
Further, when the results of the test body 43 and the test body 44 are compared, it is considered that the maximum load is improved as the anchor bolts 31 and 32 become longer.
Furthermore, when the results of the test body 44 and the test body 45 are compared, it is considered that the maximum load is improved by increasing the anchor bolt 32.
And since the maximum load value of the test bodies 43 and 44 is a value substantially the same as each shear strength prediction value, it is thought that the test bodies 43 and 44 produce a shear failure in a loading test. On the other hand, since the maximum load value of the test body 45 is substantially the same value as the predicted bending strength value, it is considered that the test body 45 is subjected to bending failure in the loading test.

また、解析と並行して、図10に示すように、各試験体42〜45に荷重を実際に載荷して、最大荷重値を測定した。   In parallel with the analysis, as shown in FIG. 10, a load was actually loaded on each of the test bodies 42 to 45, and the maximum load value was measured.

図11は、各試験体42〜45に載荷した荷重と変位との関係を示す図である。なお、図11に記載している各試験体42〜45の変位は、試験体42における載荷試験結果の最大荷重値の時の変位を1.00として無次元化したものであり、荷重も図12と同様に、試験体42の載荷試験結果の最大荷重の実測値を1.00として無次元化したものである。
<試験体42、43について>
図11に示すように、両試験体42、43の荷重−変位曲線は共に、最大荷重を受けた後、急激に右下がりとなるせん断破壊による形態を示している。
さらに、図12に示すように、試験体42、43の最大荷重の実測値1.00、1.08は、それぞれのせん断耐力予測値0.88、1.13と概ね一致している。
これらの結果より、両試験体42、43は、せん断破壊によって終局状態となったことがわかる。また、試験体43は、試験体42よりも曲げ耐力は向上したもののせん断耐力はあまり向上せず、曲げ破壊よりも先にせん断破壊を生じたと考えられる。
したがって、発明が解決しようとする課題の欄に記載したように、試験体43が増厚部20による曲げ補強の効果を得るためには、せん断耐力を向上させることが必要であることがわかる。
<試験体44について>
図11に示すように、試験体44の荷重−変位曲線は、最大荷重を受けた後、急激に右下がりとなるせん断破壊による形態を示している。
さらに、図12に示すように、試験体44の最大荷重の実測値1.22は、せん断耐力予測値1.37と概ね一致している。
これらの結果より、試験体44には、せん断破壊によって終局状態となったことがわかる。また、試験体44は、長いアンカーボルト32が設置されていることで、試験体43よりもせん断耐力が向上したものの、試験体44が増厚部20による曲げ補強の効果を得るためには、更にせん断耐力を向上させることが必要であることがわかる。
<試験体45について>
図11に示すように、試験体45の荷重−変位曲線は、最大荷重を受けた後に右下がりとなるが、再び増加し、その直後から、ゆるやかな右下がりとなっている。
さらに、図12に示すように、試験体45の最大荷重の実測値1.68は、曲げ耐力予測値1.60及びせん断耐力予測値1.67の両方とほぼ同程度の値を示している。
これらの結果より、試験体45は、せん断破壊と曲げ破壊とがほとんど同時に生じたと考えられる。したがって、試験体45は、そのせん断耐力が向上したことにより、増厚部20による曲げ補強の効果を充分に得たことがわかる。
FIG. 11 is a diagram showing the relationship between the load loaded on each of the test bodies 42 to 45 and the displacement. In addition, the displacement of each test body 42-45 described in FIG. 11 is made dimensionless by setting the displacement at the time of the maximum load value of the loading test result in the test body 42 to 1.00. As in FIG. 12, the actual measurement value of the maximum load of the loading test result of the test body 42 is set to 1.00 and is made dimensionless.
<About Specimens 42 and 43>
As shown in FIG. 11, the load-displacement curves of both test bodies 42 and 43 both show a form due to shear fracture that suddenly drops to the right after receiving the maximum load.
Furthermore, as shown in FIG. 12, the actual measured values 1.00 and 1.08 of the maximum loads of the test bodies 42 and 43 substantially coincide with the predicted shear strength values 0.88 and 1.13, respectively.
From these results, it can be seen that both specimens 42 and 43 were brought into a final state by shear fracture. Moreover, although the test body 43 improved the bending proof strength compared with the test body 42, the shear proof strength did not improve so much, and it is thought that the shear rupture occurred before the bending rupture.
Therefore, as described in the column of the problem to be solved by the invention, it is understood that in order for the test body 43 to obtain the effect of bending reinforcement by the thickened portion 20, it is necessary to improve the shear strength.
<About Specimen 44>
As shown in FIG. 11, the load-displacement curve of the test body 44 shows a form due to shear fracture that suddenly falls to the right after receiving the maximum load.
Further, as shown in FIG. 12, the actual measurement value 1.22 of the maximum load of the test body 44 substantially coincides with the predicted shear strength value 1.37.
From these results, it can be seen that the specimen 44 was brought into a final state by shear fracture. Moreover, although the test body 44 has the shear strength improved more than the test body 43 by installing the long anchor bolt 32, in order for the test body 44 to obtain the effect of bending reinforcement by the thickened portion 20, It can also be seen that it is necessary to improve the shear strength.
<About Specimen 45>
As shown in FIG. 11, the load-displacement curve of the test body 45 decreases to the right after receiving the maximum load, but increases again, and then gradually decreases to the right.
Furthermore, as shown in FIG. 12, the actual measurement value 1.68 of the maximum load of the test body 45 is almost the same value as both the bending strength prediction value 1.60 and the shear strength prediction value 1.67. .
From these results, it is considered that in the test body 45, shear fracture and bending fracture occurred almost simultaneously. Therefore, it can be seen that the test body 45 sufficiently obtained the effect of bending reinforcement by the thickened portion 20 due to the improved shear strength.

上述した解析及び載荷試験の結果より、アンカーボルト32を増厚部20の下端面から床版上側鉄筋13付近まで設置することにより、従来の増厚部20の下端面から床版下側鉄筋14付近まで設置した場合よりも、せん断耐力が向上することがわかる。
また、アンカーボルト32の数を増やすことにより、さらに、せん断耐力が向上することがわかる。
From the results of the analysis and loading test described above, by installing the anchor bolt 32 from the lower end surface of the thickened portion 20 to the vicinity of the floor slab upper rebar 13, the floor slab lower rebar 14 from the lower end surface of the conventional thickened portion 20 is installed. It can be seen that the shear strength is improved as compared with the case where it is installed up to the vicinity.
It can also be seen that the shear strength is further improved by increasing the number of anchor bolts 32.

<まとめ>
以上の解析及び載荷試験の結果からわかるように、本実施形態に係る床版1は、補強材30が増厚部20の下端面から床版本体10の床版上側鉄筋13付近まで設置されることで、せん断耐力を向上させることができる。従来は、床版1に増厚部20を設けても曲げ耐力のみが向上して、せん断耐力の向上が小さかったため、曲げ耐力よりもはるかに小さい載荷荷重によってせん断破壊を生じていたが、本実施形態では、床版上側鉄筋13付近まで補強材30を設置することにより、せん断耐力が大幅に向上して床版1に曲げ荷重が作用した際にせん断破壊が生じ難くなるので、曲げ強度を向上させることができる。
<Summary>
As can be seen from the results of the above analysis and loading test, in the floor slab 1 according to the present embodiment, the reinforcing material 30 is installed from the lower end surface of the thickened portion 20 to the vicinity of the floor slab upper rebar 13 of the floor slab body 10. As a result, the shear strength can be improved. Conventionally, even if the thickened portion 20 is provided on the floor slab 1, only the bending strength is improved, and the improvement of the shear strength is small. Therefore, the shear failure is caused by the loading load much smaller than the bending strength. In the embodiment, by installing the reinforcing material 30 up to the vicinity of the floor slab upper rebar 13, the shear strength is greatly improved, and when a bending load is applied to the floor slab 1, it is difficult for shear fracture to occur. Can be improved.

なお、本実施形態においては、補強材30は、増厚部20の下面から床版上側鉄筋13付近まで設置されているが、この長さに限定されるものではなく、所望のせん断耐力を得られればよく、例えば、図13(a)に示すように、上端が普通コンクリート部12の中央部付近に存在したり、図13(b)に示すように、床版上側鉄筋13よりも上方に存在したり、図13(c)に示すように、普通コンクリート部12を貫通させてその先端にナット33を固定したりしてもよい。要は、床版1が予め設計等により決定された所望のせん断耐力を有することができる長さであればよい。   In the present embodiment, the reinforcing member 30 is installed from the lower surface of the thickened portion 20 to the vicinity of the floor slab upper rebar 13, but is not limited to this length, and obtains a desired shear strength. For example, as shown in FIG. 13 (a), the upper end exists near the center of the ordinary concrete portion 12, or as shown in FIG. Alternatively, as shown in FIG. 13 (c), the ordinary concrete portion 12 may be penetrated and a nut 33 may be fixed to the tip thereof. The point is that the floor slab 1 may be of a length that can have a desired shear strength determined in advance by design or the like.

なお、本実施形態では、床版1及び増厚部20に孔16を形成してこの孔16内に補強材30を挿入した場合について説明したが、この方法に限定されるものではなく、増厚部20の下面に打設して設置してもよい。かかる場合には、補強材30を設置する時間を大幅に短縮することができる。   In the present embodiment, the case where the hole 16 is formed in the floor slab 1 and the thickened portion 20 and the reinforcing member 30 is inserted into the hole 16 has been described. However, the present invention is not limited to this method. You may drive and install in the lower surface of the thick part 20. FIG. In such a case, the time for installing the reinforcing member 30 can be greatly shortened.

なお、本実施形態においては、増厚部20を備えた床版1に補強材30を設置した場合について説明したが、床版1のみの場合にも適用可能である。具体的には、図14に示すように、補強材30が床版1の下端面から床版上側鉄筋13付近まで略鉛直に設置されていてもよい。   In addition, in this embodiment, although the case where the reinforcing material 30 was installed in the floor slab 1 provided with the thickening part 20 was demonstrated, it is applicable also when only the floor slab 1 is provided. Specifically, as shown in FIG. 14, the reinforcing member 30 may be installed substantially vertically from the lower end surface of the floor slab 1 to the vicinity of the floor slab upper rebar 13.

なお、本実施形態においては、既設の床版1への適用例について説明したが、これに限定されるものではなく、新設時の床版1にも適用できることはいうまでもない。かかる場合には、床版上側鉄筋13や配力筋15等を設置する際に補強材30も設置すればよい。   In addition, in this embodiment, although the application example to the existing floor slab 1 was demonstrated, it is not limited to this, and it cannot be overemphasized that it can apply also to the floor slab 1 at the time of new installation. In such a case, the reinforcing material 30 may be installed when the floor slab upper reinforcing bars 13 and the distribution bars 15 are installed.

1 床版
2 補強構造
3 桁材
10 床版本体
12 普通コンクリート部
13 床版上側鉄筋
14 床版下側鉄筋
15 配力筋
16 孔
17 速硬性充填剤
20 増厚部
21 吹き付けコンクリート部
22 補強鉄筋
30 補強材
31 アンカーボルト(短)
32 アンカーボルト(長)
33 ナット
41 増厚部
42 試験体
43 試験体
44 試験体
45 試験体
DESCRIPTION OF SYMBOLS 1 Floor slab 2 Reinforcement structure 3 Girder material 10 Floor slab main body 12 Normal concrete part 13 Floor slab upper rebar 14 Floor slab lower rebar 15 Distribution bar 16 Hole 17 Fast-hardening filler 20 Thickening part 21 Sprayed concrete part 22 Reinforcement reinforcing bar 30 Reinforcing material 31 Anchor bolt (short)
32 Anchor bolt (long)
33 Nut 41 Thickened part 42 Test body 43 Test body 44 Test body 45 Test body

Claims (7)

上面近傍及び下面近傍に鉄筋が埋設された床版の補強性能向上方法であって、
前記床版の上面側又は下面側から反対側の面へ向けてせん断補強の効果が得られる長さの補強材を前記床版内に設置することを特徴とする床版の補強性能向上方法。
A method for improving the reinforcing performance of a floor slab in which reinforcing bars are embedded near the upper surface and the lower surface,
A method for improving the reinforcing performance of a floor slab, comprising installing in the floor slab a reinforcing material having a length capable of obtaining a shear reinforcement effect from an upper surface side or a lower surface side of the floor slab to an opposite surface.
前記補強材をその先端が前記反対側の面の鉄筋近傍に達するように設置することを特徴とする請求項1に記載の床版の補強性能向上方法。   2. The method for improving the reinforcing performance of a floor slab according to claim 1, wherein the reinforcing material is installed so that the tip thereof reaches the vicinity of the reinforcing bar on the opposite surface. 前記床版の上面又は下面に孔を形成し、当該孔に速硬性充填剤を充填した後、前記孔内に前記補強材を挿入することを特徴とする請求項1又は2に記載の床版の補強性能向上方法。   The floor slab according to claim 1 or 2, wherein a hole is formed on an upper surface or a lower surface of the floor slab, and the reinforcing material is inserted into the hole after the hole is filled with a fast-hardening filler. Reinforcement performance improvement method. 前記補強材を前記上面又は前記下面から打設することを特徴とする請求項1又は2に記載の床版の補強性能向上方法。   3. The method for improving the reinforcing performance of a floor slab according to claim 1, wherein the reinforcing material is driven from the upper surface or the lower surface. 上面近傍及び下面近傍に鉄筋が埋設された床版の補強性能向上構造であって、
前記床版の上面側又は下面側から反対側の面へ向けて設置され、せん断補強の効果が得られる長さの補強材を前記床版内に備えることを特徴とする床版の補強性能向上構造。
Reinforcement performance improvement structure of the floor slab with reinforcing bars embedded near the upper surface and the lower surface,
The floor slab is provided with a reinforcing material having a length that is installed from the upper surface side or the lower surface side to the opposite surface of the floor slab to obtain a shear reinforcement effect. Construction.
前記補強材は、その先端が前記反対側の面の鉄筋近傍に達するように設置されていることを特徴とする請求項5に記載の床版の補強性能向上構造。   6. The reinforcing structure for reinforcing a floor slab according to claim 5, wherein the reinforcing material is installed so that a tip of the reinforcing material reaches a vicinity of a reinforcing bar on the opposite surface. 前記補強材は、前記床版に形成された孔内に設置されており、その周囲は速硬性充填剤で充填されていることを特徴とする請求項5又は6に記載の床版の補強性能向上構造。   The reinforcing performance of the floor slab according to claim 5 or 6, wherein the reinforcing material is installed in a hole formed in the floor slab, and the periphery thereof is filled with a fast-hardening filler. Improved structure.
JP2010170792A 2010-07-29 2010-07-29 Method for improving reinforcement performance of floor slab and structure for improving reinforcement performance Expired - Fee Related JP5664000B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010170792A JP5664000B2 (en) 2010-07-29 2010-07-29 Method for improving reinforcement performance of floor slab and structure for improving reinforcement performance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010170792A JP5664000B2 (en) 2010-07-29 2010-07-29 Method for improving reinforcement performance of floor slab and structure for improving reinforcement performance

Publications (2)

Publication Number Publication Date
JP2012031608A true JP2012031608A (en) 2012-02-16
JP5664000B2 JP5664000B2 (en) 2015-02-04

Family

ID=45845330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010170792A Expired - Fee Related JP5664000B2 (en) 2010-07-29 2010-07-29 Method for improving reinforcement performance of floor slab and structure for improving reinforcement performance

Country Status (1)

Country Link
JP (1) JP5664000B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103774565A (en) * 2013-12-31 2014-05-07 郑州大学 Hollow slab grider bridge longitudinal prestressing reinforcement method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08218326A (en) * 1995-02-10 1996-08-27 Kajima Corp Reinforcing method of floor plate of elevated bridge
JPH08333900A (en) * 1995-06-09 1996-12-17 Ohbayashi Corp Structure and method for repairing concrete building frame
JP2002167977A (en) * 2000-11-29 2002-06-11 Kajima Corp Lower surface thickness increasing and reinforcing method for reinforced concrete floor slab
JP2005097939A (en) * 2003-09-24 2005-04-14 Univ Nihon Rc structure with improved traveling vibration durability and method of manufacturing the same
JP2006225906A (en) * 2005-02-16 2006-08-31 Public Works Research Institute Method for reinforcing tunnel lining concrete
JP2008115584A (en) * 2006-11-02 2008-05-22 Penta Ocean Construction Co Ltd Method of reinforcing reinforced concrete structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08218326A (en) * 1995-02-10 1996-08-27 Kajima Corp Reinforcing method of floor plate of elevated bridge
JPH08333900A (en) * 1995-06-09 1996-12-17 Ohbayashi Corp Structure and method for repairing concrete building frame
JP2002167977A (en) * 2000-11-29 2002-06-11 Kajima Corp Lower surface thickness increasing and reinforcing method for reinforced concrete floor slab
JP2005097939A (en) * 2003-09-24 2005-04-14 Univ Nihon Rc structure with improved traveling vibration durability and method of manufacturing the same
JP2006225906A (en) * 2005-02-16 2006-08-31 Public Works Research Institute Method for reinforcing tunnel lining concrete
JP2008115584A (en) * 2006-11-02 2008-05-22 Penta Ocean Construction Co Ltd Method of reinforcing reinforced concrete structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103774565A (en) * 2013-12-31 2014-05-07 郑州大学 Hollow slab grider bridge longitudinal prestressing reinforcement method
CN103774565B (en) * 2013-12-31 2015-08-05 郑州大学 A kind of longitudinal prestressing reinforcement means of Hollow Slab Beam Bridge

Also Published As

Publication number Publication date
JP5664000B2 (en) 2015-02-04

Similar Documents

Publication Publication Date Title
Aslam et al. Strengthening of RC beams using prestressed fiber reinforced polymers–A review
Shim et al. Experimental evaluation of seismic performance of precast segmental bridge piers with a circular solid section
Shim et al. Experiments on prefabricated segmental bridge piers with continuous longitudinal reinforcing bars
Meisami et al. Punching shear strengthening of two-way flat slabs using CFRP rods
Faria et al. Strengthening of flat slabs with post-tensioning using anchorages by bonding
Inácio et al. Strengthening of flat slabs with transverse reinforcement by introduction of steel bolts using different anchorage approaches
Li et al. Experimental and numerical study of hollow core slabs strengthened with mounted steel bars and prestressed steel wire ropes
Ha et al. Performance evaluation of semi precast concrete beam-column connections with U-shaped strands
El-Saikaly et al. Fatigue behavior of RC T-beams strengthened in shear with EB CFRP L-shaped laminates
Marthong et al. Structural behavior of recycled aggregate concrete beam-column connection in presence of micro concrete at joint region
Jawdhari Behavior of RC beams strengthened in flexure with spliced CFRP rod panels
Allahyari et al. Mechanical behavior of steel-concrete composite decks with perfobond shear connectors
KR101013088B1 (en) Shear reinforcing method and bending and shear simultaneously reinforcing method of a concrete structure
JP2008025221A (en) Elevated structure constructed by jointing pier stud of pc structure and steel box girder together
KR101790166B1 (en) Composite Plate Eeinforcement Structure and Construction Method thereof
CN113738151A (en) Method for reinforcing RC beam by using FRP-UHPC composite board in shearing resistance mode
JP5664000B2 (en) Method for improving reinforcement performance of floor slab and structure for improving reinforcement performance
Li et al. Structural behavior of double-CFT-pile foundations under cyclic loads
JP5922993B2 (en) Structure and lining method using multiple fine crack type fiber reinforced cement composites
KR20090058919A (en) Reinforced concrete structure
JP2004225472A (en) Reinforcing method of concrete structure
Kara et al. An investigation of anchorage to the edge of steel plates bonded to RC structures
JP5162036B2 (en) Strengthening structure of wooden building
Saraswathi et al. Strengthening of RC square column using steel angles
Schmitz Design and experimental validation of 328 ft (100 m) tall wind turbine towers utilizing high strength and ultra-high performance concrete

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140724

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140812

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141006

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20141015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141124

R150 Certificate of patent or registration of utility model

Ref document number: 5664000

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees