JP2012028372A - Solid-state image pickup device - Google Patents

Solid-state image pickup device Download PDF

Info

Publication number
JP2012028372A
JP2012028372A JP2010162687A JP2010162687A JP2012028372A JP 2012028372 A JP2012028372 A JP 2012028372A JP 2010162687 A JP2010162687 A JP 2010162687A JP 2010162687 A JP2010162687 A JP 2010162687A JP 2012028372 A JP2012028372 A JP 2012028372A
Authority
JP
Japan
Prior art keywords
light
solid
incident
photoelectric conversion
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010162687A
Other languages
Japanese (ja)
Inventor
Hiroshi Fukumoto
浩志 福本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Chemical Industries Ltd
Original Assignee
Sanyo Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Chemical Industries Ltd filed Critical Sanyo Chemical Industries Ltd
Priority to JP2010162687A priority Critical patent/JP2012028372A/en
Publication of JP2012028372A publication Critical patent/JP2012028372A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a high-sensitive solid-state image pickup device having high utilization efficiency of incident light.SOLUTION: A solid-state image pickup device has at least a condenser lens (A) for condensing incident light, a parallel conversion lens (B) for converting condensed light to parallel light and a prism (C) for spectroscopically dividing the parallel light. A plurality of photoelectric conversion elements are arranged so that the respective spectroscopic light components spectroscopically divided by (C) are incident to a plurality of the photoelectric conversion elements respectively, and (A), (B), (C) and the photoelectric conversion elements are successively constructed in close contact with one another. The surface at the light incident side of (A) has a convex curved surface at the light incident side, the interface between (A) and (B) has a concave curved surface at the light incident side, and the interface between (B) and (C) has a sloped flat plane. The refractive index of (A) is smallest among (A), (B) and (C), and the refractive index of (C) is largest among (A), (B) and (C).

Description

本発明は、固体撮像装置に関する。更に詳しくは画素内に色分光学系を有する固体撮像装置に関する。   The present invention relates to a solid-state imaging device. More particularly, the present invention relates to a solid-state imaging device having a color separating optical system in a pixel.

近年、CCDなどの固体撮像素子を用いて撮像した撮影画像をデジタル画像データに変換し、内蔵メモリやメモリカードなどの記録媒体に記録するデジタルカメラが普及してきている。このデジタルカメラに設けられているような固体撮像素子では、受光素子(フォトダイオード)がマトリクス状に配列された半導体基板の上面に、赤色、緑色、青色のいずれかの光を透過するカラーフィルタが設けられており、カラーフィルタの上方に設置されたマイクロレンズで撮影レンズ光学系からの入射光が集光され、カラーフィルタを通過して各受光素子に受光される。   In recent years, digital cameras that convert a captured image captured using a solid-state imaging device such as a CCD into digital image data and record it on a recording medium such as a built-in memory or a memory card have become widespread. In a solid-state imaging device such as that provided in this digital camera, a color filter that transmits any of red, green, and blue light is provided on the upper surface of a semiconductor substrate in which light receiving elements (photodiodes) are arranged in a matrix. The incident light from the photographic lens optical system is collected by a microlens provided above the color filter, passes through the color filter, and is received by each light receiving element.

最近では、固体撮像素子の小型化、高画素化に伴なって受光素子へ入射光を通過させる開口の面積が小さくなってきている。これにより、従来のマイクロレンズだけでは、受光素子への集光効率が不十分となってきているため、受光素子への集光効率を高めるための構成を有する固体撮像素子が提案されている(例えば、特許文献1参照)。
特許文献1に記載されている固体撮像素子では、光の入射側から順に、マイクロレンズ、カラーフィルタ、導波路、受光素子が形成されており、この導波路によって、受光素子へ光を導いて集光効率の向上を図っている。
Recently, as the solid-state imaging device is miniaturized and the number of pixels is increased, the area of the aperture through which incident light passes to the light receiving device is decreasing. As a result, the light-collecting efficiency to the light-receiving element is insufficient only with the conventional microlens, and therefore a solid-state imaging device having a configuration for increasing the light-collecting efficiency to the light-receiving element has been proposed ( For example, see Patent Document 1).
In the solid-state imaging device described in Patent Document 1, a microlens, a color filter, a waveguide, and a light receiving element are formed in order from the light incident side, and light is guided to the light receiving element through the waveguide and collected. We are trying to improve the light efficiency.

特開2006−185947号公報JP 2006-185947 A

しかしながら、導波路により集光効果を高めても、受光素子の前にカラーフィルタを装着する方法では、原理的に入射光総量の1/3の光量しか得ることができず、感度が低いという問題があった。
本発明は入射光の利用効率を高め、高感度の固体撮像装置を提供することを目的とする。
However, even if the light condensing effect is enhanced by the waveguide, the method of mounting a color filter in front of the light receiving element can theoretically obtain only 1/3 of the total amount of incident light, and the sensitivity is low. was there.
It is an object of the present invention to provide a high-sensitivity solid-state imaging device with improved incident light utilization efficiency.

本発明者は、上記問題点に鑑み鋭意検討した結果、本発明に到達した。即ち本発明は、複数の色分解光学系と、前記色分解光学系で分光された分光光を光電変換する複数の光電変換素子を平面状に配列した固体撮像素子を有し、前記複数の色分解光学系は、少なくとも入射光を集光する集光レンズ(A)と、前記(A)により集光された集光光を平行光に変換する平行変換レンズ(B)と、前記(B)により変換された平行光を分光するプリズム(C)を有し、前記(C)により分光されたそれぞれの分光光をそれぞれ異なる前記複数の光電変換素子に入射するように前記複数の光電変換素子が配置され、前記(A)、前記(B)、前記(C)、前記光電変換素子が順に密着して構成されてなり、前記(A)の入射光側の表面が入射光側に凸の曲面を有し、前記(A)と前記(B)の界面が入射光側に凹の曲面を有し、前記(B)と前記(C)の界面が傾斜した平面を有し、かつ、前記(A)の屈折率が前記(A)、前記(B)及び前記(C)の中で最も小さく、前記(C)の屈折率が前記(A)、前記(B)及び前記(C)の中で最も大きいことを特徴とする固体撮像装置である。  As a result of intensive studies in view of the above problems, the present inventors have reached the present invention. That is, the present invention includes a solid-state imaging device in which a plurality of color separation optical systems and a plurality of photoelectric conversion elements that photoelectrically convert spectral light split by the color separation optical system are arranged in a plane, and the plurality of colors The resolving optical system includes at least a condensing lens (A) that condenses incident light, a parallel conversion lens (B) that converts the condensing light collected by (A) into parallel light, and (B) The plurality of photoelectric conversion elements includes a prism (C) that splits the parallel light converted by the step (C), and the spectral lights separated by the (C) are incident on the plurality of different photoelectric conversion elements. (A), (B), (C), and the photoelectric conversion element are arranged in close contact with each other, and the surface on the incident light side of (A) is a convex curved surface on the incident light side. The interface between (A) and (B) has a concave curved surface on the incident light side. And the interface between (B) and (C) has an inclined plane, and the refractive index of (A) is the smallest among (A), (B), and (C). The solid-state imaging device is characterized in that the refractive index of (C) is the highest among (A), (B) and (C).

本発明によれば画素内に色分解光学系を有する固体撮像装置を構成できるので、入射光の利用効率が高く、高感度の固体撮像装置を実現することができる。また、レンズとプリズムの組み合わせによる色分解光学系を実現でき、撮像素子の単一画素で分光及び各分光色の強度に対応した電気信号を発生させることができるため、忠実な色再生が可能となる。また、集光レンズ(A)、平行変換レンズ(B)、プリズム(C)、光電変換素子が順に密着して構成されているため、コンパクトな固体撮像装置が得られる。   According to the present invention, since a solid-state imaging device having a color separation optical system in a pixel can be configured, it is possible to realize a solid-state imaging device with high incident light utilization efficiency and high sensitivity. In addition, a color separation optical system using a combination of a lens and a prism can be realized, and an electric signal corresponding to the intensity of each spectral color and each spectral color can be generated by a single pixel of the image sensor, so that faithful color reproduction is possible. Become. In addition, since the condenser lens (A), the parallel conversion lens (B), the prism (C), and the photoelectric conversion element are in close contact with each other, a compact solid-state imaging device can be obtained.

以下、本発明の一実施例について図面を用いて説明する。図1は、本発明の一実施例をするための一画素分の固体撮像装置の概略構成を示す図である。
図1において、100は、固体撮像装置の1画素を示している。101は、被写体からの光が固体撮像装置100に結像される光束である。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing a schematic configuration of a solid-state imaging device for one pixel for carrying out one embodiment of the present invention.
In FIG. 1, reference numeral 100 denotes one pixel of the solid-state imaging device. Reference numeral 101 denotes a light beam on which light from the subject is imaged on the solid-state imaging device 100.

102は、集光レンズ(A)である。集光レンズ(A)の入射光側の表面は入射光側に凸の曲面を有する。本実施例では、集光レンズ(A)は横幅が3μm、屈折率n1が1.3、焦点距離F1は、3μmで、材質はフッ素系樹脂である。集光レンズ(A)の材質はフッ素系樹脂に限定されないが、これと同程度の低屈折率の材質で構成されることが好ましい。   Reference numeral 102 denotes a condenser lens (A). The surface on the incident light side of the condenser lens (A) has a convex curved surface on the incident light side. In this embodiment, the condenser lens (A) has a lateral width of 3 μm, a refractive index n1 of 1.3, a focal length F1 of 3 μm, and is made of a fluorine resin. The material of the condensing lens (A) is not limited to fluorine-based resin, but it is preferable that the condensing lens (A) is made of a material having a low refractive index comparable to this.

103は、平行変換レンズ(B)である。平行変換レンズ(B)は集光レンズ(A)との境界面が入射光側に凹の曲面を有する。本実施例では、平行変換レンズ(B)は横幅が3μm、屈折率n2が1.5、焦点距離F2は、3μmで、材質はポリメチルメタクリレートである。平行変換レンズ(B)の材質はポリメチルメタクリレートに限定されず、一般の光学レンズと同様な材質で構成される。但し、集光レンズ(A)で集光された集光光を平行変換レンズ(B)で平行光に変換するため、平行変換レンズ(B)の屈折率は集光レンズ(A)の屈折率より大きいことが必要である。尚、平行変換レンズ(B)の光軸は、集光レンズ(A)の光軸に一致させる必要がある。平行変換レンズ(B)の光軸上の(B)の凹面から後述のプリズム(C)の傾斜面106までの距離は、本実施例では、1μmに設定されている。   Reference numeral 103 denotes a parallel conversion lens (B). The parallel conversion lens (B) has a concave curved surface on the incident light side at the boundary surface with the condenser lens (A). In this embodiment, the parallel conversion lens (B) has a lateral width of 3 μm, a refractive index n2 of 1.5, a focal length F2 of 3 μm, and is made of polymethyl methacrylate. The material of the parallel conversion lens (B) is not limited to polymethyl methacrylate, and is composed of the same material as that of a general optical lens. However, since the condensed light collected by the condenser lens (A) is converted into parallel light by the parallel conversion lens (B), the refractive index of the parallel conversion lens (B) is the refractive index of the condenser lens (A). It needs to be bigger. The optical axis of the parallel conversion lens (B) needs to coincide with the optical axis of the condenser lens (A). In this embodiment, the distance from the concave surface (B) on the optical axis of the parallel conversion lens (B) to the inclined surface 106 of the prism (C) described later is set to 1 μm.

105は、プリズム(C)である。プリズム(C)は平行変換レンズ(B)との境界において傾斜した平面(傾斜面106)を有する。本実施例では屈折率n3が1.7で、材質はエピスルフィド系樹脂である。プリズム(C)の材質はエピスルフィド系樹脂に限定されず、チオウレタン系樹脂のような高屈折率の材質で構成されることができる。但し、平行変換レンズ(B)による平行光をプリズム(C)で分光するため、プリズム(C)の屈折率は平行変換レンズ(B)より大きいことが必要である。
107は、固体撮像素子である。固体撮像素子にはプリズム(C)で分光された分光光を受光する複数の光電変換素子が平面上に配列されている。
Reference numeral 105 denotes a prism (C). The prism (C) has a flat surface (inclined surface 106) inclined at the boundary with the parallel conversion lens (B). In this embodiment, the refractive index n3 is 1.7 and the material is episulfide resin. The material of the prism (C) is not limited to episulfide resin, and can be made of a material having a high refractive index such as thiourethane resin. However, since the parallel light from the parallel conversion lens (B) is split by the prism (C), the refractive index of the prism (C) needs to be larger than that of the parallel conversion lens (B).
Reference numeral 107 denotes a solid-state image sensor. In the solid-state imaging device, a plurality of photoelectric conversion elements that receive the spectral light split by the prism (C) are arranged on a plane.

本発明においては、集光レンズ(A)、平行変換レンズ(B)及びプリズム(C)で構成される光学系を色分解光学系と呼ぶ。
本発明の固体撮像装置においては、集光レンズ(A)、平行変換レンズ(B)、プリズム(C)及び固体撮像素子はこの順で互いに密着して構成されている。密着した構成とすることでコンパクトな固体撮像装置とすることができる。
In the present invention, an optical system including the condenser lens (A), the parallel conversion lens (B), and the prism (C) is referred to as a color separation optical system.
In the solid-state imaging device of the present invention, the condenser lens (A), the parallel conversion lens (B), the prism (C), and the solid-state imaging device are configured to be in close contact with each other in this order. A compact solid-state imaging device can be obtained by adopting an intimate configuration.

前記固体撮像装置の動作を説明する。被写体からの入射光101が集光レンズ(A)(102)に入射する。固体撮像面から遠くて、近似的に像側テレセントリックなレンズを使用すれば、入射光束101は、集光レンズ(A)(102)の光軸にほぼ平行に入射する。集光レンズ(A)(102)に入射した被写体光は、集光レンズ(A)(102)の焦点に集光する。この集光光束は、集光レンズ(A)(102)の焦点付近に配置された平行変換レンズ(B)(103)により平行光束104になり、プリズム(C)(105)に入射される。   The operation of the solid-state imaging device will be described. Incident light 101 from the subject enters the condenser lenses (A) and (102). If an image side telecentric lens is used that is far from the solid-state imaging surface, the incident light beam 101 is incident substantially parallel to the optical axis of the condenser lenses (A) and (102). The subject light incident on the condenser lenses (A) (102) is condensed on the focal point of the condenser lenses (A) (102). The condensed light beam is converted into a parallel light beam 104 by the parallel conversion lenses (B) and (103) disposed near the focal points of the condensing lenses (A) and (102), and is incident on the prism (C) (105).

プリズム(C)の傾斜面106に入射した平行光束104は、光の波長に応じて屈折され、固体撮像素子107に入射される。プリズム(C)の傾斜面106に入射する平行光束104には、赤(波長:600〜700nm)、緑(波長:500〜600nm)、青(波長:400〜500nm)の光が含まれている。そして、この平行光束104が光軸に対し傾斜した傾斜面106に入射し、ここで屈折が起こるが、長波長の光は、屈折が小さく、短波長の光は、屈折が大きいため分光される。例えば、図1では、波長の長い赤成分の光は、小さく屈折し、赤色分光光108−1となり、赤色光光電変換素子109−1に入射する。緑成分の光は、緑色分光光108−2となり、緑色光光電変換素子109−2に入射する。また、青成分の光は、青色分光光108−3となり、青色光光電変換素子109−3に入射する。尚、プリズム(C)にアッベ数の小さい光学材料を使用すると波長ごとの分光が効率よく行える。   The parallel light beam 104 incident on the inclined surface 106 of the prism (C) is refracted according to the wavelength of the light and is incident on the solid-state image sensor 107. The parallel light beam 104 incident on the inclined surface 106 of the prism (C) includes red (wavelength: 600 to 700 nm), green (wavelength: 500 to 600 nm), and blue (wavelength: 400 to 500 nm) light. . Then, the parallel light beam 104 is incident on the inclined surface 106 inclined with respect to the optical axis, and refraction occurs here. However, long wavelength light is small in refraction, and short wavelength light is dispersed because refraction is large. . For example, in FIG. 1, red component light having a long wavelength is refracted to become red spectral light 108-1 and enters the red photoelectric conversion element 109-1. The green component light becomes green spectral light 108-2 and enters the green light photoelectric conversion element 109-2. Further, the blue component light becomes blue spectral light 108-3 and is incident on the blue light photoelectric conversion element 109-3. If an optical material having a small Abbe number is used for the prism (C), the spectrum for each wavelength can be efficiently performed.

ここで、アッベ数とは、光の逆分散率を示し、色収差の少ない光学材料ほどアッベ数は大きい。本発明の場合、逆にアッベ数が小さく、色収差が大きい方が効率よく分散でき、良いプリズムとなる。また、傾斜面106の角度θ、傾斜面106から固体撮像素子107までの距離及び光電変換素子109−1〜3の形成位置を適宜調節することにより、赤色分光光108−1、緑色分光光108−2及び青色分光光108−3をそれぞれ赤色光光電変換素子109−1、緑色光光電変換素子109−2及び青色光光電変換素子109−3にそれぞれ入射させることができる。   Here, the Abbe number indicates the inverse dispersion rate of light, and the Abbe number is larger as the optical material has less chromatic aberration. In the case of the present invention, on the contrary, a smaller Abbe number and a larger chromatic aberration can be efficiently dispersed and a good prism is obtained. Further, by appropriately adjusting the angle θ of the inclined surface 106, the distance from the inclined surface 106 to the solid-state imaging device 107, and the formation positions of the photoelectric conversion elements 109-1 to 109-3, the red spectral light 108-1 and the green spectral light 108. -2 and blue spectral light 108-3 can be incident on the red light photoelectric conversion element 109-1, the green light photoelectric conversion element 109-2 and the blue light photoelectric conversion element 109-3, respectively.

上記のように構成することによって1つの画素に入射する被写体からの光を、例えば、赤、緑、青の各色成分に分光し、光電変換素子109−1〜3で各色の映像信号に変換され、固体撮像素子107から取出される。   With the configuration described above, light from a subject incident on one pixel is divided into, for example, red, green, and blue color components, and converted into video signals of each color by the photoelectric conversion elements 109-1 to 109-3. The solid-state image sensor 107 is taken out.

本発明の固体撮像装置は、従来のようにカラーフィルタを使用する必要がないので、入射光の利用効率が高く、解像度の高い固体撮像装置を実現することができる。尚、上記本発明は、MOS型及びCCD型の両方に適用することができる   Since the solid-state imaging device of the present invention does not require the use of a color filter as in the prior art, a solid-state imaging device with high incident light utilization efficiency and high resolution can be realized. The present invention can be applied to both MOS type and CCD type.

尚、上記実施例では、平行変換レンズ(B)の焦点位置にプリズム(C)への入射位置を設定しているが、平行変換レンズ(B)からの光束は、平行光束であるので、この距離は、適宜設定することができる。   In the above embodiment, the incident position on the prism (C) is set at the focal position of the parallel conversion lens (B), but the light beam from the parallel conversion lens (B) is a parallel light beam. The distance can be set as appropriate.

以上、本発明の一実施例について詳細に説明したが、本発明は、これに限定されるものではない。   As mentioned above, although one Example of this invention was described in detail, this invention is not limited to this.

本発明の一実施例を説明するための固体撮像装置の概略構成図である。It is a schematic block diagram of the solid-state imaging device for demonstrating one Example of this invention.

100:固体撮像素子、101:入射光、102:集光レンズ(A)、103:平行変換レンズ(B)、104:平行光束、105:プリズム(C)、106:プリズム(C)の傾斜面、107:固体撮像素子、108−1:赤色分光光、108−2:緑色分光光、108−3:青色分光光、109−1:赤色光受光素子、109−2:緑色光受光素子、109−3:青色光受光素子   DESCRIPTION OF SYMBOLS 100: Solid-state image sensor, 101: Incident light, 102: Condensing lens (A), 103: Parallel conversion lens (B), 104: Parallel light beam, 105: Prism (C), 106: Inclined surface of prism (C) 107: solid state imaging device, 108-1: red spectral light, 108-2: green spectral light, 108-3: blue spectral light, 109-1: red light receiving device, 109-2: green light receiving device, 109 -3: Blue light receiving element

Claims (1)

複数の色分解光学系と、前記色分解光学系で分光された分光光を光電変換する複数の光電変換素子を平面状に配列した固体撮像素子を有し、前記複数の色分解光学系は、少なくとも入射光を集光する集光レンズ(A)と、前記(A)により集光された集光光を平行光に変換する平行変換レンズ(B)と、前記(B)により変換された平行光を分光するプリズム(C)を有し、前記(C)により分光されたそれぞれの分光光をそれぞれ異なる前記複数の光電変換素子に入射するように前記複数の光電変換素子が配置され、前記(A)、前記(B)、前記(C)、前記光電変換素子が順に密着して構成されてなり、前記(A)の入射光側の表面が入射光側に凸の曲面を有し、前記(A)と前記(B)の界面が入射光側に凹の曲面を有し、前記(B)と前記(C)の界面が傾斜した平面を有し、かつ、前記(A)の屈折率が前記(A)、前記(B)及び前記(C)の中で最も小さく、前記(C)の屈折率が前記(A)、前記(B)及び前記(C)の中で最も大きいことを特徴とする固体撮像装置。   A plurality of color separation optical systems, and a solid-state imaging device in which a plurality of photoelectric conversion elements that photoelectrically convert spectral light split by the color separation optical system are arranged in a planar shape, and the plurality of color separation optical systems are: A condensing lens (A) for condensing at least incident light, a parallel conversion lens (B) for converting the condensing light collected by (A) into parallel light, and the parallel converted by (B) The plurality of photoelectric conversion elements are arranged so as to have a prism (C) that splits light, and the respective spectral lights separated by (C) are incident on the different photoelectric conversion elements. A), (B), (C), and the photoelectric conversion element are in close contact with each other, the surface on the incident light side of (A) has a convex curved surface on the incident light side, The interface between (A) and (B) has a concave curved surface on the incident light side, and the (B) And the interface of (C) has an inclined plane, and the refractive index of (A) is the smallest among (A), (B) and (C), and A solid-state imaging device having a refractive index that is the highest among (A), (B), and (C).
JP2010162687A 2010-07-20 2010-07-20 Solid-state image pickup device Pending JP2012028372A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010162687A JP2012028372A (en) 2010-07-20 2010-07-20 Solid-state image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010162687A JP2012028372A (en) 2010-07-20 2010-07-20 Solid-state image pickup device

Publications (1)

Publication Number Publication Date
JP2012028372A true JP2012028372A (en) 2012-02-09

Family

ID=45781001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010162687A Pending JP2012028372A (en) 2010-07-20 2010-07-20 Solid-state image pickup device

Country Status (1)

Country Link
JP (1) JP2012028372A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9748305B2 (en) 2014-08-28 2017-08-29 Samsung Electronics Co., Ltd. Image sensor having improved light utilization efficiency

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9748305B2 (en) 2014-08-28 2017-08-29 Samsung Electronics Co., Ltd. Image sensor having improved light utilization efficiency

Similar Documents

Publication Publication Date Title
US8208052B2 (en) Image capture device
JP5296077B2 (en) Imaging device
US8106994B2 (en) Image pickup apparatus having a microlens array
RU2554292C2 (en) Image sensor and imager
JP4985061B2 (en) Spectroscopic apparatus and imaging apparatus
JP5283371B2 (en) Solid-state image sensor
JP5842146B2 (en) Solid-state imaging device, imaging device, and spectroscopic element
KR101265432B1 (en) Imaging element and imaging apparatus using the same
KR20160100569A (en) Image sensor and imaging device including image sensor
JP2013546249A5 (en)
US8520126B2 (en) Solid-state image capturing element, image capturing device and signal processing method
JPWO2005081020A1 (en) Optics and beam splitters
JPWO2019078335A1 (en) Imaging equipment and methods, and image processing equipment and methods
JP3571982B2 (en) Solid-state imaging device and solid-state imaging system having the same
JP5997149B2 (en) Solid-state imaging device, imaging apparatus, and signal processing method
US10992859B2 (en) Image capture apparatus and control method thereof capable of reducing an image data amount
JP2012028372A (en) Solid-state image pickup device
JP2013157531A (en) Solid state image sensor and electronic information device
CN110891137A (en) Image sensor, electronic device, image processing method, and storage medium
US20220028914A1 (en) Image sensor and image capturing apparatus
JP2008153518A (en) Solid-state image pickup device and camera device using the same
JP2008103628A (en) Solid-state image pickup element
JP6232108B2 (en) Imaging device and imaging apparatus
JP2017026814A (en) Imaging optical system and imaging system
TW202226818A (en) Image processing device, method and lens module with the same