JP2006224417A - Vulcanizer - Google Patents

Vulcanizer Download PDF

Info

Publication number
JP2006224417A
JP2006224417A JP2005040067A JP2005040067A JP2006224417A JP 2006224417 A JP2006224417 A JP 2006224417A JP 2005040067 A JP2005040067 A JP 2005040067A JP 2005040067 A JP2005040067 A JP 2005040067A JP 2006224417 A JP2006224417 A JP 2006224417A
Authority
JP
Japan
Prior art keywords
temperature
mold
segment
heating means
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005040067A
Other languages
Japanese (ja)
Inventor
Hitoshi Nara
仁 奈良
Michihiko Nishimura
道彦 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2005040067A priority Critical patent/JP2006224417A/en
Publication of JP2006224417A publication Critical patent/JP2006224417A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To uniformly heat a green tire in a vulcanizer. <P>SOLUTION: A heating means 26 and a temperature measuring means are provided to each of segment molds 22a-22c which are different in size and constitute a sector mold 20 and the temperatures of the segment molds 22 are individually controlled on the basis of the temperatures measured by the temperature measuring means so as to be held to a predetermined range. By this constitution, the heat of the segment molds 22 is transferred to the green tire to uniformly heat the green tire. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、加硫型にタイヤ製造用熱制御セグメントモールドを備えたタイヤ加硫装置に関する。   The present invention relates to a tire vulcanizing apparatus provided with a thermal control segment mold for manufacturing tires in a vulcanization mold.

タイヤ加硫装置は、一般には、グリーンタイヤをガスによりトロイダル状に膨張させるためのブラダと、ブラダの外周に配置されて、グリーンタイヤを所定形状に成形する金型とを備え、加硫時には、成形金型内にグリーンタイヤを装着した後、上記ブラダ内部に高温高圧の加硫媒体を供給してブラダとグリーンタイヤを一体的にトロイダル状に膨張変形させグリーンタイヤを金型面に押圧して、所定の形状に成形する。   A tire vulcanizing apparatus generally includes a bladder for inflating a green tire in a toroidal shape with gas, and a mold that is disposed on the outer periphery of the bladder and molds the green tire into a predetermined shape. After mounting the green tire in the mold, supply a high-temperature and high-pressure vulcanizing medium inside the bladder to inflate and deform the bladder and the green tire into a toroidal shape and press the green tire against the mold surface. Then, it is formed into a predetermined shape.

この成形の際に、加硫時間を短縮して生産性を向上するため上記金型を所定の温度まで加熱して、金型により上記グリーンタイヤをその外周面側から均一に加熱し、同時に加熱媒体によりブラダを介して内周面側からも均一に加熱することが行われている。   During this molding, in order to shorten the vulcanization time and improve productivity, the mold is heated to a predetermined temperature, and the green tire is uniformly heated from the outer peripheral surface side by the mold, and simultaneously heated. Heating is performed uniformly from the inner peripheral surface side through a bladder with a medium.

具体的には、グリーンタイヤを嵌め込むモールド内に電気ヒータを内蔵し、高温度のガスまたはスチームにより膨張させたブラダーでグリーンタイヤの内側を押圧して、グリーンタイヤを内外から加熱するものが知られている。
例えば、上下の型の環状空間にグリーンタイヤを嵌め込み、その内側からブラダーを膨張させて内側から押圧する。その際、上下の型内にはヒータを埋設しておき、他方、上下型内間の空間内に供給されたスチームと窒素ガスを加熱しながら同空間内で循環させて、つまりブラダー内で強制対流をつくり熱伝達を均一化してブラダー内の温度差をなくしグリーンタイヤTの加硫を均一に行うもの(特許文献1)、
Specifically, an electric heater is built in a mold into which a green tire is fitted, and the inside of the green tire is pressed with a bladder inflated with high-temperature gas or steam to heat the green tire from inside to outside. It has been.
For example, a green tire is fitted into the upper and lower mold annular spaces, and the bladder is inflated from the inside and pressed from the inside. At that time, heaters are buried in the upper and lower molds, and on the other hand, steam and nitrogen gas supplied in the space between the upper and lower molds are circulated in the same space while being heated, that is, forced in the bladder. Convection and uniform heat transfer to eliminate temperature difference in the bladder and vulcanize the green tire T uniformly (Patent Document 1)

また、金型やその周辺部に電磁誘導コイルを配置し、発生する渦電流によるジュール熱を利用してタイヤを加熱し迅速に加硫しようとするもの。即ち、タイヤ加硫装置において、 上側クランプ、下側クランプにグリーンタイヤのビード部分を保持するビードリングを外嵌し、その内部にそれぞれ円筒状のコイルを埋設し、かつ、上部金型及び下部金型の内部に、グリーンタイヤのトレッド部に対応する部分を包囲するように円筒状のコイルを埋設し、これらの各コイルを電流値調整装置等を介して交流電源に接続し、加硫時に、グリーンタイヤのビード及びベルト層の部分に各コイルによる磁界を発生させ誘導加熱するもの(特許文献2)、   In addition, electromagnetic induction coils are placed in the mold and its surroundings, and tires are heated by using Joule heat generated by eddy currents to vulcanize quickly. That is, in a tire vulcanizer, a bead ring that holds a bead portion of a green tire is externally fitted to an upper clamp and a lower clamp, a cylindrical coil is embedded therein, and an upper die and a lower die are embedded therein. A cylindrical coil is embedded inside the mold so as to surround a portion corresponding to the tread portion of the green tire, and each of these coils is connected to an AC power source via a current value adjusting device or the like, and during vulcanization, Inductive heating by generating a magnetic field by each coil in the bead and belt layer of the green tire (Patent Document 2),

同様に、金型やその周辺部に電磁誘導コイルを配置し、電磁誘導加熱により金型内にセットされたグリーンタイヤを加硫成形するようにしたタイヤ加硫装置において、金型にタイヤ周方向に沿って延びる環状の加熱用通路を形成し、その通路内に電磁誘導加熱により加熱可能な液体状の熱媒体、例えばシリコンオイル等を充填して、均一にタイヤを加熱するようにしたもの(特許文献3)、
が知られている。
Similarly, in a tire vulcanizing apparatus in which an electromagnetic induction coil is disposed in the mold and its peripheral portion and a green tire set in the mold is vulcanized by electromagnetic induction heating, the tire circumferential direction is disposed on the mold. An annular heating passage extending along the path is formed, and a liquid heating medium that can be heated by electromagnetic induction heating, for example, silicon oil, is filled in the passage to uniformly heat the tire ( Patent Document 3),
It has been known.

上記タイヤ加硫装置では、金型内部或いはその周辺部に配置された電磁誘導コイルや電気ヒータの温度制御は何れも金型を一体的に加熱することを前提としており、そのため、温度制御を行うにしても金型全体の温度を制御するようになっている。また、メカニカル加硫機やオートクレープについては、ドーム式でセグメントモールド個別のコントロールはできない。   In the tire vulcanizing apparatus, the temperature control of the electromagnetic induction coil and the electric heater disposed inside or around the mold is based on the premise that the mold is integrally heated. Therefore, the temperature control is performed. Even so, the temperature of the entire mold is controlled. In addition, with regard to mechanical vulcanizers and autoclaves, individual segment molds cannot be controlled with a dome type.

ところで、現在のシングル加硫製法では、加硫側にセグメントモールドを保有しており、その構造ではモールド分割数が固定されているため、現在用いられているセグメントモールドを備えた加硫機では、セグメントは同一円周上で等分割して配置されている。   By the way, in the current single vulcanization manufacturing method, the segment mold is held on the vulcanization side, and the number of mold divisions is fixed in the structure, so in the vulcanizer equipped with the currently used segment mold, The segments are equally divided on the same circumference.

このように等分割したセグメントモールドを加熱するものとして、グリーンタイヤの下サイドウォールに当接する下サイドモールド、上サイドウォールに当接する上サイドモールド、及びトレッド部の外周方向に位置する同一円周上に32に等分割して配置した割りモールド(セグメントモールド)内にそれぞれ電気ヒータを配置し、電気ヒータの熱伝導により各モールドに熱量を供給してグリーンタイヤを加熱し、かつこの32本のヒータを8本づつ4つのブロックに分け、各ブロック毎に配置された温度センサの検出結果に基づいて各ブロックを別々に温度制御するものも知られている(特許文献4)。   In order to heat the equally divided segment mold, the lower side mold that contacts the lower sidewall of the green tire, the upper side mold that contacts the upper sidewall, and the same circumference located in the outer circumferential direction of the tread portion. Electric heaters are arranged in split molds (segment molds) that are equally divided into 32, and heat is supplied to each mold by heat conduction of the electric heaters to heat the green tires, and the 32 heaters Is also known in which eight blocks are divided into four blocks and the temperature of each block is controlled separately based on the detection result of a temperature sensor arranged for each block (Patent Document 4).

しかしながら、タイヤパターンピッチ数がタイヤ周方向で異なるタイヤを成形するためには、そのピッチ数に応じて異なる分割角度を持ったセグメントモールドが数種類必要である。つまり、そのようなタイヤを成形するには、分割角度の異なるセグメントモールドを用いてグリーンタイヤの成形加工を行う必要がある。   However, in order to form tires having different tire pattern pitch numbers in the tire circumferential direction, several types of segment molds having different division angles depending on the number of pitches are required. That is, in order to form such a tire, it is necessary to form a green tire using segment molds having different division angles.

このようなセグメントモールドを用いる場合、従来の加熱手段で加熱しようとすると、セグメントモールドの分割角度の相違に基く大きさの違いつまり熱容量の違いから、セグメントモールド間で温度差が生じる。そのため、グリーンタイヤに伝導される温度にも差異が生じ、均一な温度による加硫が行われず不良品が発生する虞がある。
この問題は、前記特許文献1から3に記載されたモールド加熱制御では勿論のこと、特許文献4に記載されているように、各セグメントモールド毎にヒータを配置しかつ複数のヒータをブロック毎に制御できるようにしても解決することはできない。
When such a segment mold is used, when it is attempted to heat by a conventional heating means, a temperature difference occurs between the segment molds due to a difference in size based on a difference in segment mold splitting angle, that is, a difference in heat capacity. Therefore, the temperature conducted to the green tire is also different, and there is a risk that vulcanization at a uniform temperature is not performed and a defective product is generated.
This problem is not limited to the mold heating control described in Patent Documents 1 to 3, but, as described in Patent Document 4, a heater is arranged for each segment mold and a plurality of heaters are arranged for each block. Even if it can be controlled, it cannot be solved.

特開平 5− 4045号公報JP-A-5-4045 特開平 7− 96525号公報JP-A-7-96525 特開平10−180756号公報JP-A-10-180756 特開2002−36243号公報JP 2002-36243 A

本発明は、この従来の問題に鑑みてなされたものであって、その目的は、大きさの異なるセグメントモールドを用いて加硫を行う場合に、セグメントモールドを個々に加熱制御することで、セグメントモールド、従ってグリーンタイヤを均一に加熱し、不均一な加熱に起因する不良タイヤの発生を防止することである。   The present invention has been made in view of this conventional problem. The purpose of the present invention is to individually control the segment molds when performing vulcanization using segment molds having different sizes. It is to uniformly heat the mold, and thus the green tire, to prevent the occurrence of defective tires due to uneven heating.

請求項1の発明は、サイドモールドとセクターモールドからなる加硫型を備えたタイヤ加硫装置であって、前g記セクターモールドの分割角度に応じて大きさの異なる複数のセグメントモールドと、各セグメントモールド毎に設けた加熱手段と、該各加熱手段の温度を調節するための温度制御装置を備えたことを特徴とする。
請求項2の発明は、請求項1に記載された加硫装置において、前記温度制御装置は、各セグメントモールド毎に配置した温度測定手段と、該温度測定手段で検知した温度と予め定めた温度範囲とを比較する判断手段と、該判断手段の判断に基づき、前記検知温度が前記温度範囲よりも高いとき当該セグメントモールドの温度を下げ、かつ低いとき前記温度を上げるように加熱手段を制御する温度補償手段とを備えていることを特徴とする。
請求項3の発明は、請求項1又は2に記載された加硫装置において、前記温度制御装置は、前記セグメントモールド全体の温度を調整することを特徴とする。
請求項4の発明は、請求項1ないし3の何れかに記載された加硫装置において、
前記加熱手段は電気ヒータ又は電磁誘導加熱手段であることを特徴とする。
請求項5の発明は、請求項1ないし3の何れかに記載された加硫装置において、
前記加熱手段は加熱熱媒体による熱交換手段であることを特徴とする。
The invention of claim 1 is a tire vulcanizing apparatus having a vulcanization mold composed of a side mold and a sector mold, and a plurality of segment molds having different sizes according to the division angle of the sector mold, A heating means provided for each segment mold and a temperature control device for adjusting the temperature of each heating means are provided.
According to a second aspect of the present invention, there is provided the vulcanizing apparatus according to the first aspect, wherein the temperature control unit includes a temperature measuring unit disposed for each segment mold, a temperature detected by the temperature measuring unit, and a predetermined temperature. Based on the judgment means for comparing the range and the judgment means, the heating means is controlled so as to lower the temperature of the segment mold when the detected temperature is higher than the temperature range and raise the temperature when the temperature is low. And a temperature compensation means.
A third aspect of the present invention is the vulcanizing apparatus according to the first or second aspect, wherein the temperature control device adjusts the temperature of the entire segment mold.
The invention according to claim 4 is the vulcanizing apparatus according to any one of claims 1 to 3,
The heating means is an electric heater or electromagnetic induction heating means.
The invention of claim 5 is the vulcanizing apparatus according to any one of claims 1 to 3,
The heating means is a heat exchange means using a heating heat medium.

本発明によれば、各セグメントモールドの温度を個別にコントロールできるため、大きさの異なるセグメントモールドを用いてタイヤの加硫を行う場合でも、グリーンタイヤを均一に加熱でき、それによって、周上温度(加硫温度)のバラツキが小さく、タイヤ不良の発生を防止することができる。   According to the present invention, since the temperature of each segment mold can be individually controlled, even when vulcanizing the tire using segment molds having different sizes, the green tire can be heated uniformly, thereby increasing the temperature around the circumference. The variation in (vulcanization temperature) is small, and the occurrence of tire defects can be prevented.

(作用)
各々のセグメントモールドに加熱手段を設け個別に加熱温度の制御を行うことにより、個々のセグメントモールドの大きさが異なるパターンで温度均一化を行う。
(Function)
Each segment mold is provided with heating means, and the heating temperature is individually controlled, so that the temperature of the individual segment molds is made uniform with different patterns.

本発明を図面に示す実施形態について説明する。
図1は、本発明の実施形態に係るタイヤ製造用熱制御セグメントモールドの側断面図、図2Aはセクターモールド20(セグメントモールド22)と誘導加熱手段26を拡大して示す図1と同様の図、及び図2Bはセクターモールドの一部を省略して示した平面図である。
The present invention will be described with reference to embodiments shown in the drawings.
FIG. 1 is a side sectional view of a thermal control segment mold for manufacturing a tire according to an embodiment of the present invention, and FIG. 2A is an enlarged view of a sector mold 20 (segment mold 22) and induction heating means 26 similar to FIG. FIG. 2B is a plan view in which a part of the sector mold is omitted.

図示のように、このタイヤ加硫用型10は、タイヤのサイド部を形成する上型10と下型14(総称してサイドモールドという)、上型12を支持する上型プラテン16、及び上下型12,14と共に、内部にグリーンタイヤ(図示せず)を嵌め込む円環状の空間Sを形成するセクターモールド20からなっている。   As shown in the figure, the tire vulcanizing mold 10 includes an upper mold 10 and a lower mold 14 (collectively referred to as side molds) that form tire side portions, an upper mold platen 16 that supports the upper mold 12, and upper and lower molds. Together with the molds 12 and 14, it comprises a sector mold 20 that forms an annular space S into which a green tire (not shown) is fitted.

セクターモールド20は、円周に沿って複数個、例えば、6〜40個に分割したセグメントモールド22の組み合わせから成り、タイヤのトレッド部を形成する。また、その外周面は、図1に示すように上に向かって先細り形状のテーパーが付されていると共に、各セグメントモールド22は、加熱手段、例えば電磁誘導コイルを備えた誘導加熱手段26を備えている。各セグメントモールド22の外周には、そのテーパーに対応したテーパー面を内面に有するアウターリング24が配置されている。   The sector mold 20 is formed of a combination of a plurality of segment molds 22 divided into, for example, 6 to 40 pieces along the circumference, and forms a tread portion of the tire. Further, as shown in FIG. 1, the outer peripheral surface is tapered in a tapering shape upward, and each segment mold 22 is provided with a heating means, for example, an induction heating means 26 provided with an electromagnetic induction coil. ing. On the outer periphery of each segment mold 22, an outer ring 24 having a tapered surface corresponding to the taper on the inner surface is disposed.

以上の構成において、アウターリング24を上昇させることで前記各セグメントモールド22は図1において左側に移動し、続いて、上型プラテン16及び上型12を上昇させることで加硫型を開き、逆に、上型プラテン16を下降させることで上型12が下降し、アウターリング24を下降することで、前記各セグメントモールド22は同図で右方に移動して加硫用型10を閉じる。   In the above configuration, the segment molds 22 move to the left in FIG. 1 by raising the outer ring 24, and then the vulcanization mold is opened by raising the upper mold platen 16 and the upper mold 12, and vice versa. When the upper mold platen 16 is lowered, the upper mold 12 is lowered, and when the outer ring 24 is lowered, each of the segment molds 22 moves to the right in the figure to close the vulcanizing mold 10.

図2Bはセクターモールド20の一部を示す平面図である。セクターモールドの分割角度は、成形するタイヤパターンのピッチ数に応じてセグメントモールドの分割数で決定されるが、ここでは大、中、小の3種のセグメントモールド22a〜22cが用いられている。加硫時には、この複数のセグメントモールド22a〜22cは、円周状のセクターモールド20を形成するため密に配置される。各セグメントモールド22には、加熱手段として例えば誘導コイル26及び各セグメントモールドの温度を検知するための温度センサー31(図3参照)が配置されている。この電磁誘導コイルに高周波電流を流すことでセグメントモールド22を誘導加熱し、その熱でグリーンタイヤ(図示せず)を加熱する。   FIG. 2B is a plan view showing a part of the sector mold 20. The division angle of the sector mold is determined by the number of divisions of the segment mold according to the number of pitches of the tire pattern to be molded. Here, three types of large, medium and small segment molds 22a to 22c are used. At the time of vulcanization, the plurality of segment molds 22 a to 22 c are closely arranged to form a circumferential sector mold 20. Each segment mold 22 is provided with, for example, an induction coil 26 and a temperature sensor 31 (see FIG. 3) for detecting the temperature of each segment mold as heating means. The segment mold 22 is induction-heated by flowing a high-frequency current through the electromagnetic induction coil, and the green tire (not shown) is heated by the heat.

図3は、本実施形態の誘導加熱手段を制御する温度制御装置を概略的に示すブロック図である。
本実施形態の温度制御装置は、図示のように温度センサーを備えた温度測定手段31と、この温度測定手段31で測定した温度と予め設定された所定範囲の温度を比較して、測定温度が前記所定範囲内か否かを判断する判定手段34と、この判定手段34の判定結果に基づき、つまり、測定温度が所定温度範囲以外であってしかもそれよりも高いときは加熱手段の温度を下げるように、逆に低いときは加熱手段の温度を上昇させるように、加熱手段である誘導コイルの電流を制御する温度補償手段35と、温度補償手段35で制御された高周波電流を発生する誘導加熱手段36とからなっている。ここで、誘導加熱手段36と温度測定手段31は、各セグメントモールド22に配置されており、判定手段34は、各セグメントモールドの温度に基づき温度の判定を行い、かつ温度補償手段35は各セグメントモールド22毎にその温度を調整して温度を前記所定の範囲内に維持するようにする。
FIG. 3 is a block diagram schematically showing a temperature control device for controlling the induction heating means of the present embodiment.
The temperature control device of this embodiment compares the temperature measured by the temperature measuring means 31 with a temperature sensor 31 as shown in the figure and the temperature in a predetermined range set in advance, and the measured temperature is Based on the determination means 34 for determining whether or not it is within the predetermined range and the determination result of the determination means 34, that is, when the measured temperature is outside the predetermined temperature range and higher than that, the temperature of the heating means is lowered. On the contrary, when the temperature is low, the temperature compensation means 35 that controls the current of the induction coil that is the heating means so as to increase the temperature of the heating means, and the induction heating that generates the high-frequency current controlled by the temperature compensation means 35 Means 36. Here, the induction heating means 36 and the temperature measuring means 31 are arranged in each segment mold 22, the determination means 34 determines the temperature based on the temperature of each segment mold, and the temperature compensation means 35 includes each segment mold. The temperature of each mold 22 is adjusted to maintain the temperature within the predetermined range.

本実施形態では、各セグメントモールド22の温度をその大きさの違いに拘わらず一定範囲に維持できるため、セグメントモールド22からグリーンタイヤに伝導される熱量にムラが生じることはない。従って、グリーンタイヤを均一な温度で加熱することができる。
また、前記制御装置は、セグメントモールド22の温度を個別に制御するだけではなく、例えば、グリーンタイヤの温度を検知する温度センサーを設けるなどして、その温度センサーの検知温度に基きセグメントモールド22を全体として温度制御するようにすることもできる。
In the present embodiment, since the temperature of each segment mold 22 can be maintained within a certain range regardless of the size difference, the amount of heat conducted from the segment mold 22 to the green tire does not vary. Therefore, the green tire can be heated at a uniform temperature.
Further, the control device not only individually controls the temperature of the segment mold 22 but also provides a temperature sensor for detecting the temperature of the green tire, for example, so that the segment mold 22 is controlled based on the detected temperature of the temperature sensor. It is also possible to control the temperature as a whole.

なお、以上の実施形態では、加熱手段として電磁誘導加熱手段を例に採って説明したが、加熱手段はこれに限ることはなく、例えば電気ヒータ、別途加熱手段で加熱された例えばシリコンオイルなどの加熱媒体をセグメントモールドに設けた管路中に流して加熱するものであってもよい。   In the above embodiment, the electromagnetic induction heating means has been described as an example of the heating means. However, the heating means is not limited to this, for example, an electric heater, for example, silicon oil heated by a separate heating means, or the like. The heating medium may be heated by flowing in a pipe line provided in the segment mold.

本発明の実施形態に係る加硫型の側断面図である。It is a sectional side view of the vulcanization type concerning an embodiment of the present invention. 図2Aは図1のセグメントモールドの側断面図である。図2Bはセクターモールドの一部を示す平面図である。2A is a side sectional view of the segment mold of FIG. FIG. 2B is a plan view showing a part of the sector mold. 本実施形態の加熱制御装置を概略的に示すブロック図であるIt is a block diagram showing roughly the heating control device of this embodiment.

符号の説明Explanation of symbols

10・・・加硫型、12・・・上型、14・・・下型、16・・・上型プラテン、18・・・下形プラテン、20・・・セクターモールド、22・・・セグメントモールド、24・・・アウターリング、26・・・電磁誘導加熱手段、31・・・温度測定手段。 10 ... Vulcanizing mold, 12 ... Upper mold, 14 ... Lower mold, 16 ... Upper mold platen, 18 ... Lower platen, 20 ... Sector mold, 22 ... Segment Mold, 24 ... outer ring, 26 ... electromagnetic induction heating means, 31 ... temperature measuring means.

Claims (5)

サイドモールドとセクターモールドからなる加硫型を備えたタイヤ加硫装置であって、
前記セクターモールドの分割角度に応じて大きさの異なる複数のセグメントモールドと、各セグメントモールド毎に設けた加熱手段と、該各加熱手段の温度を調節するための温度制御装置を備えたことを特徴とする加硫装置。
A tire vulcanizer equipped with a vulcanization mold comprising a side mold and a sector mold,
A plurality of segment molds having different sizes according to the division angle of the sector mold, a heating unit provided for each segment mold, and a temperature control device for adjusting the temperature of each heating unit. Vulcanizing equipment.
請求項1に記載された加硫装置において、
前記温度制御装置は、各セグメントモールド毎に配置した温度測定手段と、該温度測定手段で検知した温度と予め定めた温度範囲とを比較する判断手段と、該判断手段の判断に基づき、前記検知温度が前記温度範囲よりも高いとき当該セグメントモールドの温度を下げ、かつ低いとき前記温度を上げるように加熱手段を制御する温度補償手段とを備えていることを特徴とする加硫装置。
In the vulcanizing apparatus according to claim 1,
The temperature control device includes a temperature measurement unit arranged for each segment mold, a determination unit that compares a temperature detected by the temperature measurement unit with a predetermined temperature range, and the detection based on the determination by the determination unit. And a temperature compensating means for controlling the heating means so as to lower the temperature of the segment mold when the temperature is higher than the temperature range and raise the temperature when the temperature is low.
請求項1又は2に記載された加硫装置において、
前記温度制御装置は、前記セグメントモールド全体の温度を調整することを特徴とする加硫装置。
In the vulcanizing apparatus according to claim 1 or 2,
The said temperature control apparatus adjusts the temperature of the said whole segment mold, The vulcanizer characterized by the above-mentioned.
請求項1ないし3の何れかに記載された加硫装置において、
前記加熱手段は電気ヒータ又は電磁誘導加熱手段であることを特徴とする加硫装置。
In the vulcanizing apparatus according to any one of claims 1 to 3,
The vulcanizing apparatus, wherein the heating means is an electric heater or electromagnetic induction heating means.
請求項1ないし3の何れかに記載された加硫装置において、
前記加熱手段は加熱熱媒体による熱交換手段であることを特徴とする加硫装置。
In the vulcanizing apparatus according to any one of claims 1 to 3,
The vulcanizer characterized in that the heating means is a heat exchange means using a heating heat medium.
JP2005040067A 2005-02-17 2005-02-17 Vulcanizer Pending JP2006224417A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005040067A JP2006224417A (en) 2005-02-17 2005-02-17 Vulcanizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005040067A JP2006224417A (en) 2005-02-17 2005-02-17 Vulcanizer

Publications (1)

Publication Number Publication Date
JP2006224417A true JP2006224417A (en) 2006-08-31

Family

ID=36986189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005040067A Pending JP2006224417A (en) 2005-02-17 2005-02-17 Vulcanizer

Country Status (1)

Country Link
JP (1) JP2006224417A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008097948A (en) * 2006-10-11 2008-04-24 Nabio Kk Induction heating device for die
CN101797779A (en) * 2009-02-10 2010-08-11 住友橡胶工业株式会社 Mold for tire
JP2010194958A (en) * 2009-02-26 2010-09-09 Gunze Ltd Mold heating device
WO2011077844A1 (en) * 2009-12-24 2011-06-30 不二商事株式会社 Tire vulcanizing device
JP2012025126A (en) * 2010-07-27 2012-02-09 Bridgestone Corp Heater and heating method of tire valcanizing mold
JP2012111122A (en) * 2010-11-24 2012-06-14 Bridgestone Corp Vulcanizing apparatus
US20140290833A1 (en) * 2011-10-28 2014-10-02 Compagnie Generale Des Etablissements Michelin Tire vulcanizing press comprising induction heating means
WO2014190605A1 (en) * 2013-05-28 2014-12-04 三角轮胎股份有限公司 Method for vertical compression forming, electromagnetic induction heating and vulcanizing tyre and special inner mould therefor
JP2015182296A (en) * 2014-03-24 2015-10-22 住友ゴム工業株式会社 Rigid core device for manufacturing pneumatic tire, and method for manufacturing pneumatic tire
US9987806B2 (en) 2011-08-08 2018-06-05 Surface Generation Limited Tool
KR20230064117A (en) * 2021-11-03 2023-05-10 넥센타이어 주식회사 Tire mold wiht heating system
CN116604855A (en) * 2023-07-20 2023-08-18 山东豪迈机械科技股份有限公司 Tire vulcanization heating system and control method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000108128A (en) * 1998-10-02 2000-04-18 Bridgestone Corp Tire vulcanizing device and tire vulcanizing molding method
JP2001158020A (en) * 1999-12-06 2001-06-12 Mitsubishi Heavy Ind Ltd Split mold container for vulcanizing tire
JP2002018856A (en) * 2000-07-13 2002-01-22 Yokohama Rubber Co Ltd:The Tire vulcanizing machine and method
JP2002036243A (en) * 2000-07-31 2002-02-05 Kobe Steel Ltd Vulcanizing machine and vulcanization system
JP2003039436A (en) * 2001-07-31 2003-02-13 Bridgestone Corp Method for vulcanizing tire and vulcanization mold used in the method
JP2003231126A (en) * 2002-02-12 2003-08-19 Yokohama Rubber Co Ltd:The Container for vulcanizing tire
JP2004034652A (en) * 2002-07-08 2004-02-05 Bridgestone Corp Vulcanizing mold

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000108128A (en) * 1998-10-02 2000-04-18 Bridgestone Corp Tire vulcanizing device and tire vulcanizing molding method
JP2001158020A (en) * 1999-12-06 2001-06-12 Mitsubishi Heavy Ind Ltd Split mold container for vulcanizing tire
JP2002018856A (en) * 2000-07-13 2002-01-22 Yokohama Rubber Co Ltd:The Tire vulcanizing machine and method
JP2002036243A (en) * 2000-07-31 2002-02-05 Kobe Steel Ltd Vulcanizing machine and vulcanization system
JP2003039436A (en) * 2001-07-31 2003-02-13 Bridgestone Corp Method for vulcanizing tire and vulcanization mold used in the method
JP2003231126A (en) * 2002-02-12 2003-08-19 Yokohama Rubber Co Ltd:The Container for vulcanizing tire
JP2004034652A (en) * 2002-07-08 2004-02-05 Bridgestone Corp Vulcanizing mold

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008097948A (en) * 2006-10-11 2008-04-24 Nabio Kk Induction heating device for die
CN101797779A (en) * 2009-02-10 2010-08-11 住友橡胶工业株式会社 Mold for tire
JP2010184350A (en) * 2009-02-10 2010-08-26 Sumitomo Rubber Ind Ltd Mold for tires
JP2010194958A (en) * 2009-02-26 2010-09-09 Gunze Ltd Mold heating device
JP5705132B2 (en) * 2009-12-24 2015-04-22 不二商事株式会社 Tire vulcanizer
WO2011077844A1 (en) * 2009-12-24 2011-06-30 不二商事株式会社 Tire vulcanizing device
CN102666051A (en) * 2009-12-24 2012-09-12 不二商事株式会社 Tire vulcanizing device
JPWO2011077844A1 (en) * 2009-12-24 2013-05-02 不二商事株式会社 Tire vulcanizer
US8662871B2 (en) 2009-12-24 2014-03-04 Fuji Shoji Co., Ltd. Tire vulcanizing device
DE112010004993B4 (en) * 2009-12-24 2021-01-28 Fuji Seiko Co.,Ltd. TIRE VULCANIZER
KR101757365B1 (en) * 2009-12-24 2017-07-12 후지쇼지 가부시키가이샤 Tire vulcanizing device
JP2012025126A (en) * 2010-07-27 2012-02-09 Bridgestone Corp Heater and heating method of tire valcanizing mold
JP2012111122A (en) * 2010-11-24 2012-06-14 Bridgestone Corp Vulcanizing apparatus
US9987806B2 (en) 2011-08-08 2018-06-05 Surface Generation Limited Tool
US9757915B2 (en) * 2011-10-28 2017-09-12 Compagnie Generale Des Etablissements Michelin Tire vulcanizing press comprising induction heating means
US20140290833A1 (en) * 2011-10-28 2014-10-02 Compagnie Generale Des Etablissements Michelin Tire vulcanizing press comprising induction heating means
WO2014190605A1 (en) * 2013-05-28 2014-12-04 三角轮胎股份有限公司 Method for vertical compression forming, electromagnetic induction heating and vulcanizing tyre and special inner mould therefor
US9751271B2 (en) 2013-05-28 2017-09-05 Triangle Tyre Co., Ltd. Tire direct-pressure shaping and electromagnetic induction heating curing method and apparatus
US9827725B2 (en) 2013-05-28 2017-11-28 Triangle Tyre Co., Ltd. Tire direct-pressure shaping and electromagnetic induction heating curing method and apparatus
JP2015182296A (en) * 2014-03-24 2015-10-22 住友ゴム工業株式会社 Rigid core device for manufacturing pneumatic tire, and method for manufacturing pneumatic tire
KR20230064117A (en) * 2021-11-03 2023-05-10 넥센타이어 주식회사 Tire mold wiht heating system
KR102591246B1 (en) * 2021-11-03 2023-10-19 넥센타이어 주식회사 Tire mold wiht heating system
CN116604855A (en) * 2023-07-20 2023-08-18 山东豪迈机械科技股份有限公司 Tire vulcanization heating system and control method
CN116604855B (en) * 2023-07-20 2023-09-22 山东豪迈机械科技股份有限公司 Tire vulcanization heating system and control method

Similar Documents

Publication Publication Date Title
JP2006224417A (en) Vulcanizer
JP5582906B2 (en) Apparatus and method for heating tire vulcanization mold
JP4001441B2 (en) Heating control method of electromagnetic induction vulcanizer
US20120111464A1 (en) Method for manufacturing base tire, curing machine, and base tire
JPH11165320A (en) Tire vulcanizing apparatus
JP4287447B2 (en) Vulcanization system and raw tire heating method thereof
JP2005319599A (en) Tire vulcanizing method and method for setting tire vulcanizing process
JP3599510B2 (en) Tire curing equipment
JP2008168490A (en) Method and apparatus for manufacturing pneumatic tire
JP2006035615A (en) Method and apparatus for vulcanizing tire
JP3764366B2 (en) Tire manufacturing method
US9738043B2 (en) Tire vulcanizing apparatus
EP3266599B1 (en) Tire vulcanizing apparatus
JPH0796525A (en) Tire vulcanizing method and apparatus
JP6556239B2 (en) System and apparatus for heating a mold
JP6926790B2 (en) Tire vulcanization method and tire vulcanization equipment
JP2008012883A (en) Method and apparatus for vulcanizing tire
KR100771688B1 (en) Loader for pre-heating bead section of green tire
EP3299157B1 (en) Tire vulcanizing apparatus
JP3828726B2 (en) Vulcanizer
JP2019038110A (en) Tire vulcanizing method and tire vulcanizing apparatus
JP3950469B2 (en) Raw tire preheating method and apparatus
JP2009208400A (en) Tire production method and production equipment
JP5551977B2 (en) Stand tire vulcanizer
JP6935701B2 (en) Tire vulcanization method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100708

A131 Notification of reasons for refusal

Effective date: 20100727

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20101208

Free format text: JAPANESE INTERMEDIATE CODE: A02