JP2012028023A - Battery - Google Patents

Battery Download PDF

Info

Publication number
JP2012028023A
JP2012028023A JP2010162831A JP2010162831A JP2012028023A JP 2012028023 A JP2012028023 A JP 2012028023A JP 2010162831 A JP2010162831 A JP 2010162831A JP 2010162831 A JP2010162831 A JP 2010162831A JP 2012028023 A JP2012028023 A JP 2012028023A
Authority
JP
Japan
Prior art keywords
battery
conductive member
resin
voltage
assembled battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010162831A
Other languages
Japanese (ja)
Inventor
Kenji Hosaka
賢司 保坂
Yoshio Shimoida
良雄 下井田
Takuya Kinoshita
拓哉 木下
Hideaki Horie
英明 堀江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2010162831A priority Critical patent/JP2012028023A/en
Priority to KR1020110071209A priority patent/KR101269328B1/en
Publication of JP2012028023A publication Critical patent/JP2012028023A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/545Terminals formed by the casing of the cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a battery that is electromagnetically shielded without increasing the weight of the whole battery.SOLUTION: A battery (1) having a battery element (2) coated with a resin-metal composite film (6), as a jacket material, formed by sticking a resin film (8) and a metal film (7) together in layers such that margin parts (6a) protrude from an outer periphery of the battery element (2), and storing and sealing the battery element (2) inside the jacket material by joining the upper and lower margin parts (6a), protruding from the outer periphery, together by heat sealing is characterized in that a conductive member (21) penetrates the part (10) joined by the heat sealing, and is grounded.

Description

この発明は電池、特に積層型の組電池に関する。   The present invention relates to a battery, and more particularly to a laminated battery pack.

スイッチング作動を行う電気回路に接続された電池パック10を有する車両用電源装置において、フロアパネル14をノイズシールド部材とするものが記載されている(特許文献1参照)。   In a vehicle power supply device having a battery pack 10 connected to an electric circuit that performs a switching operation, a device using a floor panel 14 as a noise shield member is described (see Patent Document 1).

特開2001−294048号公報JP 2001-294048 A

しかしながら、上記特許文献1の技術では、ノイズシールド機能を有する金属製筐体の一部をフロアパネルで置き換えているだけのものである。つまり、電池本体より外側に電磁シールドを行うための金属製筐体が必要であることに変わりなく、金属製筐体を含めた電池全体の重量増加や大型化を招いてしまう。   However, the technique disclosed in Patent Document 1 merely replaces a part of a metal casing having a noise shielding function with a floor panel. That is, the metal casing for performing electromagnetic shielding outside the battery main body is still necessary, and the entire battery including the metal casing is increased in weight and size.

そこで本発明は、電池全体の重量を増加させることなく電磁シールド可能な電池を提供することを目的とする。   Therefore, an object of the present invention is to provide a battery that can be electromagnetically shielded without increasing the weight of the entire battery.

本発明は、樹脂フィルムと金属フィルムとを貼り合わせて層状にした樹脂−金属複合フィルムを外装材としてこの樹脂−金属複合フィルムで電池要素の外周に余裕代部をはみ出させて電池要素を被覆すると共に、外周にはみ出させた上下の余裕代部を熱融着で接合することにより電池要素を外装材の内側に収納して密封するようにした電池を前提として、前記熱融着で接合された部位に導電部材を貫通させると共にこの導電部材をアースに接続するものである。   In the present invention, a resin-metal composite film formed by laminating a resin film and a metal film is used as an exterior material, and the battery element is covered with the resin-metal composite film so that a margin part protrudes from the outer periphery of the battery element. In addition, on the premise of a battery in which the upper and lower margins protruding from the outer periphery are joined by thermal fusion and the battery element is housed inside the exterior material and sealed, it is joined by the thermal fusion. The conductive member is passed through the portion and the conductive member is connected to the ground.

本発明によれば、外装材としての金属フィルムが電磁シールドの機能を有することとなるので、金属製筐体によるアースを形成する必要がなくなる。これによって軽量かつコンパクトな電池を形成できる。   According to the present invention, since the metal film as the exterior material has a function of electromagnetic shielding, it is not necessary to form a ground by the metal casing. Thereby, a lightweight and compact battery can be formed.

本発明の第1実施形態の強電タブが取り出されている部位でみた組電池の概略縦断面図である。It is a schematic longitudinal cross-sectional view of the assembled battery seen in the site | part from which the high electric power tab of 1st Embodiment of this invention was taken out. 本発明の第1実施形態の強電タブが取り出されていない部位でみた組電池の概略縦断面図である。It is a schematic longitudinal cross-sectional view of the assembled battery seen in the site | part where the high voltage tab of 1st Embodiment of this invention is not taken out. 第1実施形態の組電池の概略平面図である。It is a schematic plan view of the assembled battery of 1st Embodiment. 組電池をモータの電源とする電気配線図である。It is an electrical wiring diagram which uses an assembled battery as a power supply of a motor. 第2実施形態の組電池の概略平面図である。It is a schematic plan view of the assembled battery of 2nd Embodiment. 第3実施形態の組電池の概略平面図である。It is a schematic plan view of the assembled battery of 3rd Embodiment. 第4実施形態の強電タブが取り出されていない部位でみた組電池の概略縦断面図である。It is a schematic longitudinal cross-sectional view of the assembled battery seen in the site | part where the high electric power tab of 4th Embodiment is not taken out. 第5実施形態の強電タブが取り出されていない部位でみた組電池の概略縦断面図である。It is a schematic longitudinal cross-sectional view of the assembled battery seen in the site | part where the high electric power tab of 5th Embodiment is not taken out. 第5実施形態の抜け止め部の詳細図である。It is detail drawing of the retaining part of 5th Embodiment. 第6実施形態の強電タブが取り出されていない部位でみた組電池の概略縦断面図である。It is a schematic longitudinal cross-sectional view of the assembled battery seen in the site | part where the high electric power tab of 6th Embodiment is not taken out. 第6実施形態の導電部材の詳細図である。It is detail drawing of the electrically-conductive member of 6th Embodiment. 第7実施形態の組電池の概略縦断面図である。It is a schematic longitudinal cross-sectional view of the assembled battery of 7th Embodiment. 第7実施形態の導電部材とアース線との接続方法を示す概略図である。It is the schematic which shows the connection method of the electrically-conductive member of 7th Embodiment, and an earth wire. 第8実施形態の組電池の概略縦断面図である。It is a schematic longitudinal cross-sectional view of the assembled battery of 8th Embodiment. 第8実施形態の組電池の概略縦断面図である。It is a schematic longitudinal cross-sectional view of the assembled battery of 8th Embodiment. 組電池の一部を拡大して示す第9実施形態の概略斜視図である。It is a schematic perspective view of 9th Embodiment which expands and shows a part of assembled battery. 実施例の双極型電極の平面図、裏面図及び断面図である。It is the top view, back view, and sectional drawing of the bipolar electrode of an Example. シール部前駆体が塗布された状態を説明するための実施例の双極型電極の平面図、断面図である。It is the top view and sectional drawing of the bipolar electrode of the Example for demonstrating the state by which the seal | sticker part precursor was apply | coated. セパレータにより覆われた状態を説明するための実施例の双極型電極の平面図、断面図である。It is the top view and sectional drawing of the bipolar electrode of the Example for demonstrating the state covered with the separator. 実施例の電池要素の縦断面図である。It is a longitudinal cross-sectional view of the battery element of an Example. 実施例の組電池の縦断面図である。It is a longitudinal cross-sectional view of the assembled battery of an Example. 実施例の組電池の平面図である。It is a top view of the assembled battery of an Example.

以下図面に基づいて実施形態を説明する。以下の図面では、発明の理解を容易にするため、積層型電池を構成する要素などの各層の厚さや形状を誇張して示しているところがある。実寸に応じた縮尺となっているわけではない。なお、積層型電池は少なくとも2つの単電池を積層して構成した電池であるが、少なくとも2つの単電池を組み合わせた電池、つまり組電池でもある。   Embodiments will be described below with reference to the drawings. In the following drawings, in order to facilitate understanding of the invention, the thickness and shape of each layer such as elements constituting the stacked battery are exaggerated. It is not necessarily a scale according to the actual size. The stacked battery is a battery configured by stacking at least two unit cells, but is also a battery in which at least two unit cells are combined, that is, an assembled battery.

(第1実施形態)
図1A、図1Bは本発明の第1実施形態の組電池1の概略縦断面図、図2は第1実施形態の組電池1の概略平面図である。なお、図1A、図1Bにおいては各部材の間に間隙があるかのように記載しているが、これは見易くするためであって実際に各部材の間に間隙が設けられているわけはでない。図2に示したように組電池の周囲には強電タブ4、5が取り出されている部位と強電タブ4、5が取り出されていない部位とが存在する。図1Aは強電タブ4、5が取り出されている部位でみた概略断面図、図1Bは強電タブ4、5が取り出されていない部位でみた概略断面図である。
(First embodiment)
1A and 1B are schematic longitudinal sectional views of the assembled battery 1 according to the first embodiment of the present invention, and FIG. 2 is a schematic plan view of the assembled battery 1 according to the first embodiment. In FIG. 1A and FIG. 1B, it is described as if there is a gap between the members, but this is for ease of viewing, and the reason why gaps are actually provided between the members is not shown. Not. As shown in FIG. 2, there are a portion where the high-power tabs 4, 5 are taken out and a portion where the high-power tabs 4, 5 are not taken out around the assembled battery. FIG. 1A is a schematic cross-sectional view of a portion where the high-power tabs 4 and 5 are taken out, and FIG. 1B is a schematic cross-sectional view of a portion where the high-power tabs 4 and 5 are not taken out.

図1A、図1Bにおいて、全体として矩形かつ平板状に形成されている双極型二次電池要素3を上下方向に3つ積層することで、1つの塊としての電池要素2が構成されている。図1Aに示したように電池要素2の最上段と最下段には、一対の強電タブ4、5が接続され、一方の強電タブ4は右側に、もう一つの強電タブ5は左側に取り出されている。   In FIG. 1A and FIG. 1B, the battery element 2 as one lump is comprised by laminating | stacking three bipolar type secondary battery elements 3 formed in the rectangle and flat form as a whole in the up-down direction. As shown in FIG. 1A, a pair of high-power tabs 4 and 5 are connected to the uppermost and lowermost stages of the battery element 2, and one high-power tab 4 is taken out on the right side and the other high-power tab 5 is taken out on the left side. ing.

図2は図1Aとは正確に対応するものでない。すなわち、図1Aでは、一対の強電タブ4、5は左右に取り出されているが、図2では、強電タブ4、5はいずれも左側から取り出されている。   FIG. 2 does not correspond exactly to FIG. 1A. That is, in FIG. 1A, the pair of high-power tabs 4 and 5 are taken out from the left and right, but in FIG. 2, the high-power tabs 4 and 5 are both taken out from the left side.

図1Aに示す組電池1は、後述する図19に示す組電池1を簡略化して示している。実際には図1Aに示す組電池1は図19のように8つの双極型二次電池要素45を上下方向に積層したものである。図1Aでは簡略化のため3つの双極型二次電池電池要素45を積層したものを示している。図1Aに示す双極型二次電池要素3は、図19に示す双極型二次電池要素45と同じものである。   The assembled battery 1 shown in FIG. 1A is a simplified illustration of the assembled battery 1 shown in FIG. 19 described later. Actually, the assembled battery 1 shown in FIG. 1A is obtained by stacking eight bipolar secondary battery elements 45 in the vertical direction as shown in FIG. FIG. 1A shows a stack of three bipolar secondary battery element 45 for simplification. The bipolar secondary battery element 3 shown in FIG. 1A is the same as the bipolar secondary battery element 45 shown in FIG.

図19に示す1つの双極型二次電池要素45は、図18で後述するように単電池41を12個上下方向に積層した(直列に接続した)ものである。なお、図18も簡単のため、双極型電極を上下方向に5枚積層することで単電池41が4個直列に接続された双極型二次電池要素45を示している。1つの単電池41は、隣り合う2つの集電体32、32の間の要素、つまり負極34と、ゲル電解液を染み込ませているセパレータ36と、正極33との3つの要素から構成されている。   One bipolar secondary battery element 45 shown in FIG. 19 is obtained by stacking 12 unit cells 41 in the vertical direction (connected in series) as will be described later with reference to FIG. For simplicity, FIG. 18 shows a bipolar secondary battery element 45 in which four unit cells 41 are connected in series by stacking five bipolar electrodes in the vertical direction. One unit cell 41 is composed of three elements: an element between two adjacent current collectors 32, 32, that is, a negative electrode 34, a separator 36 soaked with gel electrolyte, and a positive electrode 33. Yes.

図1A、図1Bに戻り一対の強電タブ4、5及び電池要素2の全体は上下より電池の外装材で被覆されている。ここでは、外装材として、アルミニウム、ステンレス、ニッケル、銅などの金属(合金を含む)のフィルム7と、ポリプロピレンフィルム等の樹脂(絶縁体)のフィルム8とを接合した樹脂−金属複合ラミネートフィルム6を用いている。この樹脂−金属複合ラミネートフィルム6で上方より電池要素2及び一対の強電タブ4、5の全体を、電池要素2の外周に余裕代部6aをほぼ均等にはみ出させて被覆すると共に、下方にも上方の樹脂−金属ラミネートフィルム6と同じ幅の余裕代部6aを電池要素2の外周にほぼ均等にはみ出させて被覆し、外周にはみ出させた上下の余裕代部6aを熱融着で接合することにより、一対の強電タブ4、5及び電池要素2を外装材の内側に収納し密封する。このように、熱融着で接合する部分を、以下「熱融着部」10という。熱融着部10を一点鎖線の円で示している。   Returning to FIG. 1A and FIG. 1B, the entire pair of high voltage tabs 4 and 5 and the battery element 2 are covered with a battery exterior material from above and below. Here, as an exterior material, a resin-metal composite laminate film 6 obtained by bonding a film 7 of a metal (including an alloy) such as aluminum, stainless steel, nickel, or copper and a film 8 of a resin (insulator) such as a polypropylene film. Is used. The resin-metal composite laminate film 6 covers the entire battery element 2 and the pair of high voltage tabs 4 and 5 from above, with the margin 6a protruding almost uniformly on the outer periphery of the battery element 2, and also on the lower side. The margin allowance 6a having the same width as the upper resin-metal laminate film 6 is coated on the outer periphery of the battery element 2 almost evenly, and the upper and lower margin allowances 6a protruding on the outer periphery are joined by thermal fusion. Thus, the pair of high voltage tabs 4 and 5 and the battery element 2 are housed inside the exterior material and sealed. Thus, the part joined by thermal fusion is hereinafter referred to as “thermal fusion part” 10. The heat-sealed part 10 is indicated by a one-dot chain line circle.

樹脂フィルム8に加えて金属フィルム7でも電池要素2及び一対の強電タブ4、5の全体を被覆するのは、外装材の内部に水(水分)が侵入すると電池性能を阻害するので、そうならないようにするためである。このため上下の余裕代部6aを熱融着する際には、外装材の内部の空気を抜くことが好ましい。空気を抜く理由は、空気は水分を含んでいるためである。なお、一対の強電タブ4、5は熱融着部10で外装材に挟まれて樹脂−金属複合ラミネートフィルム6の外部に露出させている。   The metal film 7 in addition to the resin film 8 covers the entire battery element 2 and the pair of high voltage tabs 4 and 5 because water (moisture) penetrates into the interior of the exterior material, which impedes battery performance. It is for doing so. For this reason, when heat-sealing the upper and lower margin allowances 6a, it is preferable to vent the air inside the exterior material. The reason for removing air is that air contains moisture. The pair of high voltage tabs 4, 5 are sandwiched between outer packaging materials at the heat fusion part 10 and are exposed to the outside of the resin-metal composite laminate film 6.

さて、組電池1は、例えば図3に示したようにモータ11(電気自動車やハイブリッド自動車に用いられる)の電源として用いられる。この場合、インバータ12のようなスイッチング作動を行う電気回路など、外部機器によって組電池1からの直流出力が交流に変換されたり組電池1からの電流が制御されたりすることから、インバータ12、インバータ12を制御する制御装置(図示しない)、組電池1、インバータ12と組電池1との間を接続する強電配線13、14などから電磁波が放散される。この電磁波の放散を防止するため、各部品に電磁シールドを行う必要がある。なお、外部機器としてインバータ12を挙げたが、インバータ以外でもスイッチングを行う外部機器には本発明の適用があることはいうまでもない。   Now, the assembled battery 1 is used as a power source of a motor 11 (used in an electric vehicle or a hybrid vehicle) as shown in FIG. 3, for example. In this case, since the DC output from the assembled battery 1 is converted into alternating current or the current from the assembled battery 1 is controlled by an external device such as an electric circuit that performs a switching operation like the inverter 12, the inverter 12, the inverter Electromagnetic waves are dissipated from a control device (not shown) for controlling 12, the assembled battery 1, the high-voltage wirings 13 and 14 connecting the inverter 12 and the assembled battery 1, and the like. In order to prevent the radiation of the electromagnetic wave, it is necessary to perform electromagnetic shielding on each part. In addition, although the inverter 12 was mentioned as an external device, it cannot be overemphasized that the application of this invention has the application to the external device which switches other than an inverter.

例えばインバータ12と組電池1との間を接続する強電配線は、電磁波の放散を防止するため電磁シールド付き強電配線13、14とされている。電磁シールド付き強電配線にはいろいろなタイプがあり、いずれのタイプでもかまわない。ここでは、中心にある導線15を絶縁材16で被覆しその絶縁材16さらに銅やアルミニウムなどの電気抵抗の小さな金属で編んだ金網層17によって被覆したものであるとする。このような電磁シールド付き強電配線13、14では最外側の金網層17にアース線18が接続され、アースされることとなる。   For example, the high-power wirings connecting the inverter 12 and the assembled battery 1 are the high-power wirings 13 and 14 with electromagnetic shield in order to prevent the radiation of electromagnetic waves. There are various types of high-voltage wiring with electromagnetic shielding, and any type can be used. Here, it is assumed that the lead wire 15 at the center is covered with an insulating material 16 and further covered with the insulating material 16 and a wire mesh layer 17 knitted with a metal having a small electric resistance such as copper or aluminum. In such high-power wirings 13 and 14 with electromagnetic shield, the ground wire 18 is connected to the outermost wire mesh layer 17 to be grounded.

本発明では、特に組電池1に電磁シールドを行う場合を扱う。組電池1は、外装材として樹脂−金属複合ラミネートフィルム6を用いることで、非常に簡便かつ軽量コンパクトとなっている。電磁シールド構造を形成するためとはいえ、組電池1の全周をさらに金属製筐体を配置することによって電磁シールドを行うのでは、結果的に組電池1を含めた全体の重量が増加してしまう。   In the present invention, a case where electromagnetic shielding is performed on the assembled battery 1 is particularly handled. The assembled battery 1 is very simple and lightweight and compact by using the resin-metal composite laminate film 6 as an exterior material. Although the electromagnetic shield structure is formed, if the electromagnetic shielding is performed by further arranging the metal casing around the entire periphery of the assembled battery 1, the overall weight including the assembled battery 1 increases as a result. End up.

また、電磁シールドのためのアースを金属製筐体に固定した場合には、組電池1を自動車などの用途に用いたときに、振動による接続信頼性が要求される。   In addition, when the earth for the electromagnetic shield is fixed to a metal casing, connection reliability by vibration is required when the assembled battery 1 is used for an application such as an automobile.

そこで本発明は、電池の外装材として用いている樹脂−金属複合ラミネートフィルム6に含まれる金属フィルム7を金属製筐体の機能を有するものとして機能させ、この金属フィルム7をアースに接続する。金属フィルム7は、もともと外装材の内部に水分が入らないようにするものであるが、本発明では、この金属フィルム7に電磁シールドを行う機能を新たに付加するのである。電磁シールドは、基本的に電磁波を放散する対象(ここでは組電池1)を金属部材で被覆することによって果たされる。この意味で金属フィルム7はこの条件を満たすことから本発明を発想したものである。   Therefore, in the present invention, the metal film 7 included in the resin-metal composite laminate film 6 used as the battery exterior material is caused to function as a metal casing, and the metal film 7 is connected to the ground. The metal film 7 originally prevents moisture from entering the exterior material, but in the present invention, a function of performing electromagnetic shielding is newly added to the metal film 7. The electromagnetic shield is basically achieved by covering an object (here, the assembled battery 1) that dissipates electromagnetic waves with a metal member. In this sense, the metal film 7 is based on the present invention because it satisfies this condition.

金属フィルム7とアース線25とを接続するについては、次のようにする。すなわち、図1Bに示したように強電タブ4、5が取り出されていない部位の熱融着部10にピン状の導電部材21を上方から下方に向けて貫通させる。頭部22があるので、勢いよく貫通させてもピン部23が下方に抜けてしまうことはない。この逆に導電部材21を下方から上方に向けて貫通させてもかまわない。なお、導電部材を貫通させることができない熱融着部には、強電タブ4、5が取り出されている部位の熱融着部10のほか、電圧検出用端子が取り出されている部位の熱融着部10がある。このため、以下では特に断らない限り「強電タブが取り出されている部位」には「電圧検出用端子が取り出されている部位」が含まれているものとし、「強電タブが取り出されていない部位」には「電圧検出用端子が取り出されていない部位」が含まれているものとする。   The connection between the metal film 7 and the ground wire 25 is as follows. That is, as shown in FIG. 1B, the pin-like conductive member 21 is penetrated from the upper side to the lower side in the heat-sealed portion 10 where the high-voltage tabs 4 and 5 are not taken out. Since there is the head portion 22, the pin portion 23 does not come out downward even if it is penetrated vigorously. Conversely, the conductive member 21 may be penetrated from below to above. In addition, in the heat-sealed portion where the conductive member cannot be penetrated, in addition to the heat-fused portion 10 where the high voltage tabs 4 and 5 are taken out, the heat-fused portion where the voltage detection terminal is taken out. There is a landing part 10. For this reason, unless otherwise specified below, it is assumed that “the part where the high voltage tab is taken out” includes “the part where the voltage detection terminal is taken out”, and “the part where the high voltage tab is not taken out” "Includes" a part from which the voltage detection terminal is not taken out ".

導電部材21は頭部22と先端が尖った(鋭利な)ピン部23とからなっている。図1Bに示したように強電タブ4、5が取り出されていない部位の熱融着部10では、上方より金属フィルム7、樹脂フィルム8、樹脂フィルム8、金属フィルム7の順に4層になって重なっているので、ピン状の導電部材21を上方より貫通すると、上下の金属フィルム7、7とピン部23とが導体同士で接触する。この接触部位が導電接続点を形成する。   The conductive member 21 includes a head portion 22 and a pin portion 23 having a sharp tip. As shown in FIG. 1B, in the heat-sealed portion 10 where the high voltage tabs 4 and 5 are not taken out, the metal film 7, the resin film 8, the resin film 8, and the metal film 7 are arranged in four layers from above. Since they overlap, when the pin-shaped conductive member 21 is penetrated from above, the upper and lower metal films 7 and 7 and the pin portion 23 come into contact with each other with the conductors. This contact site forms a conductive connection point.

この上下2枚の金属フィルム7、7と接触した導電部材21にアース線25の一端(図1Bで左端)を接続する。アース線25の他端(図1Bで右端)は、アース線の他端と車体(図示しない)とをボルト締めすることによってアース線25を車体に固定する。ボルト締めすることによって固定するのは、組電池1を車体より着脱可能とするためである。   One end (the left end in FIG. 1B) of the ground wire 25 is connected to the conductive member 21 in contact with the upper and lower two metal films 7, 7. The other end (right end in FIG. 1B) of the ground wire 25 is fixed to the vehicle body by bolting the other end of the ground wire and the vehicle body (not shown). The reason for fixing by bolting is to make the assembled battery 1 detachable from the vehicle body.

このように第1実施形態によれば、外装材としての金属フィルム7が電磁シールドの機能を有することとなるので、金属製筐体によるアースを形成する必要がなくなり、軽量かつコンパクトな組電池1を形成できる。   Thus, according to 1st Embodiment, since the metal film 7 as an exterior material has a function of an electromagnetic shield, it is not necessary to form a ground by a metal housing, and the lightweight and compact assembled battery 1 Can be formed.

また、外装材へのアース接続箇所は、熱融着部10(熱融着で接合された部位)であるので、外装材内部の気密性を維持しつつ、効果的にアースを形成することができる。   Moreover, since the ground connection location to the exterior material is the heat fusion part 10 (site joined by thermal fusion), it is possible to effectively form the ground while maintaining the airtightness inside the exterior material. it can.

また、上下より2つの樹脂―金属複合フィルム6、6が接合する部位である熱融着部10に先端の尖った(鋭利な)導電部材21を貫通させるだけで、導電部材21と金属フィルム7とで導電接続点を形成することができる。   Further, the conductive member 21 and the metal film 7 can be obtained by simply passing a sharp (sharp) conductive member 21 from the upper and lower sides into the heat-sealed portion 10 where the two resin-metal composite films 6 and 6 are joined. Thus, a conductive connection point can be formed.

また、第1実施形態によれば、電池要素2は単電池を複数積層した双極型二次電池要素3であるので、双極型二次電池の構造メリットである軽量かつコンパクトのままで、電磁シールドを行うことができる。   In addition, according to the first embodiment, the battery element 2 is a bipolar secondary battery element 3 in which a plurality of unit cells are stacked. It can be performed.

(第2、第3実施形態)
図4、図5は第2、第3の実施形態の組電池1の概略平面図で、第1実施形態の図2と置き換わるものである。図2と同一部分には同一番号を付している。実施形態では双極型二次電池要素3が全体として矩形かつ平板状に形成されているために熱融着部10が図4、図5に示したように4つの辺を有する枠状となっている。そして、いずれか1つの辺より外装材の外側に強電タブまたは電圧検出端子が取り出されている。しかしながら、双極型二次電池要素3の形状いかんで、熱融着部10が3つや5つの辺を有する枠状となり得る。要は、熱融着部10の平面形状は4つの辺を有する枠状に限定されるものでなく、少なくとも3つの辺を有する枠状であればかまわない。図4、図5に示したように熱融着部10は、上辺(上側で左右方向の辺)、下辺(下側で左右方向の辺)、右辺(右側で上下方向の辺)、左辺(左側で上下方向の辺)の4つからなっている。
(Second and third embodiments)
FIGS. 4 and 5 are schematic plan views of the assembled battery 1 of the second and third embodiments, which replace FIG. 2 of the first embodiment. The same parts as those in FIG. In the embodiment, since the bipolar secondary battery element 3 is formed in a rectangular and flat plate shape as a whole, the heat fusion part 10 has a frame shape having four sides as shown in FIGS. Yes. Then, a high voltage tab or a voltage detection terminal is taken out from any one side to the outside of the exterior material. However, depending on the shape of the bipolar secondary battery element 3, the heat fusion part 10 can be a frame shape having three or five sides. In short, the planar shape of the heat-sealing part 10 is not limited to a frame shape having four sides, and may be a frame shape having at least three sides. As shown in FIGS. 4 and 5, the heat-sealed portion 10 includes an upper side (upper side in the horizontal direction), a lower side (lower side in the horizontal direction), a right side (right side in the vertical direction), and a left side ( 4 on the left side in the vertical direction).

第2実施形態は、導電部材21のピン部23を貫通させる熱融着部10の位置を様々に相違させたものである。第1実施形態では導電部材21のピン部23を貫通させる熱融着部10の位置を右枠の右上としているが(図2参照)、導電部材21のピン部23を貫通させる熱融着部10の位置は、図4に示したように熱融着部10であれば上枠、下枠、右枠、左枠のどの位置でも基本的にかまわない。   In the second embodiment, the position of the heat fusion part 10 through which the pin part 23 of the conductive member 21 penetrates is variously changed. In the first embodiment, the position of the heat fusion part 10 that penetrates the pin part 23 of the conductive member 21 is the upper right of the right frame (see FIG. 2), but the heat fusion part that penetrates the pin part 23 of the conductive member 21 As shown in FIG. 4, the position 10 may be basically any position of the upper frame, the lower frame, the right frame, and the left frame as long as it is the heat fusion part 10.

第3実施形態は、熱融着部10のうち強電タブ4、5が取り出されている部位が属する辺あるいは電圧検出用端子26が取り出されている部位が属する辺に導電部材21のピン部23を貫通させるようにしたものである。すなわち、図5(a)、(b)では一対の強電タブ4、5が取り出されている部位が属する左辺に、図5(c)では電圧検出用端子26が取り出されている部位が属する右辺に導電部材21のピン部23を貫通させている。ここで、電圧検出用端子26は単電池ごとの電圧を検出するための端子である。   In the third embodiment, the pin portion 23 of the conductive member 21 is attached to the side to which the portion from which the high-voltage tabs 4 and 5 are taken out or the side to which the voltage detection terminal 26 is taken out. It is made to penetrate. That is, in FIGS. 5A and 5B, the left side to which the part from which the pair of high voltage tabs 4 and 5 are taken out belongs, and in FIG. 5C, the right side to which the part from which the voltage detection terminal 26 is taken out belongs. The pin portion 23 of the conductive member 21 is passed through. Here, the voltage detection terminal 26 is a terminal for detecting the voltage of each unit cell.

第3実施形態によれば、4つの辺を有する枠状の熱融着部10(熱融着で接合された部位)のうち強電タブ4、5または電圧検出用端子26が取り出される部位が属する辺に導電部材21を貫通させるので、導電部材21の物理的なアンカー効果により、比較的シール強度を維持することが難しい強電タブ4、5または電圧検出用端子26が取り出される部位が属する辺の接合強度を高めることができる。   According to the third embodiment, of the frame-shaped heat fusion part 10 (the part joined by heat fusion) having four sides, the part from which the high voltage tabs 4 and 5 or the voltage detection terminal 26 are taken out belongs. Since the conductive member 21 is passed through the side, due to the physical anchor effect of the conductive member 21, the side of the side to which the high-voltage tabs 4 and 5 or the voltage detection terminal 26 to which the voltage detection terminal 26 is taken out is relatively difficult to maintain the seal strength. Bonding strength can be increased.

熱融着部10では、熱融着した上下2枚の樹脂−金属複合ラミネートフィルム6、6がはがれまいとする力によってシールしている。これに対して導電部材21を熱融着部10に貫通させると、ピン部23と上下2枚の樹脂−金属複合ラミネートフィルム6、6との間に生じる摩擦力が上記のはがれまいとする力に加わる。つまり、当該摩擦力は熱融着している状態を維持させる力として働く。この当該摩擦力が熱融着している状態を維持させる力として働くことが、導電部材21の物理的なアンカー効果のことである。   In the heat-sealing part 10, the heat-sealed two upper and lower resin-metal composite laminate films 6, 6 are sealed by a force that causes peeling. On the other hand, when the conductive member 21 is passed through the heat-sealing part 10, the frictional force generated between the pin part 23 and the upper and lower two resin-metal composite laminate films 6, 6 causes the above-mentioned peeling. To join. That is, the friction force acts as a force for maintaining the heat-sealed state. The physical anchor effect of the conductive member 21 is that the frictional force acts as a force for maintaining the heat-sealed state.

(第4実施形態)
図6は第4実施形態の強電タブが取り出されていない部位でみた組電池1の概略縦断面図で、第1実施形態の図1Bと置き換わるものである。図1Bと同一部分には同一番号を付している。
(Fourth embodiment)
FIG. 6 is a schematic longitudinal sectional view of the assembled battery 1 as seen from a portion where the high voltage tab of the fourth embodiment is not taken out, and replaces FIG. 1B of the first embodiment. The same parts as those in FIG. 1B are denoted by the same reference numerals.

第4実施形態は、図1Bに示される第1実施形態と外装材が異なるものである。すなわち、第4実施形態の樹脂−金属複合ラミネートフィルム6は、アルミニウム、ステンレス、ニッケル、銅などの金属(合金を含む)のフィルム7と、ポリプロピレンフィルム等の樹脂(絶縁体)のフィルム8と、ポリプロピレンフィルム等の樹脂(絶縁体)のフィルム9とを接合している。つまり、金属フィルム7を2つの樹脂フィルム8、9で両側から挟持した3層構造となっている。   4th Embodiment differs in 1st Embodiment shown by FIG. 1B, and an exterior material. That is, the resin-metal composite laminate film 6 of the fourth embodiment includes a film 7 of a metal (including an alloy) such as aluminum, stainless steel, nickel, and copper, and a film 8 of a resin (insulator) such as a polypropylene film, A resin (insulator) film 9 such as a polypropylene film is joined. That is, it has a three-layer structure in which the metal film 7 is sandwiched between the two resin films 8 and 9 from both sides.

両側の2つの樹脂フィルム8、9としては膨張率が同じものを用いている。金属フィルムと樹脂フィルムとは膨張率が大きく異なる。樹脂フィルムと金属フィルムとを貼り合わせて2層の樹脂−金属複合ラミネートフィルム6を作るには、両者を接着剤で貼り付けることになるが、金属フィルムと樹脂フィルムとで膨張率が大きく異なるため、貼り合わせた後の樹脂−金属複合ラミネートフィルム6は丸まってしまい、作業性が悪いものとなる。一方、第4実施形態の樹脂−金属複合ラミネートフィルム6は、金属フィルム7を等膨張率の2つの樹脂フィルム8、9でサンドイッチして貼り合わせた3層のフィルムであるので、樹脂−金属複合ラミネートフィルム6が丸まることがなく作業性の良いものとなっている。   The two resin films 8 and 9 on both sides have the same expansion coefficient. The metal film and the resin film have greatly different expansion rates. In order to make a two-layer resin-metal composite laminate film 6 by laminating a resin film and a metal film, the two films are pasted together with an adhesive, but the expansion rate differs greatly between the metal film and the resin film. The bonded resin-metal composite laminate film 6 is rounded, resulting in poor workability. On the other hand, since the resin-metal composite laminate film 6 of the fourth embodiment is a three-layer film in which the metal film 7 is sandwiched between two resin films 8 and 9 having the same expansion coefficient, the resin-metal composite film is formed. The laminate film 6 is not rounded and has good workability.

第4実施形態においても、強電タブ4、5が取り出されていない部位の熱融着部10に導電部材21を貫通させる。第4実施形態の作用効果は、第1実施形態の作用効果と同じである。   Also in 4th Embodiment, the electroconductive member 21 is penetrated to the heat-sealing part 10 of the site | part from which the high voltage tabs 4 and 5 are not taken out. The operational effects of the fourth embodiment are the same as the operational effects of the first embodiment.

第4実施形態の外装材は、第1実施形態と相違して、表面に樹脂フィルム9、9が露出している。このように樹脂フィルム9、9が表面に露出している樹脂−金属複合ラミネートフィルム6の場合でも、熱融着部10に先端の尖った(鋭利な)導電部材21を貫通させるだけで、導電部材21と内部の2枚の金属フィルム7、7とを容易に導通させることができる。   Unlike the first embodiment, the exterior material of the fourth embodiment has resin films 9 and 9 exposed on the surface. As described above, even in the case of the resin-metal composite laminate film 6 in which the resin films 9 and 9 are exposed on the surface, the conductive film 21 can be conductive by simply passing the pointed (sharp) conductive member 21 through the heat fusion portion 10. The member 21 and the two metal films 7 and 7 inside can be easily conducted.

(第5実施形態)
図7は第5実施形態の強電タブが取り出されていない部位でみた組電池1の概略縦断面図で、第4実施形態の図6と置き換わるものである。図6と同一部分には同一番号を付している。
(Fifth embodiment)
FIG. 7 is a schematic longitudinal sectional view of the assembled battery 1 as seen from a portion where the high voltage tab of the fifth embodiment is not taken out, and replaces FIG. 6 of the fourth embodiment. The same parts as those in FIG. 6 are denoted by the same reference numerals.

第5実施形態は、導電部材21のピン部23が熱融着部10から抜けないように導電部材21のピン部23に先端の尖った抜け止め部24(「返し」といわれる)を設けたものである。抜け止め部24の形状としては、図8に示したような態様が考えられる。すなわち、図8(a)は図7の導電部材21を拡大したもので、ピン部23の左右に1つずつ先端の尖った抜け止め部24を設けている。   In the fifth embodiment, the pin portion 23 of the conductive member 21 is provided with a pointed retaining portion 24 (referred to as “return”) on the pin portion 23 of the conductive member 21 so that the pin portion 23 of the conductive member 21 does not come off from the heat fusion portion 10. Is. As a shape of the retaining portion 24, a mode as shown in FIG. That is, FIG. 8A is an enlarged view of the conductive member 21 shown in FIG. 7, and is provided with a retaining portion 24 having a pointed tip, one on each side of the pin portion 23.

一方、図8(b)はピン部23の片側にのみ1つの抜け止め部24を設けたもの、図8(c)は右斜め上に向けて尖った抜け止め部24を上下方向に2つ並べてピン部23の片側に設けたもの、図8(d)は図8(c)に対してさらに左斜め上に向けて尖った抜け止め部24を上下方向に2つ並べてピン部23の反対側にも設けたものである。   On the other hand, FIG. 8 (b) shows a structure in which one retaining portion 24 is provided only on one side of the pin portion 23, and FIG. 8 (c) shows two retaining portions 24 that are pointed obliquely upward to the right. FIG. 8 (d) shows an arrangement that is provided on one side of the pin portion 23 side by side and is further opposite to the pin portion 23 with two retaining portions 24 that are pointed toward the upper left in the vertical direction with respect to FIG. 8 (c). It is also provided on the side.

ピン部23の外周に抜け止め部24を設けた理由は導電部材21の物理的なアンカー効果を高めるためである。すなわち、ピン部23が貫通させた方向と逆向きに移動しようとしても。そのピン部23の移動を抜け止め部24が阻止する。言い換えると、摩擦力に加えて、ピン部23の移動を抜け止め部24が阻止する力が熱融着している状態を維持させる力として働くのである。   The reason why the retaining portion 24 is provided on the outer periphery of the pin portion 23 is to enhance the physical anchor effect of the conductive member 21. That is, even if it tries to move in the direction opposite to the direction in which the pin portion 23 penetrates. The retaining portion 24 prevents the pin portion 23 from moving. In other words, in addition to the frictional force, the force that the retaining portion 24 prevents the movement of the pin portion 23 acts as a force that maintains the state of heat fusion.

第5実施形態によれば、導電部材21は、ピン部23とこのピン部23の径より大きい径を有する頭部22とからなり、熱融着部10(熱融着で接合された部位)を貫通するピン部23の外周に、導電部材21を貫通させる向きとは逆向きにこのピン部23が移動することを阻止する抜け止め部24を少なくとも1つ有するので、比較的シール強度を維持することが難しい強電タブ4、5が取り出される部位の近くの熱融着部10(熱融着で接合された部位)の接合強度が、当該抜け止め部24を有していない導電部材21の場合よりも大きくなり、耐振動性能の高いアース接続を形成することができる。   According to the fifth embodiment, the conductive member 21 includes a pin portion 23 and a head portion 22 having a diameter larger than the diameter of the pin portion 23, and the heat fusion portion 10 (portion joined by heat fusion). Since at least one retaining portion 24 that prevents the pin portion 23 from moving in the direction opposite to the direction in which the conductive member 21 penetrates is provided on the outer periphery of the pin portion 23 that penetrates the pin portion 23, the seal strength is relatively maintained. The bonding strength of the heat-sealed portion 10 (portion bonded by thermal fusion) near the portion where the high-voltage tabs 4 and 5 that are difficult to do is removed is that of the conductive member 21 that does not have the retaining portion 24. It is larger than the case, and a ground connection with high vibration resistance can be formed.

(第6実施形態)
図9は第6実施形態の強電タブが取り出されていない部位でみた組電池1の概略縦断面図で、第4実施形態の図6と置き換わるものである。図6と同一部分には同一番号を付している。
(Sixth embodiment)
FIG. 9 is a schematic longitudinal cross-sectional view of the assembled battery 1 as seen from a portion where the high voltage tab of the sixth embodiment is not taken out, and replaces FIG. 6 of the fourth embodiment. The same parts as those in FIG. 6 are denoted by the same reference numerals.

第6実施形態は、導電部材21を1つの頭部22とこの頭部22から林立する複数のピン部23とから構成し、導電部材21の全体として剣山のような形状としたものである。具体的には、図9に示したように、導電部材21には1つの頭部22から3つのピン部23、23、23が一列で下方に向けて林立している。この3つのピン部23、23、23が一列に並んでいる形状の導電部材21を、ピン部が下方となるようにして、強電タブ4、5が取り出されていない部位の熱融着部10に上方から下方に向けて貫通させる。この逆に導電部材21を下方から上方に向けて貫通させてもかまわない。   In the sixth embodiment, the conductive member 21 is composed of one head 22 and a plurality of pin portions 23 standing from the head 22, and the conductive member 21 as a whole is shaped like a sword mountain. Specifically, as shown in FIG. 9, three pin portions 23, 23, 23 from one head 22 stand in a row in the conductive member 21 downward. The heat-bonding portion 10 in a portion where the high-voltage tabs 4 and 5 are not taken out with the conductive member 21 having the shape in which the three pin portions 23, 23, and 23 are arranged in a row so that the pin portion is located below. To penetrate from top to bottom. Conversely, the conductive member 21 may be penetrated from below to above.

図10は導電部材21の他の態様を示したものである。一つの頭部22から少なくとも2つのピン部23を林立させるものであればよい。図10(a)に示した導電部材21では1つの頭部22から一列に10個のピン部23を林立させている。図10(b)、(c)、(d)に示した導電部材21では、1つの頭部22から平面的に複数のピン部23を林立させている。   FIG. 10 shows another embodiment of the conductive member 21. What is necessary is just to stand at least two pin parts 23 from one head 22. In the conductive member 21 shown in FIG. 10A, ten pin portions 23 are erected in a row from one head portion 22. In the conductive member 21 shown in FIGS. 10B, 10 </ b> C, and 10 </ b> D, a plurality of pin portions 23 are erected in a plane from one head 22.

導電部材21とアース線25との接続方法としては、図10(a)に示したようにする。すなわち、頭部22とアース線25とをボルト26とナット27を締結することにより頭部22とアース線25とを接続する。ボルト26とナット27を外して取り去ることにより頭部22とアース線25とを非接続状態とする。このような接続方法としたのは、組電池1及び導電部材21を車体から着脱可能とするためである。   As a method of connecting the conductive member 21 and the ground wire 25, it is as shown in FIG. That is, the head 22 and the ground wire 25 are connected to each other by fastening the bolt 26 and the nut 27. By removing the bolt 26 and the nut 27 and removing them, the head 22 and the ground wire 25 are disconnected. The reason for such a connection method is to make the assembled battery 1 and the conductive member 21 detachable from the vehicle body.

1つの頭部22に対してピン部23を複数にした理由は、導電接続点を増やしかつ導電部材21の物理的なアンカー効果を高めるためである。すなわち、1つの頭部22に対してピン部23が複数になると、ピン部が一つのみの場合よりも導電接続点の数が複数倍となる。また、複数のピン部23と上下2枚の樹脂−金属複合ラミネートフィルム6、6との間の摩擦力は、1つの頭部22に対して1つのみのピン部23の場合よりも大きくなる。この大きくなった摩擦力が熱融着している状態を維持させる力として働く。なお、第6実施形態の図9においても、強電タブ4、5が取り出されていない部位の熱融着部10に導電部材21を貫通させている。   The reason why a plurality of pin portions 23 are provided for one head portion 22 is to increase the number of conductive connection points and increase the physical anchor effect of the conductive member 21. That is, when there are a plurality of pin portions 23 for one head portion 22, the number of conductive connection points becomes a plurality of times as compared with the case where there is only one pin portion. Further, the frictional force between the plurality of pin portions 23 and the upper and lower two resin-metal composite laminate films 6, 6 is larger than the case of only one pin portion 23 for one head 22. . This increased frictional force acts as a force that maintains the heat-sealed state. In FIG. 9 of the sixth embodiment as well, the conductive member 21 is made to penetrate the heat-sealed portion 10 where the high-voltage tabs 4 and 5 are not taken out.

第6実施形態によれば、1つの頭部22に対してピン部23を少なくとも2つ有するので、1つの頭部22に対してピン部23を1つしか有しない場合よりも多くの導電接続点を形成することができ、かつ比較的シール強度を維持することが難しい強電タブ4、5または電圧検出用端子26が取り出される部位の近くの熱融着部10(熱融着で接合された部位)の接合強度が大きくなり、耐振動性能の高いアース接続を形成することができる。   According to the sixth embodiment, since at least two pin portions 23 are provided for one head portion 22, more conductive connections than when only one pin portion 23 is provided for one head portion 22. The heat fusion part 10 (bonded by heat fusion) near the portion where the high voltage tabs 4 and 5 or the voltage detection terminal 26 from which the point can be formed and the seal strength is relatively difficult to maintain is taken out. The bonding strength of the part) is increased, and a ground connection with high vibration resistance can be formed.

(第7実施形態)
図11は第7実施形態の強電タブが取り出されていない部位でみた組電池1の概略縦断面図で、第6実施形態の図9と置き換わるものである。図9と同一部分には同一番号を付している。
(Seventh embodiment)
FIG. 11 is a schematic vertical cross-sectional view of the assembled battery 1 as seen from a portion where the high voltage tab of the seventh embodiment is not taken out, and replaces FIG. 9 of the sixth embodiment. The same parts as those in FIG. 9 are denoted by the same reference numerals.

第7実施形態は、図9に示した導電部材21を2つ用意し、強電タブ4、5が取り出されていない部位の熱融着部10に対して、上方から一方の導電部材21をピン部23を下方に向けて、下方から他方の導電部材21をピン部23を上方に向けて持ち、これら上下2つの導電部材21、21を当該熱融着部10に貫通させるようにしたものである。この場合、上方からのピン部23と下方からのピン部23とが互い違いに位置するようにピン部23とピン部23の間の間隔を定めておく。   In the seventh embodiment, two conductive members 21 shown in FIG. 9 are prepared, and one conductive member 21 is pinned from above to the heat fusion part 10 where the high voltage tabs 4 and 5 are not taken out. With the portion 23 facing downward and the other conductive member 21 from below with the pin portion 23 facing upward, the two upper and lower conductive members 21 and 21 are penetrated through the heat fusion portion 10. is there. In this case, the space | interval between the pin part 23 and the pin part 23 is defined so that the pin part 23 from upper direction and the pin part 23 from the downward direction may be located alternately.

第7実施形態において、上下2つの導電部材21、21を区別するときには、上方にある導電部材を「第1導電部材21A」、下方にある導電部材を「第2導電部材21B」というものとする。   In the seventh embodiment, when distinguishing between the upper and lower conductive members 21, 21, the upper conductive member is referred to as "first conductive member 21A" and the lower conductive member is referred to as "second conductive member 21B". .

上方2つの導電部材21、21とアース線25との接続方法として、他の態様を図12に示している。ただし、図12は導電部材単独で示し、熱融着部は省略して示していない。   As a method of connecting the upper two conductive members 21 and 21 and the ground wire 25, another aspect is shown in FIG. However, FIG. 12 shows only the conductive member, and the heat-sealed portion is not shown.

詳細には、図12(a)では、第1導電部材21Aの頭部22とアース線25の一端(図で左端)とをボルト26とナット27で締結することにより第1導電部材21Aの頭部22とアース線25とを接続する。ボルト26とナット27を外して取り去ることにより第1導電部材21Aの頭部22とアース線25とを非接続状態とすることができる。   Specifically, in FIG. 12A, the head 22 of the first conductive member 21 </ b> A is fastened by fastening the head 22 of the first conductive member 21 </ b> A and one end (left end in the figure) of the ground wire 25 with a bolt 26 and a nut 27. The part 22 and the ground wire 25 are connected. By removing the bolt 26 and the nut 27 and removing them, the head portion 22 of the first conductive member 21A and the ground wire 25 can be disconnected.

図12(b)では、第1導電部材21Aの右端に、スナップ部材31の雌部材33を、第2導電部材21Bの右端にスナップ部材31の雄部材32を取り付けておき、スナップ部材31で第1導電部材21Aと第2導電部材21Bを着脱し得るようにしている。   In FIG. 12B, the female member 33 of the snap member 31 is attached to the right end of the first conductive member 21A, and the male member 32 of the snap member 31 is attached to the right end of the second conductive member 21B. The first conductive member 21A and the second conductive member 21B can be attached and detached.

スナップ部材31は、雄部材32と雌部材33とからなり、第2導電部材21Bの頭部22に取り付けてある雄部材32が、第1導電部材21Aの頭部22に取り付けてある雌部材33にはまり込むことによって第1導電部材21Aと第2導電部材21Bとが固定される。また、雄部材32を雌部材33から離脱させることによって第1導電部材21Aと第2導電部材21Bとの係合を解くことができる。   The snap member 31 includes a male member 32 and a female member 33, and the male member 32 attached to the head portion 22 of the second conductive member 21B is attached to the head portion 22 of the first conductive member 21A. The first conductive member 21A and the second conductive member 21B are fixed by being fitted. Further, by disengaging the male member 32 from the female member 33, the engagement between the first conductive member 21A and the second conductive member 21B can be released.

このように第1、第2の2つの導電部材21A、21Bを着脱可能としているスナップ部材31の材質は樹脂、金属のいずれでもかまわない。スナップ部材31の材質が樹脂であるときには、アース線25の一端(図12(b)で左端)は第1導電部材21Aの頭部22に接続する。スナップ部材31の材質が金属であるときにはアース線25の一端(図12(b)で左端)をスナップ部材31に接続することができる。   Thus, the material of the snap member 31 that allows the first and second conductive members 21A and 21B to be attached and detached may be either resin or metal. When the material of the snap member 31 is resin, one end (the left end in FIG. 12B) of the ground wire 25 is connected to the head 22 of the first conductive member 21A. When the material of the snap member 31 is metal, one end (the left end in FIG. 12B) of the ground wire 25 can be connected to the snap member 31.

第7実施形態によれば、強電タブ4、5が取り出されていない部位の熱融着部10(熱融着で接合された部位)の上下の両面から第1、第2の導電部材21A、21Bを貫通させるので、熱融着部10(熱融着で接合された部位)の片面から導電部材21を貫通させる場合よりも多くの導電接続点が形成されるほか、上下方向からの圧着構造を形成することが可能となることから、比較的シール強度を維持することが難しい強電タブ4、5が取り出される部位の近くの熱融着部10(熱融着で接合された部位)の接合強度が大きくなり、耐振動性能の高いアース接続を形成することが可能になる。   According to the seventh embodiment, the first and second conductive members 21 </ b> A from the upper and lower surfaces of the thermal fusion part 10 (parts joined by thermal fusion) where the high voltage tabs 4, 5 are not taken out. Since 21B is penetrated, more conductive connection points are formed than when the conductive member 21 is penetrated from one side of the thermal fusion part 10 (part joined by thermal fusion), and the crimping structure from above and below. Since the high voltage tabs 4 and 5 that are relatively difficult to maintain the seal strength are relatively difficult to maintain, it is possible to join the heat fusion part 10 (the part joined by thermal fusion). The strength is increased, and it is possible to form a ground connection with high vibration resistance.

(第8実施形態)
図13Aは第8実施形態の強電タブが取り出されている部位でみた組電池1の概略縦断面図、図13Bは第8実施形態の強電タブが取り出されていない部位でみた組電池1の概略縦断面図である。第8実施形態でも図13Bに示したように強電タブ4、5が取り出されていない部位の熱融着部10にピン状の導電部材21を上方から下方に向けて貫通させている。図13Bは第4実施形態の図6と置き換わるものである。図3、図6と同一部分には同一番号を付している。
(Eighth embodiment)
FIG. 13A is a schematic longitudinal sectional view of the assembled battery 1 as seen from the site where the high voltage tab of the eighth embodiment is taken out, and FIG. 13B is a schematic diagram of the assembled battery 1 as seen from the site where the high voltage tab of the eighth embodiment is not taken out. It is a longitudinal cross-sectional view. Also in the eighth embodiment, as shown in FIG. 13B, the pin-shaped conductive member 21 is penetrated from the upper side to the lower side in the heat-sealed portion 10 where the high-voltage tabs 4 and 5 are not taken out. FIG. 13B replaces FIG. 6 of the fourth embodiment. The same parts as those in FIGS. 3 and 6 are denoted by the same reference numerals.

第8実施形態は、インバータ12のようなスイッチング作動を行う電気回路など、外部機器に接続する2本の電磁シールド付き強電配線13、14内のアース配線(つまり金網層17)に導電部材21を接続するようにしたものである。すなわち、図13Aに示したように、2本の電磁シールド付き強電配線14、15は、各一端(図で下端)が強電タブ4、5に、各他端(図で上端)が図示しないインバータ12に接続されている。そして、2本の電磁シールド付き強電配線14、15は各金網層17、17が1本のアース線18を介してアースされている。図13Bに示したように、導電部材21に接続されるアース線25をこのアース線18に接続する。   In the eighth embodiment, the conductive member 21 is connected to the ground wiring (that is, the wire mesh layer 17) in the two high-power wirings 13, 14 connected to an external device such as an electric circuit that performs a switching operation like the inverter 12. It is intended to be connected. That is, as shown in FIG. 13A, two high-power wirings 14 and 15 with electromagnetic shield have inverters (not shown) at one end (lower end in the figure) at the high-power tabs 4 and 5 and other ends (upper end in the figure). 12 is connected. In addition, the wire mesh layers 17 and 17 of the two high-power wirings 14 and 15 with electromagnetic shield are grounded through one ground wire 18. As shown in FIG. 13B, the ground wire 25 connected to the conductive member 21 is connected to the ground wire 18.

組電池1と2本の電磁シールド付き強電配線14、15とを個々にアースするとループ電流が流れることがあるが、第8実施形態では、組電池1と2本の電磁シールド付き強電配線14、15とを一箇所でアースするので、ループ電流を回避して電磁シールド効果を上げることができる。   When the assembled battery 1 and the two high-power wirings 14 and 15 with electromagnetic shield are individually grounded, a loop current may flow. However, in the eighth embodiment, the assembled battery 1 and the two high-power wirings 14 with electromagnetic shielding and 15 is grounded at one place, so that the loop current can be avoided and the electromagnetic shielding effect can be improved.

第8実施形態によれば、外部機器に強電タブ4、5を接続する電磁シールド付き強電配線14、15を備え、この電磁シールド付き強電配線14、15の金網層17(電磁シールド付き強電配線内のアース配線)に導電部材21を接続するので、電磁シールド付き強電配線のアース線14、15と組電池1のアース線25とを同電位とすることが可能になり、電磁シールド付き強電配線14、15と組電池1とを個々にアースする場合よりも組電池1から発生する電磁波ノイズ(電磁波の放散)をより効率的に除去できる。   According to the eighth embodiment, the high-power wirings 14 and 15 with electromagnetic shield for connecting the high-power tabs 4 and 5 to an external device are provided, and the wire mesh layer 17 of the high-power wirings 14 and 15 with electromagnetic shield (inside the high-power wiring with electromagnetic shield) Since the conductive member 21 is connected to the ground wire), the ground wires 14 and 15 of the high-power wiring with electromagnetic shield and the ground wire 25 of the assembled battery 1 can be set to the same potential, and the high-power wiring 14 with electromagnetic shield is provided. , 15 and the assembled battery 1 can be more efficiently removed than electromagnetic noise (radiation of electromagnetic waves) generated from the assembled battery 1 than when the batteries are grounded individually.

(第9実施形態)
図14は組電池1のうち一方の強電タブ(例えば強電タブ4)の外装材からの取り出し付近を拡大して示す第9実施形態の概略斜視図である。第4実施形態の図6と同一部分には同一番号を付している。第9実施形態では、2つの導電部材21、21を用いている。両者を区別するときには図14において右上にある導電部材を「第3導電部材21C」、左下にある導電部材を「第4導電部材21D」というものとする。
(Ninth embodiment)
FIG. 14 is a schematic perspective view of the ninth embodiment showing an enlarged view of the vicinity of one of the high-voltage tabs (for example, the high-voltage tab 4) of the assembled battery 1 taken out from the exterior material. The same parts as those in FIG. 6 of the fourth embodiment are denoted by the same reference numerals. In the ninth embodiment, two conductive members 21 and 21 are used. In order to distinguish the two, the conductive member on the upper right in FIG. 14 is referred to as “third conductive member 21C”, and the conductive member in the lower left is referred to as “fourth conductive member 21D”.

第9実施形態は、図13A、図13Bに示した第8実施形態を前提として電磁シールド付き強電配線の強電タブへの接続と、導電部材21のアースとを一体で行うようにしたものである。   In the ninth embodiment, on the premise of the eighth embodiment shown in FIGS. 13A and 13B, the connection of the high-voltage wiring with electromagnetic shield to the high-power tab and the grounding of the conductive member 21 are integrally performed. .

絶縁材料(例えばプラスチック)で形成した端子台31に、所定の幅を置いて第3導電部材21C、第4導電部材21Dをピン部23が上を向くようにして予め固定しておくと共に、第3、第4の導電部材21C、21Dをアース線25で互いに接続しておく。アース線25は端子台31の上に塗布等することより形成する。図14ではアース線25はコの字状に形成されている。   The third conductive member 21C and the fourth conductive member 21D are fixed in advance on the terminal block 31 formed of an insulating material (for example, plastic) with a predetermined width so that the pin portion 23 faces upward. 3. The fourth conductive members 21C and 21D are connected to each other by the ground wire 25. The ground wire 25 is formed by coating or the like on the terminal block 31. In FIG. 14, the ground wire 25 is formed in a U-shape.

この端子台31を、強電タブ4(強電タブの一方)が取り出されている部位の熱融着部10を挟んで第3、第4の導電部材21C、21Dがくるように、かつ熱融着部10の下方となるように端子台31を配置し、強電タブ4が取り出されている部位の両側の熱融着部10に第3、第4の導電部材21C、21Dを下方より上方に向けて貫通させる。その後には、電磁シールド付き強電配線15の一端(図14で左端)を強電タブ4に接続すると共に、電磁シールド付き強電配線15の金網層17をアース線25に接続する。なお、強電タブ4を上下方向に貫いている円柱状部材は共締め用のボルト32である。   The terminal block 31 is heat-sealed so that the third and fourth conductive members 21C and 21D come across the heat-sealing portion 10 where the high-power tab 4 (one of the high-power tabs) is taken out. The terminal block 31 is arranged so as to be below the portion 10, and the third and fourth conductive members 21 </ b> C and 21 </ b> D are directed upward from below to the heat-sealed portions 10 on both sides of the portion where the high-voltage tab 4 is taken out. To penetrate. Thereafter, one end (the left end in FIG. 14) of the high-power wiring 15 with electromagnetic shield is connected to the high-power tab 4 and the wire mesh layer 17 of the high-power wiring 15 with electromagnetic shield is connected to the ground wire 25. The cylindrical member passing through the high voltage tab 4 in the vertical direction is a bolt 32 for fastening.

図示しないが、図14と同様にして、他方の強電タブ5に電磁シールド付き強電配線14を接続する部位と、2つの導電部材を電磁シールド付き強電配線14の金網層17(電磁シールド付き強電配線内のアース配線)に接続する部位とを同一の端子台に構成する。   Although not shown in the figure, in the same manner as in FIG. 14, the portion where the high-power wiring 14 with electromagnetic shield is connected to the other high-power tab 5, and the wire mesh layer 17 of the high-power wiring 14 with electromagnetic shielding (high-power wiring with electromagnetic shielding). The part to be connected to the ground wiring) is configured on the same terminal block.

第9実施形態によれば、電磁シールド付き強電配線14、15を前記強電タブ4、5に接続する部位と、導電部材21を電磁シールド付き強電配線14、15の金網層17(電磁シールド付き強電配線14、15内のアース配線)に接続する部位とを同一の端子台31に構成した。これによって、図14に示したように1つの端子台31で強電接続(強電タブ4と電磁シールド付き強電配線14の接続)と組電池1のアース接続の両方を同時に行わせることが可能になり、非常に簡便にアース接続を行うことができる。   According to the ninth embodiment, the portion connecting the high-voltage wirings 14 and 15 with electromagnetic shield to the high-voltage tabs 4 and 5 and the wire mesh layer 17 of the high-voltage wirings 14 and 15 with electromagnetic shielding (high power with electromagnetic shielding). The portion connected to the ground wiring in the wirings 14 and 15 is configured in the same terminal block 31. As a result, as shown in FIG. 14, it is possible to simultaneously perform both high-power connection (connection of the high-power tab 4 and high-power wiring 14 with electromagnetic shield) and ground connection of the assembled battery 1 with one terminal block 31. The ground connection can be made very simply.

(実施例)
双極型二次電池(積層型電池)の組電池による評価を次のように行った。
(Example)
Evaluation of a bipolar secondary battery (stacked battery) using an assembled battery was performed as follows.

<双極型電極の作製>
[正極層作成]
正極活物質としてLiMn204を85wt%、 導電助剤としてアセチレンブラックを5wt%、 バインダーとしてポリフッ化ビニリデン(PVDF)を10wt%の比で混合して正極スラリーを作製した。スラリー粘度調整溶媒としてN−メチル−2−ピロリドン(NMP)を塗布工程に最適な粘度になるまで添加した。
<Production of bipolar electrode>
[Create positive electrode layer]
A positive electrode slurry was prepared by mixing 85% by weight of LiMn204 as a positive electrode active material, 5% by weight of acetylene black as a conductive auxiliary agent, and 10% by weight of polyvinylidene fluoride (PVDF) as a binder. N-methyl-2-pyrrolidone (NMP) was added as a slurry viscosity adjusting solvent until the viscosity became optimum for the coating process.

厚さ20μmのSUS箔からなる集電体32の片面に上記正極スラリーを塗布し乾燥させて30μmの電極層の正極33を形成した。   The positive electrode slurry was applied to one side of a current collector 32 made of SUS foil having a thickness of 20 μm and dried to form a positive electrode 33 having a 30 μm electrode layer.

[負極層作成]
負極活物質としてハードカーボンを90wt%、バインダーとしてポリフッ化ビニリデン(PVDF)を10wt%の比で混合して負極スラリーを作製した。スラリー粘度調整溶媒としてN−メチル−2−ピロリドン(NMP)を塗布工程に最適な粘度になるまで添加した。
[Create negative electrode layer]
A negative electrode slurry was prepared by mixing 90 wt% of hard carbon as a negative electrode active material and 10 wt% of polyvinylidene fluoride (PVDF) as a binder. N-methyl-2-pyrrolidone (NMP) was added as a slurry viscosity adjusting solvent until the viscosity became optimum for the coating process.

正極33を塗布したSUS箔の集電体32の反対面に、上記負極スラリーを塗布し乾燥させて30μmの電極層の負極34を形成した。SUS箔の集電体32の両面に正極33と負極34がそれぞれ形成されることにより、双極型電極31が形成された。   The negative electrode slurry was applied to the opposite surface of the SUS foil current collector 32 coated with the positive electrode 33 and dried to form a negative electrode 34 having a 30 μm electrode layer. The bipolar electrode 31 was formed by forming the positive electrode 33 and the negative electrode 34 on both surfaces of the current collector 32 of SUS foil.

双極型電極31を160×130mmの大きさに切り取り、正極33、負極34ともに外周部は10mmを剥がしとることにより、SUS箔の集電体32表面を露出させた。これにより、電極面の広さが140×110mmであり、外周部に10mmのSUS箔の集電体32が露出した双極型電極31を作製した。図15(a)、(b)、(c)に双極型電極31の平面図、裏面図及び断面図を示している。   The bipolar electrode 31 was cut to a size of 160 × 130 mm, and the outer peripheral portion of both the positive electrode 33 and the negative electrode 34 was peeled off by 10 mm to expose the surface of the current collector 32 of SUS foil. Thus, a bipolar electrode 31 having an electrode surface area of 140 × 110 mm and an exposed SUS foil current collector 32 of 10 mm on the outer peripheral portion was produced. FIGS. 15A, 15B, and 15C are a plan view, a back view, and a cross-sectional view of the bipolar electrode 31, respectively.

<電解質層の形成>
電解液として混合比1:1のポリエチレンカーボネート(PC)−エチレンカーボネート(EC)を1ML含んだLiPF6を90wt%(沸点は242℃)、ホストポリマーとして、ヘキサフルオロプロピレン(HFP)コポリマーを10%含む、ポリフッ化ビニリデン(PVDF)−ヘキサフルオロプロピレン(HFP)を10wt%の比で混合して電解液を作製した。
<Formation of electrolyte layer>
90% by weight of LiPF6 containing 1 ml of polyethylene carbonate (PC) -ethylene carbonate (EC) at a mixing ratio of 1: 1 as the electrolyte (boiling point is 242 ° C.), and 10% of hexafluoropropylene (HFP) copolymer as the host polymer Polyvinylidene fluoride (PVDF) -hexafluoropropylene (HFP) was mixed at a ratio of 10 wt% to prepare an electrolytic solution.

粘度調製溶媒としてジメチルカーボネート(DMC)を塗布工程に最適な粘度になるまで添加し、プレゲル電解質を作製した。このプレゲル電解質を集電体32両面の正極33、負極34の各電極部に塗布しジメチルカーボネート(DMC)を乾燥させることでゲル電解質の染み込んだ双極型電極31を完成させた。   Dimethyl carbonate (DMC) was added as a viscosity adjusting solvent until the viscosity became optimum for the coating process to prepare a pregel electrolyte. The pregel electrolyte was applied to the electrode portions of the positive electrode 33 and the negative electrode 34 on both sides of the current collector 32, and dimethyl carbonate (DMC) was dried to complete the bipolar electrode 31 infiltrated with the gel electrolyte.

<シール部前駆体の形成>
正極33の外周部の電極未塗布部分である集電体周縁部32aにディスペンサを用いて、図16のようにシール部前駆体35を塗布した。シール部前駆体35として1液性未硬化エポキシ樹脂を用いた。ここで、図16(a)、(b)はシール部前駆体35が塗布された状態を説明するための双極型電極31の平面図、断面図である。
<Formation of seal part precursor>
Using a dispenser, a seal portion precursor 35 was applied to the current collector peripheral portion 32a, which is an unapplied portion of the outer periphery of the positive electrode 33, as shown in FIG. A one-part uncured epoxy resin was used as the seal portion precursor 35. Here, FIGS. 16A and 16B are a plan view and a cross-sectional view of the bipolar electrode 31 for explaining a state where the seal portion precursor 35 is applied.

次に、170×140mmのセパレータ36(ポリエチレンセパレータ:12μm、融点:134℃)を正極側にSUS箔の集電体32のすべてを覆うように設置した。なお、セパレータ36は多孔質状あるいはスポンジ状であり、セパレータ36にも上記のゲル電解液を染み込ませている。   Next, a 170 × 140 mm separator 36 (polyethylene separator: 12 μm, melting point: 134 ° C.) was placed on the positive electrode side so as to cover all of the current collector 32 of SUS foil. The separator 36 is porous or sponge-like, and the separator 36 is also impregnated with the gel electrolyte.

その後、セパレータ36の上から電極未塗布部分(前記シール部前駆体35を塗布した部分と同じ部分)である集電体周縁部32aにディスペンサを用いて、図17のように重ねてシール部前駆体35(1液性未硬化エポキシ樹脂)を塗布した。図17(a)、(b)はセパレータ36により覆われた状態を説明するための双極型電極31の平面図、断面図である。   Then, using the dispenser on the current collector peripheral portion 32a, which is the portion where the electrode is not applied (the same portion as the portion where the seal portion precursor 35 is applied) from above the separator 36, the seal portion precursor is overlapped as shown in FIG. Body 35 (one-part uncured epoxy resin) was applied. FIGS. 17A and 17B are a plan view and a cross-sectional view of the bipolar electrode 31 for explaining the state covered with the separator 36.

<積層工程>
図17のように作製した双極型電極31を上下方向に13枚重ねることで単電池が上下方向に12個積層された双極型電池構造体を作製した。
<Lamination process>
A bipolar battery structure in which 12 unit cells were stacked in the vertical direction was manufactured by stacking 13 bipolar electrodes 31 manufactured as shown in FIG. 17 in the vertical direction.

<双極型電池のプレス>
上記の双極型電池構造体を熱プレス機51により面圧1kg/cm2、80℃で1時間熱プレスすることにより、未硬化のシール部(エポキシ樹脂)を硬化した。この工程によりシール部を所定の厚みまでプレス、さらに硬化を行うことが可能になる。図18に示したように双極型電池構造体に対する上下からの熱プレスによってシール部前駆体35によりシール部42が形成されている。以上で、12個の単電池41が直列接続された、1つの塊としての双極型二次電池要素45を完成させた。ここで、図18は双極型二次電池要素45の縦断面図である。
<Bipolar battery press>
The bipolar battery structure was hot-pressed with a hot press machine 51 at a surface pressure of 1 kg / cm 2 and 80 ° C. for 1 hour to cure the uncured seal portion (epoxy resin). This step makes it possible to press and cure the seal portion to a predetermined thickness. As shown in FIG. 18, the seal portion 42 is formed by the seal portion precursor 35 by hot pressing from above and below the bipolar battery structure. Thus, the bipolar secondary battery element 45 as one lump, in which 12 unit cells 41 are connected in series, was completed. Here, FIG. 18 is a longitudinal sectional view of the bipolar secondary battery element 45.

なお、図18には簡単のため、双極型電極31を上下方向に5枚重ねることで単電池41が4個直列接続された双極型二次電池要素45を示している。図18に示したように1つの単電池41は、隣り合う2つの集電体32、32の間の要素、つまり負極34と、ゲル電解液を染み込ませているセパレータ36と、正極33とから構成されている。   For the sake of simplicity, FIG. 18 shows a bipolar secondary battery element 45 in which four unit cells 41 are connected in series by stacking five bipolar electrodes 31 in the vertical direction. As shown in FIG. 18, one unit cell 41 includes an element between two adjacent current collectors 32, 32, that is, a negative electrode 34, a separator 36 soaked with gel electrolyte, and a positive electrode 33. It is configured.

<パッケージング工程>
上記方法で作成した双極型二次電池電池要素45を、図19、図20に示したように、さらに8個直列に重ね合わせたものを一塊としての電池要素47とし、この電池要素47の上下に一対の強電タブ4、5を配置し、この一対の強電タブ4、5と8個の双極型二次電池電池要素45の全体を外装材を用いて密封することにより、モータ駆動用の双極型二次電池の組電池1(平均電圧360V)を完成させた。ここで、図19は双極型二次電池の組電池1の概略縦断面図、図20は双極型二次電池の組電池1の概略平面図である。
<Packaging process>
As shown in FIGS. 19 and 20, the bipolar secondary battery element 45 produced by the above method is further stacked in series to form a battery element 47 as a lump. A pair of high-power tabs 4 and 5 are arranged on each other, and the pair of high-power tabs 4 and 5 and the eight bipolar secondary battery element 45 are hermetically sealed with an exterior material, so that a bipolar for driving a motor is obtained. The assembled battery 1 (average voltage 360 V) of the type secondary battery was completed. Here, FIG. 19 is a schematic longitudinal sectional view of the assembled battery 1 of a bipolar secondary battery, and FIG. 20 is a schematic plan view of the assembled battery 1 of a bipolar secondary battery.

このようにして完成した双極型二次電池の組電池1(以下単に「組電池」ともいう。)に対してアース形状を次の表1のような組み合わせで行った。そして、表1のように比較例1、2及び実施例1〜6の組電池1の重量測定を実施し、各アース形状での重量比較を行った。   The ground shape of the assembled battery 1 of the bipolar secondary battery thus completed (hereinafter also simply referred to as “assembled battery”) was combined as shown in Table 1 below. And the weight measurement of the assembled battery 1 of Comparative Examples 1 and 2 and Examples 1-6 was implemented like Table 1, and the weight comparison in each earth | ground shape was performed.

Figure 2012028023
Figure 2012028023

比較例1の組電池は、外装に樹脂−アルミ複合ラミネートフィルム(表1では「アルミラミネートフィルム」で略記)に代えてステンレスの金属製筐体を用いた。また、比較例2の組電池は外装に樹脂−アルミ複合ラミネートフィルムを用いているが、アースを取るためにさらにステンレスの金属製筐体で覆ったものである。   In the battery pack of Comparative Example 1, a stainless steel metal casing was used instead of a resin-aluminum composite laminate film (abbreviated as “aluminum laminate film” in Table 1). Further, the assembled battery of Comparative Example 2 uses a resin-aluminum composite laminate film for the exterior, but is further covered with a stainless steel metal casing to take a ground.

上記比較例1の組電池と実施例1〜5の組電池(双極型二次電池)の組電池重量を比較すると、実施例1〜5の組電池(双極型二次電池)は非常にコンパクトかつ軽量である。しかし、比較例2の組電池のように、金属製筐体(ステンレス)で覆い、電磁シールドを形成すると、樹脂−アルミ複合ラミネートフィルムを外装材とするメリットが半減することがわかる。   Comparing the assembled battery weights of the assembled battery of Comparative Example 1 and the assembled batteries (bipolar secondary batteries) of Examples 1 to 5, the assembled batteries (bipolar secondary batteries) of Examples 1 to 5 are very compact. And it is lightweight. However, it can be seen that, when covered with a metal casing (stainless steel) and an electromagnetic shield is formed as in the assembled battery of Comparative Example 2, the merit of using a resin-aluminum composite laminate film as an exterior material is halved.

また、比較例2の組電池と実施例6のプラスチック製筐体を含めた組電池の組電池重量を比較すると、樹脂-アルミ複合ラミネートフィルムで電磁シールドを形成し、プラスチック製筐体で組電池を固定した実施例6のほうが重量が比較例2より大幅に軽くなることもわかった。このように実施例6の組電池によれば、組電池を固定するケースが;プラスチック製(樹脂製)の筐体であるので、軽量で耐振動性能の高い組電池を形成することができる。   Moreover, when the assembled battery weight of the assembled battery including the assembled battery of Comparative Example 2 and the plastic casing of Example 6 is compared, an electromagnetic shield is formed with a resin-aluminum composite laminate film, and the assembled battery is assembled with the plastic casing. It was also found that the weight of Example 6 in which was fixed was significantly lighter than that of Comparative Example 2. Thus, according to the assembled battery of Example 6, since the case for fixing the assembled battery is a plastic (resin) housing, it is possible to form an assembled battery that is lightweight and has high vibration resistance.

したがって、実施例1〜5のように樹脂−アルミ複合ラミネートフィルムを外装材として用い、かつ樹脂−アルミ複合ラミネートフィルムのうちのアルミフィルム(金属フィルム)でアースを形成することで筐体を含めた組電池が大幅に軽量であることがわかった。   Therefore, the case was included by using the resin-aluminum composite laminate film as an exterior material as in Examples 1 to 5 and forming an earth with the aluminum film (metal film) of the resin-aluminum composite laminate film. The assembled battery was found to be significantly lighter.

次に、上記実施例1〜5の組電池に対しアース線と樹脂−アルミ複合ラミネートフィルムとの間の抵抗測定を実施した。さらに実施例1〜5の組電池に対し振動を長時間加え、その後にもう一度抵抗測定を行った。加振前の抵抗を100%とし、加振後の抵抗(%)を次の表2にまとめた。なお、振動試験はしっかり固定した組電池に対して垂直の方向に振幅が3mmで50Hzの単調な振動を200時間加えることにより行った。   Next, resistance measurement between the ground wire and the resin-aluminum composite laminate film was performed on the assembled batteries of Examples 1 to 5. Further, vibration was applied to the assembled batteries of Examples 1 to 5 for a long time, and then resistance measurement was performed once again. The resistance before vibration was taken as 100%, and the resistance (%) after vibration was summarized in Table 2 below. In addition, the vibration test was performed by applying a monotonous vibration of 50 Hz and an amplitude of 3 mm in a perpendicular direction to the assembled battery for 200 hours.

Figure 2012028023
Figure 2012028023

実施例1の組電池(図6参照)と実施例2の組電池(図7参照)を比較すると、ピン部23の外周に抜け止め部24を有することで振動に対して抵抗の増加が抑えられることがわかった。これは、抜け止め部24が樹脂−アルミ複合ラミネートフィルムのうちの金属部(金属フィルム)に引っ掛かることで抵抗の増加を抑えられているものと考えられる。また、実施例1の組電池(図6参照)と実施例3の組電池(図9参照)を比較すると、導電部材21が熱融着部の上下に2つ存在するほうが抵抗の増加が抑えられることがわかった。これは、樹脂−アルミ複合ラミネートフィルムと導電部材との接触点が増えることで耐振動性能が向上しているものと考えられる。   When the assembled battery of Example 1 (see FIG. 6) and the assembled battery of Example 2 (see FIG. 7) are compared, an increase in resistance to vibration is suppressed by having a retaining portion 24 on the outer periphery of the pin portion 23. I found out that This is considered that the increase in resistance is suppressed by the retaining portion 24 being caught by the metal portion (metal film) of the resin-aluminum composite laminate film. Further, when the assembled battery of Example 1 (see FIG. 6) and the assembled battery of Example 3 (see FIG. 9) are compared, the increase in resistance is suppressed when there are two conductive members 21 above and below the heat-sealed portion. I found out that This is considered that the vibration resistance is improved by increasing the number of contact points between the resin-aluminum composite laminate film and the conductive member.

さらに、実施例3の組電池(図9参照)と実施例4の組電池(図11参照)を比較すると、熱融着部10の両面から導電部材を貫通させて固定するアース形状のほうが、さらに抵抗増加を抑えられることがわかった。   Furthermore, when the assembled battery of Example 3 (see FIG. 9) and the assembled battery of Example 4 (see FIG. 11) are compared, the ground shape in which the conductive member is penetrated and fixed from both surfaces of the heat fusion part 10 is better. Further, it was found that the increase in resistance can be suppressed.

実施例5の組電池(図14参照)ではアース形状のベストな形を形成し、抵抗増加がさらに抑えられていると共に、電磁シールド付き強電配線のアースと樹脂−アルミ複合ラミネートフィルムのうちのアルミフィルム(金属フィルム)を接合することで、より簡易的な構成となっている。また、電力変換機(モータ)などのアースとも非常に短い距離でアースを形成することが可能となるので、電磁シールド性能がさらに高まる構成となった。   In the assembled battery of Example 5 (see FIG. 14), the best shape of the earth shape is formed, and the resistance increase is further suppressed, and the earth of the high-voltage wiring with electromagnetic shield and the aluminum of the resin-aluminum composite laminate film It has a simpler structure by bonding a film (metal film). In addition, since it is possible to form a ground with a very short distance from a ground such as a power converter (motor), the electromagnetic shielding performance is further enhanced.

次に、図19に示した電池要素47の代わりにステンレス板で置き換えた、実施例1から実施例5までの組電池サンプルに対し、アース形状を強電タブ取り出し部が属する辺に設置したもの、アース形状を強電タブ取り出し部が属さない辺に設置したものをそれぞれ作製した。ここで、「アース形状を設置する」とは、例えば図6に示したように先端の鋭利な導電部材を熱融着部に貫通させることである。   Next, with respect to the assembled battery samples of Example 1 to Example 5 replaced with a stainless steel plate instead of the battery element 47 shown in FIG. 19, the ground shape is installed on the side to which the high voltage tab takeout part belongs, Each having a ground shape installed on a side to which the high voltage tab take-out portion does not belong was prepared. Here, “installing a ground shape” means, for example, passing a sharp conductive member at the tip through the heat-sealed portion as shown in FIG.

また、「強電タブ取り出し部のある辺」、「強電タブ取り出し部のない辺」について説明する。図20において、熱融着部10は四角の枠状である。この四角の枠状の熱融着部10を4辺を有する単純な四角形に置き換えると、左右に走る2つの縦辺と上下方向に走る2つの横辺とからなる。図20においては、左右の2つの縦辺から強電タブ4、5が取り出され、上下2つの横辺からは強電タブ4、5は取り出されていない。従って、「」強電タブ取り出し部のある辺」とは、左右の2つの縦辺のこと、「強電タブ取り出し部のない辺」とは、上下2つの横辺のことである。「辺」とはいっても実質的には熱融着部10である。   Further, “side with a high-power tab take-out portion” and “side without a high-power tab take-out portion” will be described. In FIG. 20, the heat fusion part 10 is a square frame shape. When this square frame-shaped heat fusion part 10 is replaced with a simple quadrilateral having four sides, it consists of two vertical sides running left and right and two horizontal sides running up and down. In FIG. 20, the high power tabs 4 and 5 are taken out from the two vertical sides on the left and right, and the high power tabs 4 and 5 are not taken out from the two top and bottom horizontal sides. Accordingly, “the side where the high-power tab take-out portion is present” means the two vertical sides on the left and right, and “the side where there is no high-power tab take-out portion” means the two upper and lower horizontal sides. Although it is referred to as “side”, it is substantially the heat-sealed portion 10.

この組電池サンプルの樹脂−アルミ複合ラミネートフィルム内にチューブを導入し、空気を送り込むことで内圧をあげて熱融着部が剥離し内圧が開放されたときの圧力を測定した結果を次の表3にまとめた。ただし、実施例1の組電池サンプルにアース形状を強電タブ取り出し部が属する辺に設置したものに対して内圧が解放されたときの圧力を100%として、そのほかの組電池サンプルの内圧が解放されたときの圧力を%で示した。   The following table shows the results of measuring the pressure when the tube was introduced into the resin-aluminum composite laminate film of this assembled battery sample and the internal pressure was increased by feeding air to release the internal pressure. It was summarized in 3. However, the pressure when the internal pressure is released is 100% with respect to the battery pack sample of Example 1 in which the ground shape is installed on the side to which the high voltage tab take-out portion belongs, and the internal pressure of other battery pack samples is released. The pressure at that time was expressed in%.

Figure 2012028023
Figure 2012028023

実施例1から実施例5までのどの組電池サンプルも、シール強度を維持することが難しい、強電タブ取り出し部が属する辺の熱融着部が開封し内圧が開放されていたが、どの実施例の組電池サンプルについても、アース形状を強電タブ取り出し部が属する辺に設置している場合の方がアース形状を強電タブ取り出し部が属さない辺に設置している場合より内圧が高いところで開放されていた。この結果から、アース形状を強電タブ取り出し部が属する辺に設置することで、シール強度を維持することが難しい強電タブ取り出し部が属する辺の接着強度が高まっていることがわかった。これは、アース形状を設置した、つまり図6に示したように先端の鋭利な導電部材を熱融着部に貫通したことによる、導電部材の物理的なアンカー効果により、比較的シール強度を維持することが難しい、強電タブ取り出し部が属する辺(熱融着部)の接合強度を高めているものと考えられる。   In any of the assembled battery samples from Example 1 to Example 5, it was difficult to maintain the sealing strength, the heat fusion part of the side to which the high-voltage tab take-out part belongs was opened and the internal pressure was released. For the assembled battery samples, the ground shape is opened when the internal pressure is higher when the ground shape is installed on the side to which the high-voltage tab take-out part belongs than when the ground shape is installed on the side to which the high-power tab take-out part does not belong. It was. From this result, it was found that the adhesive strength of the side to which the high-power tab take-out portion to which it is difficult to maintain the seal strength is increased by installing the ground shape on the side to which the high-power tab take-out portion belongs. This is because a grounding shape is installed, that is, a conductive member having a sharp tip as shown in FIG. It is considered that the bonding strength of the side (heat-sealed portion) to which the high-voltage tab takeout portion belongs is increased.

1 組電池
2 電池要素
3 双極型二次電池要素
4、5 強電タブ
6 樹脂−金属ラミネートフィルム
7 金属フィルム
8、9 樹脂フィルム
10 熱融着部
21 導電部材
23 ピン部
25 アース線
DESCRIPTION OF SYMBOLS 1 Battery assembly 2 Battery element 3 Bipolar secondary battery element 4, 5 High-voltage tab 6 Resin-metal laminate film 7 Metal film 8, 9 Resin film 10 Thermal fusion part 21 Conductive member 23 Pin part 25 Ground wire

Claims (9)

樹脂フィルムと金属フィルムとを貼り合わせて層状にした樹脂−金属複合フィルムを外装材としてこの樹脂−金属複合フィルムで電池要素の外周に余裕代部をはみ出させて電池要素を被覆すると共に、
外周にはみ出させた上下の余裕代部を熱融着で接合することにより電池要素を外装材の内側に収納して密封するようにした電池において、
前記熱融着で接合された部位に導電部材を貫通させると共にこの導電部材をアースに接続することを特徴とする電池。
A resin-metal composite film made by laminating a resin film and a metal film is used as an exterior material, and the battery element is covered with the resin-metal composite film so that a margin part is protruded from the outer periphery of the battery element.
In the battery in which the battery element is housed and sealed inside the exterior material by joining the upper and lower margins protruding to the outer periphery by thermal fusion,
A battery characterized in that a conductive member is passed through the part bonded by heat fusion and the conductive member is connected to ground.
前記熱融着で接合された部位が少なくとも3つの辺を有する枠状であり、いずれか1つの辺より前記外装材の外側に取り出される強電タブまたは電圧検出用端子を備え、
強電タブまたは電圧検出用端子が取り出される部位が属する辺に前記導電部材を貫通させることを特徴とする請求項1に記載の電池。
The part joined by the thermal fusion has a frame shape having at least three sides, and includes a high voltage tab or a voltage detection terminal that is taken out from the exterior material from any one side,
2. The battery according to claim 1, wherein the conductive member is passed through a side to which a portion from which a high voltage tab or a voltage detection terminal is taken out belongs.
前記導電部材は、ピン部とこのピン部の径より大きい径を有する頭部とからなり、
前記熱融着で接合された部位を貫通するピン部の外周に、前記導電部材を貫通させる向きとは逆向きにこのピン部が移動することを阻止する抜け止め部を少なくとも1つ有することを特徴とする請求項1または2に記載の電池。
The conductive member comprises a pin portion and a head having a diameter larger than the diameter of the pin portion,
It has at least one retaining portion for preventing the pin portion from moving in the direction opposite to the direction of penetrating the conductive member on the outer periphery of the pin portion penetrating the portion bonded by the heat fusion. The battery according to claim 1 or 2, characterized in that:
前記1つの頭部に対して前記ピン部を少なくとも2つ有することを特徴とする請求項3に記載の電池。   The battery according to claim 3, wherein the battery has at least two pin portions with respect to the one head. 前記熱融着で接合された部位の両面から前記導電部材を貫通させることを特徴とする請求項1から4までのいずれか一つに記載の電池。   The battery according to any one of claims 1 to 4, wherein the conductive member is penetrated from both surfaces of the part joined by the thermal fusion. 外部機器に前記強電タブを接続する電磁シールド付き強電配線を備え、
この電磁シールド付き強電配線内のアース配線に前記導電部材を接続することを特徴とする請求項2から4までのいずれか一つに記載の電池。
It is equipped with high-power wiring with an electromagnetic shield that connects the high-power tab to an external device,
The battery according to any one of claims 2 to 4, wherein the conductive member is connected to a ground wiring in the high-voltage wiring with electromagnetic shield.
前記電磁シールド付き強電配線を前記強電タブに接続する部位と、前記導電部材を前記電磁シールド付き強電配線内のアース配線に接続する部位とを同一の端子台に構成したことを特徴とする請求項6に記載の電池。   The portion connecting the high-voltage wiring with electromagnetic shield to the high-voltage tab and the portion connecting the conductive member to the ground wiring in the high-voltage wiring with electromagnetic shielding are configured in the same terminal block. 6. The battery according to 6. 電池を固定するケースが樹脂製の筐体であることを特徴とする請求項1から7までのいずれか一つに記載の電池。   The battery according to any one of claims 1 to 7, wherein the case for fixing the battery is a resin casing. 前記電池要素は単電池を複数積層した双極型二次電池要素であることを特徴とする請求項1に記載の電池。   The battery according to claim 1, wherein the battery element is a bipolar secondary battery element in which a plurality of single cells are stacked.
JP2010162831A 2010-07-20 2010-07-20 Battery Pending JP2012028023A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010162831A JP2012028023A (en) 2010-07-20 2010-07-20 Battery
KR1020110071209A KR101269328B1 (en) 2010-07-20 2011-07-19 Resin-metal composite film battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010162831A JP2012028023A (en) 2010-07-20 2010-07-20 Battery

Publications (1)

Publication Number Publication Date
JP2012028023A true JP2012028023A (en) 2012-02-09

Family

ID=45780750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010162831A Pending JP2012028023A (en) 2010-07-20 2010-07-20 Battery

Country Status (2)

Country Link
JP (1) JP2012028023A (en)
KR (1) KR101269328B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013164380A (en) * 2012-02-13 2013-08-22 Nissan Motor Co Ltd Conductivity inspection device and method
JP2014143042A (en) * 2013-01-23 2014-08-07 Kojima Press Industry Co Ltd Battery case for vehicle
KR20180013123A (en) * 2016-07-28 2018-02-07 주식회사 엘지화학 Rechargeable battery
US11799148B2 (en) * 2019-07-23 2023-10-24 Sk On Co., Ltd. Battery module
WO2024053878A1 (en) * 2022-09-08 2024-03-14 주식회사 엘지에너지솔루션 Pouch-type battery cell and battery module including same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101860975B1 (en) * 2014-12-22 2018-05-24 주식회사 엘지화학 Pouch case for secondary battery and pouch typed secondary battery using thereof
KR102083656B1 (en) 2017-02-02 2020-03-02 주식회사 엘지화학 Secontadary battery, and frame for mechanically coupling electrode tap to electrode lead in the secontadary battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000077886A (en) * 1998-08-27 2000-03-14 Toshiba Corp Small-sized electronic equipment
WO2000070701A1 (en) * 1999-05-14 2000-11-23 Mitsubishi Denki Kabushiki Kaisha Flat battery and electronic device
WO2001008248A1 (en) * 1999-07-23 2001-02-01 Mitsubishi Denki Kabushiki Kaisha Cell and cell inspecting method
JP2010153132A (en) * 2008-12-24 2010-07-08 Nissan Motor Co Ltd Non-aqueous electrolyte secondary battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000353496A (en) 1999-06-11 2000-12-19 Japan Storage Battery Co Ltd Battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000077886A (en) * 1998-08-27 2000-03-14 Toshiba Corp Small-sized electronic equipment
WO2000070701A1 (en) * 1999-05-14 2000-11-23 Mitsubishi Denki Kabushiki Kaisha Flat battery and electronic device
WO2001008248A1 (en) * 1999-07-23 2001-02-01 Mitsubishi Denki Kabushiki Kaisha Cell and cell inspecting method
JP2010153132A (en) * 2008-12-24 2010-07-08 Nissan Motor Co Ltd Non-aqueous electrolyte secondary battery

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013164380A (en) * 2012-02-13 2013-08-22 Nissan Motor Co Ltd Conductivity inspection device and method
US9459284B2 (en) 2012-02-13 2016-10-04 Automotive Energy Supply Corporation Conductivity inspection apparatus and conductivity inspection method
EP2816362B1 (en) * 2012-02-13 2017-11-15 Automotive Energy Supply Corporation Conductivity inspection apparatus
JP2014143042A (en) * 2013-01-23 2014-08-07 Kojima Press Industry Co Ltd Battery case for vehicle
KR20180013123A (en) * 2016-07-28 2018-02-07 주식회사 엘지화학 Rechargeable battery
CN108140800A (en) * 2016-07-28 2018-06-08 株式会社Lg化学 Secondary cell
EP3333940A4 (en) * 2016-07-28 2018-09-19 LG Chem, Ltd. Secondary battery
KR101992430B1 (en) 2016-07-28 2019-09-30 주식회사 엘지화학 Rechargeable battery
CN108140800B (en) * 2016-07-28 2021-08-24 株式会社Lg化学 Secondary battery
US11335981B2 (en) 2016-07-28 2022-05-17 Lg Energy Solution, Ltd. Secondary battery
US11799148B2 (en) * 2019-07-23 2023-10-24 Sk On Co., Ltd. Battery module
WO2024053878A1 (en) * 2022-09-08 2024-03-14 주식회사 엘지에너지솔루션 Pouch-type battery cell and battery module including same

Also Published As

Publication number Publication date
KR20120010154A (en) 2012-02-02
KR101269328B1 (en) 2013-05-29

Similar Documents

Publication Publication Date Title
JP5017843B2 (en) Battery module and battery pack
JP5151115B2 (en) Bipolar secondary battery
JP5070703B2 (en) Bipolar battery
JP2012028023A (en) Battery
JP5505218B2 (en) Sealed storage battery
TWI466366B (en) Flat type battery
KR20160134761A (en) Sheet-laminated lithium ion secondary battery and production method for sheet-laminated lithium ion secondary battery
JP2012124146A (en) Secondary battery, battery unit, and battery module
JP5434397B2 (en) Bipolar battery current collector
JPWO2016174811A1 (en) Cylindrical battery, current collecting member used therefor, and manufacturing method thereof
JP4182858B2 (en) Secondary battery and assembled battery
WO2013002058A1 (en) Power storage device
JP4135474B2 (en) Laminated secondary battery, assembled battery module comprising a plurality of laminated secondary batteries, assembled battery comprising a plurality of assembled battery modules, and an electric vehicle equipped with any of these batteries
JP4182856B2 (en) Secondary battery, assembled battery, composite assembled battery, vehicle, and manufacturing method of secondary battery
US20220085421A1 (en) Secondary battery
JP2004047239A (en) Thin battery, battery pack, modular battery pack and vehicle installed therewith
JP2005251617A (en) Secondary battery and battery pack
JP3711962B2 (en) Thin battery
JP2013120730A (en) Lithium secondary battery, sheet material, and battery pack
US20130266850A1 (en) Electrochemical cell and method for manufacturing same
JP5526514B2 (en) Bipolar battery and battery pack using the same
JP3852110B2 (en) Thin battery and manufacturing method thereof
JP2014053158A (en) Collector, bipolar electrode, and bipolar secondary battery
CN110088967B (en) Secondary battery
JP5699858B2 (en) Electrodes and electrical devices

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140603