JP2012025611A - Method for producing optical fiber strand - Google Patents

Method for producing optical fiber strand Download PDF

Info

Publication number
JP2012025611A
JP2012025611A JP2010164704A JP2010164704A JP2012025611A JP 2012025611 A JP2012025611 A JP 2012025611A JP 2010164704 A JP2010164704 A JP 2010164704A JP 2010164704 A JP2010164704 A JP 2010164704A JP 2012025611 A JP2012025611 A JP 2012025611A
Authority
JP
Japan
Prior art keywords
ultraviolet
optical fiber
transparent tube
curable resin
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010164704A
Other languages
Japanese (ja)
Other versions
JP5356327B2 (en
Inventor
Minoru Saito
稔 齋藤
Minoru Kasahara
稔 笠原
Hiroki Tanaka
広樹 田中
Keisuke Ui
啓祐 宇井
Koji Mochizuki
浩二 望月
Yasuo Nakajima
康雄 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2010164704A priority Critical patent/JP5356327B2/en
Publication of JP2012025611A publication Critical patent/JP2012025611A/en
Application granted granted Critical
Publication of JP5356327B2 publication Critical patent/JP5356327B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Surface Treatment Of Glass Fibres Or Filaments (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for stably producing an optical fiber strand over a long period by a simple device and simple control.SOLUTION: The method for producing an optical fiber strand 4, wherein the outer circumference of a filament body 3 is coated with ultraviolet-curing resin, includes: a wire drawing process for drawing an optical fiber base material 1 into the filament body 3; an application process for applying the ultraviolet-curing resin to the filament body 3; and an irradiation process for irradiating the filament body 4 coated with the ultraviolet-curing resin by two or more ultraviolet radiation devices 6a and 6b. The ultraviolet-curing resin contains an acrylic monomer and a monomer including an N-vinyl group. In the irradiation process, the filament body 4 is irradiated with ultraviolet rays while passed through the inside of ultraviolet transmissive cylinder bodies inside the two or more ultraviolet radiation devices 6a and 6b, and the temperature of the ultraviolet transmissive cylinder body on the downstream side is kept at 70-180°C while at least the ultraviolet radiation device 6a on the upstream side is turned on among the optional adjacent two ultraviolet radiation devices 6a and 6b.

Description

本発明は、光ファイバ素線の製造方法に関するものである。   The present invention relates to a method for manufacturing an optical fiber.

光ファイバ素線は、光ファイバ母材を線引きして線条体とし、その直後に線条体に樹脂を被覆して製造される。線条体の被覆は、線条体の表面に紫外線硬化型樹脂を塗布し、線条体が紫外線照射装置内に配置された紫外線透過筒状(以降、透明管と呼ぶ。)を通過する間に紫外線を照射することによって紫外線硬化型樹脂を硬化させることにより行われる。   The optical fiber is manufactured by drawing an optical fiber preform to form a linear body, and immediately after that, the linear body is coated with a resin. For the coating of the striatum, an ultraviolet curable resin is applied to the surface of the striatum, and the striate passes through an ultraviolet transmitting cylindrical shape (hereinafter referred to as a transparent tube) disposed in the ultraviolet irradiation device. It is carried out by curing the ultraviolet curable resin by irradiating with UV rays.

この紫外線硬化型樹脂を被覆する工程において、紫外線硬化型樹脂中のモノマーなど比較的揮発しやすい成分は、硬化する際に発生する反応熱や照射される光エネルギーの吸収による発熱により揮発し、透明管の内面に付着する。透明管の内面に付着した樹脂成分は紫外線照射により変質するため透明管が曇る。このように透明管が曇ると、紫外線硬化型樹脂への紫外線の照射量が減少し、紫外線硬化型樹脂が十分硬化しない問題が生じる。   In the process of coating the UV curable resin, components that are relatively volatile, such as monomers in the UV curable resin, are volatilized due to reaction heat generated during curing and heat generated by absorption of irradiated light energy. Adhere to the inner surface of the tube. Since the resin component adhering to the inner surface of the transparent tube is altered by ultraviolet irradiation, the transparent tube becomes cloudy. When the transparent tube becomes cloudy in this way, the amount of ultraviolet irradiation to the ultraviolet curable resin decreases, and the ultraviolet curable resin does not sufficiently cure.

上記のように、透明管が曇ることによる紫外線硬化型樹脂の硬化不足を防止する方法としては、例えば特許文献1に、透明管内に流す不活性ガス中の酸素濃度を500ppm〜5%とすることにより、一度透明管に付着した揮発物を熱・酸化分解させる方法が開示されている。また、特許文献2には、線条体の線引き速度上昇期間において、紫外線光源への投入電力を走行速度で除した値を0.5〜50W・min/m以下の値とすることにより過度の照射を抑え揮発物を透明管に付着させない方法が開示されている。また、特許文献3には、透明管の温度を200℃以上にすることにより透明管に一度付着した揮発物を熱分解させる方法が開示されている。
一方、近年の光ファイバの線引き速度の高速化に伴い、硬化速度の速い紫外線硬化型樹脂が求められている。このような高速硬化タイプの樹脂として、例えばN−ビニル基を含有するモノマーを配合した光ファイバの被覆用樹脂組成物が特許文献4に開示されている。
As described above, as a method of preventing insufficient curing of the ultraviolet curable resin due to clouding of the transparent tube, for example, in Patent Document 1, the oxygen concentration in the inert gas flowing in the transparent tube is set to 500 ppm to 5%. Discloses a method of thermally and oxidatively decomposing volatiles once attached to a transparent tube. Further, in Patent Document 2, in the period of increasing the drawing speed of the striatum, the value obtained by dividing the input power to the ultraviolet light source by the traveling speed is set to 0.5 to 50 W · min / m or less. A method of suppressing irradiation and preventing volatiles from adhering to the transparent tube is disclosed. Patent Document 3 discloses a method for thermally decomposing volatiles once attached to a transparent tube by setting the temperature of the transparent tube to 200 ° C. or higher.
On the other hand, with the recent increase in the drawing speed of optical fibers, there is a demand for ultraviolet curable resins having a high curing speed. As such a fast-curing type resin, for example, Patent Document 4 discloses a resin composition for coating an optical fiber in which a monomer containing an N-vinyl group is blended.

特開2003−95704号公報JP 2003-95704 A 特開2005−162521号公報JP-A-2005-162521 特開2005−189510号公報JP 2005-189510 A 特開平10−204250号公報JP-A-10-204250

しかしながら、特許文献1に記載の光照射装置では、線引き速度に応じて透明管内に流すガスの流量を調整する必要があるため、制御が複雑になる問題がある。また、特許文献2に記載の光照射装置においても、線条体の線引き速度に応じて紫外線光源への投入電力を適宜調整する必要があり、制御が複雑になる問題がある。また、特許文献3に記載の光照射装置では、200℃以上という高い温度での加熱が必要であるため、透明管を加熱する装置が別途必要となり、装置が複雑になる問題がある。また、シール材等の熱劣化が進行しやすく、長期間安定して製造することができないという不具合が生じる。   However, in the light irradiation apparatus described in Patent Document 1, since it is necessary to adjust the flow rate of the gas flowing in the transparent tube according to the drawing speed, there is a problem that the control becomes complicated. In the light irradiation device described in Patent Document 2, it is necessary to appropriately adjust the input power to the ultraviolet light source in accordance with the drawing speed of the striate body, and there is a problem that the control becomes complicated. In addition, since the light irradiation device described in Patent Document 3 requires heating at a high temperature of 200 ° C. or higher, a separate device for heating the transparent tube is required, which complicates the device. Moreover, the heat deterioration of a sealing material etc. tends to advance, and the malfunction that it cannot manufacture stably for a long time arises.

本発明は、上記に鑑みてなされたものであって、簡易な装置、および簡易な制御で長期間安定して光ファイバ素線を製造することができる光ファイバ素線の製造方法を提供することを目的とする。   The present invention has been made in view of the above, and provides a manufacturing method of an optical fiber that can manufacture an optical fiber stably for a long period of time with a simple device and simple control. With the goal.

上記目的を達成するために本発明の光ファイバ素線の製造方法は、線条体の外周に紫外線硬化型樹脂を被覆してなる光ファイバ素線の製造方法であって、光ファイバ母材を線引きして線条体とする線引工程と、前記線条体に前記紫外線硬化型樹脂を塗布する塗布工程と、前記紫外線硬化型樹脂を塗布した前記線条体に2灯以上の紫外線照射装置により紫外線を照射する照射工程と、を有し、前記紫外線硬化型樹脂は、アクリルモノマーとN−ビニル基を有するモノマーとを含み、前記照射工程は、2灯以上の紫外線照射装置内の紫外線透過筒状体内を通過させながら紫外線を照射し、任意の隣接する2灯の紫外線照射装置において少なくとも上流側の紫外線照射装置が点灯している間、下流側の前記紫外線透過筒状体の温度を常時70〜180℃とすることを特徴とする。   In order to achieve the above object, an optical fiber manufacturing method of the present invention is an optical fiber manufacturing method in which an outer periphery of a linear body is coated with an ultraviolet curable resin, and an optical fiber base material is used. A wire drawing step for drawing a wire, a coating step for applying the ultraviolet curable resin to the wire, and an ultraviolet irradiation device for two or more lamps on the wire coated with the ultraviolet curable resin And the ultraviolet curable resin contains an acrylic monomer and a monomer having an N-vinyl group, and the irradiation step transmits ultraviolet light in two or more ultraviolet irradiation devices. While passing through the cylindrical body, ultraviolet rays are irradiated, and at least the upstream ultraviolet irradiation device is lit in any two adjacent ultraviolet irradiation devices, the temperature of the ultraviolet transmission cylindrical body on the downstream side is always set. 70-18 ℃ characterized by a.

前記紫外線透過筒状体は、紫外線照射装置内に設けられ、前記紫外線透過筒状体の温度を前記紫外線照射装置からの輻射熱のみで制御することを特徴とする。   The ultraviolet transmitting cylindrical body is provided in an ultraviolet irradiation device, and the temperature of the ultraviolet transmitting cylindrical body is controlled only by radiant heat from the ultraviolet irradiation device.

本発明によれば、簡易な装置、および簡易な制御で長期間安定して光ファイバ素線を製造することができるという効果を奏する。   According to the present invention, there is an effect that an optical fiber can be manufactured stably for a long period of time with a simple device and simple control.

実施の形態に係る光ファイバ製造装置の概略図である。It is the schematic of the optical fiber manufacturing apparatus which concerns on embodiment. 実施の形態に係る紫外線照射装置の概略断面図である。It is a schematic sectional drawing of the ultraviolet irradiation device which concerns on embodiment.

以下、図面を参照して本発明の実施の形態に係る光ファイバの製造方法について詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。   Hereinafter, a method for manufacturing an optical fiber according to an embodiment of the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.

本発明の実施の形態に係る光ファイバ素線の製造にあたり被覆材料として、アクリルモノマーとN−ビニル基を有するモノマーとを含む紫外線硬化型樹脂を用いる。より具体的には、たとえば、ウレタンアクリレートオリゴマー、アクリルモノマー、N−ビニル基含有モノマー、光開始材からなる紫外線硬化型樹脂を用いることができる。以下にそれぞれの材料を例示する。
(ウレタンアクリレートオリゴマー)
ウレタンアクリレートオリゴマーは、ポリオール、ジイソシアネートおよびエチレン性不飽和基含有化合物を反応させることにより製造される。
(アクリルモノマー)
アクリルモノマーは官能基としてアクリロイル基(CH2=CHCO−)あるいはメタクリロイル基(CH2=CCH3CO−)を末端に持つモノマーであり、2−エチルヘキシル(メタ)アクリレート、イソデシル(メタ)アクリレート、イソオクチル(メタ)アクリレート、ラウリル(メタ)アクリレート、イソボルニル(メタ)アクリレート、1、6−ヘキサンジオールジ(メタ)アクリレート等が挙げられる。
(N-ビニル基含有モノマー)
N−ビニル基を有する化合物としては、例えばN−ビニルピロリドン、N−ビニルカプロラクタム、N、N−ジメチル(メタ)アクリルアミド等が挙げられる。
(光開始材)
光開始剤としては例えば2、4、6―トリメチルベンソイルジフェニルフォスフィンオキサイドや1−ヒドロキシシクロヘキシルフェニルケトン等が挙げられる。
In manufacturing the optical fiber according to the embodiment of the present invention, an ultraviolet curable resin containing an acrylic monomer and a monomer having an N-vinyl group is used as a coating material. More specifically, for example, an ultraviolet curable resin composed of a urethane acrylate oligomer, an acrylic monomer, an N-vinyl group-containing monomer, and a photoinitiator can be used. Each material is illustrated below.
(Urethane acrylate oligomer)
The urethane acrylate oligomer is produced by reacting a polyol, diisocyanate and an ethylenically unsaturated group-containing compound.
(Acrylic monomer)
An acrylic monomer is a monomer having an acryloyl group (CH2 = CHCO-) or a methacryloyl group (CH2 = CCH3CO-) as a functional group, and 2-ethylhexyl (meth) acrylate, isodecyl (meth) acrylate, isooctyl (meth) acrylate. , Lauryl (meth) acrylate, isobornyl (meth) acrylate, 1,6-hexanediol di (meth) acrylate, and the like.
(N-vinyl group-containing monomer)
Examples of the compound having an N-vinyl group include N-vinyl pyrrolidone, N-vinyl caprolactam, N, N-dimethyl (meth) acrylamide and the like.
(Light starting material)
Examples of the photoinitiator include 2,4,6-trimethylbenzoyldiphenylphosphine oxide and 1-hydroxycyclohexyl phenyl ketone.

このように、一般的に反応性希釈材として使用されているアクリルモノマーと共にN−ビニル基を有するモノマーを用いることにより、硬化速度を速めることができ、近年の光ファイバの線引き速度の高速化(たとえば、線引き速度1000m/min以上)に対応可能となる。N−ビニル基を有するモノマーの配合量は硬化速度の観点から3wt%以上20wt%以下であることが好ましい。なお、紫外線硬化型樹脂としては、求められる特性を損なわない範囲で、他のオリゴマー、モノマー、一般的に使用される添加剤、無機充填剤、酸化防止剤、着色剤なども添加することができる。   Thus, by using a monomer having an N-vinyl group together with an acrylic monomer generally used as a reactive diluent, the curing speed can be increased, and the drawing speed of optical fibers in recent years has been increased ( For example, it is possible to cope with a drawing speed of 1000 m / min or more. The blending amount of the monomer having an N-vinyl group is preferably 3 wt% or more and 20 wt% or less from the viewpoint of curing speed. In addition, as an ultraviolet curable resin, other oligomers, monomers, commonly used additives, inorganic fillers, antioxidants, colorants, and the like can be added as long as required characteristics are not impaired. .

以下に、本発明の実施の形態に係る光ファイバ素線の製造方法を詳細に説明する。なお、以下の説明においては、同一の要素には同一の符号を用いることとし、重複する説明は省略する。   Below, the manufacturing method of the optical fiber which concerns on embodiment of this invention is demonstrated in detail. In the following description, the same reference numerals are used for the same elements, and duplicate descriptions are omitted.

図1は、本発明の実施の形態に係る光ファイバ素線の製造装置を説明する概略図である。光ファイバ母材1が図示しない線引炉内のヒータ2により加熱・溶融され、線引きされる。線引きにより形成されたガラス光ファイバ(線条体)3が下流の樹脂被覆装置5を通過し、外周に紫外線硬化型樹脂が塗布される。これにより、光ファイバ素線4が形成される。紫外線硬化型樹脂が塗布された光ファイバ素線4は、さらに下流の紫外線照射装置6a、6bを通過する。紫外線照射装置6a、6bは、ガラス光ファイバ3の外周に塗布された紫外線硬化型樹脂に紫外線を照射して紫外線硬化型樹脂を硬化させる。このようにして、ガラス光ファイバ3の外周に紫外線硬化型樹脂を被覆した光ファイバ素線4を紫外線照射装置6a、6bを通過させることで、光ファイバ素線4が形成される。このように形成された光ファイバ素線4は、ガイドローラ7を経て巻取り装置8に巻き取られる。   FIG. 1 is a schematic diagram for explaining an apparatus for manufacturing an optical fiber according to an embodiment of the present invention. The optical fiber preform 1 is heated and melted by a heater 2 in a drawing furnace (not shown) and drawn. A glass optical fiber (strip) 3 formed by drawing passes through a downstream resin coating device 5, and an ultraviolet curable resin is applied to the outer periphery. Thereby, the optical fiber 4 is formed. The optical fiber 4 coated with the ultraviolet curable resin passes through further downstream ultraviolet irradiation devices 6a and 6b. The ultraviolet irradiation devices 6 a and 6 b irradiate the ultraviolet curable resin applied to the outer periphery of the glass optical fiber 3 with ultraviolet rays to cure the ultraviolet curable resin. In this manner, the optical fiber 4 is formed by passing the optical fiber 4 having the outer periphery of the glass optical fiber 3 coated with the ultraviolet curable resin through the ultraviolet irradiation devices 6a and 6b. The optical fiber 4 formed in this way is wound around a winding device 8 via a guide roller 7.

次に、紫外線照射装置6aについて説明する。図2に示すように、紫外線照射装置6aは、紫外線照射装置本体9と、紫外線照射装置本体9の上部に設けられた吸気装置10と、紫外線照射装置本体9の下部に設けられた排気装置11からなる。   Next, the ultraviolet irradiation device 6a will be described. As shown in FIG. 2, the ultraviolet irradiation device 6 a includes an ultraviolet irradiation device body 9, an intake device 10 provided on the upper portion of the ultraviolet irradiation device body 9, and an exhaust device 11 provided on the lower portion of the ultraviolet irradiation device body 9. Consists of.

吸気装置10には、不活性ガスを吸気するための吸気口12と、紫外線硬化型樹脂が塗布された光ファイバ素線4を挿通するための光ファイバ素線挿通口13aが設けられている。また、排気装置11には、吸気した不活性ガスを排気するための排気口14と、被覆した光ファイバ素線4を挿通するための光ファイバ素線挿通口13bが設けられている。   The intake device 10 is provided with an intake port 12 for intake of an inert gas and an optical fiber strand insertion port 13a for inserting the optical fiber strand 4 coated with an ultraviolet curable resin. Further, the exhaust device 11 is provided with an exhaust port 14 for exhausting the inhaled inert gas and an optical fiber strand insertion port 13b for inserting the coated optical fiber strand 4.

樹脂被覆装置5で、紫外線硬化型樹脂が塗布された光ファイバ素線4は、光ファイバ素線挿通口13aから吸気装置10に入り、紫外線照射装置本体9内に設置された透明管15内を通過する。この紫外線照射装置本体9は、ガラス光ファイバ3の外周に塗布された紫外線硬化型樹脂を硬化させるために照射する紫外線照射ランプ16と一方からの照射による硬化のムラを防止するためのミラー17を備えている。なお、透明管15内は、供給する不活性ガスの量と紫外線照射装置下部からの排気流量により、所定の酸素濃度が保たれている。このように、所定の酸素濃度を保つために、透明管15の開口部には、シール材18が設けられている。また、このときの透明管の温度を測定する場合、たとえば、図示しない放射温度計を用いて透明管の中央部を測定する。また、紫外線照射装置6bについては、紫外線照射装置6aと同じ構造を有するものである。   In the resin coating device 5, the optical fiber strand 4 coated with the ultraviolet curable resin enters the intake device 10 through the optical fiber strand insertion port 13 a and passes through the transparent tube 15 installed in the ultraviolet irradiation device main body 9. pass. The ultraviolet irradiation apparatus body 9 includes an ultraviolet irradiation lamp 16 that is irradiated to cure the ultraviolet curable resin applied to the outer periphery of the glass optical fiber 3 and a mirror 17 that prevents unevenness of curing due to irradiation from one side. I have. In the transparent tube 15, a predetermined oxygen concentration is maintained by the amount of inert gas supplied and the exhaust flow rate from the lower part of the ultraviolet irradiation device. Thus, in order to maintain a predetermined oxygen concentration, the sealing material 18 is provided at the opening of the transparent tube 15. Moreover, when measuring the temperature of the transparent tube at this time, the center part of a transparent tube is measured, for example using the radiation thermometer which is not illustrated. Further, the ultraviolet irradiation device 6b has the same structure as the ultraviolet irradiation device 6a.

この紫外線硬化型樹脂を塗布した光ファイバ素線4に紫外線を照射する照射工程において、紫外線硬化型樹脂の一部の成分は、紫外線硬化型樹脂が硬化する際に発生する反応熱や照射される光エネルギーの吸収による発熱で揮発する。そして、揮発した紫外線硬化型樹脂の一部の成分は、透明管15の内面に付着する。さらに、透明管15の内面に付着した樹脂成分は紫外線照射により変質する。これにより、透明管15が曇り、樹脂への紫外線の照射量が減少する。紫外線の照射量が減少すると、紫外線硬化型樹脂が十分硬化しない問題が生じる。   In the irradiation process of irradiating the optical fiber 4 coated with the ultraviolet curable resin with ultraviolet rays, some components of the ultraviolet curable resin are irradiated with reaction heat generated when the ultraviolet curable resin is cured. Volatilizes due to heat generated by absorption of light energy. Then, some components of the volatilized ultraviolet curable resin adhere to the inner surface of the transparent tube 15. Furthermore, the resin component adhering to the inner surface of the transparent tube 15 is altered by ultraviolet irradiation. Thereby, the transparent tube 15 becomes cloudy, and the irradiation amount of the ultraviolet rays to the resin decreases. When the irradiation amount of ultraviolet rays decreases, there arises a problem that the ultraviolet curable resin is not sufficiently cured.

この問題を解決するために、紫外線硬化型樹脂を塗布した光ファイバ素線4に紫外線を照射する照射工程では、点灯した紫外線照射装置の下流側に設置された紫外線照射装置内の透明管15の温度を70℃以上に保つ調整を行った。透明管温度の調整方法として、紫外線照射ランプ光源への投入電力を適宜調整することにより紫外線照射装置から発生している輻射熱を適宜調整して透明管15の温度を所望の温度とする。これにより、透明管15の温度を所望の温度とすることができる。なお、透明管内の温度を70℃以上に保てればよく、温度の調整方法は、これに限定されるものではない。また、透明管内の温度を180℃以下に保つことが、シール材等の熱劣化が抑制できるという点で好ましい。   In order to solve this problem, in the irradiation step of irradiating the optical fiber 4 coated with the ultraviolet curable resin with ultraviolet rays, the transparent tube 15 in the ultraviolet irradiation device installed downstream of the lit ultraviolet irradiation device is used. Adjustment was performed to keep the temperature at 70 ° C. or higher. As a method for adjusting the temperature of the transparent tube, the temperature of the transparent tube 15 is set to a desired temperature by appropriately adjusting the radiation heat generated from the ultraviolet irradiation device by appropriately adjusting the input power to the ultraviolet irradiation lamp light source. Thereby, the temperature of the transparent tube 15 can be set to a desired temperature. In addition, the temperature in a transparent tube should just be maintained at 70 degreeC or more, and the adjustment method of temperature is not limited to this. In addition, it is preferable to keep the temperature in the transparent tube at 180 ° C. or less from the viewpoint that thermal deterioration of the sealing material or the like can be suppressed.

なお、線引き開始時は光ファイバの線引き速度が遅いため、紫外線照射ランプ光源への投入電力を定常状態と同様に設定すると紫外線硬化型樹脂への紫外線照射時間が長くなり、揮発分の発生量が増加する可能性がある。したがって、紫外線照射量が過度に多くなるのを抑えるために、線引き開始時は紫外線照射ランプ光源への投入電力を低くしたり、あるいは線引き速度がある程度高くなるまでの期間は複数の紫外線照射ランプのうち1灯のみを点灯させて残りをOFFとするなどの調整を行うのが一般的である。   In addition, since the drawing speed of the optical fiber is slow at the start of drawing, setting the input power to the UV irradiation lamp light source in the same manner as in the steady state increases the UV irradiation time to the UV curable resin, and the amount of volatile matter generated is reduced. May increase. Therefore, in order to prevent the amount of UV irradiation from becoming excessively large, the power input to the UV irradiation lamp light source is reduced at the start of drawing, or the period of time until the drawing speed is increased to some extent is reduced. Adjustments such as turning on only one light and turning off the rest are common.

一方、本発明では、紫外線照射量を下げて揮発成分の発生量を下げるよりも透明管の温度を高くすることで付着した揮発成分を速やかに再揮発させることで、透明管の曇りに対してより効果的である。   On the other hand, in the present invention, the volatile components adhering to the transparent tube are rapidly re-volatilized by raising the temperature of the transparent tube rather than reducing the amount of volatile components generated by reducing the amount of UV irradiation, thereby preventing the transparent tube from clouding. More effective.

この方法により、透明管の透明度を維持することができ、紫外線の照射量が減少することなく、紫外線硬化型樹脂を長期間安定して十分に硬化させることができる。   By this method, the transparency of the transparent tube can be maintained, and the ultraviolet curable resin can be stably cured sufficiently for a long period of time without reducing the amount of ultraviolet irradiation.

上記、実施の形態においては、紫外線照射装置から発生している輻射熱を利用して透明管の温度を制御したが、透明管の加熱方法としては、これ以外の方法を用いてもよい。たとえば、テープヒーターを透明管の端部に巻きつけても良い。ただし、輻射熱を利用して透明管の温度を制御した場合は、特別な加熱手段を必要としないので、設備を簡略化でき、さらに好適である。また、透明管に適切な添加剤、例えば、ニッケル系錯体を添加することで赤外線吸収率を上げ、ランプ光源からの輻射熱を効率よく吸収し、透明管の温度を上げる、あるいは、酸化インジウムスズ系粉末を添加することで赤外線反射率を上げ、ランプ光源からの輻射熱を反射して透明管への輻射熱の吸収を減らし、透明管の温度を下げる、などにより透明管温度を制御してもよい。   In the above-described embodiment, the temperature of the transparent tube is controlled using the radiant heat generated from the ultraviolet irradiation device, but other methods may be used as the method for heating the transparent tube. For example, a tape heater may be wound around the end of the transparent tube. However, when the temperature of the transparent tube is controlled by using radiant heat, a special heating means is not required, so that the equipment can be simplified and more preferable. Also, by adding an appropriate additive to the transparent tube, for example, a nickel complex, the infrared absorption rate is increased, the radiant heat from the lamp light source is efficiently absorbed, the temperature of the transparent tube is increased, or the indium tin oxide system The transparent tube temperature may be controlled by increasing the infrared reflectance by adding powder, reflecting the radiant heat from the lamp light source to reduce the absorption of the radiant heat to the transparent tube, and lowering the temperature of the transparent tube.

なお、図1に示す光ファイバ製造装置においては、紫外線照射装置を2つ設けているが、紫外線照射装置の数は2つ以上であれば良くこれに限定されない。たとえば、紫外線照射装置を3つ設ける場合は、紫外線照射装置を上流からA→B→Cの順に設置されているとすると、隣接する2灯の紫外線照射装置とは、AとBおよびBとCとなる。AとBに着目すると「隣接する2灯の紫外線照射装置において少なくとも上流側紫外線照射装置が点灯している間」とは、Aが点灯している間はBの紫外線透過筒状体の温度を70〜180℃とすることになる。また、BとCに着目するとBが点灯している間は、Cの紫外線透過筒状体の温度を70〜180℃とすることになる。つまり、紫外線照射装置の点灯順序はC→B→Aとなる。また、この実施の形態においては、樹脂被覆装置を1つ設けているが、樹脂被覆装置を2つ以上設け、それぞれの樹脂被覆装置に対して紫外線照射装置を設けてもよい。すなわち、一度紫外線硬化型樹脂を被覆した光ファイバにさらに紫外線硬化型樹脂を塗布して、これを硬化する場合においても適用可能である。   In addition, in the optical fiber manufacturing apparatus shown in FIG. 1, although two ultraviolet irradiation devices are provided, the number of ultraviolet irradiation devices should just be two or more, and is not limited to this. For example, when three ultraviolet irradiation devices are provided, assuming that the ultraviolet irradiation devices are installed in the order of A → B → C from the upstream, the two adjacent ultraviolet irradiation devices are A and B and B and C. It becomes. Paying attention to A and B, “at least the upstream ultraviolet irradiation device is lit in the two adjacent ultraviolet irradiation devices” means that the temperature of the ultraviolet transmissive cylindrical body of B is while A is lit. It will be 70-180 degreeC. When attention is paid to B and C, the temperature of the ultraviolet ray transmitting cylindrical body of C is set to 70 to 180 ° C. while B is lit. That is, the lighting order of the ultraviolet irradiation device is C → B → A. In this embodiment, one resin coating device is provided. However, two or more resin coating devices may be provided, and an ultraviolet irradiation device may be provided for each resin coating device. That is, the present invention can also be applied to a case where an ultraviolet curable resin is further applied to an optical fiber once coated with an ultraviolet curable resin and then cured.

(実施例1〜3および比較例1〜6)
以下、本発明の実施例、比較例によって本発明をさらに具体的に説明する。ウレタンアクリレートオリゴマー、各種モノマー、光開始剤を主成分とし、表1に示すN-ビニル基含有モノマーを含む組成と含まない組成の2種類の紫外線硬化型樹脂を調整した。実施例1〜3および比較例1〜5は、N−ビニル基含有モノマーを含む組成であり、比較例6は、N−ビニル基含有モノマーを含まない組成である。なお、2種類の紫外線硬化型樹脂は、N−ビニル基含有モノマーを含むか含まないか以外は同じ組成からなる。
(Examples 1-3 and Comparative Examples 1-6)
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples. Two types of ultraviolet curable resins having a composition containing an N-vinyl group-containing monomer shown in Table 1 and a composition not containing the urethane acrylate oligomer, various monomers, and a photoinitiator as main components were prepared. Examples 1 to 3 and Comparative Examples 1 to 5 are compositions containing an N-vinyl group-containing monomer, and Comparative Example 6 is a composition not containing an N-vinyl group-containing monomer. The two types of ultraviolet curable resins have the same composition except that they contain or do not contain an N-vinyl group-containing monomer.

調整した各紫外線硬化型樹脂の硬化性を以下の方法で評価した。
1.試験片の作成:アプリケーターバーを用いて液状紫外線硬化樹脂をガラス板に塗布し、25mJ/cm2または500mJ/cm2の紫外線を照射し200μm厚の硬化フィルムを得た。次いで、ガラス板より硬化フィルムを剥離し、温度23℃、相対湿度50%で24時間置いたものを、試験片とした。
2.ヤング率の測定(JIS K7127に準拠):引張試験機にて、温度23℃における試験片のヤング率を引張り速度1mm/min、標線間25mmの条件で測定した。
3.硬化性の判定:紫外線を25mJ/cm2照射したシートのヤング率を紫外線500mJ/cm2照射したシートのヤング率で割った値を硬化性の指標とし、これが大きいほど硬化性が良好と判定した。また、光ファイバ被覆層自体の硬化度を溶剤抽出法によりゲル分率で評価した。ここでゲル分率とは、光ファイバ被覆層がどの程度硬化しているかを示す指標であり、被覆の初期重量をWとし、この被覆から未ゲル成分を溶剤抽出させた後の被覆重量をWとするとき、
ゲル分率=(W/W)×100(%)
で示される。従ってゲル分率は高い方は好ましい。一般的に光ファイバ被覆層のゲル分率は90%以上が好ましい。
The curability of each adjusted ultraviolet curable resin was evaluated by the following method.
1. Preparation of test piece: A liquid ultraviolet curable resin was applied to a glass plate using an applicator bar and irradiated with ultraviolet rays of 25 mJ / cm 2 or 500 mJ / cm 2 to obtain a cured film having a thickness of 200 μm. Next, the cured film was peeled off from the glass plate, and the test piece was placed at a temperature of 23 ° C. and a relative humidity of 50% for 24 hours.
2. Measurement of Young's modulus (based on JIS K7127): The Young's modulus of the test piece at a temperature of 23 ° C. was measured with a tensile tester under the conditions of a tensile speed of 1 mm / min and a distance between marked lines of 25 mm.
3. Judgment of curability: The value obtained by dividing the Young's modulus of the sheet irradiated with ultraviolet rays at 25 mJ / cm 2 by the Young's modulus of the sheet irradiated with ultraviolet rays of 500 mJ / cm 2 was used as a curability index. . Further, the degree of cure of the optical fiber coating layer itself was evaluated by a gel fraction by a solvent extraction method. Here, the gel fraction is an index indicating how hard the optical fiber coating layer is cured. The initial weight of the coating is defined as W 0, and the coating weight after solvent extraction of the non-gel component from this coating is defined as the gel fraction. When W
Gel fraction = (W / W 0 ) × 100 (%)
Indicated by Therefore, a higher gel fraction is preferable. Generally, the gel fraction of the optical fiber coating layer is preferably 90% or more.

表1に示した紫外線硬化型樹脂を用い、透明管温度が表1に示す値となるように紫外線照射ランプへの入力パワーを調整して300kmの光ファイバを製造した。なお、比較例1、2、6では、2灯目の(下流に設置された)UVランプは線引き開始時はOFFとし、所定の線引き速度の約半分に達したところでONとした。また、透明管温度はUVランプをONにするまでの間は常温(25℃)とした。線引き速度は1000m/minとした。また実施例3と比較例5では1灯目のUVランプは線引き開始時はOFFとし、所定の線引き速度の約半分に達したところでONとした。また、実施例3では1灯目をONにすると同時に2灯目の入力パワーを調整して透明管温度を高くした。また、透明管15内の酸素濃度は実施例1〜3、比較例1〜6のいずれにおいても同じとした。   Using the ultraviolet curable resin shown in Table 1, the input power to the ultraviolet irradiation lamp was adjusted so that the transparent tube temperature became the value shown in Table 1, and a 300 km optical fiber was manufactured. In Comparative Examples 1, 2, and 6, the second UV lamp (installed downstream) was turned off at the start of drawing, and turned on when it reached about half the predetermined drawing speed. The transparent tube temperature was room temperature (25 ° C.) until the UV lamp was turned on. The drawing speed was 1000 m / min. In Example 3 and Comparative Example 5, the first UV lamp was turned off at the start of drawing, and turned on when it reached about half the predetermined drawing speed. In Example 3, the first lamp was turned on and the input power of the second lamp was adjusted to increase the transparent tube temperature. The oxygen concentration in the transparent tube 15 was the same in any of Examples 1 to 3 and Comparative Examples 1 to 6.

製造後透明管の曇りの程度を測定した。透明管曇りの程度は透明管内のファイバ通過位置で紫外線照度を測定し、その透明度の維持率を透明管透明度維持率(%)として求めた。なお、透明管透明度維持率(%)は、製造開始前の照度をLs(W/cm)、製造終了後の照度をLe(W/cm)とすると、
透明管透明度維持率(%)=Le/Ls×100
として定義される。
After the production, the degree of cloudiness of the transparent tube was measured. The degree of fogging of the transparent tube was measured by measuring the illuminance of ultraviolet rays at the fiber passage position in the transparent tube, and the maintenance rate of the transparency was obtained as a transparency rate (%) of the transparent tube. The transparent tube clarity retention (%) is, the illuminance of the pre-production start Ls (W / cm 2), when the illuminance after end of production and Le (W / cm 2),
Transparent tube transparency maintenance rate (%) = Le / Ls × 100
Is defined as

表1の結果から、以下のことが明らかになった。
まず、N−ビニル基を有するモノマーを配合した実施例1〜3および比較例1〜5では紫外線硬化型樹脂の硬化性は、0.81と優れている。しかしながら、2灯目のUVランプを線引き開始時はOFFとし、所定の線引き速度の約半分に達したところでONとした比較例1、2では、2灯目の透明管の透明度維持率が67〜68%まで低下している。
また、2灯目の透明管の温度を常時40℃とした比較例3では、2灯目の透明管の透明度維持率が60%まで低下している。
また、1、2灯目の透明管の温度を常時250℃とした比較例4では、透明管の透明度維持率は98%と良好であったが、1週間使用後にシール材外観を確認したところ亀裂が発生し、シール性が損なわれており、ファイバ製造の途中で石英管内部の酸素濃度の変動が見られた。
また、1灯目のUVランプを線引き開始時はOFFとし、所定の線引き速度の約半分に達したところでONとし、その際に2灯目UVランプ透明管の温度を40℃から70℃に上げた実施例3では、2灯目UVランプ透明管の透明度維持率92%と高いのに対し、1灯目のUVランプを線引き開始時はOFFとし、所定の線引き速度の約半分に達したところでONとし、2灯目UVランプの透明管温度を常時40℃とした比較例5では、2灯目UVランプ透明管の透明度維持率が65%と低下している。
他方、N−ビニル基含有モノマーを含まない比較例6では樹脂硬化性は、0.6と低いものの2灯とも透明度維持率は98%と高い。
From the results in Table 1, the following became clear.
First, in Examples 1 to 3 and Comparative Examples 1 to 5 in which a monomer having an N-vinyl group is blended, the curability of the ultraviolet curable resin is as excellent as 0.81. However, in Comparative Examples 1 and 2 in which the second UV lamp is turned off at the start of drawing and is turned on when about half of the predetermined drawing speed is reached, the transparency maintenance rate of the second transparent tube is 67 to It has fallen to 68%.
In Comparative Example 3 in which the temperature of the second transparent tube was always 40 ° C., the transparency maintenance rate of the second transparent tube was reduced to 60%.
Further, in Comparative Example 4 in which the temperature of the first and second transparent tubes was always 250 ° C., the transparency maintenance rate of the transparent tubes was as good as 98%, but the appearance of the sealing material was confirmed after one week of use. Cracks occurred, sealing performance was impaired, and fluctuations in the oxygen concentration inside the quartz tube were observed during fiber production.
Also, the first UV lamp is turned off at the start of drawing, and turned on when it reaches about half of the predetermined drawing speed. At that time, the temperature of the second UV lamp transparent tube is raised from 40 ° C to 70 ° C. In Example 3, the transparency maintenance rate of the second UV lamp transparent tube was as high as 92%, whereas the first UV lamp was turned off at the start of drawing and reached about half of the predetermined drawing speed. In Comparative Example 5 in which the second tube UV lamp transparent tube temperature was always 40 ° C., the transparency maintenance rate of the second lamp UV lamp transparent tube was reduced to 65%.
On the other hand, in Comparative Example 6 containing no N-vinyl group-containing monomer, although the resin curability is as low as 0.6, the transparency maintenance rate is high at 98% for both the two lamps.

この結果から明らかなように、N−ビニル基有するモノマーを配合することにより紫外線硬化型樹脂自体の硬化性は向上する。しかし、透明管曇りが促進され、紫外線硬化型樹脂の硬化が不十分となったり、線引き後に透明管を洗浄・交換する必要がある。またシール材の外観に変化がみられたりする。一方、N−ビニル基有しないモノマーを配合することにより、透明管の曇りは抑制されるが、樹脂硬化性が低く、被覆硬化性の指標であるゲル分率が89%と低くなり樹脂の硬化が不十分である。この場合、架橋密度の低下により所望の強度が得られない、という問題が生じる。   As is apparent from this result, the curability of the ultraviolet curable resin itself is improved by adding a monomer having an N-vinyl group. However, the fogging of the transparent tube is promoted, the curing of the ultraviolet curable resin becomes insufficient, or the transparent tube needs to be cleaned and replaced after drawing. There are also changes in the appearance of the sealing material. On the other hand, by blending a monomer having no N-vinyl group, the fogging of the transparent tube is suppressed, but the resin curability is low, and the gel fraction, which is an index of coating curability, is lowered to 89%, so Is insufficient. In this case, there arises a problem that a desired strength cannot be obtained due to a decrease in the crosslinking density.

また、実施例1〜3に示すように、上流側紫外線照射装置が点灯している間、下流側の前記紫外線透過筒状体の温度を常時70〜180℃に保持することにより透明管曇りが抑制された。

Moreover, as shown in Examples 1 to 3, while the upstream ultraviolet irradiation device is turned on, the temperature of the ultraviolet transmitting cylindrical body on the downstream side is constantly maintained at 70 to 180 ° C., thereby causing the transparent tube to become cloudy. Suppressed.

1 光ファイバ母材
2 ヒータ
3 ガラス光ファイバ
4 光ファイバ素線
5 樹脂被覆装置
6a、6b 紫外線照射装置
7 ガイドローラ
8 巻取り装置
9 紫外線照射装置本体
10 吸気装置
11 排気装置
12 吸気口
13a、13b 光ファイバ挿通口
14 排気口
15 紫外線透過筒状体、透明管
16 紫外線照射ランプ
17 ミラー
18 シール材
DESCRIPTION OF SYMBOLS 1 Optical fiber base material 2 Heater 3 Glass optical fiber 4 Optical fiber strand 5 Resin coating apparatus 6a, 6b Ultraviolet irradiation apparatus 7 Guide roller 8 Winding apparatus 9 Ultraviolet irradiation apparatus main body 10 Intake apparatus 11 Exhaust apparatus 12 Intake port 13a, 13b Optical fiber insertion port 14 Exhaust port 15 Ultraviolet transmitting cylindrical body, transparent tube 16 Ultraviolet irradiation lamp 17 Mirror 18 Sealing material

Claims (2)

線条体の外周に紫外線硬化型樹脂を被覆してなる光ファイバ素線の製造方法であって、
光ファイバ母材を線引きして線条体とする線引工程と、
前記線条体に前記紫外線硬化型樹脂を塗布する塗布工程と、
前記紫外線硬化型樹脂を塗布した前記線条体に2灯以上の紫外線照射装置により紫外線を照射する照射工程と、を有し、
前記紫外線硬化型樹脂は、アクリルモノマーとN−ビニル基を有するモノマーとを含み、
前記照射工程は、2灯以上の紫外線照射装置内の紫外線透過筒状体内を通過させながら紫外線を照射し、任意の隣接する2灯の紫外線照射装置において少なくとも上流側の紫外線照射装置が点灯している間、下流側の前記紫外線透過筒状体の温度を常時70〜180℃とすることを特徴とする光ファイバ素線の製造方法。
It is a method for manufacturing an optical fiber that is formed by coating an outer periphery of a linear body with an ultraviolet curable resin,
A drawing process of drawing an optical fiber preform into a filament;
An application step of applying the ultraviolet curable resin to the linear body;
An irradiation step of irradiating the linear body coated with the ultraviolet curable resin with ultraviolet rays using two or more ultraviolet irradiation devices;
The ultraviolet curable resin includes an acrylic monomer and a monomer having an N-vinyl group,
In the irradiation step, ultraviolet rays are irradiated while passing through an ultraviolet transmitting cylindrical body in two or more ultraviolet irradiation devices, and at least an upstream ultraviolet irradiation device is turned on in any two adjacent ultraviolet irradiation devices. A method of manufacturing an optical fiber, wherein the temperature of the ultraviolet transmitting cylindrical body on the downstream side is always 70 to 180 ° C.
前記紫外線透過筒状体の温度を前記紫外線照射装置からの輻射熱のみで制御することを特徴とする請求項1記載の光ファイバ素線の製造方法。   2. The method of manufacturing an optical fiber according to claim 1, wherein the temperature of the ultraviolet transmitting cylindrical body is controlled only by radiant heat from the ultraviolet irradiation device.
JP2010164704A 2010-07-22 2010-07-22 Manufacturing method of optical fiber Active JP5356327B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010164704A JP5356327B2 (en) 2010-07-22 2010-07-22 Manufacturing method of optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010164704A JP5356327B2 (en) 2010-07-22 2010-07-22 Manufacturing method of optical fiber

Publications (2)

Publication Number Publication Date
JP2012025611A true JP2012025611A (en) 2012-02-09
JP5356327B2 JP5356327B2 (en) 2013-12-04

Family

ID=45779006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010164704A Active JP5356327B2 (en) 2010-07-22 2010-07-22 Manufacturing method of optical fiber

Country Status (1)

Country Link
JP (1) JP5356327B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102981215A (en) * 2012-11-19 2013-03-20 中天科技光纤有限公司 Small coating diameter low water peak single-mode fiber with coating easy to peel and production process thereof
WO2021172563A1 (en) * 2020-02-26 2021-09-02 住友電気工業株式会社 Method for producing optical fiber and apparatus for producing optical fiber

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01179744A (en) * 1988-01-07 1989-07-17 Furukawa Electric Co Ltd:The Production of optical fiber
JPH04224140A (en) * 1990-12-20 1992-08-13 Sumitomo Electric Ind Ltd Manufacture of optical fiber
JPH05213636A (en) * 1992-02-03 1993-08-24 Fujikura Ltd Method for coating optical fiber
JPH08310841A (en) * 1995-05-12 1996-11-26 Sumitomo Electric Ind Ltd Coated optical fiber and its production
JP2005162521A (en) * 2003-12-01 2005-06-23 Sumitomo Electric Ind Ltd Method of manufacturing coated wire body
JP2010117531A (en) * 2008-11-12 2010-05-27 Sumitomo Electric Ind Ltd Ultraviolet irradiation apparatus, and coating formation method of optical fiber

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01179744A (en) * 1988-01-07 1989-07-17 Furukawa Electric Co Ltd:The Production of optical fiber
JPH04224140A (en) * 1990-12-20 1992-08-13 Sumitomo Electric Ind Ltd Manufacture of optical fiber
JPH05213636A (en) * 1992-02-03 1993-08-24 Fujikura Ltd Method for coating optical fiber
JPH08310841A (en) * 1995-05-12 1996-11-26 Sumitomo Electric Ind Ltd Coated optical fiber and its production
JP2005162521A (en) * 2003-12-01 2005-06-23 Sumitomo Electric Ind Ltd Method of manufacturing coated wire body
JP2010117531A (en) * 2008-11-12 2010-05-27 Sumitomo Electric Ind Ltd Ultraviolet irradiation apparatus, and coating formation method of optical fiber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102981215A (en) * 2012-11-19 2013-03-20 中天科技光纤有限公司 Small coating diameter low water peak single-mode fiber with coating easy to peel and production process thereof
WO2021172563A1 (en) * 2020-02-26 2021-09-02 住友電気工業株式会社 Method for producing optical fiber and apparatus for producing optical fiber

Also Published As

Publication number Publication date
JP5356327B2 (en) 2013-12-04

Similar Documents

Publication Publication Date Title
JP6012903B2 (en) Optical fiber manufacturing method and optical fiber manufacturing apparatus
KR102213018B1 (en) Optical fiber with large mode field diameter and low microbending losses
KR900003450B1 (en) Preparation method for optical fiber
CN111032588B (en) Method for manufacturing optical fiber
JP5356327B2 (en) Manufacturing method of optical fiber
US10773998B2 (en) Method of manufacturing optical fiber wire
JP2018177630A (en) Production method of optical fiber
EP2338854B1 (en) Method for purging uv curing tubes
US20040067037A1 (en) Curing of compositions for fiber optics
JPH0471019B2 (en)
JP6147442B2 (en) Method for manufacturing coated optical fiber
JP2020117426A (en) Production method of optical fiber
JP2006312563A (en) Curing method for optical fiber coating, ultra-violet-curing device, and method of and apparatus for producing optical fiber
JP2006113448A (en) Coated optical fiber and its manufacturing method
US11275206B2 (en) Optical fiber coatings
JP5942630B2 (en) Optical fiber manufacturing method
JP4728009B2 (en) Fiber manufacturing method and fiber
JP2003212605A (en) Process for manufacturing optical fiber
JP5535057B2 (en) Method for manufacturing coated optical fiber
JPH0442838A (en) Production of optical fiber coated with photo-setting resin
JPS62262807A (en) Ultraviolet-ray emitting device for wire rod
JP2004354457A (en) Optical fiber
CN115557713A (en) Method and apparatus for manufacturing optical fiber
JPH11189438A (en) Production of radiation-resistant optical fiber
JP2005189510A (en) Manufacturing method for covered wire body and ultraviolet irradiation apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130513

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130828

R151 Written notification of patent or utility model registration

Ref document number: 5356327

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350