JP2012025845A - Method for manufacturing resin composition varnish, prepreg and laminate - Google Patents

Method for manufacturing resin composition varnish, prepreg and laminate Download PDF

Info

Publication number
JP2012025845A
JP2012025845A JP2010165556A JP2010165556A JP2012025845A JP 2012025845 A JP2012025845 A JP 2012025845A JP 2010165556 A JP2010165556 A JP 2010165556A JP 2010165556 A JP2010165556 A JP 2010165556A JP 2012025845 A JP2012025845 A JP 2012025845A
Authority
JP
Japan
Prior art keywords
varnish
resin composition
resin
dispersion
mixing step
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010165556A
Other languages
Japanese (ja)
Other versions
JP5593915B2 (en
Inventor
Yoshihiro Takahashi
佳弘 高橋
Yasuo Kamigata
康雄 上方
Masahiro Aoshima
真裕 青嶌
Akira Murai
曜 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2010165556A priority Critical patent/JP5593915B2/en
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to TW105105563A priority patent/TWI555733B/en
Priority to PCT/JP2010/073376 priority patent/WO2011078339A1/en
Priority to TW104113804A priority patent/TWI560223B/en
Priority to KR1020177028238A priority patent/KR102143743B1/en
Priority to TW099145884A priority patent/TWI529161B/en
Priority to KR1020127015701A priority patent/KR20120123031A/en
Priority to TW104113803A priority patent/TWI531610B/en
Priority to CN201080057563.4A priority patent/CN102656234B/en
Priority to EP10839568.2A priority patent/EP2518115B1/en
Priority to US13/518,578 priority patent/US20120276392A1/en
Publication of JP2012025845A publication Critical patent/JP2012025845A/en
Priority to HK12112427.4A priority patent/HK1171777A1/en
Application granted granted Critical
Publication of JP5593915B2 publication Critical patent/JP5593915B2/en
Priority to US15/133,662 priority patent/US10414943B2/en
Priority to US15/133,838 priority patent/US20160230037A1/en
Priority to US15/831,440 priority patent/US20180094162A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a resin composition varnish which is hard to cause settling and aggregation of a molybdenum compound, a prepreg having a low coefficient of thermal expansion and high drilling processability, and a laminate.SOLUTION: The method for manufacturing a resin composition varnish comprises a first dispersing and mixing step of dispersing and mixing a molybdenum compound (B) into a slurry (A) including silica particles having an average particle diameter of ≥0.01-≤0.1 μm and a specific surface area of ≥30-≤270 m/g, a second dispersing and mixing step of dispersing and mixing the slurry through the first dispersing and mixing step into a varnish including a thermosetting resin (C), and a third dispersing and mixing step of dispersing and mixing an inorganic filler (D) into the varnish through the second dispersing and mixing step and the prepreg and the laminate are obtained by using the manufacturing method.

Description

本発明は、樹脂組成物ワニスの製造方法、及び該製造方法を利用して作製した、半導体パッケージやプリント配線板用に好適なプリプレグ及び積層板に関する。   TECHNICAL FIELD The present invention relates to a method for producing a resin composition varnish, and a prepreg and a laminate that are produced using the production method and are suitable for semiconductor packages and printed wiring boards.

近年、電子機器の薄型化、軽量化に対する要求が強まり、半導体パッケージやプリント配線板の薄型化、高密度化が進んでいる。これらに対応して安定な実装を行っていくためには、半導体パッケージやプリント配線板に生じるそりを抑えることが必要になる。実装時、半導体パッケージに生じるそりの主な原因の一つと言われているのが、半導体パッケージに使われている積層板とシリコンチップとの熱膨張率差である。そのため、半導体パッケージ用積層板においては、熱膨張率をシリコンチップに近付ける、すなわち低熱膨張率化する努力が行われている。   In recent years, demands for thinner and lighter electronic devices are increasing, and semiconductor packages and printed wiring boards are becoming thinner and higher in density. In order to carry out stable mounting corresponding to these, it is necessary to suppress warpage generated in a semiconductor package or a printed wiring board. One of the main causes of warpage occurring in a semiconductor package during mounting is a difference in thermal expansion coefficient between the laminated plate used in the semiconductor package and the silicon chip. For this reason, efforts are being made to bring the coefficient of thermal expansion close to that of a silicon chip, that is, to lower the coefficient of thermal expansion, in a laminated sheet for semiconductor packages.

積層板を低熱膨張率化する方法は種々考えられるが、その中でも積層板の作製に用いる樹脂組成物中の無機充填材の充填率を上げる方法が有効である。
しかし、無機充填材を高充填化して積層板を作製すると、積層板のドリル加工性が悪化してしまうという問題があった。
Various methods for reducing the coefficient of thermal expansion of the laminate are conceivable. Among them, a method of increasing the filling rate of the inorganic filler in the resin composition used for producing the laminate is effective.
However, when a laminated board is produced by increasing the filling of the inorganic filler, there is a problem that the drillability of the laminated board deteriorates.

そこで本発明者らは、この問題を解決すべく無機充填材を高充填化してもドリル加工性の悪化を抑えることのできる添加剤の探索を行い、モリブデン化合物が優れた効果を持つことを見出した。
しかし、モリブデン化合物は比重が大きいため、積層板の作製に用いる樹脂組成物ワニスに直接添加すると沈降しやすく、製造不良の原因となる。このため、モリブデン化合物をタルク等に担持させた粒子(例えば、シャーウィン・ウィリアムズ株式会社製、ケムガード911C)を用いることが推奨されている(例えば、特許文献1参照)が、樹脂組成物ワニスが増粘したり、モリブデン化合物担持粒子同士の凝集が起きやすくなったり等の欠点があり、満足できる結果は得られていない。
In order to solve this problem, the present inventors searched for an additive that can suppress the deterioration of drill workability even when the inorganic filler is highly filled, and found that the molybdenum compound has an excellent effect. It was.
However, since the specific gravity of the molybdenum compound is large, when it is directly added to the resin composition varnish used for the production of the laminated plate, it tends to settle, causing a manufacturing defect. Therefore, it is recommended to use particles (for example, Chemguard 911C, manufactured by Sherwin Williams Co., Ltd.) in which a molybdenum compound is supported on talc or the like (see, for example, Patent Document 1). There are disadvantages such as thickening and the tendency of the aggregation of molybdenum compound-carrying particles to occur, and satisfactory results have not been obtained.

特開2000−264986号公報JP 2000-264986 A

本発明はかかる事情に鑑みなされたもので、モリブデン化合物の沈降や凝集が起きにくい樹脂組成物ワニスの製造方法、及び熱膨張率が低く、ドリル加工性の高いプリプレグ、積層板を提供するものである。   The present invention has been made in view of such circumstances, and provides a method for producing a resin composition varnish that is unlikely to cause precipitation and aggregation of a molybdenum compound, and a prepreg and a laminate having a low thermal expansion coefficient and high drillability. is there.

本発明者らは鋭意研究を続けた結果、特定のシリカ粒子が分散されたスラリー中にモリブデン化合物を分散混合した後に、このスラリーを、熱硬化性樹脂を含むワニス中に添加し、その後無機充填材を配合する方法で樹脂組成物ワニスを製造することにより、上記課題を解決できることを見出し、本発明を完成するに至った。すなわち、本発明は下記の通りである。   As a result of continual research, the inventors of the present invention have dispersed a molybdenum compound in a slurry in which specific silica particles are dispersed, and then added the slurry to a varnish containing a thermosetting resin, and then inorganic filling. It has been found that the above problems can be solved by producing a resin composition varnish by a method of blending materials, and the present invention has been completed. That is, the present invention is as follows.

[1] (A)平均粒子径が0.01μm以上0.1μm以下であり、比表面積が30m2/g以上270m2/g以下のシリカ粒子を含むスラリー中に、(B)モリブデン化合物を分散混合する第1の分散混合工程と、
第1の分散混合工程を経たスラリーを、(C)熱硬化性樹脂を含むワニス中に分散混合する第2の分散混合工程と、
第2の分散混合工程を経たワニス中に、(D)前記シリカ粒子及びモリブデン化合物を除く無機充填材を分散混合する第3の分散混合工程と、を含む樹脂組成物ワニスの製造方法。
[2] 第3の分散混合工程後のワニスに硬化促進剤を添加する硬化促進剤添加工程を含む[1]に記載の樹脂組成物ワニスの製造方法。
[3] (B)モリブデン化合物が、モリブデン酸亜鉛、モリブデン酸カルシウム、及びモリブデン酸マグネシウムからなる群より選ばれる1種又は2種以上の混合物である[1]又は[2]に記載の樹脂組成物ワニスの製造方法。
[1] (A) A molybdenum compound is dispersed in a slurry containing silica particles having an average particle size of 0.01 μm or more and 0.1 μm or less and a specific surface area of 30 m 2 / g or more and 270 m 2 / g or less. A first dispersion mixing step of mixing;
(C) a second dispersion and mixing step in which the slurry that has undergone the first dispersion and mixing step is dispersed and mixed in a varnish containing a thermosetting resin;
(D) The 3rd dispersion | distribution mixing process which disperse-mixes the inorganic filler except the said silica particle and a molybdenum compound in the varnish which passed through the 2nd dispersion | distribution mixing process, The manufacturing method of the resin composition varnish.
[2] The method for producing a resin composition varnish according to [1], including a curing accelerator addition step of adding a curing accelerator to the varnish after the third dispersion mixing step.
[3] The resin composition according to [1] or [2], wherein the (B) molybdenum compound is one or a mixture of two or more selected from the group consisting of zinc molybdate, calcium molybdate, and magnesium molybdate. A method for manufacturing a varnish.

[4] (A)平均粒子径が0.01μm以上0.1μm以下であり、比表面積が30m2/g以上270m2/g以下のシリカ粒子を含むスラリー中に、(B)モリブデン化合物を分散混合する第1の分散混合工程と、第1の分散混合工程を経たスラリーを、(C)熱硬化性樹脂を含むワニス中に分散混合する第2の分散混合工程と、第2の分散混合工程を経たワニス中に、(D)無機充填材を分散混合する第3の分散混合工程と、を経て得られる樹脂組成物ワニスを基材に含浸塗工してなるプリプレグ。
[5] 上記[4]に記載のプリプレグを積層成形してなる積層板。
[4] (A) Disperse (B) a molybdenum compound in a slurry containing silica particles having an average particle diameter of 0.01 μm or more and 0.1 μm or less and a specific surface area of 30 m 2 / g or more and 270 m 2 / g or less. (C) 2nd dispersion | distribution mixing process which disperse-mixes the slurry which passed through the 1st dispersion | distribution mixing process and 1st dispersion | distribution mixing process in the varnish containing a thermosetting resin, and 2nd dispersion | distribution mixing process A prepreg obtained by impregnating a base material with a resin composition varnish obtained through (D) a third dispersion mixing step in which an inorganic filler is dispersed and mixed in the varnish subjected to the above.
[5] A laminate obtained by laminating the prepreg according to [4] above.

本発明によれば、モリブデン化合物の沈降や凝集が起きにくい樹脂組成物ワニスの製造方法、及び熱膨張率が低く、ドリル加工性の高いプリプレグ、積層板を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the resin composition varnish which does not raise | generate precipitation and aggregation of a molybdenum compound, and a prepreg and a laminated board with a low thermal expansion coefficient and high drill workability can be provided.

以下、本発明の樹脂組成物ワニスの製造方法、及びプリプレグ、積層板について詳細に説明する。   Hereafter, the manufacturing method of the resin composition varnish of this invention, a prepreg, and a laminated board are demonstrated in detail.

[樹脂組成物ワニスの製造方法]
本発明の樹脂組成物ワニスの製造方法は、(A)所定のシリカ粒子を含むスラリー中に、(B)モリブデン化合物を分散混合する第1の分散混合工程と、第1の分散混合工程を経たスラリーを、(C)熱硬化性樹脂を含むワニス中に分散混合する第2の分散混合工程と、第2の分散混合工程を経たワニス中に、(D)無機充填材を分散混合する第3の分散混合工程とを含む。
[Method for Producing Resin Composition Varnish]
In the method for producing the resin composition varnish of the present invention, (A) the first dispersion mixing step of dispersing and mixing (B) the molybdenum compound in the slurry containing the predetermined silica particles, and the first dispersion mixing step. The slurry is dispersed and mixed in a varnish containing (C) a thermosetting resin, and (D) an inorganic filler is dispersed and mixed in the varnish that has undergone the second dispersion and mixing step. And a dispersion mixing step.

(第1の分散混合工程)
第1の分散混合工程における(A)のスラリー中のシリカ粒子は、平均粒子径0.01μm以上0.1μm以下、かつ比表面積30m2/g以上270m2/g以下である必要がある。
平均粒子径が0.01μm以上0.1μm以下、かつ比表面積が30m2/g以上270m2/g以下であると、モリブデン化合物を分散混合する際に細かく分散した状態で長時間沈降しないよう安定に保つことができる。
(First dispersion mixing step)
The silica particles in the slurry (A) in the first dispersion mixing step need to have an average particle size of 0.01 μm to 0.1 μm and a specific surface area of 30 m 2 / g to 270 m 2 / g.
When the average particle diameter is 0.01 μm or more and 0.1 μm or less and the specific surface area is 30 m 2 / g or more and 270 m 2 / g or less, the molybdenum compound is stable so as not to settle for a long time in a finely dispersed state when dispersed and mixed. Can be kept in.

なお、本明細書でいう「平均粒子径」とは、粒子の全体積を100%として粒子径による累積度数分布曲線を求めたとき、ちょうど体積50%に相当する点の粒子径のことであり、レーザ回折散乱法を用いた粒度分布測定装置等で測定することができる。
また、「比表面積」とは、単位重量の粉末中に含まれる全粒子の表面積の総和のことであり、BET法を用いた比表面積測定装置等で測定することができる。
As used herein, “average particle size” refers to the particle size at a point corresponding to a volume of just 50% when a cumulative frequency distribution curve based on particle size is obtained with the total volume of particles being 100%. It can be measured with a particle size distribution measuring device using a laser diffraction scattering method.
The “specific surface area” is the total surface area of all particles contained in a unit weight of powder, and can be measured with a specific surface area measuring device using the BET method.

スラリー中の有機溶媒としては、例えば、メタノール、エタノール、プロパノール、ブタノール等のアルコール類、メチルセロソルブ、ブチルセロソルブ、プロピレングリコールモノメチルエーテル等のグリコールエーテル類、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類が挙げられる。
これらの中で、第2の分散混合工程においてモリブデン化合物の分散性を保ちやすい点から、(C)の熱硬化性樹脂を含むワニスで用いられる有機溶媒と同じものであることが好ましい。
Examples of the organic solvent in the slurry include alcohols such as methanol, ethanol, propanol, and butanol, glycol ethers such as methyl cellosolve, butyl cellosolve, and propylene glycol monomethyl ether, and ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone. Is mentioned.
Among these, it is preferable that the organic solvent used in the varnish containing the thermosetting resin (C) is the same as the molybdenum compound in the second dispersion mixing step because it is easy to maintain the dispersibility of the molybdenum compound.

スラリー中のシリカ粒子の配合量としては、10質量%以上50質量%以下であることが好ましく、20質量%以上40質量%以下であることがより好ましい。配合量が10質量%以上50質量%以下であると、スラリー中のシリカ粒子の分散性が優れ、かつモリブデン化合物の分散性、安定性が良好となる。   As a compounding quantity of the silica particle in a slurry, it is preferable that it is 10 to 50 mass%, and it is more preferable that it is 20 to 40 mass%. When the blending amount is 10% by mass or more and 50% by mass or less, the dispersibility of the silica particles in the slurry is excellent, and the dispersibility and stability of the molybdenum compound are improved.

以上のような条件を満たすシリカスラリーとして、例えば、株式会社アドマテックス製、アドマナノを挙げることができる。   As a silica slurry satisfying the above conditions, for example, Adma Nano manufactured by Admatechs Co., Ltd. can be mentioned.

(B)のモリブデン化合物としては、例えば、三酸化モリブデン、モリブデン酸亜鉛、モリブデン酸アンモニウム、モリブデン酸マグネシウム、モリブデン酸カルシウム、モリブデン酸バリウム、モリブデン酸ナトリウム、モリブデン酸カリウム、リンモリブデン酸、リンモリブデン酸アンモニウム、リンモリブデン酸ナトリウム、ケイモリブデン酸、二硫化モリブデン、二セレン化モリブデン、二テルル化モリブデン、ホウ化モリブデン、二ケイ化モリブデン、窒化モリブデン、炭化モリブデン等が挙げられ、これらの1種又は2種以上を混合して使用できる。
これらの中で、水溶性及び毒性が低く、高電気絶縁性で、ドリル加工性の改善効果が大きい点から、モリブデン酸亜鉛、モリブデン酸カルシウム、モリブデン酸マグネシウムが好ましい。
Examples of the molybdenum compound (B) include molybdenum trioxide, zinc molybdate, ammonium molybdate, magnesium molybdate, calcium molybdate, barium molybdate, sodium molybdate, potassium molybdate, phosphomolybdic acid, and phosphomolybdic acid. Ammonium, sodium phosphomolybdate, silicomolybdic acid, molybdenum disulfide, molybdenum diselenide, molybdenum ditelluride, molybdenum boride, molybdenum disilicide, molybdenum nitride, molybdenum carbide, etc., and one or two of these A mixture of seeds or more can be used.
Among these, zinc molybdate, calcium molybdate, and magnesium molybdate are preferable because they have low water solubility and toxicity, high electrical insulation, and a large effect of improving drill workability.

モリブデン化合物のシリカスラリー中への配合量としては、スラリー中に含まれるシリカ粒子の体積を1とした場合、体積比(Mo化合物/SiO2)で0.2以上5以下であることが好ましく、0.3以上4以下であることより好ましい。体積比が0.2以上5以下であると、モリブデン化合物をスラリー中に分散混合する際の分散性、安定性が良好となる。 As a compounding amount of the molybdenum compound in the silica slurry, when the volume of the silica particles contained in the slurry is 1, the volume ratio (Mo compound / SiO 2 ) is preferably 0.2 or more and 5 or less, More preferably, it is 0.3 or more and 4 or less. When the volume ratio is 0.2 or more and 5 or less, dispersibility and stability when the molybdenum compound is dispersed and mixed in the slurry are improved.

第1の分散混合工程におけるモリブデン化合物をシリカスラリー中へ分散混合する方法としては、例えば、まずスラリーを攪拌しながらモリブデン化合物を少しずつ加えてよく混合し、次にビーズミル、ボールミル等のメディアミル、ディゾルバー等のハイスピードディスパーサー、ナノマイザー等の高圧ホモジナイザー、コロイドミル、超音波処理機等で分散処理する方法が挙げられる。
これらの中で、不純物の混入が少なく、効率良く分散できる点から高圧ホモジナイザーで処理する方法が好ましい。また、分散混合の際に分散剤として、シラン系やチタネート系、アルミネート系等のカップリング剤、ポリエーテル変性ポリシロキサン等の変性シリコーン類、ポリカルボン酸類、ウレタン系やアクリル系のポリマー分散剤等を添加することもできる。
As a method of dispersing and mixing the molybdenum compound in the silica dispersion in the first dispersion mixing step, for example, the molybdenum compound is first added little by little while stirring the slurry, and then mixed well, and then a media mill such as a bead mill or a ball mill, Examples thereof include a high-speed disperser such as a dissolver, a high-pressure homogenizer such as a nanomizer, a colloid mill, and an ultrasonic treatment machine.
Among these, a method of treating with a high-pressure homogenizer is preferable from the viewpoint that impurities are less mixed and can be efficiently dispersed. In addition, as a dispersant during dispersion mixing, coupling agents such as silane, titanate, and aluminate, modified silicones such as polyether-modified polysiloxane, polycarboxylic acids, urethane-based and acrylic polymer dispersants Etc. can also be added.

(第2の分散混合工程)
第2の分散混合工程の工程における(C)の熱硬化性樹脂としては、例えば、エポキシ樹脂、フェノール樹脂、不飽和イミド樹脂、シアネート樹脂、イソシアネート樹脂、ベンゾオキサジン樹脂、オキセタン樹脂、アミノ樹脂、不飽和ポリエステル樹脂、アリル樹脂、ジシクロペンタジエン樹脂、シリコーン樹脂、トリアジン樹脂、メラミン樹脂等が挙げられ、これらの1種又は2種以上を混合して使用できる。
(Second dispersion mixing step)
Examples of the thermosetting resin (C) in the second dispersion and mixing step include epoxy resin, phenol resin, unsaturated imide resin, cyanate resin, isocyanate resin, benzoxazine resin, oxetane resin, amino resin, non-resin, and the like. A saturated polyester resin, an allyl resin, a dicyclopentadiene resin, a silicone resin, a triazine resin, a melamine resin, and the like can be given, and one or more of these can be mixed and used.

これらの中で、成形性や電気絶縁性の点からエポキシ樹脂が好ましい。
このようなエポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビスフェノールFノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、キシリレン型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ナフタレン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、脂環式エポキシ樹脂、多官能フェノール類及びアントラセン等の多環芳香族類のジグリシジルエーテル化合物等が挙げられ、これらの1種又は2種以上を混合して使用できる。
Among these, an epoxy resin is preferable from the viewpoint of moldability and electrical insulation.
Examples of such epoxy resins include bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol S type epoxy resins, phenol novolac type epoxy resins, cresol novolac type epoxy resins, bisphenol A novolac type epoxy resins, and bisphenol F novolacs. Type epoxy resin, biphenyl type epoxy resin, xylylene type epoxy resin, biphenyl aralkyl type epoxy resin, naphthalene type epoxy resin, dicyclopentadiene type epoxy resin, alicyclic epoxy resin, polyfunctional phenols and anthracene The diglycidyl ether compound of a kind etc. are mentioned, These 1 type (s) or 2 or more types can be mixed and used.

熱硬化性樹脂としてエポキシ樹脂を用いる場合、必要に応じて該エポキシ樹脂の硬化剤を使用することができる。
硬化剤の例としては、例えば、フェノールノボラック、クレゾールノボラック等の多官能フェノール化合物、ジシアンジアミド、ジアミノジフェニルメタン、ジアミノジフェニルスルフォン等のアミン化合物、無水フタル酸、無水ピロメリット酸、無水マレイン酸、無水マレイン酸共重合体等の酸無水物等が挙げられ、これらの1種又は2種以上を混合して使用できる。
When an epoxy resin is used as the thermosetting resin, a curing agent for the epoxy resin can be used as necessary.
Examples of curing agents include, for example, polyfunctional phenol compounds such as phenol novolak and cresol novolak, amine compounds such as dicyandiamide, diaminodiphenylmethane, and diaminodiphenyl sulfone, phthalic anhydride, pyromellitic anhydride, maleic anhydride, maleic anhydride Examples thereof include acid anhydrides such as copolymers, and one or two or more of these may be used in combination.

熱硬化性樹脂を含むワニスで用いられる有機溶媒としては、例えば、メタノール、エタノール、プロパノール、ブタノール、メチルセロソルブ、ブチルセロソルブ、プロピレングリコールモノメチルエーテル等のアルコール系溶媒、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒、酢酸ブチル、プロピレングリコールモノメチルエーテルアセテート等のエステル系溶媒、テトラヒドロフラン等のエーテル系溶媒、トルエン、キシレン、メシチレン等の芳香族系溶媒、ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン等の窒素原子含有溶媒、ジメチルスルホキシド等の硫黄原子含有溶媒等が挙げられ、1種又は2種以上を混合して使用できる。
これらの中で、熱硬化性樹脂の溶解性に優れ低毒性の点からメチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、プロピレングリコールモノメチルエーテルが好ましい。
Examples of the organic solvent used in the varnish containing a thermosetting resin include alcohol solvents such as methanol, ethanol, propanol, butanol, methyl cellosolve, butyl cellosolve, propylene glycol monomethyl ether, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, and the like. Ketone solvents, ester solvents such as butyl acetate and propylene glycol monomethyl ether acetate, ether solvents such as tetrahydrofuran, aromatic solvents such as toluene, xylene, mesitylene, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, etc. A nitrogen atom-containing solvent, a sulfur atom-containing solvent such as dimethyl sulfoxide, and the like can be mentioned, and one kind or a mixture of two or more kinds can be used.
Among these, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, and propylene glycol monomethyl ether are preferable from the viewpoint of excellent solubility of the thermosetting resin and low toxicity.

熱硬化性樹脂を含むワニスの固形分濃度は、40質量%以上90質量%以下であることが好ましく、50質量%以上80質量%以下であることがより好ましい。ワニスの固形分を40質量%以上90質量%以下にすることで、第2の分散混合工程におけるモリブデン化合物の分散性、安定性を良好に保つことができる。   The solid content concentration of the varnish containing the thermosetting resin is preferably 40% by mass or more and 90% by mass or less, and more preferably 50% by mass or more and 80% by mass or less. By setting the solid content of the varnish to 40 mass% or more and 90 mass% or less, the dispersibility and stability of the molybdenum compound in the second dispersion mixing step can be kept good.

モリブデン化合物を分散したスラリーのワニス中への配合量は、最終的に樹脂組成物ワニスに含まれる有機溶媒を除いた全樹脂組成物を100体積%としたとき、モリブデン化合物が0.1体積%以上10体積%以下になる量にすることが好ましい。モリブデン化合物の量を0.1体積%以上10体積%以下にすることで、ドリル加工性を良好に保ったまま樹脂組成物を低熱膨張化させることができる。   The amount of the slurry in which the molybdenum compound is dispersed in the varnish is 0.1 vol% when the total resin composition excluding the organic solvent contained in the resin composition varnish is 100 vol%. The amount is preferably 10% by volume or less. By making the amount of the molybdenum compound 0.1 volume% or more and 10 volume% or less, it is possible to reduce the thermal expansion of the resin composition while maintaining good drill workability.

第2の分散混合工程におけるモリブデン化合物を分散したスラリーを、熱硬化性樹脂を含むワニス中に分散混合する方法としては、例えば、ワニスを攪拌しながらスラリーを少しずつ加えて十分混合する方法が挙げられる。   Examples of the method of dispersing and mixing the slurry in which the molybdenum compound is dispersed in the second dispersion mixing step in the varnish containing the thermosetting resin include, for example, a method of adding the slurry little by little while stirring the varnish and mixing sufficiently. It is done.

(第3の分散混合工程)
第3の分散混合工程における(D)の無機充填材としては、既述の(A)成分であるシリカ粒子及び(B)成分であるモリブデン化合物を除く、種々の材料を使用することができる。例えば、シリカ、アルミナ、タルク、マイカ、カオリン、水酸化アルミニウム、水酸化マグネシウム、ホウ酸亜鉛、スズ酸亜鉛、酸化亜鉛、酸化チタン、窒化ホウ素、炭酸カルシウム、硫酸バリウム、ホウ酸アルミニウム、チタン酸カリウム、EガラスやSガラス、Dガラス等のガラス粉や中空ガラスビーズ等が挙げられ、これらの1種又は2種以上を混合して使用できる。
(Third dispersion mixing step)
As the inorganic filler (D) in the third dispersion mixing step, various materials can be used except the silica particles as the component (A) and the molybdenum compound as the component (B). For example, silica, alumina, talc, mica, kaolin, aluminum hydroxide, magnesium hydroxide, zinc borate, zinc stannate, zinc oxide, titanium oxide, boron nitride, calcium carbonate, barium sulfate, aluminum borate, potassium titanate Glass powder such as E glass, S glass, D glass, hollow glass beads, and the like can be used, and one or more of these can be mixed and used.

これらの中で、低熱膨張率である点からシリカが好ましい。
シリカとしては、例えば、湿式法で製造され含水率の高い沈降シリカと、乾式法で製造され結合水等をほとんど含まない乾式法シリカが挙げられ、乾式法シリカとしてはさらに、製造法の違いにより破砕シリカ、フュームドシリカ、溶融球状シリカが挙げられる。これらの中で、樹脂に充填した際流動性に優れる点から溶融球状シリカが好ましい。
Of these, silica is preferred because of its low coefficient of thermal expansion.
Examples of the silica include a precipitated silica produced by a wet method and having a high water content, and a dry method silica produced by a dry method and containing almost no bound water. The dry method silica further includes differences in production methods. Examples include crushed silica, fumed silica, and fused spherical silica. Among these, fused spherical silica is preferable from the viewpoint of excellent fluidity when filled in a resin.

無機充填材として溶融球状シリカを用いる場合、その平均粒子径は0.1μm以上10μm以下であることが好ましく、0.3μm以上8μm以下であることがより好ましい。溶融球状シリカの平均粒子径を0.1μm以上にすることで、樹脂に充填した際の流動性を良好に保つことができ、さらに10μm以下にすることで、粗大粒子の混入確率を減らし不良の発生を抑えることができる。
なお、平均粒子径は既述の(A)成分であるシリカ粒子よりも大きいものとする。
When fused spherical silica is used as the inorganic filler, the average particle size is preferably 0.1 μm or more and 10 μm or less, and more preferably 0.3 μm or more and 8 μm or less. By making the average particle diameter of the fused spherical silica 0.1 μm or more, the fluidity when filled in the resin can be kept good, and by making the average particle diameter 10 μm or less, the mixing probability of coarse particles is reduced and defective. Occurrence can be suppressed.
In addition, an average particle diameter shall be larger than the silica particle which is the above-mentioned (A) component.

無機充填材のワニス中への配合量は、最終的に樹脂組成物ワニスに含まれる有機溶媒を除いた全樹脂組成物を100体積%としたとき、20体積%以上60体積%以下であることが好ましく、30体積%以上55体積%以下であることがより好ましい。無機充填材の配合量を20体積%以上60体積%以下にすることで、成形性を良好に保ったまま樹脂組成物を低熱膨張率化することができる   The blending amount of the inorganic filler in the varnish is 20% by volume or more and 60% by volume or less when the total resin composition excluding the organic solvent finally contained in the resin composition varnish is 100% by volume. Is preferable, and it is more preferable that it is 30 volume% or more and 55 volume% or less. By setting the blending amount of the inorganic filler to 20% by volume or more and 60% by volume or less, it is possible to reduce the thermal expansion coefficient of the resin composition while maintaining good moldability.

第3の分散混合工程における無機充填材をモリブデン化合物及び熱硬化性樹脂を含むワニス中に分散混合する方法としては、例えば、無機充填材をそのまま加えて混合する方法、無機充填材をあらかじめ有機溶媒中に分散させてスラリー化してから加えて混合する方法が挙げられる。
これらの中で、無機充填材のワニス中での分散性の点から、無機充填材をスラリー化してから加える方法が好ましい。無機充填材をスラリー化する際には、無機充填材をあらかじめシラン系、チタネート系等のカップリング剤、シリコーンオリゴマー等の表面処理剤で前処理するか、あるいはインテグラルブレンド処理することが好ましい。
Examples of the method of dispersing and mixing the inorganic filler in the third dispersion mixing step in the varnish containing the molybdenum compound and the thermosetting resin include, for example, a method in which the inorganic filler is added as it is, and the inorganic filler is previously added to the organic solvent. There is a method in which the mixture is dispersed into a slurry and then added and mixed.
Among these, from the viewpoint of dispersibility of the inorganic filler in the varnish, a method of adding the inorganic filler after slurrying is preferable. When slurrying the inorganic filler, it is preferable to pre-treat the inorganic filler with a surface treatment agent such as a silane-based or titanate-based coupling agent, a silicone oligomer, or an integral blend.

上記各工程を経て製造される樹脂組成物ワニスには、上記成分以外に、硬化促進剤、熱可塑性樹脂、エラストマー、有機充填材、難燃剤、紫外線吸収剤、酸化防止剤及び接着性向上剤等を添加して使用することができる。   In addition to the above components, the resin composition varnish produced through the above steps includes a curing accelerator, a thermoplastic resin, an elastomer, an organic filler, a flame retardant, an ultraviolet absorber, an antioxidant, and an adhesion improver. Can be used.

硬化促進剤の例としては、例えば、イミダゾール類及びその誘導体、有機リン系化合物、第二級アミン類、第三級アミン類、及び第四級アンモニウム塩等が挙げられ、これらの1種又は2種以上を混合して使用できる。   Examples of curing accelerators include, for example, imidazoles and derivatives thereof, organophosphorus compounds, secondary amines, tertiary amines, quaternary ammonium salts, and the like, one or two of these. A mixture of seeds or more can be used.

熱可塑性樹脂の例としては、ポリエチレン、ポリプロピレン、ポリスチレン、ポリフェニレンエーテル樹脂、フェノキシ樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリイミド樹脂、キシレン樹脂、ポリフェニレンスルフィド樹脂、ポリエーテルイミド樹脂、ポリエーテルエーテルケトン樹脂、ポリエーテルイミド樹脂、シリコーン樹脂、テトラフルオロエチレン樹脂等が挙げられる。   Examples of thermoplastic resins include polyethylene, polypropylene, polystyrene, polyphenylene ether resin, phenoxy resin, polycarbonate resin, polyester resin, polyamide resin, polyamideimide resin, polyimide resin, xylene resin, polyphenylene sulfide resin, polyetherimide resin, poly Examples include ether ether ketone resins, polyether imide resins, silicone resins, and tetrafluoroethylene resins.

エラストマーの例としては、ポリブタジエン、アクリロニトリル、エポキシ変性ポリブタジエン、無水マレイン酸変性ポリブタジエン、フェノール変性ポリブタジエン及びカルボキシ変性アクリロニトリル等が挙げられる。   Examples of the elastomer include polybutadiene, acrylonitrile, epoxy-modified polybutadiene, maleic anhydride-modified polybutadiene, phenol-modified polybutadiene, and carboxy-modified acrylonitrile.

有機充填材の例としては、ポリエチレン、ポリプロピレン、ポリスチレン、ポリフェニレンエーテル樹脂、シリコーン樹脂、テトラフルオロエチレン樹脂等よりなる均一構造の樹脂フィラー、アクリル酸エステル系樹脂、メタクリル酸エステル系樹脂、共役ジエン系樹脂等よりなるゴム状態のコア層と、アクリル酸エステル系樹脂、メタクリル酸エステル系樹脂、芳香族ビニル系樹脂、シアン化ビニル系樹脂等よりなるガラス状態のシェル層を持つコアシェル構造の樹脂フィラーが挙げられる。   Examples of organic fillers include resin fillers of uniform structure made of polyethylene, polypropylene, polystyrene, polyphenylene ether resin, silicone resin, tetrafluoroethylene resin, acrylate ester resin, methacrylate ester resin, conjugated diene resin And a core-shell resin filler having a rubbery core layer and a glassy shell layer made of an acrylic ester resin, a methacrylic ester resin, an aromatic vinyl resin, a vinyl cyanide resin, etc. It is done.

難燃剤の例としては、臭素や塩素を含有する含ハロゲン系難燃剤、トリフェニルホスフェート、トリクレジルホスフェート、トリスジクロロプロピルホスフェート、赤リン等のリン系難燃剤、スルファミン酸グアニジン、硫酸メラミン、ポリリン酸メラミン、メラミンシアヌレート等の窒素系難燃剤、シクロホスファゼン、ポリホスファゼン等のホスファゼン系難燃剤、三酸化アンチモン等の無機系難燃剤が挙げられる。   Examples of flame retardants include halogen-containing flame retardants containing bromine and chlorine, triphenyl phosphate, tricresyl phosphate, trisdichloropropyl phosphate, red phosphorus and other phosphorus flame retardants, guanidine sulfamate, melamine sulfate, polyphosphorus Nitrogen flame retardants such as acid melamine and melamine cyanurate, phosphazene flame retardants such as cyclophosphazene and polyphosphazene, and inorganic flame retardants such as antimony trioxide.

その他、紫外線吸収剤の例としてはベンゾトリアゾール系紫外線吸収剤、酸化防止剤の例としてはヒンダードフェノール系やヒンダードアミン系酸化防止剤、接着性向上剤の例としてはシラン系、チタネート系、アルミネート系等のカップリング剤が挙げられる。   Other examples of UV absorbers include benzotriazole UV absorbers, examples of antioxidants include hindered phenols and hindered amines, and examples of adhesion improvers include silanes, titanates, and aluminates. Coupling agents such as systems can be mentioned.

なお、これらの成分を樹脂組成物ワニスに添加するのは、第3の分散混合工程を経た後で行うことが好ましい。また、最終的に得られる樹脂組成物ワニスの固形分は、40〜80質量%であることが好ましく、45〜75質量%であることがより好ましい。
固形分が40〜80質量%であると、ワニスの塗工性が良好となり、適切な樹脂組成物付着量のプリプレグを得ることができる。
In addition, it is preferable to add these components to the resin composition varnish after the third dispersion mixing step. Moreover, it is preferable that it is 40-80 mass%, and, as for solid content of the resin composition varnish finally obtained, it is more preferable that it is 45-75 mass%.
When the solid content is 40 to 80% by mass, the coatability of the varnish is improved, and a prepreg having an appropriate resin composition adhesion amount can be obtained.

[プリプレグ及び積層板]
次に、上記の樹脂組成物ワニスを用いたプリプレグ、積層板について説明する。
[Prepregs and laminates]
Next, the prepreg and laminate using the above resin composition varnish will be described.

(プリプレグ)
本発明のプリプレグは、既述の本発明の樹脂組成物ワニスの製造方法により得られた樹脂組成物ワニスを基材に含浸塗工し、加熱等により半硬化してなるものである。
(Prepreg)
The prepreg of the present invention is obtained by impregnating and applying a resin composition varnish obtained by the above-described method for producing a resin composition varnish of the present invention to a base material and then semi-curing it by heating or the like.

本発明のプリプレグに用いる基材としては、Eガラス、Dガラス、Sガラス及びQガラス等の無機繊維、アラミド樹脂、ポリエステル樹脂及びテトラフルオロエチレン樹脂等の有機繊維、並びにそれらの混合物が挙げられる。   Examples of the substrate used for the prepreg of the present invention include inorganic fibers such as E glass, D glass, S glass, and Q glass, organic fibers such as aramid resin, polyester resin, and tetrafluoroethylene resin, and mixtures thereof.

これらの基材は、例えば、織布、不織布、ロービング、チョップドストランドマット及びサーフェシングマット等の形状を有するが、材質及び形状は目的とする積層板の用途や性能により選択され、必要により1種又は2種類以上の材質及び形状を組合せることができる。また、シラン系カップリング剤等で表面処理したもの、機械的に開繊処理を施したものが、耐熱性や耐湿性、加工性の点から好ましい。基材の厚さは、例えば、0.01〜0.2mmのものを使用することができる。   These base materials have, for example, woven fabric, non-woven fabric, roving, chopped strand mat, and surfacing mat, and the material and shape are selected depending on the intended use and performance of the laminate, and one kind is necessary. Alternatively, two or more kinds of materials and shapes can be combined. Moreover, the thing surface-treated with the silane coupling agent etc. and the thing which performed the fiber opening process are preferable from the point of heat resistance, moisture resistance, and workability. For example, a substrate having a thickness of 0.01 to 0.2 mm can be used.

(積層板)
本発明の積層板は、本発明のプリプレグを用いて積層成形してなるものである。例えば、本発明のプリプレグを1〜20枚重ね、その片面又は両面に銅又はアルミニウム等の金属箔を配置した構成で、プレス、真空プレス、連続成形機、オートクレーブ等を使用し、温度100〜250℃、圧力0.2〜10MPa、加熱時間0.1〜5時間の範囲で積層成形して、金属箔張積層板を製造することができる。
(Laminated board)
The laminate of the present invention is formed by laminate molding using the prepreg of the present invention. For example, 1 to 20 prepregs of the present invention are stacked, and a metal foil such as copper or aluminum is arranged on one or both sides thereof, using a press, a vacuum press, a continuous molding machine, an autoclave, or the like, at a temperature of 100 to 250. A metal foil-clad laminate can be produced by lamination molding at a temperature of 0 ° C., a pressure of 0.2 to 10 MPa, and a heating time of 0.1 to 5 hours.

金属箔は、電子部品用途で用いるものであれば特に制限されない。また、本発明のプリプレグと内層用配線板とを組合せて積層成形し、多層板を製造することもできる。   The metal foil is not particularly limited as long as it is used for electronic parts. Moreover, the prepreg of the present invention and the inner layer wiring board can be laminated and molded to produce a multilayer board.

以上のような本発明のプリプレグ及び積層板は、熱膨張率が低く、ドリル加工性の高いといった特徴を有する。   The prepreg and laminate of the present invention as described above have the characteristics that the coefficient of thermal expansion is low and the drillability is high.

以下、本発明を実施例に基づいて説明するが、本発明はこれらの実施例により限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated based on an Example, this invention is not limited by these Examples.

(実施例1〜2及び比較例1〜2)
表1に示した樹脂組成物ワニスの配合のうち、まず、(A)のシリカスラリーに、(B)のモリブデン化合物を凝集塊ができないように攪拌しながら少しずつ加えて混合した。このモリブデン化合物を混合したシリカスラリーを、ナノマイザー(吉田機械興業(株)製、NM2000−AR)を用いてエアー圧力0.5MPaの条件で3回処理し、モリブデン化合物とシリカ粒子とを十分に分散混合した。
(Examples 1-2 and Comparative Examples 1-2)
Among the blends of the resin composition varnishes shown in Table 1, first, the molybdenum compound of (B) was added to the silica slurry of (A) little by little while stirring so as not to form an agglomerate. The silica slurry mixed with this molybdenum compound is treated three times under the condition of air pressure 0.5 MPa using a nanomizer (manufactured by Yoshida Kikai Kogyo Co., Ltd., NM2000-AR) to sufficiently disperse the molybdenum compound and the silica particles. Mixed.

次に、このモリブデン化合物分散シリカスラリーを、(C)の熱硬化性樹脂及び硬化剤を有機溶媒に溶かして作製した樹脂ワニス中に攪拌しながら少しずつ加え、全量加え終わった後に全体が均一になるまで1時間攪拌した。   Next, this molybdenum compound-dispersed silica slurry is added little by little to a resin varnish prepared by dissolving the thermosetting resin (C) and the curing agent in an organic solvent. Stir until 1 hour.

この後、(D)の無機充填材スラリーを樹脂ワニス中に攪拌しながら加え、さらに硬化促進剤を加えて、全体が均一になるまで1時間攪拌し樹脂組成物ワニスを作製した。
実施例1〜2及び比較例1〜2の樹脂組成物ワニスの固形分濃度は70質量%であった。
Thereafter, the inorganic filler slurry (D) was added to the resin varnish while stirring, a curing accelerator was further added, and the mixture was stirred for 1 hour until the whole became uniform to prepare a resin composition varnish.
The solid content concentration of the resin composition varnishes of Examples 1-2 and Comparative Examples 1-2 was 70% by mass.

(比較例3)
表1に示した樹脂組成物ワニスの配合のうち、(B)のモリブデン化合物を、(C)の熱硬化性樹脂及び硬化剤を有機溶媒に溶かして作製した樹脂ワニス中に攪拌しながら少しずつ加え、全量加え終わった後に全体が均一になるまで1時間攪拌した。
この後、(D)の無機充填材スラリーを樹脂ワニス中に攪拌しながら加え、さらに硬化促進剤を加えて、全体が均一になるまで1時間攪拌し樹脂組成物ワニスを作製した。
比較例3の樹脂組成物ワニスの固形分濃度は70質量%であった。
(Comparative Example 3)
Among the blends of the resin composition varnishes shown in Table 1, the molybdenum compound of (B) was gradually stirred while stirring in a resin varnish prepared by dissolving the thermosetting resin and curing agent of (C) in an organic solvent. In addition, the mixture was stirred for 1 hour until the whole became uniform after the addition of the entire amount.
Thereafter, the inorganic filler slurry (D) was added to the resin varnish while stirring, a curing accelerator was further added, and the mixture was stirred for 1 hour until the whole became uniform to prepare a resin composition varnish.
The solid content concentration of the resin composition varnish of Comparative Example 3 was 70% by mass.

(比較例4)
表1に示した樹脂組成物ワニスの配合のうち、まず、(A)のシリカスラリーに、(B)のモリブデン化合物を凝集塊ができないように攪拌しながら少しずつ加えて混合した。このモリブデン化合物を混合したシリカスラリーを、ナノマイザー(吉田機械興業(株)製、NM2000−AR)を用いてエアー圧力0.5MPaの条件で3回処理し、モリブデン化合物とシリカ粒子とを十分に分散混合した。
次に、このモリブデン化合物分散シリカスラリーを、(D)の無機充填材スラリー中に攪拌しながら少しずつ加え、全量加え終わった後に全体が均一になるまで1時間攪拌した。
この後、このスラリーを、(C)の熱硬化性樹脂及び硬化剤を有機溶媒に溶かして作製した樹脂ワニス中に攪拌しながら加え、さらに硬化促進剤を加えて、全体が均一になるまで1時間攪拌し樹脂組成物ワニスを作製した。
比較例4の樹脂組成物ワニスの固形分濃度は70質量%であった。
(Comparative Example 4)
Among the blends of the resin composition varnishes shown in Table 1, first, the molybdenum compound of (B) was added to the silica slurry of (A) little by little while stirring so as not to form an agglomerate. The silica slurry mixed with this molybdenum compound is treated three times under the condition of air pressure of 0.5 MPa using a nanomizer (manufactured by Yoshida Kikai Kogyo Co., Ltd., NM2000-AR) to sufficiently disperse the molybdenum compound and the silica particles. Mixed.
Next, this molybdenum compound-dispersed silica slurry was added little by little to the inorganic filler slurry of (D) while stirring, and stirred for 1 hour until the whole became uniform after the addition of the entire amount.
Thereafter, the slurry is added to a resin varnish prepared by dissolving the thermosetting resin (C) and the curing agent in (C) in an organic solvent, and a curing accelerator is further added until the whole becomes uniform. The resin composition varnish was produced by stirring for a period of time.
The solid content concentration of the resin composition varnish of Comparative Example 4 was 70% by mass.

以上の実施例、比較例で製造した樹脂組成物ワニスを、それぞれ厚さ0.1mmのEガラスクロス(日東紡績(株)製、WEA116E)に含浸塗工し、160℃で5分間加熱乾燥して樹脂組成物の含有量が48質量%のプリプレグを得た。このプリプレグをそれぞれ4枚重ね、12μmの電解銅箔を上下に配置し、温度185℃、圧力3.8MPaで90分間真空プレスを行って銅張積層板を得た。   The resin composition varnishes produced in the above Examples and Comparative Examples were impregnated and coated on 0.1 mm thick E glass cloth (manufactured by Nitto Boseki Co., Ltd., WEA116E) and dried at 160 ° C. for 5 minutes. Thus, a prepreg having a resin composition content of 48% by mass was obtained. Four prepregs were stacked, 12 μm electrolytic copper foils were placed one above the other, and vacuum-pressed at a temperature of 185 ° C. and a pressure of 3.8 MPa for 90 minutes to obtain a copper-clad laminate.

このようにして得られた樹脂組成物ワニス及び銅張積層板を用いて、樹脂組成物ワニスの沈降性及びワニス中の凝集物の有無、銅張積層板のドリル加工性及び熱膨張率について以下の方法で測定、評価し、評価結果を表2にまとめた。   Using the resin composition varnish and copper-clad laminate obtained in this way, the resin composition varnish sedimentation and the presence or absence of aggregates in the varnish, the copper-clad laminate drillability and thermal expansion coefficient are as follows: Measurement and evaluation were carried out by the methods described above, and the evaluation results are summarized in Table 2.

(1)樹脂組成物ワニスの沈降性の評価
直径5cm、長さ35cmのガラス製沈降管に樹脂組成物ワニス500cm3を採り、25℃の室温中で静置して、沈降管の底部に沈殿物が溜まるまでの時間を測定し沈降性を評価した。
(1) Evaluation of sedimentation property of resin composition varnish 500 cm 3 of resin composition varnish was placed in a glass sedimentation tube having a diameter of 5 cm and a length of 35 cm, and left at room temperature of 25 ° C., and settled at the bottom of the sedimentation tube. The time until the product accumulated was measured to evaluate the sedimentation property.

(2)樹脂組成物ワニス中の凝集物の有無の評価
フラスコに樹脂組成物ワニス100cm3を採り、これにワニスで用いたのと同じ有機溶媒400cm3を加えてよく振とうした。この希釈ワニスを目開き20μmのナイロンメッシュでろ過し、メッシュ上に残留物が残るかどうかを目視で確認して凝集物の有無を評価した。
(2) Evaluation of presence / absence of aggregates in resin composition varnish 100 cm 3 of resin composition varnish was taken in a flask, and 400 cm 3 of the same organic solvent used in the varnish was added thereto and shaken well. The diluted varnish was filtered through a nylon mesh having an opening of 20 μm, and whether or not a residue remained on the mesh was visually confirmed to evaluate the presence or absence of aggregates.

(3)銅張積層板のドリル加工性の評価
銅張積層板を2枚重ねたものの上に厚さ0.15mmのアルミニウム箔、下に厚さ1.5mmの紙フェノール板を配置し、φ0.2mmのドリルによりドリル穴あけ機(日立ビアメカニクス(株)社製、ND−1V212)を用いて回転数160krpm、送り速度2m/min、チップロード12.5μm/revの条件で6000穴の穴あけを行い、以下の方法でドリルの切刃磨耗量、穴位置精度を測定することによりドリル加工性を評価した。
(3) Evaluation of drillability of copper-clad laminate A 0.15 mm thick aluminum foil is placed on a stack of two copper-clad laminates, and a 1.5 mm thick paper phenol plate is placed underneath. Drilling 6000 holes with a 2 mm drill using a drilling machine (ND-1V212, manufactured by Hitachi Via Mechanics Co., Ltd.) at a rotation speed of 160 krpm, a feed rate of 2 m / min, and a chip load of 12.5 μm / rev. The drill workability was evaluated by measuring the amount of wear of the cutting edge of the drill and the hole position accuracy by the following method.

a)ドリル切刃磨耗量
穴あけ前と穴あけ後のドリル切刃部分を、ドリル中心軸上から走査型電子顕微鏡((株)日立製作所製、S−4700)を用いて観察し、切刃先端の磨耗後退量を測定してドリル切刃磨耗量とした。
b)穴位置精度
2枚重ねの銅張積層板のうち、2枚目下側(ドリル出口側)の穴の位置ずれ量を穴位置精度測定機(日立ビアメカニクス(株)製、HT−1AM)を用いて測定し、4001〜6000ショット目の穴の位置ずれ量の平均+3σ(σ:標準偏差)を計算して穴位置精度とした。
a) Amount of drill cutting edge wear The drill cutting edge before and after drilling was observed from above the center axis of the drill using a scanning electron microscope (manufactured by Hitachi, Ltd., S-4700). The wear retraction amount was measured and used as the drill cutting edge wear amount.
b) Hole position accuracy Of the two-layered copper-clad laminate, the hole position accuracy measurement machine (HT-1AM, manufactured by Hitachi Via Mechanics Co., Ltd.) And the average of the positional deviations of the holes in the 4001st to 6000th shots + 3σ (σ: standard deviation) was calculated to obtain the hole position accuracy.

(4)銅張積層板の熱膨張率の測定
銅張積層板の銅箔をエッチング液により取除いた後、5mm角の大きさに切断して試験片を作製した。この試験片の、50℃から120℃における縦方向(ガラスクロスの長手方向)の熱膨張率を、TMA試験装置(TAインスツルメント(株)製、TMA2940)を用いて昇温速度10℃/minで測定した。
(4) Measurement of coefficient of thermal expansion of copper-clad laminate After removing the copper foil of the copper-clad laminate with an etching solution, it was cut into a size of 5 mm square to prepare a test piece. The thermal expansion coefficient in the vertical direction (longitudinal direction of the glass cloth) at 50 ° C. to 120 ° C. of this test piece was measured using a TMA test apparatus (TA Instruments, TMA2940) at a heating rate of 10 ° C. / Measured in min.

Figure 2012025845
Figure 2012025845

表1は、実施例、比較例の製造法で製造される樹脂組成物ワニスについて、その配合を(C)の熱硬化性樹脂の配合量を100質量部とした場合の質量部で示したものである。ただし、(A)のシリカ粒子が有機溶媒中に分散されたスラリー、及び(D)の無機充填材については、それらに含まれる有機溶媒も併せた配合量を示している。この内(D)については、樹脂組成物ワニスに含まれる有機溶媒を除いた全樹脂組成物を100体積%とした場合の無機充填材の体積%についても、括弧内に付記した。また、(B)のモリブデン化合物については、モリブデン化合物が他の物質に担持された粒子を用いる場合、モリブデン化合物単独ではなく担持粒子としての配合量を示している。   Table 1 shows the composition of resin composition varnishes produced by the production methods of Examples and Comparative Examples in terms of parts by mass when the amount of thermosetting resin (C) is 100 parts by mass. It is. However, about the slurry in which the silica particle of (A) was disperse | distributed in the organic solvent, and the inorganic filler of (D), the organic solvent contained in them has also shown the compounding quantity. About this (D), the volume% of the inorganic filler when the total resin composition excluding the organic solvent contained in the resin composition varnish is 100% by volume is also indicated in parentheses. Moreover, about the molybdenum compound of (B), when using the particle | grains with which the molybdenum compound was carry | supported by another substance, the compounding quantity as a support particle is shown instead of a molybdenum compound alone.

表1中の各成分は、それぞれ次のものを用いた。
(A)シリカスラリーA−1:平均粒子径0.05μm、比表面積55m2/gのシリカをシリカ配合量30質量%でプロピレングリコールモノメチルエーテル中に分散させたスラリー((株)アドマテックス製、アドマナノ)
(A)シリカスラリーA−2:平均粒子径0.025μm、比表面積110m2/gのシリカをシリカ配合量20質量%でプロピレングリコールモノメチルエーテル中に分散させたスラリー((株)アドマテックス製、アドマナノ)
(A)シリカスラリーA−3:平均粒子径0.5μm、比表面積7m2/gのシリカ((株)アドマテックス製、SO−25R)をシリカ配合量50質量%でプロピレングリコールモノメチルエーテル中に分散させたスラリー
(A)シリカスラリーA−4:平均粒子径0.05μm、比表面積380m2/gのシリカ(日本アエロジル(株)製、380)をシリカ配合量10質量%でプロピレングリコールモノメチルエーテル中に分散させたスラリー
The following were used for each component in Table 1.
(A) Silica slurry A-1: Slurry in which silica having an average particle size of 0.05 μm and a specific surface area of 55 m 2 / g is dispersed in propylene glycol monomethyl ether at a silica blending amount of 30 mass% (manufactured by Admatechs, Admanano)
(A) Silica slurry A-2: A slurry in which silica having an average particle size of 0.025 μm and a specific surface area of 110 m 2 / g is dispersed in propylene glycol monomethyl ether at a silica blending amount of 20 mass% (manufactured by Admatechs, Admanano)
(A) Silica slurry A-3: Silica having an average particle size of 0.5 μm and a specific surface area of 7 m 2 / g (manufactured by Admatechs Co., Ltd., SO-25R) in 50% by mass of silica in propylene glycol monomethyl ether Dispersed slurry (A) Silica slurry A-4: Silica (manufactured by Nippon Aerosil Co., Ltd., 380) having an average particle size of 0.05 μm and a specific surface area of 380 m 2 / g in a silica content of 10% by mass and propylene glycol monomethyl ether Slurry dispersed in

(B)モリブデン化合物B−1:モリブデン酸亜鉛(ストレムケミカルス(株)製試薬)
(B)モリブデン化合物B−2:モリブデン酸カルシウム(ストレムケミカルス(株)製試薬)
(B)モリブデン化合物B−3:モリブデン酸亜鉛担持タルク、モリブデン酸亜鉛含有量10質量%(シャーウィン・ウィリアムズ(株)製、ケムガード911C)
(B) Molybdenum compound B-1: Zinc molybdate (reagent manufactured by Strem Chemicals Co., Ltd.)
(B) Molybdenum compound B-2: Calcium molybdate (reagent manufactured by Strem Chemicals Co., Ltd.)
(B) Molybdenum compound B-3: Zinc molybdate-carrying talc, zinc molybdate content 10% by mass (manufactured by Sherwin Williams, Chemguard 911C)

(C)熱硬化性樹脂:フェノールノボラック型エポキシ樹脂(DIC(株)製、エピクロンN−770) (C) Thermosetting resin: phenol novolac type epoxy resin (DIC Corporation, Epicron N-770)

硬化剤:クレゾールノボラック型フェノール樹脂(DIC(株)製、フェノライトKA−1165)
硬化促進剤:2−エチル−4−メチルイミダゾール(四国化成(株)製、2E4MI)
有機溶媒:プロピレングリコールモノメチルエーテル((株)ゴードー製)
Curing agent: cresol novolac type phenolic resin (manufactured by DIC Corporation, Phenolite KA-1165)
Curing accelerator: 2-ethyl-4-methylimidazole (manufactured by Shikoku Kasei Co., Ltd., 2E4MI)
Organic solvent: Propylene glycol monomethyl ether (Gordo Co., Ltd.)

(D)無機充填材:溶融球状シリカスラリー、平均粒子径0.5μm、比表面積7m2/g、シリカ配合量70質量%((株)アドマテックス製、SC2050−KC) (D) Inorganic filler: fused spherical silica slurry, average particle size 0.5 μm, specific surface area 7 m 2 / g, silica content 70 mass% (manufactured by Admatechs, SC2050-KC)

Figure 2012025845
Figure 2012025845

表2から明らかなように、本発明の実施例は、樹脂組成物ワニスの沈降性及び凝集物の有無、銅張積層板のドリル加工性及び熱膨張率の全てで問題なく、優れている。
一方、比較例1は、(A)のスラリー中のシリカ粒子の平均粒子径が大きく、かつ比表面積が小さいため、樹脂組成物ワニスの沈降性が著しく劣っている。
また、比較例2は、(A)のスラリー中のシリカ粒子の比表面積が大きいため、樹脂組成物ワニス中に凝集物が残っており、また穴位置精度もやや悪化している。比較例3は、モリブデン化合物担持タルクを直接樹脂ワニスに添加しているため、樹脂組成物ワニスの沈降性が劣り、凝集物が残っている。さらに穴位置精度もやや悪化している。比較例4は、モリブデン化合物分散シリカスラリーを無機充填材スラリーに加えてから樹脂ワニスに添加しているため、樹脂組成物ワニス中に凝集物が残っている。
なお、樹脂組成物ワニス中に凝集物が残った状態でプリント配線板を作製すると、その製造中にモリブデンに起因するめっきの異常析出等が生じやすくなり、電子機器として信頼性を損なってしまうことがあり好ましくない。
As is apparent from Table 2, the examples of the present invention are excellent without any problems in all of the sedimentation property of the resin composition varnish and the presence or absence of aggregates, the drillability of the copper-clad laminate, and the thermal expansion coefficient.
On the other hand, in Comparative Example 1, since the average particle diameter of the silica particles in the slurry (A) is large and the specific surface area is small, the sedimentation property of the resin composition varnish is remarkably inferior.
Moreover, since the specific surface area of the silica particle in the slurry of (A) is large in the comparative example 2, the aggregate remains in the resin composition varnish, and the hole position accuracy is also slightly deteriorated. In Comparative Example 3, since the molybdenum compound-carrying talc is directly added to the resin varnish, the sedimentation property of the resin composition varnish is inferior, and aggregates remain. Furthermore, the hole position accuracy is slightly deteriorated. In Comparative Example 4, since the molybdenum compound-dispersed silica slurry is added to the inorganic filler slurry and then added to the resin varnish, aggregates remain in the resin composition varnish.
In addition, if a printed wiring board is produced in a state where aggregates remain in the resin composition varnish, abnormal deposition of plating due to molybdenum is likely to occur during the production, and reliability as an electronic device is impaired. Is not preferable.

以上本発明により、モリブデン化合物の沈降や凝集が起きにくい樹脂組成物ワニスを製造することができ、それを用いることで、低熱膨張率かつ高ドリル加工性で、半導体パッケージやプリント配線板用に好適なプリプレグ、積層板を得ることができる。   As described above, according to the present invention, it is possible to produce a resin composition varnish that is unlikely to cause precipitation or aggregation of a molybdenum compound. By using this, a low thermal expansion coefficient and high drill workability are suitable for semiconductor packages and printed wiring boards. Prepregs and laminates can be obtained.

Claims (5)

(A)平均粒子径が0.01μm以上0.1μm以下であり、比表面積が30m2/g以上270m2/g以下のシリカ粒子を含むスラリー中に、(B)モリブデン化合物を分散混合する第1の分散混合工程と、
第1の分散混合工程を経たスラリーを、(C)熱硬化性樹脂を含むワニス中に分散混合する第2の分散混合工程と、
第2の分散混合工程を経たワニス中に、(D)前記シリカ粒子及びモリブデン化合物を除く無機充填材を分散混合する第3の分散混合工程と、を含む樹脂組成物ワニスの製造方法。
(A) (B) A molybdenum compound is dispersedly mixed in a slurry containing silica particles having an average particle diameter of 0.01 μm or more and 0.1 μm or less and a specific surface area of 30 m 2 / g or more and 270 m 2 / g or less. 1 dispersion mixing step;
(C) a second dispersion and mixing step in which the slurry that has undergone the first dispersion and mixing step is dispersed and mixed in a varnish containing a thermosetting resin;
(D) The 3rd dispersion | distribution mixing process which disperse-mixes the inorganic filler except the said silica particle and a molybdenum compound in the varnish which passed through the 2nd dispersion | distribution mixing process, The manufacturing method of the resin composition varnish.
第3の分散混合工程後のワニスに硬化促進剤を添加する硬化促進剤添加工程を含む請求項1に記載の樹脂組成物ワニスの製造方法。   The manufacturing method of the resin composition varnish of Claim 1 including the hardening accelerator addition process which adds a hardening accelerator to the varnish after a 3rd dispersion | distribution mixing process. (B)モリブデン化合物が、モリブデン酸亜鉛、モリブデン酸カルシウム、及びモリブデン酸マグネシウムからなる群より選ばれる1種又は2種以上の混合物である請求項1又は2に記載の樹脂組成物ワニスの製造方法。   (B) The method for producing a resin composition varnish according to claim 1 or 2, wherein the molybdenum compound is one or a mixture of two or more selected from the group consisting of zinc molybdate, calcium molybdate, and magnesium molybdate. . (A)平均粒子径が0.01μm以上0.1μm以下であり、比表面積が30m2/g以上270m2/g以下のシリカ粒子を含むスラリー中に、(B)モリブデン化合物を分散混合する第1の分散混合工程と、第1の分散混合工程を経たスラリーを、(C)熱硬化性樹脂を含むワニス中に分散混合する第2の分散混合工程と、第2の分散混合工程を経たワニス中に、(D)無機充填材を分散混合する第3の分散混合工程と、を経て得られる樹脂組成物ワニスを基材に含浸塗工してなるプリプレグ。 (A) (B) A molybdenum compound is dispersedly mixed in a slurry containing silica particles having an average particle diameter of 0.01 μm or more and 0.1 μm or less and a specific surface area of 30 m 2 / g or more and 270 m 2 / g or less. (C) a second dispersion and mixing step in which the slurry that has undergone the first dispersion and mixing step is dispersed and mixed in a varnish containing a thermosetting resin, and a varnish that has undergone the second dispersion and mixing step. A prepreg obtained by impregnating a base material with a resin composition varnish obtained through (D) a third dispersion mixing step of dispersing and mixing an inorganic filler. 請求項4に記載のプリプレグを積層成形してなる積層板。   A laminate obtained by laminating the prepreg according to claim 4.
JP2010165556A 2009-12-25 2010-07-23 Method for producing resin composition varnish, prepreg, laminate Active JP5593915B2 (en)

Priority Applications (15)

Application Number Priority Date Filing Date Title
JP2010165556A JP5593915B2 (en) 2010-07-23 2010-07-23 Method for producing resin composition varnish, prepreg, laminate
US13/518,578 US20120276392A1 (en) 2009-12-25 2010-12-24 Thermosetting resin composition, method for producing resin composition varnish, prepreg and laminate
TW104113804A TWI560223B (en) 2009-12-25 2010-12-24 Thermal curable resin composition, fabricating method of resin composition varnish, perpreg and laminated board
KR1020177028238A KR102143743B1 (en) 2009-12-25 2010-12-24 Thermosetting resin composition, method for producing resin composition varnish, prepreg and laminate
TW099145884A TWI529161B (en) 2009-12-25 2010-12-24 Thermosetting resin composition, method for producing resin composition varnish, prepreg and laminate
KR1020127015701A KR20120123031A (en) 2009-12-25 2010-12-24 Thermosetting resin composition, method for producing resin composition varnish, prepreg and laminate
TW104113803A TWI531610B (en) 2009-12-25 2010-12-24 Thermal curable resin composition, fabricating method of resin composition varnish, perpreg and laminated board
CN201080057563.4A CN102656234B (en) 2009-12-25 2010-12-24 Thermosetting resin composition, method for producing resin composition varnish, prepreg and laminate
TW105105563A TWI555733B (en) 2009-12-25 2010-12-24 Perpreg and laminated board
PCT/JP2010/073376 WO2011078339A1 (en) 2009-12-25 2010-12-24 Thermosetting resin composition, method for producing resin composition varnish, prepreg and laminate
EP10839568.2A EP2518115B1 (en) 2009-12-25 2010-12-24 Thermosetting resin composition, method for producing resin composition varnish, prepreg and laminate
HK12112427.4A HK1171777A1 (en) 2009-12-25 2012-12-03 Thermosetting resin composition, method for producing resin composition varnish, prepreg and laminate
US15/133,662 US10414943B2 (en) 2009-12-25 2016-04-20 Thermosetting resin composition, method for producing resin composition varnish, prepreg and laminate
US15/133,838 US20160230037A1 (en) 2009-12-25 2016-04-20 Thermosetting resin composition, method for producing resin composition varnish, prepreg and laminate
US15/831,440 US20180094162A1 (en) 2009-12-25 2017-12-05 Thermosetting resin composition, method for producing resin composition varnish, prepreg and laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010165556A JP5593915B2 (en) 2010-07-23 2010-07-23 Method for producing resin composition varnish, prepreg, laminate

Publications (2)

Publication Number Publication Date
JP2012025845A true JP2012025845A (en) 2012-02-09
JP5593915B2 JP5593915B2 (en) 2014-09-24

Family

ID=45779165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010165556A Active JP5593915B2 (en) 2009-12-25 2010-07-23 Method for producing resin composition varnish, prepreg, laminate

Country Status (1)

Country Link
JP (1) JP5593915B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111727668A (en) * 2018-10-04 2020-09-29 株式会社Lg化学 Method for manufacturing continuous sheet for circuit board production and continuous sheet for circuit board production manufactured thereby
JP2021066641A (en) * 2019-10-25 2021-04-30 株式会社アドマテックス Filler material, liquid composition, resin composition, and method for producing them
WO2021246231A1 (en) * 2020-06-01 2021-12-09 三菱瓦斯化学株式会社 Ammonium zinc molybdate hydrate for electronic material, resin composition for electronic material, prepreg, resin sheet, layered board, metal-foil-lined layered board, and printed circuit board

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62132915A (en) * 1985-12-04 1987-06-16 Toshiba Chem Corp Heat-resistant resin composition for molding
JP2005097350A (en) * 2003-09-22 2005-04-14 Hitachi Chem Co Ltd Method for producing sealing epoxy resin molding material, sealing epoxy resin molding material, and electronic component device
JP2007138075A (en) * 2005-11-21 2007-06-07 Mitsubishi Gas Chem Co Inc Prepreg and laminate
JP2009138075A (en) * 2007-12-05 2009-06-25 Hitachi Chem Co Ltd Resin composition, prepreg using the same, and laminate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62132915A (en) * 1985-12-04 1987-06-16 Toshiba Chem Corp Heat-resistant resin composition for molding
JP2005097350A (en) * 2003-09-22 2005-04-14 Hitachi Chem Co Ltd Method for producing sealing epoxy resin molding material, sealing epoxy resin molding material, and electronic component device
JP2007138075A (en) * 2005-11-21 2007-06-07 Mitsubishi Gas Chem Co Inc Prepreg and laminate
JP2009138075A (en) * 2007-12-05 2009-06-25 Hitachi Chem Co Ltd Resin composition, prepreg using the same, and laminate

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111727668A (en) * 2018-10-04 2020-09-29 株式会社Lg化学 Method for manufacturing continuous sheet for circuit board production and continuous sheet for circuit board production manufactured thereby
JP2021513470A (en) * 2018-10-04 2021-05-27 エルジー・ケム・リミテッド Manufacturing method of continuous sheet for circuit board manufacturing and continuous sheet for circuit board manufacturing to be manufactured from now on
JP7070691B2 (en) 2018-10-04 2022-05-18 エルジー・ケム・リミテッド Manufacturing method of continuous sheet for circuit board manufacturing and continuous sheet for circuit board manufacturing manufactured from now on
CN111727668B (en) * 2018-10-04 2023-05-16 株式会社Lg化学 Method for manufacturing continuous sheet for circuit board production and continuous sheet for circuit board production manufactured thereby
JP2021066641A (en) * 2019-10-25 2021-04-30 株式会社アドマテックス Filler material, liquid composition, resin composition, and method for producing them
JP7453771B2 (en) 2019-10-25 2024-03-21 株式会社アドマテックス Filler materials and slurry compositions, and methods for producing them, and methods for producing resin compositions
WO2021246231A1 (en) * 2020-06-01 2021-12-09 三菱瓦斯化学株式会社 Ammonium zinc molybdate hydrate for electronic material, resin composition for electronic material, prepreg, resin sheet, layered board, metal-foil-lined layered board, and printed circuit board
KR20210151799A (en) * 2020-06-01 2021-12-14 미츠비시 가스 가가쿠 가부시키가이샤 Zinc ammonium molybdate hydrate for electronic materials, resin compositions for electronic materials, prepregs, resin sheets, laminates, metal foil-clad laminates, and printed wiring boards
CN114096337A (en) * 2020-06-01 2022-02-25 三菱瓦斯化学株式会社 Zinc ammonium molybdate hydrate for electronic material, resin composition for electronic material, prepreg, resin sheet, laminate, metal foil-clad laminate, and printed wiring board
KR102393446B1 (en) 2020-06-01 2022-05-02 미츠비시 가스 가가쿠 가부시키가이샤 Zinc ammonium molybdate hydrate for electronic materials, resin compositions for electronic materials, prepregs, resin sheets, laminates, metal foil-clad laminates, and printed wiring boards
JP7070846B1 (en) * 2020-06-01 2022-05-18 三菱瓦斯化学株式会社 Zinc molybdate ammonium hydrate for electronic materials, resin composition for electronic materials, prepregs, resin sheets, laminated boards, metal leaf-clad laminated boards, and printed wiring boards
CN114096337B (en) * 2020-06-01 2023-08-22 三菱瓦斯化学株式会社 Zinc ammonium molybdate hydrate for electronic material, resin composition for electronic material, prepreg, resin sheet, laminated sheet, metal foil-clad laminated sheet, and printed wiring board

Also Published As

Publication number Publication date
JP5593915B2 (en) 2014-09-24

Similar Documents

Publication Publication Date Title
KR102143743B1 (en) Thermosetting resin composition, method for producing resin composition varnish, prepreg and laminate
JP5614048B2 (en) Thermosetting insulating resin composition, and prepreg, laminate and multilayer printed wiring board using the same
JP6066118B2 (en) Resin composition, prepreg and laminate
JP6319533B1 (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet and printed wiring board
KR20170051537A (en) Thermosetting resin composition, and prepreg, insulating film with support, laminate plate, and printed wiring board, each obtained using same
WO2012029690A1 (en) Resin composition, prepreg, and laminate
JP5682110B2 (en) Thermosetting resin composition, prepreg and laminate using the same
TW201940589A (en) Resin composition, prepreg, laminate, metal foil-clad laminate, and printed circuit board having excellent dielectric properties, high flame retardancy, good heat resistance, low water absorption, low coefficient of thermal expansion, and high adhesion to a conductor after curing
JP6256457B2 (en) Hydrous zinc molybdate for printed wiring boards, prepregs, laminates, printed wiring boards, and slurries for printed wiring boards
JP5862069B2 (en) Resin composition for printed wiring board, prepreg, laminated board, and printed wiring board
JP5593915B2 (en) Method for producing resin composition varnish, prepreg, laminate
JP2012236920A (en) Thermosetting resin composition, and prepreg, laminate and printed-wiring board using the composition
JP5862070B2 (en) Laminate resin composition, prepreg and laminate
JP6070812B2 (en) Resin composition for printed wiring board, prepreg, laminated board, and printed wiring board
JP2010260955A (en) Resin composition, production method of resin composition, and prepreg and laminate each using the same
JP5556466B2 (en) Laminate board for wiring boards
CN111378098B (en) Resin composition, prepreg, laminate, and metal-clad laminate
CN111757911A (en) Resin composition, prepreg, laminate, metal-clad laminate, and printed wiring board
JP5779962B2 (en) Resin composition for package substrate and prepreg and laminate using the same
JP2014160875A (en) Laminate plate for wiring board
WO2020133472A1 (en) Resin composition, prepreg, laminate, and metal foil-coated laminate
JP2004058419A (en) Prepreg and laminated sheet
JP2012240312A (en) Prepreg, laminated board using the same and printed wiring board
JP2014109027A (en) Epoxy resin composition, prepreg, metal-clad laminate, and printed wiring board made therefrom

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140708

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140721

R151 Written notification of patent or utility model registration

Ref document number: 5593915

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350