JP2012025659A - Method of manufacturing liquid fertilizer - Google Patents

Method of manufacturing liquid fertilizer Download PDF

Info

Publication number
JP2012025659A
JP2012025659A JP2011198951A JP2011198951A JP2012025659A JP 2012025659 A JP2012025659 A JP 2012025659A JP 2011198951 A JP2011198951 A JP 2011198951A JP 2011198951 A JP2011198951 A JP 2011198951A JP 2012025659 A JP2012025659 A JP 2012025659A
Authority
JP
Japan
Prior art keywords
liquid
liquid fertilizer
fraction
transpiration
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011198951A
Other languages
Japanese (ja)
Other versions
JP5390573B2 (en
Inventor
Toru Mima
徹 美馬
Naoaki Uchiyama
直明 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujita Corp
Original Assignee
Fujita Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujita Corp filed Critical Fujita Corp
Priority to JP2011198951A priority Critical patent/JP5390573B2/en
Publication of JP2012025659A publication Critical patent/JP2012025659A/en
Application granted granted Critical
Publication of JP5390573B2 publication Critical patent/JP5390573B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/40Bio-organic fraction processing; Production of fertilisers from the organic fraction of waste or refuse

Abstract

PROBLEM TO BE SOLVED: To solve the problems of liquid fertilizer that cannot be used as liquid fertilizer since the amount of each nutrient is inadequate, and the transportation cost to the place to be used is extremely high because the conventional liquid fertilizer is produced by a liquid fertilizer production system with biogas production in which an organic waste 1 is removed as foreign matter by a pulverizing apparatus for removing foreign matter 2, then transported to a fermentation tank 3 to take out biogas 4, and the liquid residue is separated by solid liquid separator 5.SOLUTION: A stock solution 6 is obtained from the residue by the solid liquid separator 5 after the biogas 4 is taken out. The stock solution 6 is carried to a transpiration apparatus 7 to regulate the moisture, and is supplied to ion exchange resin 8 to fractionate into a potassium abundant fraction 9 (solution A) and a nitrogen abundant-phosphorus fraction 10 (solution B). Then, the solution A and B are supplied to water evaporators 11 and 12 respectively, and are concentrated to give condensed liquid fertilizers 13 (potassium base) and 14 (nitrogen-phosphor base). Predetermined amounts of them are mixed before manuring.

Description

本発明は、液体肥料の製造方法およびそのための装置に関するものであり、詳しくは、有機系廃棄物を発酵させてバイオガスを取り出した後の残渣から、植物の生育に有効な栄養素のバランスを具備する液体肥料を低コストで製造することのできる方法、およびそのための装置に関するものである。   The present invention relates to a method for producing liquid fertilizer and an apparatus therefor, and in particular, has a balance of nutrients effective for plant growth from a residue after fermenting organic waste and taking out biogas. The present invention relates to a method capable of producing liquid fertilizer to be manufactured at low cost, and an apparatus therefor.

循環型社会形成推進基本法のもと食品リサイクル法が施行されるなか、有機系廃棄物(食品廃棄物、家畜ふん尿、下水汚泥、廃木材など)のリサイクル化が問われている。有機系廃棄物のリサイクルは主にコンポスト化、バイオガス化、飼料化、建材化などがあり、循環社会推進のためリサイクル率を高めていく必要がある。
従来、有機系廃棄物からバイオガスを取り出した後の残渣は、固形はコンポスト化され堆肥に、液体は液体肥料としての利用が考えられている。
The recycling of organic waste (food waste, livestock manure, sewage sludge, waste wood, etc.) is being questioned while the Food Recycling Law is enacted under the Basic Law for the Promotion of a Recycling Society. Organic waste recycling mainly includes composting, biogas, feed, and building materials. It is necessary to increase the recycling rate to promote a recycling society.
Conventionally, the residue after taking out biogas from organic waste is composted in solid form and used as compost, and liquid is used as liquid fertilizer.

図3は、従来のバイオガス生産に伴う液体肥料生産システムを説明するための図である。
図3において、有機系廃棄物1は、粉砕異物除去装置2により粉砕され異物が除去された後、発酵槽3に運ばれ、バイオガス4が取り出される。
生じた残渣は固液分離機5により固体と液体とに分離され、液体は液体肥料36として取り出される。
FIG. 3 is a diagram for explaining a conventional liquid fertilizer production system associated with biogas production.
In FIG. 3, the organic waste 1 is pulverized by the pulverized foreign matter removing device 2 to remove foreign matters, and then is carried to the fermenter 3 where the biogas 4 is taken out.
The resulting residue is separated into solid and liquid by the solid-liquid separator 5, and the liquid is taken out as liquid fertilizer 36.

しかしながら、このように生産された液体肥料は、各栄養素量が変動しやすく、また窒素やリンが過剰に含まれるためこのままでは液体肥料として利用できないという欠点がある。さらに、大量の水分を含むために、施肥する場所までの輸送コストが非常にかかるという欠点もある。
このような理由から、前記液体肥料は肥料としての利用が限定され、そのほとんどが水処理施設で処理され廃棄されているのが現状である。
したがって本発明の目的は、有機系廃棄物を発酵させてバイオガスを取り出した後の残渣から、植物の生育に有効な栄養素のバランスを具備する液体肥料を低コストで製造することのできる方法、およびそのための装置を提供することにある。
However, the liquid fertilizer produced in this way has the disadvantages that the amount of each nutrient is likely to fluctuate and nitrogen and phosphorus are excessively contained, so that it cannot be used as it is. Furthermore, since it contains a large amount of moisture, there is also a disadvantage that the transportation cost to the place where fertilization is applied is very high.
For these reasons, the use of the liquid fertilizer is limited as a fertilizer, and most of the liquid fertilizer is processed and discarded at a water treatment facility.
Therefore, an object of the present invention is to produce a liquid fertilizer having a balance of nutrients effective for plant growth at low cost from the residue after fermenting organic waste and taking out biogas, And providing an apparatus therefor.

前記目的を達成するため本発明は、有機系廃棄物を発酵させてバイオガスを取り出した後の残渣から液体肥料を製造する方法であって、前記残渣から液体を分離する液体分離工程と、前記液体分離工程で分離された液体に含まれる水分を蒸散させる蒸散工程と、前記蒸散工程で濃縮された原液を富カリウム画分と富窒素−リン画分とに分画する分画工程と、前記各画分に含まれる水分を蒸発する水分蒸発工程とを有することを特徴とする。
また本発明は、有機系廃棄物を発酵させてバイオガスを取り出した後の残渣から液体肥料を製造する装置であって、前記残渣から液体を分離する固液分離機と、前記固液分離機で分離された液体に含まれる水分を蒸散させる蒸散装置と、前記蒸散装置で濃縮された原液を、富カリウム画分と富窒素−リン画分とに分画するイオン交換樹脂と、前記各画分に含まれる水分を蒸発する水分蒸発機とを有することを特徴とする。
In order to achieve the above object, the present invention provides a method for producing liquid fertilizer from a residue after fermenting organic waste and taking out biogas, the liquid separating step for separating the liquid from the residue, A transpiration step for transpiration of water contained in the liquid separated in the liquid separation step, a fractionation step for fractionating the stock solution concentrated in the transpiration step into a potassium-rich fraction and a nitrogen-rich-phosphorus fraction, and And a water evaporation step for evaporating the water contained in each fraction.
The present invention also provides an apparatus for producing liquid fertilizer from a residue after fermenting organic waste and taking out biogas, the solid-liquid separator separating the liquid from the residue, and the solid-liquid separator A transpiration device for transpiration of the water contained in the liquid separated by the above, an ion exchange resin for fractionating the stock solution concentrated by the transpiration device into a potassium-rich fraction and a nitrogen-rich-phosphorus fraction, and each of the fractions And a moisture evaporator for evaporating moisture contained in the minute.

本発明によれば、有機系廃棄物を発酵させてバイオガスを取り出した後の残渣から、植物の生育に有効な栄養素のバランスを具備する液体肥料を低コストで製造することのできる方法、およびそのための装置が提供される。   According to the present invention, from a residue after fermenting organic waste and taking out biogas, a method for producing a liquid fertilizer having a balance of nutrients effective for plant growth at low cost, and An apparatus for this is provided.

本発明の製造方法の一実施態様を説明するための概略図である。It is the schematic for demonstrating one embodiment of the manufacturing method of this invention. 本発明の製造方法を実施可能な装置の一例を説明するための図である。It is a figure for demonstrating an example of the apparatus which can implement the manufacturing method of this invention. 従来のバイオガス生産に伴う液体肥料生産システムを説明するための図である。It is a figure for demonstrating the liquid fertilizer production system accompanying the conventional biogas production.

以下、本発明の実施の形態を添付図面にしたがって説明する。
図1は、本発明の製造方法の一実施態様を説明するための概略図である。
図1において、有機系廃棄物1は、粉砕異物除去装置2により粉砕され異物が除去された後、発酵槽3に運ばれ、バイオガス4が取り出される。
生じた残渣は固液分離機5により固体と液体とに分離され、液体は原液6として取り出される。なお、前記の粉砕異物除去装置2、発酵槽3、バイオガス4の取り出し方法、固液分離機5については当業界でよく知られている内容なので、ここでの詳しい説明は省略する。
続いて、原液6は、蒸散装置7に運ばれ水分が調節され、イオン交換樹脂8に供給され、カリウムに富む富カリウム画分9(溶液A)と、窒素およびリンに富む富窒素−リン画分10(溶液B)とに分画される。
続いて、溶液AおよびBはそれぞれ水分蒸発機11および12に供給され濃縮され、濃縮液体肥料13(カリベース)および14(窒素−リンベース)が得られる。
なお、イオン交換樹脂8による分画を容易にするために、原液6に多く含まれるアンモニア態窒素を硝酸態窒素に変換する必要がある。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a schematic view for explaining one embodiment of the production method of the present invention.
In FIG. 1, the organic waste 1 is pulverized by the pulverized foreign matter removing device 2 to remove foreign matters, and then transferred to the fermenter 3 where biogas 4 is taken out.
The resulting residue is separated into a solid and a liquid by the solid-liquid separator 5, and the liquid is taken out as a stock solution 6. Since the pulverized foreign matter removing device 2, the fermenter 3, the biogas 4 extraction method, and the solid-liquid separator 5 are well known in the art, detailed description thereof is omitted here.
Subsequently, the undiluted solution 6 is transported to the transpiration unit 7, moisture is adjusted and supplied to the ion exchange resin 8, the potassium rich fraction 9 (solution A) rich in potassium, and the nitrogen rich and phosphorus rich nitrogen-phosphorus fraction. Fraction 10 (solution B).
Subsequently, the solutions A and B are respectively supplied to the water evaporators 11 and 12 and concentrated to obtain concentrated liquid fertilizers 13 (potassium base) and 14 (nitrogen-phosphorus base).
In order to facilitate fractionation by the ion exchange resin 8, it is necessary to convert the ammonia nitrogen contained in the stock solution 6 into nitrate nitrogen.

図2は、本発明の製造方法を実施可能な装置の一例を説明するための図である。
図2において、固液分離機により分離された原液は、原液タンク21に貯えられている。なお、原液タンク21にはブロワー22を設置して原液を曝気し、BODを低減させておくのが好ましい。
次に、原液は原液タンク21から濃縮液貯蔵タンク28に送られる。さらに、ポンプ23により蒸散装置24に運ばれ、ここで水分が調節される。水分は、カリウム、窒素、リン濃度が原液中にそれぞれ1%程度になるように蒸発させるのが好ましい(通常、原液の水分の80%が蒸散する)。
また、図2の蒸散装置24は、公知の溶液噴霧蒸散方式の装置であって、原液を噴霧器25から装置下方に噴霧するとともに、フィルターでろ過された外気をブロワー26により装置下部から取り入れて上部に排出させる構成となっている。
FIG. 2 is a diagram for explaining an example of an apparatus capable of performing the manufacturing method of the present invention.
In FIG. 2, the stock solution separated by the solid-liquid separator is stored in a stock solution tank 21. In addition, it is preferable to install a blower 22 in the stock solution tank 21 to aerate the stock solution to reduce BOD.
Next, the stock solution is sent from the stock solution tank 21 to the concentrate storage tank 28. Further, the water is transported to the transpiration device 24 by the pump 23 where the moisture is adjusted. It is preferable to evaporate the water so that the concentrations of potassium, nitrogen and phosphorus are about 1% in the stock solution (normally, 80% of the water in the stock solution evaporates).
2 is a well-known solution spray transpiration type apparatus, in which the stock solution is sprayed downward from the sprayer 25 and outside air filtered by a filter is taken in from the lower part of the apparatus by a blower 26. It is configured to be discharged.

図2の態様によれば、原液に多く含まれるアンモニア態窒素を硝酸態窒素に変換するバイオフィルター27が設けられている。バイオフィルター27には、微生物(例えばNitrosomonas(ニトロソモナス)属やNitrobacter(ニトロバクター)属)が固定され、原液と接触できるようになっている。前記微生物は、原液に多く含まれるアンモニア態窒素を硝酸態窒素に変換可能であるとともにBODも低減できるため好ましい。原液と微生物の接触により、続くイオン交換塔30による分画が容易となる。   According to the embodiment of FIG. 2, the biofilter 27 that converts ammonia nitrogen contained in the stock solution into nitrate nitrogen is provided. Microorganisms (for example, the genus Nitrosomonas and the genus Nitrobacter) are fixed to the biofilter 27 so that they can come into contact with the stock solution. The microorganism is preferable because it can convert ammonia nitrogen contained in the stock solution into nitrate nitrogen and reduce BOD. Subsequent fractionation by the ion exchange tower 30 is facilitated by the contact between the stock solution and the microorganism.

バイオフィルター27を通過した原液は、濃縮液貯蔵タンク28に貯えられ、ポンプ29によりイオン交換塔30に運ばれる。なお濃縮液貯蔵タンク28に貯えられた原液は、その一部を再び蒸散装置24に循環させてもよい。
イオン交換塔30は、原液をカリウムに富む富カリウム画分と、窒素およびリンに富む富窒素−リン画分とに分画するものである。
イオン交換塔には、この目的を達成するイオン交換樹脂が充填されている。
前記イオン交換樹脂としては、例えばH型強酸性陽イオン交換樹脂が挙げられる。このイオン交換樹脂は、陽イオンのKを固定して、陰イオンのNO およびPO は通過させる。NO およびPO 通過後は、NaClタンク31からNaClをイオン交換塔30に供給し、固定されたKを溶出させる。各画分は画分ごとに貯留タンク32、33に貯えられた後、水分蒸発機34、35に供給され濃縮される。水分蒸発機34、35は、温度が例えば80℃に設定され、各栄養素の設計量への微調整と、殺菌を同時に行うことができる。なお、水分蒸発機34、35としては、前記の公知の溶液噴霧蒸散方式の装置を利用することができる。水分蒸発後は、濃縮液体肥料として製品タンク36、37にそれぞれ各画分が貯えられる。なお、濃縮液貯蔵タンク28に貯えられた原液のイオン交換塔30への供給のためのポンプの稼動、およびNaClタンク31からNaClのイオン交換塔30への供給のためのポンプの稼動は、制御盤38により制御されている。ここで、NaClタンク31からNaClのイオン交換塔30への供給のためのポンプの稼動は、イオン交換塔30の出口部付近に設けられたNaセンサー39から送信された信号に基づいている。さらに制御盤38は、弁40,41,42を制御し、貯留タンク32,33への各画分の流入量も制御することができる。なお、43は廃液タンクである。
The stock solution that has passed through the biofilter 27 is stored in the concentrate storage tank 28 and is transported to the ion exchange tower 30 by the pump 29. A part of the stock solution stored in the concentrate storage tank 28 may be circulated again to the transpiration device 24.
The ion exchange column 30 fractionates the stock solution into a potassium rich fraction rich in potassium and a nitrogen rich and phosphorus rich fraction rich in nitrogen and phosphorus.
The ion exchange tower is packed with an ion exchange resin that achieves this purpose.
Examples of the ion exchange resin include H-type strongly acidic cation exchange resins. This ion exchange resin fixes the cation K + and allows the anions NO 3 and PO 4 to pass through. After passing through NO 3 and PO 4 , NaCl is supplied from the NaCl tank 31 to the ion exchange tower 30 to elute the fixed K + . Each fraction is stored in the storage tanks 32 and 33 for each fraction, and then supplied to the water evaporators 34 and 35 to be concentrated. The moisture evaporators 34 and 35 are set to a temperature of, for example, 80 ° C., and can finely adjust the nutrient amount to the designed amount and sterilize at the same time. As the moisture evaporators 34 and 35, the known solution spray transpiration apparatus can be used. After moisture evaporation, each fraction is stored in the product tanks 36 and 37 as concentrated liquid fertilizer. The operation of the pump for supplying the stock solution stored in the concentrate storage tank 28 to the ion exchange tower 30 and the operation of the pump for supplying NaCl from the NaCl tank 31 to the ion exchange tower 30 are controlled. It is controlled by the board 38. Here, the operation of the pump for supplying NaCl from the NaCl tank 31 to the ion exchange tower 30 is based on a signal transmitted from the Na sensor 39 provided near the outlet of the ion exchange tower 30. Further, the control panel 38 can control the valves 40, 41, 42 and also control the inflow of each fraction into the storage tanks 32, 33. Reference numeral 43 denotes a waste liquid tank.

このようにして製造されたカリベースの濃縮液体肥料と窒素−リンベースの濃縮液体肥料は、水分が大幅に減じられ質量および嵩も減少しているため、施肥する場所までの輸送コストがかさむことがない。
また、施肥前に前記各濃縮液体肥料を所定の割合で混合すれば、植物の生育に有効な栄養素のバランスを具備する液体肥料を簡単に得ることができる。
Potassium-based concentrated liquid fertilizer and nitrogen-phosphorus-based concentrated liquid fertilizer manufactured in this way have significantly reduced moisture and reduced mass and bulk, which can increase the cost of transportation to the fertilizer application site. Absent.
Moreover, if each said concentrated liquid fertilizer is mixed in a predetermined ratio before fertilization, the liquid fertilizer which comprises the balance of a nutrient effective for plant growth can be obtained easily.

1 有機系廃棄物
2 粉砕異物除去装置
3 発酵槽
4 バイオガス
5 固液分離機
6 原液
7、24 蒸散装置
8 イオン交換樹脂
9 富カリウム画分
10 富窒素−リン画分
11、12、34、35 水分蒸発機
21 原液タンク
27 バイオフィルター
30 イオン交換塔
38 制御盤
39 Naセンサー
40、41、42 弁
DESCRIPTION OF SYMBOLS 1 Organic waste 2 Ground foreign material removal device 3 Fermenter 4 Biogas 5 Solid-liquid separator 6 Stock solution 7, 24 Evaporation device 8 Ion exchange resin 9 Potassium-rich fraction 10 Nitrogen-phosphorus fraction 11, 12, 34, 35 Water Evaporator 21 Stock Solution Tank 27 Biofilter 30 Ion Exchange Tower 38 Control Panel 39 Na Sensor 40, 41, 42 Valve

本発明は、液体肥料の製造方法に関するものであり、詳しくは、有機系廃棄物を発酵させてバイオガスを取り出した後の残渣から、植物の生育に有効な栄養素のバランスを具備する液体肥料を低コストで製造することのできる方法に関するものである。 The present invention relates to the production how the liquid manure, particularly, from the residue after removal of biogas by fermenting organic waste, liquid having a balance of effective nutrients for plant growth those related to how capable of producing a fertilizer at a low cost.

しかしながら、このように生産された液体肥料は、各栄養素量が変動しやすく、また窒素やリンが過剰に含まれるためこのままでは液体肥料として利用できないという欠点がある。さらに、大量の水分を含むために、施肥する場所までの輸送コストが非常にかかるという欠点もある。
このような理由から、前記液体肥料は肥料としての利用が限定され、そのほとんどが水処理施設で処理され廃棄されているのが現状である。
したがって本発明の目的は、有機系廃棄物を発酵させてバイオガスを取り出した後の残渣から、植物の生育に有効な栄養素のバランスを具備する液体肥料を低コストで製造することのできる方法を提供することにある。
However, the liquid fertilizer produced in this way has the disadvantages that the amount of each nutrient is likely to fluctuate and nitrogen and phosphorus are excessively contained, so that it cannot be used as it is. Furthermore, since it contains a large amount of moisture, there is also a disadvantage that the transportation cost to the place where fertilization is applied is very high.
For these reasons, the use of the liquid fertilizer is limited as a fertilizer, and most of the liquid fertilizer is processed and discarded at a water treatment facility.
Therefore, an object of the present invention, from the residue after removal of biogas by fermenting organic waste, how capable of producing a liquid fertilizer having a balance of effective nutrients for plant growth at a low cost Is to provide.

前記目的を達成するため本発明は、有機系廃棄物を発酵させてバイオガスを取り出した後の残渣から液体肥料を製造する方法であって、前記残渣から液体を分離する液体分離工程と、前記液体分離工程で分離された液体に含まれる水分を蒸散させる蒸散工程と、前記蒸散工程で濃縮された原液を富カリウム画分と富窒素−リン画分とに分画する分画工程と、前記各画分に含まれる水分を蒸発する水分蒸発工程とを有し、前記液体分離工程で分離された液体に含まれるアンモニア態窒素を、硝酸態窒素に変換させた後、得られた液体を前記分画工程に供することを特徴とする In order to achieve the above object, the present invention provides a method for producing liquid fertilizer from a residue after fermenting organic waste and taking out biogas, the liquid separating step for separating the liquid from the residue, A transpiration step for transpiration of water contained in the liquid separated in the liquid separation step, a fractionation step for fractionating the stock solution concentrated in the transpiration step into a potassium-rich fraction and a nitrogen-rich-phosphorus fraction, and possess a water evaporation step of evaporating the water contained in each fraction, the ammonia nitrogen contained in the liquid separated by the liquid separation process, after being converted to nitrate nitrogen, and the resulting liquid above It is characterized by being subjected to a fractionation process .

本発明によれば、有機系廃棄物を発酵させてバイオガスを取り出した後の残渣から、植物の生育に有効な栄養素のバランスを具備する液体肥料を低コストで製造することのできる方法が提供される。 According to the present invention, from the residue after removal of biogas by fermenting organic waste, is how capable of producing a liquid fertilizer having a balance of effective nutrients for plant growth at a low cost Provided.

Claims (4)

有機系廃棄物を発酵させてバイオガスを取り出した後の残渣から液体肥料を製造する方法であって、
前記残渣から液体を分離する液体分離工程と、
前記液体分離工程で分離された液体に含まれる水分を蒸散させる蒸散工程と、
前記蒸散工程で濃縮された原液を富カリウム画分と富窒素−リン画分とに分画する分画工程と、
前記各画分に含まれる水分を蒸発する水分蒸発工程と、
を有することを特徴とする液体肥料の製造方法。
A method for producing liquid fertilizer from residues after fermenting organic waste and taking out biogas,
A liquid separation step of separating the liquid from the residue;
A transpiration step of transpiration of water contained in the liquid separated in the liquid separation step;
A fractionation step of fractionating the stock solution concentrated in the transpiration step into a potassium-rich fraction and a nitrogen-rich-phosphorus fraction;
A water evaporation step for evaporating the water contained in each fraction;
A method for producing a liquid fertilizer, comprising:
前記液体分離工程で分離された液体に含まれるアンモニア態窒素を、硝酸態窒素に変換させた後、得られた液体を前記分画工程に供することを特徴とする請求項1に記載の液体肥料の製造方法。   2. The liquid fertilizer according to claim 1, wherein ammonia liquid nitrogen contained in the liquid separated in the liquid separation step is converted into nitrate nitrogen, and then the obtained liquid is subjected to the fractionation step. Manufacturing method. 前記分画工程が、液体分離工程で分離された液体をイオン交換樹脂に接触させる工程からなることを特徴とする請求項1または2に記載の液体肥料の製造方法。   The method for producing a liquid fertilizer according to claim 1 or 2, wherein the fractionation step comprises a step of bringing the liquid separated in the liquid separation step into contact with an ion exchange resin. 有機系廃棄物を発酵させてバイオガスを取り出した後の残渣から液体肥料を製造する装置であって、
前記残渣から液体を分離する固液分離機と、
前記固液分離機で分離された液体に含まれる水分を蒸散させる蒸散装置と、
前記蒸散装置で濃縮された原液を、富カリウム画分と富窒素−リン画分とに分画するイオン交換樹脂と、
前記各画分に含まれる水分を蒸発する水分蒸発機と、
を有することを特徴とする液体肥料の製造装置。
An apparatus for producing liquid fertilizer from a residue after fermenting organic waste and taking out biogas,
A solid-liquid separator for separating the liquid from the residue;
A transpiration device for transpiration of water contained in the liquid separated by the solid-liquid separator;
An ion exchange resin that fractionates the stock solution concentrated in the transpiration apparatus into a potassium-rich fraction and a nitrogen-rich-phosphorus fraction;
A moisture evaporator for evaporating moisture contained in each of the fractions;
An apparatus for producing liquid fertilizer, comprising:
JP2011198951A 2011-09-13 2011-09-13 Method for producing liquid fertilizer Expired - Lifetime JP5390573B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011198951A JP5390573B2 (en) 2011-09-13 2011-09-13 Method for producing liquid fertilizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011198951A JP5390573B2 (en) 2011-09-13 2011-09-13 Method for producing liquid fertilizer

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001172145A Division JP4993819B2 (en) 2001-06-07 2001-06-07 Method for producing liquid fertilizer and apparatus therefor

Publications (2)

Publication Number Publication Date
JP2012025659A true JP2012025659A (en) 2012-02-09
JP5390573B2 JP5390573B2 (en) 2014-01-15

Family

ID=45779040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011198951A Expired - Lifetime JP5390573B2 (en) 2011-09-13 2011-09-13 Method for producing liquid fertilizer

Country Status (1)

Country Link
JP (1) JP5390573B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104785491A (en) * 2014-06-11 2015-07-22 湖南紫博星生物科技发展有限公司 Kitchen waste automatic treatment system
JP2017171515A (en) * 2016-03-22 2017-09-28 株式会社日立製作所 Biomass modification system and biomass modification method
CN108024512A (en) * 2015-09-11 2018-05-11 工业罗利食品股份公司 The agro-industry process influenced with minimum environment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5061395A (en) * 1973-10-02 1975-05-26
JP2000015230A (en) * 1998-07-06 2000-01-18 Kubota Corp Method for removing ammonia
JP2001504035A (en) * 1996-11-15 2001-03-27 フンキ マヌラ アクティーゼルスカブ Organic waste separation method
JP2002511832A (en) * 1998-02-20 2002-04-16 バイオスキャン・アクティーゼルスカブ Method and plant for treating liquid organic waste

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5061395A (en) * 1973-10-02 1975-05-26
JP2001504035A (en) * 1996-11-15 2001-03-27 フンキ マヌラ アクティーゼルスカブ Organic waste separation method
JP2002511832A (en) * 1998-02-20 2002-04-16 バイオスキャン・アクティーゼルスカブ Method and plant for treating liquid organic waste
JP2000015230A (en) * 1998-07-06 2000-01-18 Kubota Corp Method for removing ammonia

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104785491A (en) * 2014-06-11 2015-07-22 湖南紫博星生物科技发展有限公司 Kitchen waste automatic treatment system
CN104785491B (en) * 2014-06-11 2017-12-08 湖南紫博星生物科技发展有限公司 Food waste automated processing system
CN108024512A (en) * 2015-09-11 2018-05-11 工业罗利食品股份公司 The agro-industry process influenced with minimum environment
JP2018538005A (en) * 2015-09-11 2018-12-27 インダストリー・ロッリ・アリメンタリ・ソシエタ・ペル・アチオニIndustrie Rolli Alimentari S.P.A. Agricultural and industrial methods with minimal environmental impact
US11039580B2 (en) 2015-09-11 2021-06-22 Industrie Rolli Aliment Ari S.P.A. Agroindustrial process with minimal environmental impact
JP2017171515A (en) * 2016-03-22 2017-09-28 株式会社日立製作所 Biomass modification system and biomass modification method

Also Published As

Publication number Publication date
JP5390573B2 (en) 2014-01-15

Similar Documents

Publication Publication Date Title
Rufí-Salís et al. Exploring nutrient recovery from hydroponics in urban agriculture: An environmental assessment
Guilayn et al. Valorization of digestates from urban or centralized biogas plants: a critical review
Fuchs et al. Assessment of the state of the art of technologies for the processing of digestate residue from anaerobic digesters
Li et al. Properties of plant nutrient: Comparison of two nutrient recovery techniques using liquid fraction of digestate from anaerobic digester treating pig manure
US11639318B2 (en) Organic liquid fertilizer
CN102056865A (en) Process for producing an organo-mineral fertilizer
US4050917A (en) Process of conversion of solid waste into workable material with predetermined characteristics and/or into fertilizers or soil improving agents
US20210009481A1 (en) Method for manufacturing organic liquid fertilizer
US20130019645A1 (en) Organic liquid fertilizer and process of making
CN110937936A (en) Method for obtaining a concentrate of fertilizer and stimulant from microalgae biomass
JP5390573B2 (en) Method for producing liquid fertilizer
JP4993819B2 (en) Method for producing liquid fertilizer and apparatus therefor
US20220127176A1 (en) Method and system for treating wastewater
Ablieieva et al. Digestate potential to substitute mineral fertilizers: Engineering approaches
CN104529115B (en) A kind of utilization chicken manure producing methane through anaerobic fermentation and the technique for reclaiming phosphorus
JP2003055077A (en) Fertilizer response accelerator-containing fertilizer and method of manufacturing the same
CN105693398A (en) Method for producing agricultural biological agent with natural latex separating liquid
US20210269371A1 (en) Aqueous and solid ammonium sulfate fertilizers and methods of producing
CN1880235A (en) Sewage treatment and recovery and reuse method in lysine production
US20210171412A1 (en) Processes and systems for producing ammonia products and/or calcium carbonate products
US20230026882A1 (en) Methods of producing ammonium bicarbonate during the production of organic fertilizers
Devi et al. Influence of sulphur and gypsum enriched municipal solid waste compost on sodicity reclamation and yield of wheat (Triticum aestivum)
Camilleri-Rumbau et al. Comparative techno-economical study between membrane technology systems for obtaining concentrated fertilizers from biogas plant effluents
RU2294910C2 (en) Method of producing organomineral mixtures from alcohol production liquid wastes
Terry et al. Part 1: Overview of advanced manure treatment

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131010

R150 Certificate of patent or registration of utility model

Ref document number: 5390573

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term