JP2012025126A - Heater and heating method of tire valcanizing mold - Google Patents

Heater and heating method of tire valcanizing mold Download PDF

Info

Publication number
JP2012025126A
JP2012025126A JP2010168537A JP2010168537A JP2012025126A JP 2012025126 A JP2012025126 A JP 2012025126A JP 2010168537 A JP2010168537 A JP 2010168537A JP 2010168537 A JP2010168537 A JP 2010168537A JP 2012025126 A JP2012025126 A JP 2012025126A
Authority
JP
Japan
Prior art keywords
mold
tire
induction heating
vulcanization
electromagnetic induction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010168537A
Other languages
Japanese (ja)
Other versions
JP5582906B2 (en
Inventor
Hideo Hisatomi
英雄 久冨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2010168537A priority Critical patent/JP5582906B2/en
Publication of JP2012025126A publication Critical patent/JP2012025126A/en
Application granted granted Critical
Publication of JP5582906B2 publication Critical patent/JP5582906B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D30/00Producing pneumatic or solid tyres or parts thereof
    • B29D30/06Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)
    • B29D30/0601Vulcanising tyres; Vulcanising presses for tyres
    • B29D30/0662Accessories, details or auxiliary operations
    • B29D2030/0675Controlling the vulcanization processes
    • B29D2030/0677Controlling temperature differences

Landscapes

  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heater for a tire valcanizing mold which efficiently prevents heat loss from an electromagnetic induction heating element which generates heat by electromagnetic induction heating, and significantly increases heat transmission efficiency to a tire contact surface of the vulcanizing mold.SOLUTION: The heater for a tire valcanizing mold, which partitions a vulcanizing molding cavity 5 of a raw tire in cooperation with a vulcanization bladder 4, includes vulcanization mold parts 1, 2, 3. At least a contact surface with the tire is partitioned by a member formed of a metal material with small magnetic permeability and exhibiting excellent heat conductivity. The electromagnetic induction heating elements 11, 12, 13 formed of a metal material with large magnetic permeability are arranged in predetermined positions separated from the contact surface with the tire. Coils 14, 15, 16 for generating heat from the electromagnetic induction heating elements 11, 12, 13 are arranged in platen side members 7, 9, 10 on which the vulcanization mold parts 1, 2, 3 are mounted.

Description

この発明は、タイヤ用加硫モールドの加熱装置および、その加熱装置を用いたタイヤ用加硫モールドの加熱方法に関するものであり、とくには、タイヤ用加硫モールドを、すぐれたエネルギー効率で加熱する技術を提案するものである。   The present invention relates to a tire vulcanization mold heating apparatus and a tire vulcanization mold heating method using the heating apparatus, and in particular, heats a tire vulcanization mold with excellent energy efficiency. Propose technology.

タイヤ用加硫モールドの加熱装置としては、特許文献1および2に開示されたものがある。   As a heating device for a tire vulcanization mold, there are those disclosed in Patent Documents 1 and 2.

特許文献1に記載された従来装置は、タイヤ加硫時の上モールドの温度設定と、温度コントロールとを容易にし、タイヤ加硫時間の短縮化を図ることが出来るタイヤ加硫用コンテナー装置を提供することを課題とするものであって、高周波誘導加熱装置からなる加熱手段を支持プレート上に設置し、この加熱手段には、配線を介して電極が取付けられ、この電極は、支持プレートを貫通して、断熱板を介して配設された円盤状の熱盤に埋設された誘導加熱コイルに接続されている。そして、その誘導加熱コイルは、熱盤の底面に形成された凹部に断熱材を介して配設され、それの表面は複数本の押え板により固定されている。また、下面に上モールドを取り付けた、誘導加熱対象物としての上部サイドプレートの上面中央は、クランプ装置を介して加圧シリンダーが着脱可能に連結されている、とするものである。   The conventional device described in Patent Document 1 provides a container device for tire vulcanization that facilitates temperature setting and temperature control of the upper mold during tire vulcanization and can shorten the tire vulcanization time. A heating means comprising a high-frequency induction heating device is installed on a support plate, and an electrode is attached to the heating means via wiring, and this electrode penetrates the support plate. And it is connected to the induction heating coil embed | buried under the disk-shaped heat disc arrange | positioned through the heat insulation board. And the induction heating coil is arrange | positioned through the heat insulating material in the recessed part formed in the bottom face of the heating board, The surface is being fixed with the several pressing plate. Further, the center of the upper surface of the upper side plate as the induction heating object with the upper mold attached to the lower surface is assumed to be detachably connected with the pressure cylinder through the clamp device.

また、特許文献2に記載された従来装置は、タイヤ金型のサイズに合わせて総合インピーダンスを容易に且つ低コストで調整でき、高い力率で電源を使用できる加熱ユニット及びそれを用いたタイヤ加熱装置を提供することを課題とするものであって、誘導加熱コイルは、強磁性金属部材に対してタイヤ金型とは反対側に配置され且つ磁力線を生成して強磁性金属部材を誘導加熱し、強磁性金属部材は熱伝導によりタイヤ金型を加熱する。非磁性導体は、誘導加熱コイルに対して強磁性金属部材とは反対側に配置され且つ誘導加熱コイルが生成した磁力線を遮蔽する。これらを有する加熱ユニットは、タイヤが収容されるタイヤ金型を加熱する。そして、第1スペーサ、第2スペーサにより、非磁性導体、誘導加熱コイル及び強磁性金属部材の相対的な位置関係を設定する、とするものである。   In addition, the conventional device described in Patent Document 2 is a heating unit that can easily adjust the total impedance according to the size of the tire mold at low cost and can use a power source with a high power factor, and tire heating using the heating unit. An induction heating coil is disposed on a side opposite to a tire mold with respect to a ferromagnetic metal member and generates a magnetic field line to inductively heat the ferromagnetic metal member. The ferromagnetic metal member heats the tire mold by heat conduction. The nonmagnetic conductor is disposed on the opposite side of the induction heating coil from the ferromagnetic metal member and shields the magnetic field lines generated by the induction heating coil. The heating unit having these heats the tire mold in which the tire is accommodated. And the relative positional relationship of a nonmagnetic conductor, an induction heating coil, and a ferromagnetic metal member is set with a 1st spacer and a 2nd spacer.

特開2005−271336号公報JP 2005-271336 A 特開2008−100513号公報JP 2008-1000051 A

しかるに、特許文献1に記載された装置は、加熱手段により、加熱対象物としての上部サイドプレートを直接的に加熱し、そして、上部サイドプレートからの熱伝導に基いて上モールドを間接的に加熱するものであり、また、特許文献2に記載された装置は、誘導加熱コイルで強磁性金属部材を直接的に加熱し、強磁性金属部材のこの誘導加熱に基き、タイヤ金型を熱伝導によって間接的に加熱するものであるので、これらのいずれの従来技術も、上モールドもしくはタイヤ金型を所要の温度に加熱するに至るまでの、輻射、不要部分への熱伝導等に起因する熱損失が大きくなって、熱効率の低下が否めないという問題がった。 However, the apparatus described in Patent Document 1 directly heats the upper side plate as an object to be heated by the heating means, and indirectly heats the upper mold based on heat conduction from the upper side plate. The apparatus described in Patent Document 2 directly heats a ferromagnetic metal member with an induction heating coil, and based on this induction heating of the ferromagnetic metal member, the tire mold is thermally conductive. Since these are indirectly heated, any of these conventional techniques causes heat loss due to radiation, heat conduction to unnecessary parts, etc. until the upper mold or tire mold is heated to a required temperature. However, there was a problem that the heat efficiency could not be reduced.

この発明は、従来技術が抱えるこのような問題点を解決することを課題とするものであり、それの目的とするところは、電磁誘導加熱によって発熱される電磁誘導発熱体からの熱損失を有効に防止して、加硫モールドのタイヤ接触面への熱伝達効率を大きく高めたタイヤ用加硫モールドの加熱装置および、その装置を用いた、タイヤ用加硫モールドの加熱方法を提供するにある。   The object of the present invention is to solve such problems of the prior art, and the object of the present invention is to effectively eliminate heat loss from the electromagnetic induction heating element that generates heat by electromagnetic induction heating. The present invention provides a heating apparatus for a vulcanization mold for a tire, which greatly prevents heat transfer to the tire contact surface of the vulcanization mold, and a method for heating the vulcanization mold for a tire using the apparatus. .

この発明は、加硫ブラダとの協力下で生タイヤの加硫成形キャビティを区画するタイヤ用加硫モールドの加熱装置であって、該加硫モールドの、少なくとも、タイヤとの接触面を、透磁率の小さい金属材料からなる、熱伝導性にすぐれた部材にて区画形成するとともに、タイヤとの接触面から離隔した所要位置に、透磁率の大きい金属材料からなる、電磁誘導発熱体を配設し、この電磁誘導発熱体を発熱させる誘導加熱コイルを、加硫モールド部材を取付けられるプラテン側部材内に配設してなるものである。   The present invention relates to a heating device for a vulcanization mold for a tire that divides a vulcanization molding cavity of a raw tire in cooperation with a vulcanization bladder, wherein at least a contact surface of the vulcanization mold with a tire is made transparent. An electromagnetic induction heating element made of a metal material with a high magnetic permeability is arranged at a required position separated from the contact surface with the tire while being partitioned by a member made of a metal material with a low magnetic permeability and excellent in thermal conductivity. The induction heating coil for generating heat from the electromagnetic induction heating element is disposed in the platen side member to which the vulcanization mold member can be attached.

ここにおいて、加硫モールドは、いわゆる割りモールドおよび、フルサークルモールドのいずれをも可とすることはもちろんである。   Here, as a vulcanization mold, it goes without saying that both a so-called split mold and a full circle mold can be used.

なおここで、プラテン側部材とは、加硫モールドが割りモールドである場合は、プラテンそれ自体の他、プラテンに直接的もしくは間接的に取付けられる、トッププレート等をもいうものとし、また、加硫モールドがフルサークルモールドである場合は、上下のそれぞれのモールド部材を固定する加硫機の、プラテンタイプ加熱板部等をいうものとする。   Here, the platen side member means a top plate or the like that is directly or indirectly attached to the platen in addition to the platen itself when the vulcanization mold is a split mold. When the sulfur mold is a full circle mold, it means a platen type heating plate portion of a vulcanizer for fixing the upper and lower mold members.

またここで、透磁率の小さい金属材料からなる、熱伝導性すぐれた部材とは、たとえば、透磁率が1〜3×10−6(H/m)程度の、アルミニウム、アルミニウム合金、銅、銅合金等からなる部材をいい、透磁率の大きい金属材料から
なる、電磁誘導発熱体とは、たとえば、透磁率が1000〜107×10−6(H/m)程度の、鉄、純鉄、珪素鉄、パーアロイ、スーパーアロイ、ステンレス鋼等の素材からなるものをいう。
Here, the member having excellent thermal conductivity made of a metal material having a low magnetic permeability is, for example, aluminum, aluminum alloy, copper, copper having a magnetic permeability of about 1 to 3 × 10 −6 (H / m). An electromagnetic induction heating element, which is a member made of an alloy or the like and made of a metal material having a high magnetic permeability, is, for example, iron, pure iron having a magnetic permeability of about 1000 to 10 7 × 10 −6 (H / m), It consists of materials such as silicon iron, peralloy, superalloy, and stainless steel.

このような加熱装置において好ましくは、加硫モールドの、半径方向に離隔した、タイヤビード部の加硫成形域と対応する部分および、トレッドショルダ部の加硫成形域と対応する部分のそれぞれに、透磁率の大きい金属材料からなる、電磁誘導発熱体を相互に離隔させて配設するとともに、それらの各電磁誘導発熱体と対応する位置で、プラテン側部材内に各誘導加熱コイルを配設する。   In such a heating device, preferably, each of a portion corresponding to a vulcanization molding region of the tire bead portion and a portion corresponding to a vulcanization molding region of the tread shoulder portion of the vulcanization mold, which are separated in the radial direction, The electromagnetic induction heating elements made of a metal material having a high magnetic permeability are arranged apart from each other, and the induction heating coils are arranged in the platen side member at positions corresponding to the electromagnetic induction heating elements. .

ところで、加硫モールドを割りモールドとするときは、上サイドモールド、下サイドモールドおよびセクターモールドのそれぞれに、各個の電磁誘導発熱体、または、前記したような離隔配置態様になる電磁誘導発熱体を配設するとともに、それぞれの電磁誘導発熱体を発熱させるぞれぞれの誘導加熱コイルを、上下のそれぞれのプラテン側部材およびコンテナリング内に配設することが好ましい。   By the way, when the vulcanization mold is a split mold, each of the upper side mold, the lower side mold and the sector mold is provided with an individual electromagnetic induction heating element, or an electromagnetic induction heating element which is in the above-described separated arrangement mode. It is preferable to arrange each induction heating coil for heating each electromagnetic induction heating element in each of the upper and lower platen side members and the container ring.

また好ましくは、電磁誘導発熱体を配設した加硫モールド部材と、誘導加熱コイルの配設部材との間に断熱材を配設する。
そしてまた好ましくは、誘導加熱コイルの配設部材の、加硫モールド部材側とは反対側の面に、非磁性誘導体等からなる磁気シールド部材を配設する。
Preferably, a heat insulating material is provided between the vulcanization mold member provided with the electromagnetic induction heating element and the induction heating coil.
Preferably, a magnetic shield member made of a nonmagnetic derivative or the like is disposed on the surface of the arrangement member of the induction heating coil opposite to the vulcanization mold member side.

この発明の、タイヤ用加硫モールドの加熱方法は、先に述べたいずれかの、タイヤ用加硫モールドの加熱装置を用いて該加硫モールドを加熱するに当って、はじめに、誘導加熱コイルに、所要の周波数の交流電流を流すことによって、加硫モールドの電磁誘導発熱体を発熱させ、次いで、その発熱体の発熱熱量を、熱伝導性にすぐれた部材内での熱伝導に基いて、加硫モールドの、タイヤとの接触面に導くにある。   The method of heating a vulcanization mold for tires according to the present invention is as follows. First, when the vulcanization mold is heated using any one of the above-described heating devices for a vulcanization mold for tires, an induction heating coil is used. The electromagnetic induction heating element of the vulcanization mold is heated by flowing an alternating current of a required frequency, and then the heat generated by the heating element is based on heat conduction in a member having excellent thermal conductivity. The vulcanization mold is led to the contact surface with the tire.

この場合好ましくは、複数個配設した誘導加熱コイルの一個以上に流す交流電流の電流値および電流周波数の少なくとも一方を調整して、一個以上の電磁誘導発熱体の発熱量、ひいては、加硫モールドのタイヤ接触面温度を所要に応じて制御する。   In this case, preferably, at least one of the current value and the current frequency of the alternating current flowing through one or more of the induction heating coils arranged in plural is adjusted so that the calorific value of the one or more electromagnetic induction heating elements, and hence the vulcanization mold. The tire contact surface temperature is controlled as required.

また好ましくは、誘導加熱コイルに流す交流電流の周波数を50Hz又は60Hzの低周波数とする。   Preferably, the frequency of the alternating current flowing through the induction heating coil is a low frequency of 50 Hz or 60 Hz.

そしてまた好ましくは、加硫モールドに配設した温度センサーの検出結果に基いて、一個以上の電磁誘導発熱体の所要のものの発熱量を増減制御して、たとえば、加硫モールドのタイヤ接触面の温度分布を全体にわたって所期した通りのものとする。   And preferably, based on the detection result of the temperature sensor arranged in the vulcanization mold, the amount of heat generation of the required one or more electromagnetic induction heating elements is controlled to increase or decrease, for example, the tire contact surface of the vulcanization mold. The temperature distribution shall be as expected throughout.

この発明の加熱装置では、電磁誘導発熱体それ自体を加熱モールド内に配設することで、誘導加熱コイルの作用下で、電磁誘導加熱された発熱体の発熱熱量のほぼ全てを、加硫モールドの、タイヤとの接触面側へ直接的に伝達することができ、発熱熱量の、意図しない輻射、伝達等に起因する散逸を有効に防止することができるので、十分高い熱効率の下で、生タイヤを所期した通りに加硫することができ、また、生タイヤの加硫に要する時間を短縮して、生タイヤの加硫成形能率を有効に向上させることができる。   In the heating device of the present invention, the electromagnetic induction heating element itself is disposed in the heating mold, so that almost all of the heat generated by the electromagnetic induction heating element is heated under the action of the induction heating coil. Can be transmitted directly to the contact surface with the tire, and dissipation due to unintentional radiation, transmission, etc., of the heat generated can be effectively prevented. The tire can be vulcanized as expected, and the time required for vulcanization of the raw tire can be shortened to effectively improve the vulcanization molding efficiency of the raw tire.

またここで、加硫モールドの、タイヤビード部の加硫成形域と対応する部分および、トレッドショルダ部の加硫成形域と対応する部分のそれぞれに、電磁誘導発熱体を相互に離隔させて配設するとともに、それらの各発熱体と対応する位置で、プラテン側部材内に、筒巻状に形成した各誘導加熱コイルを配設した場合は、少なくとも一の誘導加熱コイルを流れる交流電流の電流値および電流周波数の少なくとも一方を所要に応じて調整することで、少なくとも一の電磁誘導発熱体の発熱量を制御して、加硫モールドの、ビード部加硫成形域のタイヤ接触面、および、トレッドショルダ部加硫成形域のタイヤ接触面、ならびに、上記両加硫域間のタイヤ接触面のそれぞれの表面温度を所要の温度に選択してタイヤの加硫品質を、オーバキュア等の加硫欠陥のない、常に適正なものとすることができる。   Further, here, the electromagnetic induction heating elements are arranged separately from each other in the portion corresponding to the vulcanization molding region of the tire bead portion and the portion corresponding to the vulcanization molding region of the tread shoulder portion of the vulcanization mold. In addition, when each induction heating coil formed in a cylindrical shape is arranged in the platen side member at a position corresponding to each of the heating elements, the current of the alternating current flowing through at least one induction heating coil By adjusting at least one of the value and current frequency as necessary, the amount of heat generated by at least one electromagnetic induction heating element is controlled, and the tire contact surface of the bead portion vulcanization molding region of the vulcanization mold, and Select the surface temperature of the tire contact surface of the tread shoulder vulcanization molding area and the tire contact surface between the two vulcanization areas to the required temperature to improve the tire vulcanization quality, overcure, etc. No vulcanization defects, always can be made proper.

そしてこのことは、加硫モールドを、上下二つ合わせのモールド部分からなるフルサークルモールドとした場合、および、加硫モールドを、トレッドの加硫成形域が複数のセクターモールドからなる割りモールドとした場合のいずれにおいても同様である。   And this means that when the vulcanization mold is a full circle mold composed of two upper and lower mold parts, and the vulcanization mold is a split mold in which the vulcanization molding area of the tread is composed of a plurality of sector molds. The same is true in any case.

そして、加硫モールドを割りモールドとする場合は、上サイドモールド、下サイドモールドおよびセクターモールドのそれぞれに電磁誘導発熱体を配設するともに、それぞれの発熱体を発熱させるそれぞれの誘導加熱コイルを、上下のそれぞれのプラテン側部材およびコンテナリング内に配設することで、タイヤビード部およびトレッドショルダ部のみならず、ゴム厚みの厚いトレッドをもまた、熱効率良く、短時間のうちに、十分適正に加硫することができる。   And when using a vulcanization mold as a split mold, an electromagnetic induction heating element is disposed in each of the upper side mold, the lower side mold, and the sector mold, and each induction heating coil that generates heat from each heating element, By arranging in the upper and lower platen side members and the container ring, not only the tire bead part and tread shoulder part, but also the tread with thick rubber thickness is also heat-efficient and sufficiently adequate in a short time. Can be vulcanized.

またここで、電磁誘導発熱体を配設した加硫モールド部材と、誘導加熱コイルの配設部材との間に断熱材を配設した場合は、誘導加熱された発熱体からの外部放熱、および、一旦加熱された加硫モールドからの放熱を有効に抑制して、熱効率を一層高めることができるとともに、誘導加熱コイルを、発熱体の熱アタックから有効に保護することができる。   Here, when a heat insulating material is disposed between the vulcanization mold member having the electromagnetic induction heating element and the induction heating coil arrangement member, external heat radiation from the induction heating element, and The heat dissipation from the once heated vulcanization mold can be effectively suppressed to further increase the thermal efficiency, and the induction heating coil can be effectively protected from the heat attack of the heating element.

そしてまた、誘導加熱コイルの配設部材の、加硫モールド部材側とは反対側の面に磁気シール部材を配設したときは、誘導加熱コイル部材で発生された磁力線を磁気シール部材で遮蔽して、加硫モールド部材とは反対側の金属部材の誘導加熱を防止するともに、磁力線の方向を、加硫モールド部材側に指向させて、電磁誘導発熱体をより効率的に発熱させることができる。   In addition, when the magnetic seal member is disposed on the surface of the induction heating coil disposed on the side opposite to the vulcanization mold member side, the magnetic lines generated by the induction heating coil member are shielded by the magnetic seal member. Thus, induction heating of the metal member opposite to the vulcanization mold member can be prevented, and the direction of the magnetic lines can be directed to the vulcanization mold member side, so that the electromagnetic induction heating element can generate heat more efficiently. .

以上のような加熱装置のいずれかを用いてタイヤ用加硫モールドを加熱するに当っては、誘導加熱コイルに、所要の周波数の交流電流を流すことによって、加硫モールドの電磁誘導発熱体を所要の温度に発熱させ、そして、その発熱体の発熱熱量を、熱伝導性にすぐれた部材内での熱伝導等に基いて、加硫モールドの、タイヤとの接触面に導くことで、前述したように、すぐれた熱効率の下で、タイヤを効率よく加硫することができる。   In heating the vulcanization mold for tires using any of the above heating devices, an electromagnetic induction heating element of the vulcanization mold is made to flow by passing an alternating current of a required frequency through the induction heating coil. By generating heat to the required temperature and guiding the heat generated by the heating element to the contact surface of the vulcanization mold with the tire based on heat conduction in a member having excellent thermal conductivity, As described above, the tire can be efficiently vulcanized with excellent thermal efficiency.

かかる方法において、複数個配設した誘導加熱コイルの一個以上に流す交流電流の電流値および電流周波数の少なくとも一方を調整して、一個以上の電磁誘導発熱体の発熱量を制御するときは、加硫モールドの、タイヤとの接触面の各部位を所期した通りの温度に設定することでき、製品タイヤの各部を常に適正に加硫することができる。   In such a method, when controlling the heat generation amount of one or more electromagnetic induction heating elements by adjusting at least one of the current value and the current frequency of the alternating current flowing through one or more induction heating coils, Each part of the contact surface of the sulfur mold with the tire can be set to a temperature as expected, and each part of the product tire can always be properly vulcanized.

また、この加熱方法で、誘導加熱コイルに流す交流電流の周波数を50Hz又は60Hzの低周波数とするときは、特別の周波数変換手段等の高価な装置を用いることなく、一般の商用交流電源で、電磁誘導発熱体を、生タイヤの加硫に必要な130〜200℃前後の温度に容易に加熱することができ、しかも、高周波交流を用いる場合に比し、加硫モールドのより深部(深さ数cm)まで熱を浸透させることができ、結果として、加硫モールドの内部をより効率良く加熱することができる。   In addition, when the frequency of the alternating current flowing through the induction heating coil is set to a low frequency of 50 Hz or 60 Hz by this heating method, a general commercial AC power source can be used without using an expensive device such as a special frequency converter. The electromagnetic induction heating element can be easily heated to a temperature of about 130 to 200 ° C. necessary for vulcanization of the raw tire, and more deep than the vulcanization mold (depth) compared to the case where high-frequency alternating current is used. Heat can penetrate to several cm), and as a result, the inside of the vulcanization mold can be heated more efficiently.

ところで、加硫モールドに配設した、温度センサの検出結果に基いて、一個以上の電磁誘導発熱体の所要のものの発熱量を増減制御するときは、加硫モールドの、タイヤとの接触面の各部位の温度をより高精度にコントロールすることができ、製品品質をより一層好適なものとすることができる。   By the way, when increasing or decreasing the heat generation amount of one or more electromagnetic induction heating elements required based on the detection result of the temperature sensor disposed in the vulcanization mold, the contact surface of the vulcanization mold with the tire is contacted. The temperature of each part can be controlled with higher accuracy, and the product quality can be further improved.

この発明の実施形態を割りモールドについて示す要部縦断面図である。It is a principal part longitudinal cross-sectional view which shows embodiment of this invention about a split mold. フルサークルモールドについての実施形態を示す要部縦断面図である。It is a principal part longitudinal cross-sectional view which shows embodiment about a full circle mold. 加硫モールドのスチーム加熱側を示す要部縦断面図である。It is a principal part longitudinal cross-sectional view which shows the steam heating side of a vulcanization mold.

この発明の実施形態を割りモールドについて示す図1において、1,2はそれぞれ、上下に対向して位置してタイヤのサイド部の加硫成形を行う、ともに円環形状の上サイドモールドおよび下サイドモールドを示し、3はトレッド周方向に複数配設されて、タイヤに対して拡縮径変位されるセクターモールドを示し、複数個のセクターモールド3は、タイヤトレッド部を加硫成形して、トレッド踏面に所要のトレッドパターンを付与するべく機能する。   In FIG. 1 showing an embodiment of the present invention with respect to a split mold, 1 and 2 are positioned opposite to each other to perform vulcanization molding of a side portion of a tire. 3 indicates a sector mold that is disposed in the circumferential direction of the tread and is displaced by a diameter of the tire, and the plurality of sector molds 3 are formed by vulcanizing and molding the tire tread portion. To provide the required tread pattern.

なおここで、各個のセクターモールド3は、タイヤのトレッド部に接触するセクターピース3aと、各セクターピース3aの背面に固定されてセクターピース3aをバックアップするカム従節部材3bとからなり、このカム従節部材3bは、セクターピース3aとは反対側の周面に,図では斜めの上方に向く傾斜面3cを有する。   Here, each sector mold 3 includes a sector piece 3a that contacts the tread portion of the tire and a cam follower member 3b that is fixed to the back surface of each sector piece 3a and backs up the sector piece 3a. The follower member 3b has an inclined surface 3c directed obliquely upward in the drawing on the peripheral surface opposite to the sector piece 3a.

かかる割りモールドは、上下のサイドモールド1、2およびそれぞれのセクターモールド3の型締め姿勢で、加硫ブラダ4との間に、生タイヤの加硫成形のためのキャビティ5を区画する。
ここで加硫ブラダ4はその内部への加圧蒸気等の供給に基いて、キャビティ5内に収納配置された生タイヤを、上下の各サイドモールド1、2およびセクターモールド3の内表面に押圧して成形するとともに、生タイヤをそれの内表面側から加硫するべく機能する。
This split mold divides a cavity 5 for vulcanization molding of a raw tire between the vulcanization bladder 4 and the upper and lower side molds 1 and 2 and the sector molds 3 in a clamping posture.
Here, the vulcanizing bladder 4 presses the raw tires accommodated in the cavity 5 against the inner surfaces of the upper and lower side molds 1 and 2 and the sector mold 3 based on the supply of pressurized steam or the like to the inside thereof. And functions to vulcanize the green tire from its inner surface side.

そして、このような割りモールを収納するコンテナ6は、図では、上サイドモールド1を、トッププレート7を介して締付け固定等してなる上プラテン8と、下サイドモールド2を締付け固定等してなる下プラテン9と、上プラテン8に直接的もしくは間接的に取付けられてそれぞれのセクターモールド3に外接して、それぞれのセクターモールド3の拡縮径変位をもたらすコンテナリング10とを具えてなる。   In the figure, a container 6 for storing such a split molding has an upper platen 8 formed by tightening and fixing the upper side mold 1 via a top plate 7 and a lower side mold 2 and the like. A lower platen 9 and a container ring 10 that is directly or indirectly attached to the upper platen 8 and circumscribes each sector mold 3 to cause expansion / contraction diameter displacement of each sector mold 3.

ここで、コンテナリング10による、それぞれのセクターモールド3の拡縮径変位は、たとえば、それぞれのセクターモールド3の変位を、下プラテン9上に直接的もしくは間接的に設けたガイドレールによって半径方向内外に案内するとともに、コンテナリング10の内周面に設けた、斜め下方向に向くカム面10aを、セクターモールド3のカム従節部材3bの傾斜面3cに摺接させることで、コンテナリング10のカム面10aの下降変位に伴う、それぞれのセクターモールド3の縮径変位を可能とし、また、コンテナリング10と各個のセクターモールド3のカム従節部材3bとの相互の掛合に基いて、コンテナリング10およびカム面10aの上昇変位に伴う、それぞれのセクターモールド3の拡径変位を可能とすることによって行わせることができる。   Here, the expansion / contraction diameter displacement of each sector mold 3 caused by the container ring 10 is, for example, that the displacement of each sector mold 3 is radially inward or outward by a guide rail provided directly or indirectly on the lower platen 9. The cam of the container ring 10 can be guided by sliding the cam surface 10a provided on the inner peripheral surface of the container ring 10 and facing obliquely downward to the inclined surface 3c of the cam follower member 3b of the sector mold 3. It is possible to reduce the diameter of each sector mold 3 in accordance with the downward displacement of the surface 10a, and the container ring 10 is based on the mutual engagement between the container ring 10 and the cam follower member 3b of each individual sector mold 3. And by allowing the respective sector molds 3 to expand in diameter with the upward displacement of the cam surface 10a. Can.

なおこの場合にあって、それぞれのセクターモールド3を限界位置まで拡径変位させるとともに、上サイドモールド1を所定の高さまで上昇変位させても、型開き量が未だ不足するときは、コンテナリング10の継続上昇に基いて、コンテナリング10に掛合するそれぞれのセクターモールド3を、下プラテン9側から上昇変形させ、これに伴って、上サイドモールド1をもまた、大きく上昇変位させることも可能である。   In this case, when each of the sector molds 3 is expanded and displaced to the limit position and the upper side mold 1 is displaced up to a predetermined height, if the mold opening amount is still insufficient, the container ring 10 Accordingly, each sector mold 3 engaged with the container ring 10 is deformed upward from the lower platen 9 side, and accordingly, the upper side mold 1 can also be largely displaced upward. is there.

以上のような割モールドおよびコンテナ6において、ここでは、上下のそれぞれのサイドモールド1、2およびセクターモールド3のそれぞれの、少なくともタイヤとの接触面、いいかえればキャビティ5に臨む面を、透磁率の小さい金属材料、たとえば、透磁率が1〜3×10−6(H/m)程度の金属材料からなる、熱伝導性にすぐれた部材、たとえば、熱伝導率が200〜400[w/(m・k)]程度のアルミニウム、アルミニウム合金、銅、銅合金等にて区画形成する一方、タイヤとの接触面から離隔した所要位置には、透磁率の大きい金属材料、たとえば、透磁率が1000〜1000000×10−6(H/m)程度の鉄、純鉄、珪素鉄、パーアロイ、スーパーアロイ、ステンレス鋼等からなる電磁誘導発熱体11、12、13を配設し、そしてこれらの各電磁誘導発熱体11、12、13を発熱させる、渦巻状等に巻回形成した誘導加熱コイル14、15、16のそれぞれを、加硫モールド部分を取り付けられるプラテン側部材、図では、上プラン8に固定され、上サイドモールド1を取り付けられるトッププレート7内、下サイドモールド2を取付けされる下プラテン9内および、上プラテン8に固定され、セクターモールド3が掛合状態で取付けられるコンテナリング10内のそれぞれに配設する。 In the split mold and the container 6 as described above, here, the upper and lower side molds 1 and 2 and the sector mold 3 each have at least a contact surface with the tire, in other words, a surface facing the cavity 5. A member having a high thermal conductivity, for example, a thermal conductivity of 200 to 400 [w / (m) made of a small metal material, for example, a metal material having a permeability of about 1 to 3 × 10 −6 (H / m). K)] while being partitioned and formed of aluminum, aluminum alloy, copper, copper alloy or the like, at a required position separated from the contact surface with the tire, a metal material having a high permeability, for example, a permeability of 1000 to 1000 Electromagnetic induction heating elements 11, 12, 13 made of iron, pure iron, silicon iron, peralloy, superalloy, stainless steel, etc. of about 1000000 × 10 −6 (H / m) The induction heating coils 14, 15, 16 wound in a spiral shape or the like that heat the electromagnetic induction heating elements 11, 12, 13 are respectively attached to the platen to which the vulcanization mold part is attached. Side members, in the figure, fixed to the upper plan 8 and fixed to the top plate 7 to which the upper side mold 1 is attached, to the lower platen 9 to which the lower side mold 2 is attached, and to the upper platen 8, It arrange | positions in each in the container ring 10 attached in a hooked state.

このように構成してなるタイヤ用加硫モールドの加熱装置では、それぞれの誘導加熱コイル14、15、16のそれぞれに、たとえば、50Hz又は60Hzの周波数の、所要の大きさの交流電流を流すことで、それぞれの電磁誘導発熱体11、12、13は、電流値に応じた温度に誘導加熱されることになるので、キャビティ5内への生タイヤの配設状態においては、それぞれのサイドモールド1、2およびセクターモールド3の、タイヤとの接触面は、誘導加熱されたそれぞれの発熱体11、12、13からの熱伝導等に基いて、すぐれた熱伝導性の下で、所要の温度に加熱されることなり、タイヤの総厚みが相対的に厚くなる部分である、たとえば、ビード部加硫成形域、トレッドショルダ部の加硫成形域およびトレッド加硫成形域等のそれぞれにはとくに多量の熱量を供給することができる一方で、総厚みが相対的に薄くなる部分である、たとえばサイドウォール部の加硫成形域に対しては、電磁誘導発熱体11、12、13の配設態様等との関連の下で、供給熱量を相対的に少なくすることができるので、タイヤの全体を所期した通りに適正に加硫して、すぐれた加硫品質を確実に実現することができる。
なおこの場合、タイヤの内面側は、加硫ブラダ4内へ供給された加圧蒸気からの供給熱量に基いて加硫されることになる。
In the tire vulcanization mold heating apparatus configured as described above, an alternating current having a required magnitude, for example, having a frequency of 50 Hz or 60 Hz is caused to flow through each induction heating coil 14, 15, 16. Thus, each of the electromagnetic induction heating elements 11, 12, and 13 is induction-heated to a temperature corresponding to the current value. Therefore, in the state in which the raw tire is disposed in the cavity 5, each side mold 1 2 and the sector mold 3 contact surfaces with the tires at a required temperature under excellent heat conductivity based on heat conduction from the respective heating elements 11, 12, 13 induction-heated. It is a part that is heated and the total thickness of the tire is relatively thick, for example, that of a bead part vulcanization molding region, a tread shoulder vulcanization molding region, a tread vulcanization molding region, etc. In particular, a large amount of heat can be supplied to each of the electromagnetic induction heating elements 11 and 12, for example, in a vulcanization molding region of the sidewall portion, which is a portion where the total thickness is relatively thin. Since the amount of heat supplied can be relatively reduced in relation to the arrangement mode of 13 and the like, the entire tire is properly vulcanized as expected to ensure excellent vulcanization quality. Can be realized.
In this case, the inner surface side of the tire is vulcanized based on the amount of heat supplied from the pressurized steam supplied into the vulcanization bladder 4.

このようにここでは、電磁誘導発熱体11、12、13のそれぞれを、サイドモールド1、2および、セクターモールド3内に配設することで、誘導加熱されたそれぞれの発熱体11、12、13の発熱熱量を、それらのモールド1、2、3のタイヤとの接触面に、熱の散逸なしに効率よく伝達できるので、熱効率を高めるとともに、加硫効率を有効に向上させることができる。   Thus, here, each of the electromagnetic induction heating elements 11, 12, 13 is arranged in the side molds 1, 2 and the sector mold 3, so that each heating element 11, 12, 13 that has been induction-heated. Can be efficiently transmitted to the contact surfaces of the molds 1, 2 and 3 with the tires without heat dissipation, so that the thermal efficiency can be increased and the vulcanization efficiency can be effectively improved.

またここでは、それぞれの電磁誘導発熱体11、12、13の配設位置および、それぞれの発熱体11、12、13の発熱温度を選択することで加硫欠陥等のない、常にすぐれた加硫品質を実現することができる。   Also, here, by selecting the arrangement position of each electromagnetic induction heating element 11, 12, 13 and the heat generation temperature of each heating element 11, 12, 13, the vulcanization is always excellent without any vulcanization defects. Quality can be realized.

ところで、熱効率の一層の向上のためには、電磁誘導発熱体11、12、13を配設した加硫モールド部材、図では、上下のそれぞれのサイドモールド1、2およびセクターモールド3と、誘導加熱コイル14、15、16を配設したプラテン側部材との間に、図1に示すようなそれぞれの断熱材17、18、19を介装配置することが好ましく、断熱材17、18、19をこのように配設したときは、図3(a)に例示するように、スチームの流動ジャケットを形成した、上下のそれぞれのプラテンおよびコンテナリングの外接するように断熱材20、21、22を配設する場合に比し、断熱材による囲繞域を小さくできるとともに、熱の輻射、不要部分への伝達等に起因する熱損失を低減できる効果がある。しかも、図1に示すような断熱材の配設態様によれば、誘導加熱された発熱体11、12、13からの熱伝達によって誘導加熱コイル14、15、16が高温に晒されることに起因する、それらのコイル14、15、16の劣化を防止することもできる。   By the way, in order to further improve the thermal efficiency, the vulcanization mold member in which the electromagnetic induction heating elements 11, 12, 13 are disposed, in the figure, the upper and lower side molds 1, 2, and the sector mold 3, and induction heating are used. It is preferable to interpose and arrange the respective heat insulating materials 17, 18, and 19 as shown in FIG. 1 between the platen side members on which the coils 14, 15, and 16 are disposed. When arranged in this way, as shown in FIG. 3 (a), the heat insulating materials 20, 21, and 22 are arranged so as to circumscribe the upper and lower platens and container rings that form a steam flow jacket. Compared to the case of installing, it is possible to reduce the surrounding area by the heat insulating material and to reduce heat loss caused by heat radiation, transmission to unnecessary portions, and the like. In addition, according to the arrangement of the heat insulating material as shown in FIG. 1, the induction heating coils 14, 15, 16 are exposed to a high temperature by heat transfer from the heating elements 11, 12, 13 that are induction-heated. Further, the deterioration of the coils 14, 15, 16 can be prevented.

また好ましくは、たとえば、誘導加熱コイル11、12の配設部材である、トッププレート7および下プラテン9の、加硫モールド部材例とは反対側の面に、強磁性非導体部材等とすることができる磁気シールド部材23、24のそれぞれを配設することで、誘導加熱コイル11、12に発生した磁力線を、コンテナ構成部材その他の近接部材に対して遮蔽するとともに、発生磁力線を、電磁誘導発熱体11、12に指向させて、それらの発熱体11,12をより効率的に発熱させる。   Preferably, for example, a ferromagnetic non-conductive member or the like is provided on the surface of the top plate 7 and the lower platen 9, which are the members for arranging the induction heating coils 11 and 12, opposite to the vulcanized mold member example. By arranging each of the magnetic shield members 23 and 24 capable of performing the above-described operation, the magnetic field lines generated in the induction heating coils 11 and 12 are shielded from the container constituent members and other adjacent members, and the generated magnetic field lines are generated by electromagnetic induction heat generation. The heat generation elements 11 and 12 are heated more efficiently by being directed to the bodies 11 and 12.

このような装置においてより好ましくは、図1に示すように、上下のそれぞれのサイドモールド1、2の、半径方向に離隔した、タイヤビード部の加硫成形域と対応する部分およびトレッドショルダ部の加硫成形域と対応する部分のそれぞれに、透磁率の大きい金属材料からなる電磁誘導発熱体を相互に離隔させて配設するとともに、離隔させて配置されたそれらのそれぞれの発熱体と対応する位置で、プラテン側部材内に各誘導加熱コイルを、これも半径方向の離隔姿勢で配設する。   More preferably, in such an apparatus, as shown in FIG. 1, the portions corresponding to the vulcanization molding region of the tire bead portion and the tread shoulder portion of the upper and lower side molds 1 and 2 that are spaced apart in the radial direction. In each of the portions corresponding to the vulcanization molding region, electromagnetic induction heating elements made of a metal material having a high magnetic permeability are arranged apart from each other, and correspond to the respective heating elements arranged apart from each other. In position, each induction heating coil is arranged in the platen side member, also in a radially spaced position.

これによれば、半径方向に離隔する各コイルに供給する交流電流の、たとえば電流値を適宜選択することで、対応する発熱体11、12の発熱量を所要に応じて調整することができるので、加硫モールドの、タイヤとの接触面の温度をきめ細かにコントロールして、タイヤの加硫品質をより適正なものとすることができる。   According to this, by appropriately selecting, for example, the current value of the alternating current supplied to the coils that are separated in the radial direction, the heat generation amount of the corresponding heating elements 11 and 12 can be adjusted as necessary. The temperature of the contact surface of the vulcanization mold with the tire can be finely controlled to make the vulcanization quality of the tire more appropriate.

ところで、以上に述べたいずれかのモールド加熱装置を用いて加硫モールドを加熱するに当っては、誘導加熱コイル14、15、16に電流を流すことによって、加硫モールドに配設した電磁誘導発熱体11、12、13を発熱させ、それらの発熱体11、12、13の発熱熱量を、熱伝道性にすぐれた部材内の熱伝導に基いて、加硫モールドの、タイヤとの接触面に導くことにより、先にも述べたように、加硫モールドの内部加熱に基き、熱の散逸を防止して熱効率を有効に高めることができる。   By the way, when heating a vulcanization mold using any of the mold heating devices described above, an electromagnetic induction provided in the vulcanization mold is caused by passing an electric current through the induction heating coils 14, 15, 16. The heat generating elements 11, 12, and 13 generate heat, and the heat generation amount of the heat generating elements 11, 12, and 13 is determined based on the heat conduction in the member having excellent heat conductivity. As described above, based on the internal heating of the vulcanization mold, heat dissipation can be prevented and the thermal efficiency can be effectively increased.

また、加硫モールドのこのような加熱に当って、複数配設した誘導コイル14、15、16の一個以上に流す交流電流の、電流値および電流周波数の少なくとも一方を調整して、一個以上の電磁誘導発熱体11、12、13の発熱量を制御する場合は、これも前述したように、加硫モールドの、タイヤとの接触面の温度を、所要に応じてきめ細かにコントロールすることができ、タイヤの総厚みに厚薄があっても各部分を常に適正に加硫することができる。   Further, in such heating of the vulcanization mold, by adjusting at least one of the current value and the current frequency of the alternating current flowing through one or more of the plurality of induction coils 14, 15, 16, one or more When controlling the heat generation amount of the electromagnetic induction heating elements 11, 12, 13 as described above, the temperature of the contact surface of the vulcanization mold with the tire can be finely controlled as required. Even if the total thickness of the tire is thin, each part can always be properly vulcanized.

なおここで、誘導加熱コイル14、15、16に流す交流電流の周波数を、一般の商用電源周波数である50Hz又は60Hzの、一般家庭で使用されている程度の低周波のものとしたときは、加熱装置の大型化が余儀なくされる、高価な周波数変換手段が不要になる他、加硫モールドのより深部に配設した発熱体11、12、13を、200℃程度の温度まで容易に加熱することができるので、発熱体11、12、13の発熱量の散逸をより有効に防止して、熱効率を一層高めることができる。   Here, when the frequency of the alternating current passed through the induction heating coils 14, 15, 16 is set to a frequency of 50 Hz or 60 Hz, which is a general commercial power supply frequency, as low as that used in general homes, In addition to an increase in the size of the heating device and the need for expensive frequency conversion means, the heating elements 11, 12, and 13 disposed deeper in the vulcanization mold are easily heated to a temperature of about 200 ° C. Therefore, dissipation of the calorific value of the heating elements 11, 12, 13 can be more effectively prevented, and thermal efficiency can be further increased.

ところで、以上のような加熱に当って、加硫モールドに配設した温度センサの検出結果に基いて、一個以上の電磁誘導発熱体の所要のものの発熱量を増減制御するときは、製品タイヤの加硫品質をより一層向上させることができる。   By the way, when the heating value of one or more electromagnetic induction heating elements is controlled to increase or decrease on the basis of the detection result of the temperature sensor arranged in the vulcanization mold in the heating as described above, Vulcanization quality can be further improved.

フルサークルモールドについての、この発明装置の実施形態を示す図2は、上下のそれぞれのモールド31、32内の、タイヤビード部の加硫成形域と対応する部分と、トレッドショルダ部の加硫成形域と対応する部分とのそれぞれに、透磁率の大きい金属材料からなる電磁誘導発熱体33、34を半径方向に離隔させて配設するとともに、半径方向に離隔させて配設した各電磁誘導発熱体33,34と対応する位置で、プラテン側部材、図では加硫機のプラテンタイプのそれぞれの加熱部材36内に、各個の誘導加熱コイル37、38を配設したものである。   FIG. 2 showing an embodiment of the present invention apparatus for a full circle mold is shown in the upper and lower molds 31 and 32, the part corresponding to the vulcanization molding region of the tire bead part, and the vulcanization molding of the tread shoulder part. The electromagnetic induction heating elements 33 and 34 made of a metal material having a high magnetic permeability are arranged in the radial direction and are separated from each other in the radial direction and the electromagnetic induction heating elements arranged in the radial direction. Inductive heating coils 37 and 38 are arranged in platen side members, in the figure, platen type heating members 36 of the vulcanizer, at positions corresponding to the bodies 33 and 34, respectively.

ここで好ましくは、上下の各モールド31、32と、各加熱部材36との間に断熱材39、40を配設する。
従って、この加熱装置においてもまた、このように断熱材39、40を配設したときは、図3(b)に例示するように、スチームの流動ジャケットを形成した、プラテンタイプの上下の加熱部材36のそれぞれに外接するように断熱材41、42を配設する場合に比して、断熱材による囲繞域を狭小にすることができるとともに、熱伝達に起因する熱損失を効果的に低減させることができ、また、誘導加熱コイル37、38の熱劣化を有効に防止することもできる。
まお、図2に示す加熱装置においてもまた、誘導加熱コイル37、38を配設した加熱部材36の外側面には磁気シールド部材43、44を配設することが好ましい。
Preferably, heat insulating materials 39 and 40 are disposed between the upper and lower molds 31 and 32 and the heating members 36.
Therefore, also in this heating apparatus, when the heat insulating materials 39 and 40 are arranged in this way, as shown in FIG. 3B, platen type upper and lower heating members formed with a steam flow jacket are illustrated. Compared with the case where the heat insulating materials 41 and 42 are arranged so as to circumscribe each of the 36, the surrounding area by the heat insulating material can be narrowed, and the heat loss due to heat transfer can be effectively reduced. In addition, thermal deterioration of the induction heating coils 37 and 38 can be effectively prevented.
In the heating apparatus shown in FIG. 2, it is preferable that magnetic shield members 43 and 44 are disposed on the outer surface of the heating member 36 on which the induction heating coils 37 and 38 are disposed.

そして図2に示すところにおいても、生タイヤは、従来既知の加硫ブラダ45からの供給熱量によって内面側から加硫されることになる。   Also in the place shown in FIG. 2, the green tire is vulcanized from the inner surface side by the amount of heat supplied from the conventionally known vulcanization bladder 45.

以上のような加硫装置を用いた、タイヤ用加硫モールドの加熱は、割りモーリドについて先に述べたところと同様にして行うことができ、それにより、すぐれた熱効率の下で、タイヤを効率良く加熱することができる。   Heating of the tire vulcanization mold using the vulcanizing apparatus as described above can be performed in the same manner as described above for the split mold, thereby making the tire efficient under excellent thermal efficiency. It can be heated well.

1 上サイドモールド
2 下サイドモールド
3 セクターモールド
3a セクターピース
3b カム従節部材
3c 傾斜面
4,45 加硫ブラダ
5 キャビティ
6 コンテナ
7 トッププレート
8 上プラン
9 下プラン
10 コンテナリング
10a カム面
11、12、13、33、34 電磁誘導発熱体
14、15、16、37、38 誘導加熱コイル
17、18、19、39、40 断熱材
23、24、43、44 磁気シールド部材
31 上モールド
32 下モールド
1 Upper side mold 2 Lower side mold 3 Sector mold
3a Sector piece
3b Cam follower
3c Inclined surface
4, 45 Vulcanized bladder
5 cavity
6 container
7 Top plate
8 Top plan
9 Lower plan
10 Container ring
10a Cam surface
11, 12, 13, 33, 34 Electromagnetic induction heating element
14, 15, 16, 37, 38 induction heating coil
17, 18, 19, 39, 40 Insulation
23, 24, 43, 44 Magnetic shield member
31 Upper mold
32 Lower mold

Claims (11)

加硫ブラダとの協力下で生タイヤの加硫成形キャビティを区画するタイヤ用加硫モールドの加熱装置であって、
該加硫モールドの、少なくとも、タイヤとの接触面を、透磁率の小さい金属材料からなり、熱伝導性にすぐれた部材にて区画形成するとともに、タイヤとの接触面から離隔した所定位置に、透磁率の大きい金属材料からなる、電磁誘導発熱体を配設し、該電磁誘導発熱体を発熱させる誘導加熱コイルを、加硫モールド部分を取付けられるプラテン側部材内に配設してなるタイヤ用加硫モールドの加熱装置。
A tire vulcanization mold heating device that divides a vulcanization molding cavity of a raw tire in cooperation with a vulcanization bladder,
At least the contact surface with the tire of the vulcanization mold is made of a metal material having a low magnetic permeability, and is partitioned by a member having excellent thermal conductivity, and at a predetermined position separated from the contact surface with the tire, For tires in which an electromagnetic induction heating element made of a metal material having a high magnetic permeability is provided, and an induction heating coil for generating heat from the electromagnetic induction heating element is provided in a platen side member to which a vulcanization mold portion can be attached. Vulcanization mold heating device.
加硫モールドの、半径方向に離隔した、生タイヤビード部の加硫成形域と対応する部分および、トレッドショルダ部の加硫成形域と対応する部分のそれぞれに、透磁率の大きい金属材料からなる、電磁誘導発熱体を相互に離隔させて配設するとともに、それらの各電磁誘導発熱体と対応する位置で、プラテン側部材内に各誘導コイルを配設してなる請求項1に記載の加硫モールドの加熱装置。 Each of a portion corresponding to the vulcanization molding region of the raw tire bead portion and a portion corresponding to the vulcanization molding region of the tread shoulder portion, which are separated from each other in the radial direction, is made of a metal material having a high magnetic permeability. 2. The electromagnetic induction heating element according to claim 1, wherein the induction induction heating elements are spaced apart from each other, and the induction coils are arranged in the platen side member at positions corresponding to the electromagnetic induction heating elements. Sulfur mold heating device. 加硫モールドをフルサークルモールドとしてなる請求項1もしくは2に記載のタイヤ用加硫モールドの加熱装置。 The heating apparatus for a tire vulcanization mold according to claim 1, wherein the vulcanization mold is a full circle mold. 加硫モールドを割りモールドとしてなる請求項1もしくは2に記載のタイヤ用加硫モールドの加熱装置。 The tire vulcanization mold heating apparatus according to claim 1 or 2, wherein the vulcanization mold is a split mold. 上サイドモールド、下サイドモールドおよびセクターモールドのそれぞれに電磁誘導発熱体を配設するとともに、それぞれの電磁誘導発熱体を発熱させるそれぞれ誘導加熱コイルを、上下のそれぞれのプラテン側部材およびコンテナリング内に配設してなる請求項1に記載のタイヤ用加硫モールドの加熱装置。 An electromagnetic induction heating element is disposed in each of the upper side mold, the lower side mold, and the sector mold, and induction heating coils for generating heat from the respective electromagnetic induction heating elements are provided in the upper and lower platen side members and the container ring. The heating apparatus for a vulcanization mold for a tire according to claim 1, which is provided. 電磁誘導発熱体を配設した加硫モールド部材と、誘導加熱コイルの配設部材との間に断熱材を配設してなる請求項1〜5のいずれかに記載のタイヤ用加硫モールドの加熱装置。 The vulcanization mold for tire according to any one of claims 1 to 5, wherein a heat insulating material is disposed between the vulcanization mold member in which the electromagnetic induction heating element is disposed and the arrangement member in the induction heating coil. Heating device. 誘導加熱コイルの配設部材の、加硫モード部材側とは反対側の面に、磁気シールド部材を配設してなる請求項1〜6のいずれかに記載のタイヤ用加硫モールドの加熱装置。 The heating apparatus for a vulcanization mold for a tire according to any one of claims 1 to 6, wherein a magnetic shield member is disposed on a surface of the arrangement member of the induction heating coil opposite to the vulcanization mode member side. . 請求項1〜7のいずれかに記載の装置を用いてタイヤ用加硫モールドを加熱するに当り、
誘導加熱コイルに電流を流すことによって、加硫モールドの電磁誘導発熱体を発熱させ、該発熱体の発熱熱量を、熱伝導性にすぐれた部材内の熱伝導に基いて、加硫モールドの、タイヤとの接触面に導く、タイヤ用加硫モールドの加熱方法。
In heating the vulcanization mold for tires using the apparatus according to claim 1,
By passing an electric current through the induction heating coil, the electromagnetic induction heating element of the vulcanization mold is heated, and the heat generated by the heating element is determined based on the heat conduction in the member having excellent thermal conductivity. A method for heating a vulcanization mold for a tire, which is led to a contact surface with the tire.
複数個配設した誘導加熱コイルの一個以上に流す電流の電流値および電流周波数の少なくとも一方を調整して、一個以上の電磁誘導発熱体の発熱量を制御する請求項8に記載のタイヤ用加硫モールドの加熱方法。 9. The tire heating device according to claim 8, wherein the heating value of the one or more electromagnetic induction heating elements is controlled by adjusting at least one of a current value and a current frequency of a current flowing through one or more induction heating coils. Heating method of sulfur mold. 誘導過熱コイルに流す電流の周波数を50Hz又は60Hzの低周波数とする請求項8もしくは9に記載のタイヤ用加硫モールドの加熱方法。 The method for heating a vulcanization mold for a tire according to claim 8 or 9, wherein a frequency of a current flowing through the induction superheating coil is set to a low frequency of 50 Hz or 60 Hz. 加硫モールドに配設した温度センサの検出結果に基いて、一個以上の電磁誘導発熱体の所要のものの発熱量を増減制御する請求項8〜10のいずれかに記載のタイヤ用加硫モールドの加熱方法。 The vulcanization mold for tire according to any one of claims 8 to 10, wherein the calorific value of a required one or more electromagnetic induction heating elements is controlled to increase or decrease based on a detection result of a temperature sensor disposed in the vulcanization mold. Heating method.
JP2010168537A 2010-07-27 2010-07-27 Apparatus and method for heating tire vulcanization mold Expired - Fee Related JP5582906B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010168537A JP5582906B2 (en) 2010-07-27 2010-07-27 Apparatus and method for heating tire vulcanization mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010168537A JP5582906B2 (en) 2010-07-27 2010-07-27 Apparatus and method for heating tire vulcanization mold

Publications (2)

Publication Number Publication Date
JP2012025126A true JP2012025126A (en) 2012-02-09
JP5582906B2 JP5582906B2 (en) 2014-09-03

Family

ID=45778648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010168537A Expired - Fee Related JP5582906B2 (en) 2010-07-27 2010-07-27 Apparatus and method for heating tire vulcanization mold

Country Status (1)

Country Link
JP (1) JP5582906B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014024864A1 (en) * 2012-08-08 2014-02-13 株式会社ブリヂストン Induction heating device for mold
JP2014218578A (en) * 2013-05-08 2014-11-20 住友ゴム工業株式会社 Breaker rubber, pneumatic tire, and method of evaluating fuel economy of vulcanizate
WO2015086580A1 (en) 2013-12-10 2015-06-18 Compagnie Generale Des Etablissements Michelin Mould with sectors for a tyre including insulating supporting plates, and associated moulding method
WO2016108993A1 (en) * 2014-12-30 2016-07-07 Bridgestone Americas Tire Operations, Llc System and apparatus for heating molds
US9457527B2 (en) 2012-11-22 2016-10-04 Mitsubishi Heavy Industries Machinery Technology Corporation Power source control device and vulcanizing system including power source control device
CN108162268A (en) * 2018-02-02 2018-06-15 青岛双星橡塑机械有限公司 The heating plate and vulcanizer of vulcanizer
CN108407154A (en) * 2018-04-19 2018-08-17 北京大学 Rubber support vulcanization plant
CN112959706A (en) * 2021-02-04 2021-06-15 北京化工大学 Open type magnetic circuit induction heating tire direct-pressure vulcanization method and device
KR20220098989A (en) * 2021-01-05 2022-07-12 한국타이어앤테크놀로지 주식회사 A temperature dualisation mold using electromagnetic induction heating

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102607040B1 (en) * 2022-01-14 2023-11-29 엄기탁 Mold device for manufacturing starch disposable container

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59114042A (en) * 1982-12-22 1984-06-30 Yokohama Rubber Co Ltd:The Tire vulcanizing device
JP2001158020A (en) * 1999-12-06 2001-06-12 Mitsubishi Heavy Ind Ltd Split mold container for vulcanizing tire
JP2005271336A (en) * 2004-03-24 2005-10-06 Yokohama Rubber Co Ltd:The Tire vulcanizing container device
JP2006035615A (en) * 2004-07-27 2006-02-09 Yokohama Rubber Co Ltd:The Method and apparatus for vulcanizing tire
JP2006224417A (en) * 2005-02-17 2006-08-31 Bridgestone Corp Vulcanizer
JP2008100513A (en) * 2006-09-21 2008-05-01 Kobe Steel Ltd Heating unit, tire heater, and remodeling method of tire mold

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59114042A (en) * 1982-12-22 1984-06-30 Yokohama Rubber Co Ltd:The Tire vulcanizing device
JP2001158020A (en) * 1999-12-06 2001-06-12 Mitsubishi Heavy Ind Ltd Split mold container for vulcanizing tire
JP2005271336A (en) * 2004-03-24 2005-10-06 Yokohama Rubber Co Ltd:The Tire vulcanizing container device
JP2006035615A (en) * 2004-07-27 2006-02-09 Yokohama Rubber Co Ltd:The Method and apparatus for vulcanizing tire
JP2006224417A (en) * 2005-02-17 2006-08-31 Bridgestone Corp Vulcanizer
JP2008100513A (en) * 2006-09-21 2008-05-01 Kobe Steel Ltd Heating unit, tire heater, and remodeling method of tire mold

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2884819A4 (en) * 2012-08-08 2015-11-18 Tokuden Kk Induction heating device for mold
US9849610B2 (en) 2012-08-08 2017-12-26 Tokuden Co., Ltd. Induction heating device for mold
WO2014024864A1 (en) * 2012-08-08 2014-02-13 株式会社ブリヂストン Induction heating device for mold
US9457527B2 (en) 2012-11-22 2016-10-04 Mitsubishi Heavy Industries Machinery Technology Corporation Power source control device and vulcanizing system including power source control device
JP2014218578A (en) * 2013-05-08 2014-11-20 住友ゴム工業株式会社 Breaker rubber, pneumatic tire, and method of evaluating fuel economy of vulcanizate
WO2015086580A1 (en) 2013-12-10 2015-06-18 Compagnie Generale Des Etablissements Michelin Mould with sectors for a tyre including insulating supporting plates, and associated moulding method
US10220584B2 (en) 2014-12-30 2019-03-05 Bridgestone Americas Tire Operations, Llc System and apparatus for heating molds
WO2016108993A1 (en) * 2014-12-30 2016-07-07 Bridgestone Americas Tire Operations, Llc System and apparatus for heating molds
CN107107397A (en) * 2014-12-30 2017-08-29 普利司通美国轮胎运营有限责任公司 system and device for heating mould
EP3240677A4 (en) * 2014-12-30 2018-08-01 Bridgestone Americas Tire Operations, LLC System and apparatus for heating molds
CN108162268A (en) * 2018-02-02 2018-06-15 青岛双星橡塑机械有限公司 The heating plate and vulcanizer of vulcanizer
CN108407154A (en) * 2018-04-19 2018-08-17 北京大学 Rubber support vulcanization plant
CN108407154B (en) * 2018-04-19 2024-05-31 北京大学 Rubber support vulcanizing device
KR20220098989A (en) * 2021-01-05 2022-07-12 한국타이어앤테크놀로지 주식회사 A temperature dualisation mold using electromagnetic induction heating
KR102463588B1 (en) * 2021-01-05 2022-11-07 한국타이어앤테크놀로지 주식회사 A temperature dualisation mold using electromagnetic induction heating
CN112959706A (en) * 2021-02-04 2021-06-15 北京化工大学 Open type magnetic circuit induction heating tire direct-pressure vulcanization method and device

Also Published As

Publication number Publication date
JP5582906B2 (en) 2014-09-03

Similar Documents

Publication Publication Date Title
JP5582906B2 (en) Apparatus and method for heating tire vulcanization mold
US8941036B2 (en) Heating unit, tire heating apparatus, and method for remodeling tire mold
JP4786620B2 (en) Heating unit and tire heating device
WO2009119447A1 (en) Tire vulcanizer
JP2006224417A (en) Vulcanizer
CN102658618B (en) Method and device for vulcanizing inner mold and outer mold of tire through direct voltage electromagnetic heating
JP2011514646A5 (en)
CN103538188A (en) Electromagnetic induction heating device for tire vulcanization outer mould
EP2455203B1 (en) Die heating device
JP2011126044A (en) Tire vulcanization apparatus
JPS59114042A (en) Tire vulcanizing device
JP2001158020A (en) Split mold container for vulcanizing tire
CN103264466A (en) Electromagnetic-heating tire vulcanizing device capable of controlling heat source temperature segment by segment
JP2005271336A (en) Tire vulcanizing container device
JP2006035615A (en) Method and apparatus for vulcanizing tire
CN116278094A (en) Electromagnetic induction heating coil plate for hot plate of tire vulcanizer, equipment and control method
WO2012131929A1 (en) Tire vulcanizing apparatus
US10220584B2 (en) System and apparatus for heating molds
CN116787829A (en) Tire vulcanizing device and heating method for tire vulcanizing device
JP2013135057A (en) Method and apparatus for producing resin burying metal component
CN219459326U (en) Electromagnetic induction hot plate for vulcanizing machine
CN116619802B (en) Tire mold and tire vulcanizing device
CN220995162U (en) Electromagnetic vulcanization mold with lining and electromagnetic vulcanization heating system
KR20030043245A (en) An Induction heating Type Vulcanizer
CN116476426A (en) Electromagnetic heating device for segmented mold of tire vulcanizer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140617

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140715

R150 Certificate of patent or registration of utility model

Ref document number: 5582906

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees