JP2012024813A - Method of manufacturing copper alloy strip having variant cross section - Google Patents

Method of manufacturing copper alloy strip having variant cross section Download PDF

Info

Publication number
JP2012024813A
JP2012024813A JP2010165871A JP2010165871A JP2012024813A JP 2012024813 A JP2012024813 A JP 2012024813A JP 2010165871 A JP2010165871 A JP 2010165871A JP 2010165871 A JP2010165871 A JP 2010165871A JP 2012024813 A JP2012024813 A JP 2012024813A
Authority
JP
Japan
Prior art keywords
copper alloy
thick
section
thickness
roll
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010165871A
Other languages
Japanese (ja)
Other versions
JP5623169B2 (en
Inventor
Takeshi Sakurai
健 櫻井
俊緑 ▲すくも▼田
Shunroku Sukumoda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Shindoh Co Ltd
Original Assignee
Mitsubishi Shindoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Shindoh Co Ltd filed Critical Mitsubishi Shindoh Co Ltd
Priority to JP2010165871A priority Critical patent/JP5623169B2/en
Publication of JP2012024813A publication Critical patent/JP2012024813A/en
Application granted granted Critical
Publication of JP5623169B2 publication Critical patent/JP5623169B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a copper alloy strip having a variant cross section, that does not lower a yield due to the loss of material, does not increase the facility cost, etc., does not require a finishing rolling step, and forms a strip having the variant cross section so as to have such dimensional accuracy in the direction of thickness that an error is ≤±0.005 mm.SOLUTION: When rolling a planar copper material between a stepped roll 1 and a flat roll 2, thick portions 7 are formed in both lateral edges of the planer copper alloy plate by small-diameter portions 4 of the stepped roll 1 and, at the same time, at least part of an edge of the thick portion 7 is pressed inwardly in the direction of width by a ridge portion 12 projected from the small-diameter portion 4. When the thickness of the thick portion 7 is assumed as T, a thickness T1 which is the height of the edge groove formed by pressing the edge of the thick portion 7 is determined in a range of 0.3×T to 0.9×T, a thickness T2 of a thin portion 6 in adjacent with the thick portion 7 is determined in a range of 0.20×T to 0.85×T, and an angle θ between the side surface of the thick portion 7 having the edge groove and the normal line along the radial direction is determined in a range of 0 to 60°.

Description

本発明は異形断面銅合金条の製造方法に関し、特に詳しくは、材料ロスにより歩留まりを低下させることがなく、設備費の増大等を招くことがなく、仕上げ圧延工程を必要とせず、厚み方向の寸法精度を±0.005mm以下に成形することができる異形断面銅合金条の製造方法に関する。   The present invention relates to a method for producing a deformed cross-section copper alloy strip, and in particular, does not reduce the yield due to material loss, does not cause an increase in equipment costs, does not require a finish rolling process, and in the thickness direction. The present invention relates to a method for producing a deformed cross-section copper alloy strip that can be formed with a dimensional accuracy of ± 0.005 mm or less.

周知のように、例えば、LEDやパワートランジスタ等のリードフレームや基板に、銅合金等の金属からなる異形断面条が用いられている。この異形断面条を製造する場合は、通常、平板状銅合金材を圧延して厚肉部と薄肉部とが幅方向に並んだ異形断面成形材を形成する粗圧延工程と、その粗圧延工程にて形成された異形断面成形材を調質し、或いは、異形断面成形材に耐熱性を付与する為の焼鈍工程と、その焼鈍された異形断面成形材の寸法精度を上げ製品とする為の仕上げ圧延工程とを有する。
一般的には、粗圧延或いは仕上げ圧延工程では、一組のロールの一方を複数の大径部と小径部とが交互に並べられた段付きロールとし、他方を平ロールとして、これらロールの間に平板状銅合金材を送り込んで圧延することにより、大径部によって成形される薄肉部と小径部によって成形される厚肉部とを有する異形断面条が製造されている。
As is well known, for example, a deformed cross section made of a metal such as a copper alloy is used for a lead frame or a substrate such as an LED or a power transistor. When manufacturing this modified cross-section strip, a rough rolling process for rolling a flat copper alloy material to form a modified cross-section molded material in which a thick part and a thin part are aligned in the width direction, and the rough rolling process For tempering the deformed cross-section molding material formed in the above, or for increasing the dimensional accuracy of the annealed deformed cross-section molding material and making it a product A finish rolling process.
In general, in the rough rolling or finish rolling process, one of a set of rolls is a stepped roll in which a plurality of large diameter portions and small diameter portions are alternately arranged, and the other is a flat roll. A deformed cross-section having a thin part formed by the large diameter part and a thick part formed by the small diameter part is manufactured by feeding and rolling the flat copper alloy material.

このような異形断面条の成形において、大径部の両側面は適宜角度の傾斜面とされている。この場合、この傾斜面と小径部表面との間の角部に材料が十分に充満する必要があるが、幅方向の両端部(条の両側部)では、材料が自由端である端縁に流れ易いため、その端縁に近い位置の厚肉部では、ロールの小径部の表面と大径部の傾斜面とのなす形状と一致せず、幅方向の中央部の厚肉部に比べ、角部がだれた形状になり易く、成形時の歪みの発生もおき易くなっている。   In forming such a modified cross-section strip, both side surfaces of the large-diameter portion are appropriately inclined surfaces. In this case, it is necessary to sufficiently fill the corner portion between the inclined surface and the surface of the small-diameter portion. However, at both end portions in the width direction (both side portions of the strip), the material has a free end. Because it is easy to flow, in the thick part near the edge, it does not match the shape formed by the surface of the small diameter part of the roll and the inclined surface of the large diameter part, compared to the thick part of the central part in the width direction, The corners are likely to have a bent shape, and distortion during molding is likely to occur.

このような問題を解決するため、特許文献1、特許文献2記載の技術がある。
特許文献1に記載の技術では、複数個の大径部を同じ断面形状で並べた段付きロールとし、幅方向の最も両端位置に、中央部の厚肉部とその両側の薄肉部との間の傾斜面と同じ角度の傾斜面で薄肉部から連続する端部側厚肉部を形成することにより、この端部側厚肉部では材料の充満が不十分となるが、製品となる中央部の厚肉部では十分に材料を充満させることができるようにしている。
特許文献2に記載の技術では、ロールの幅方向の両端部に、材料のメタルフローを規制するために、端部側の厚肉部の断面積を中央部の厚肉部の断面積のほぼ1/2とする位置に、薄肉部形成用の凸条部(大径部)よりも高いメタルフロー規制用凸条部と、このメタルフロー規制用凸条部に対応する凹条部とを配置することにより、このメタルフロー規制用凸条部と凹条部との間では圧延が行われないようにして、材料の流れ込みが生じないようにしている。
In order to solve such a problem, there are technologies described in Patent Document 1 and Patent Document 2.
In the technique described in Patent Document 1, a stepped roll in which a plurality of large-diameter portions are arranged in the same cross-sectional shape is used, and at the most end positions in the width direction, between the thick portion at the center and the thin portions on both sides thereof. By forming an end side thick part that continues from the thin part with an inclined surface having the same angle as the inclined surface, the end side thick part becomes insufficiently filled with material, but the center part that becomes the product In the thick part, the material can be sufficiently filled.
In the technique described in Patent Document 2, in order to regulate the metal flow of the material at both ends in the width direction of the roll, the cross-sectional area of the thick part on the end side is almost equal to the cross-sectional area of the thick part on the center part. A metal flow restricting ridge that is higher than the ridge (large diameter portion) for forming the thin-walled portion and a ridge corresponding to the metal flow restricting ridge are arranged at a position to be halved. By doing so, rolling is not performed between the metal flow regulating ridges and the ridges, so that no material flows in.

また、半導体用リードフレーム材等の製造時に発生する廃棄物(ニッケルめっき付銅合金屑等)を利用した銅合金材を使用して、異形断面成形材を安価に製造する技術が特許文献3に開示されている。
特許文献3に記載の技術は、鋳塊から板厚方向に一定の厚さを有する平板を製造し、その平板を異形ロールにより冷間圧延して、板幅方向に厚さの異なる異形断面銅合金板を製造するに当たり、異形ロールによる冷間圧延の中間又は最終で一度も焼鈍を行わずに、高耐熱性を有し、かつ高導電性及び優れた曲げ加工性を有する異形断面銅合金板を得ており、薄肉部の冷間加工率は30〜90%である。Ni:0.03〜0.5質量%、P:0.01〜0.2質量%を含有し、NiとPとの質量比であるNi/Pが2〜10であり、残部銅及び不可避不純物からなる銅合金を用い、望ましくはSn:0.005〜0.5%又は/及びFe:0.005〜0.20%を含み、必要に応じてZn:0.005〜0.5%を含む。
Further, Patent Document 3 discloses a technique for manufacturing a deformed cross-section molding material at a low cost by using a copper alloy material using wastes (copper alloy scraps with nickel plating, etc.) generated when manufacturing a lead frame material for semiconductors, etc. It is disclosed.
The technology described in Patent Document 3 manufactures a flat plate having a certain thickness in the plate thickness direction from an ingot, cold-rolls the flat plate with a deformed roll, and has a modified cross-section copper having a thickness different in the plate width direction. In producing an alloy sheet, a deformed cross-section copper alloy sheet having high heat resistance, high conductivity, and excellent bending workability without being annealed once in the middle or at the end of cold rolling with a deformed roll. The cold working rate of the thin wall portion is 30 to 90%. Ni: 0.03-0.5 mass%, P: 0.01-0.2 mass% is contained, Ni / P which is a mass ratio of Ni and P is 2-10, the remainder copper and unavoidable A copper alloy composed of impurities is used, and desirably contains Sn: 0.005 to 0.5% or / and Fe: 0.005 to 0.20%, and Zn: 0.005 to 0.5% as necessary. including.

特開平6−328153号公報JP-A-6-328153 特開平7−39979号公報JP-A-7-39979 特開2007−39735号公報JP 2007-39735 A

特許文献1記載の技術では、端部側厚肉部は材料が十分に充満しないため使用できない部分であり、その分、材料にロスが生じて歩留まりが悪かった。
特許文献2記載の技術も、メタルフロー規制用凸条部と凹条部とで成形した部分は、使用に供される部分ではないため、特許文献1記載の技術と同様に、材料ロスとなって歩留まりを低下させるとともに、メタルフローを生じさせないように成形することが難しく、また、二つのロールともが段付き形状となるため、設備費がかさむ問題も生じていた。
特許文献3記載の技術では、異形断面成形材時の焼鈍工程は省けるが、寸法精度に若干問題があり、仕上げ圧延工程を省くことは出来なかった。
In the technique described in Patent Document 1, the end-side thick portion is a portion that cannot be used because the material is not sufficiently filled, and accordingly, the material is lost and the yield is poor.
In the technique described in Patent Document 2, the portion formed by the metal flow regulating ridge part and the groove part is not a part to be used, and therefore, as in the technique described in Patent Document 1, material loss occurs. Therefore, it is difficult to form the metal flow so as not to cause a metal flow, and the two rolls have a stepped shape, which causes a problem of increased equipment costs.
The technique described in Patent Document 3 can omit the annealing process at the time of the irregular cross-section molding material, but there is a slight problem in dimensional accuracy, and the finish rolling process cannot be omitted.

本発明は、材料ロスにより歩留まりを低下させることがなく、設備費の増大等を招くことがなく、仕上げ圧延工程を必要とせず、厚み方向の寸法精度を±0.005mm以下に成形することができる異形断面銅合金条の製造方法を提供する。
特に、Fe;0.05〜0.15質量%、P;0.015〜0.050質量%およびZn;0.01〜0.20質量%、Ni;0.01〜0.50質量%を含有し、残部がCuおよび不可避的不純物からなる組成を有する銅合金材を使用することにより、仕上げ圧延工程を必要とせず、焼鈍工程も必要としない、厚み方向の寸法精度を±0.003mm以下に成形する異形断面銅合金条の製造方法を提供する。
The present invention does not reduce the yield due to material loss, does not increase the equipment cost, etc., does not require a finish rolling process, and can be formed with a dimensional accuracy in the thickness direction of ± 0.005 mm or less. Provided is a method for producing a deformed cross-section copper alloy strip.
In particular, Fe; 0.05 to 0.15 mass%, P; 0.015 to 0.050 mass% and Zn; 0.01 to 0.20 mass%, Ni; 0.01 to 0.50 mass% By using a copper alloy material having a composition comprising Cu and inevitable impurities in the balance, a finish rolling process is not required and an annealing process is not required, and dimensional accuracy in the thickness direction is ± 0.003 mm or less A method for producing a deformed cross-section copper alloy strip to be formed into a metal is provided.

本発明者らは、鋭意検討の結果、厚肉部が充満不十分となるのは、材料が幅方向の両端方向に逃げるようにメタルフローするからであり、これを解決するために、逃げる分に対応して、材料を適切に逆に両端部から厚肉部に寄せるように流動させてやれば、厚肉部のだれや薄肉部の変形を防止でき、寸法精度を上げる為の仕上げ圧延工程を省略しても、異形断面条の厚み方向の寸法精度を±0.005mm以下に成形可能であることを見出した。
また、Fe;0.05〜0.15質量%、P;0.015〜0.050質量%およびZn;0.01〜0.20質量%、Ni;0.01〜0.50質量%を含有し、残部がCuおよび不可避的不純物からなる組成を有する銅合金材に本発明の加工方法を適用することにより、異形断面条の厚み方向の寸法精度を±0.003mm以下に成形可能であることを見出した。この場合、銅合金材自体に耐熱性があるので、異形断面条に耐熱性を付与する為の焼鈍工程は当然不要となる。
As a result of diligent study, the inventors of the present invention are that the thick portion becomes insufficiently filled because the metal flows so that the material escapes in both end directions in the width direction. Corresponding to the above, if the material is made to flow in the opposite direction from the opposite ends to the thick wall portion, the thick rolling portion can be prevented from sagging and the thin wall portion can be prevented from deforming, and the finish rolling process to increase the dimensional accuracy. It has been found that even if is omitted, the dimensional accuracy in the thickness direction of the irregular cross-section strip can be molded to ± 0.005 mm or less.
Moreover, Fe; 0.05-0.15 mass%, P; 0.015-0.050 mass% and Zn; 0.01-0.20 mass%, Ni; 0.01-0.50 mass% By applying the processing method of the present invention to a copper alloy material having a composition comprising Cu and inevitable impurities in the balance, the dimensional accuracy in the thickness direction of the irregular cross-section strip can be formed to ± 0.003 mm or less. I found out. In this case, since the copper alloy material itself has heat resistance, an annealing step for imparting heat resistance to the irregular cross section is naturally not necessary.

これらの知見より、本発明の異形断面銅合金条の製造方法は、複数の大径部と小径部とが交互に並んだ段付きロールと、該段付きロールと平行に配置した平ロールとの間で平板状銅合金材を圧延して、複数の厚肉部と薄肉部とが幅方向に並んだ異形断面銅合金条を製造する方法であって、前記段付きロールと平ロールとの間で前記平板状銅合金材を圧延するに際し、前記平板状銅合金材の幅方向の両端部に、前記段付きロールの小径部により厚肉部を形成しつつ、前記小径部から突出する凸条部により、前記厚肉部の端縁部の少なくとも一部を幅方向の内方に向けて押圧加工を施し、当該厚肉部の厚さをTとするとき、前記厚肉部の端縁部を押圧加工して形成される端縁溝部により残る厚さT1が、T1=0.3×T〜0.9×Tの範囲に設定され、前記厚肉部に隣接する前記薄肉部の厚さT2が、T2=0.20×T〜0.85×Tの範囲に設定され、前記端縁溝部を有する厚肉部の側面と半径方向に沿う垂線とのなす角度θが、θ=0〜60°の範囲に設定されていることを特徴とする。   From these findings, the method for producing a deformed cross-section copper alloy strip of the present invention includes a stepped roll in which a plurality of large diameter portions and small diameter portions are alternately arranged, and a flat roll arranged in parallel with the stepped roll. A method for producing a deformed cross-section copper alloy strip in which a plurality of thick portions and thin portions are aligned in the width direction by rolling a flat copper alloy material between the stepped roll and the flat roll When rolling the flat copper alloy material, the protrusions projecting from the small diameter portion while forming thick portions by the small diameter portions of the stepped rolls at both ends in the width direction of the flat copper alloy material. The edge portion of the thick portion when the thickness of the thick portion is set to T when the thickness of the thick portion is T The thickness T1 remaining by the edge groove formed by pressing is set in the range of T1 = 0.3 × T to 0.9 × T The thickness T2 of the thin portion adjacent to the thick portion is set in a range of T2 = 0.20 × T to 0.85 × T, and the side surface and the radius of the thick portion having the edge groove portion An angle θ formed with a perpendicular along the direction is set in a range of θ = 0 to 60 °.

T1が0.3×T未満であると、厚み方向の寸法精度が低下すると共にねじれ変形が起き、0.9×Tを超えると、メタルフローを抑制する効果が薄れて厚み方向の寸法精度が低下する。
T2が0.20×T未満であると、厚み方向の寸法精度が低下すると共にねじれ変形が起き、0.85×Tを超えると、メタルフローを抑制する効果が薄れて、角部にダレが起き易く、厚み方向の寸法精度が低下する。
角度θが60°を超えると、メタルフローを抑制する効果が薄れて角部のだれがおき易くなり、厚み方向の寸法精度も低下する。
特に、Tが0.5〜0.8mmの範囲内であると、異形断面条の厚み方向の寸法精度を±0.005mm以下にて成形可能となり、Tがこの範囲内を外れると、異形断面条の厚み方向の寸法精度が±0.008mm程度まで低下する傾向が見られる。
更に、異形断面条の厚み方向の寸法精度を±0.005mm以下にて成形可能となるので、寸法精度を上げる為の仕上げ圧延工程を省略することができる。
When T1 is less than 0.3 × T, the dimensional accuracy in the thickness direction is lowered and torsional deformation occurs. When it exceeds 0.9 × T, the effect of suppressing metal flow is reduced, and the dimensional accuracy in the thickness direction is reduced. descend.
When T2 is less than 0.20 × T, the dimensional accuracy in the thickness direction is lowered and torsional deformation occurs. When it exceeds 0.85 × T, the effect of suppressing metal flow is reduced, and sagging occurs at the corners. It tends to occur and the dimensional accuracy in the thickness direction is reduced.
When the angle θ exceeds 60 °, the effect of suppressing the metal flow is weakened, and the corner portion is liable to be bent, and the dimensional accuracy in the thickness direction is also lowered.
In particular, when T is within the range of 0.5 to 0.8 mm, it becomes possible to mold the dimensional accuracy in the thickness direction of the irregular cross section within ± 0.005 mm, and when T is out of this range, the irregular cross section There is a tendency that the dimensional accuracy in the thickness direction of the strips decreases to about ± 0.008 mm.
Furthermore, since the dimensional accuracy in the thickness direction of the irregular cross section can be formed within ± 0.005 mm or less, a finish rolling step for increasing the dimensional accuracy can be omitted.

更に、本発明の異形断面銅合金条の製造方法は、前記平板状銅合金材が、Fe;0.05〜0.15質量%、P;0.015〜0.050質量%およびZn;0.01〜0.20質量%、Ni;0.01〜0.50質量%を含有し、残部がCuおよび不可避的不純物からなる組成を有することを特徴とする。   Furthermore, in the method for producing a modified cross-section copper alloy strip of the present invention, the flat copper alloy material is Fe: 0.05-0.15 mass%, P: 0.015-0.050 mass%, and Zn: 0 .01 to 0.20 mass%, Ni; 0.01 to 0.50 mass%, with the balance being composed of Cu and inevitable impurities.

この成分組成の平板状銅合金材は、特に本発明の異形断面銅合金条の製造方法と非常に相性が良く、異形断面条の厚み方向の寸法精度を±0.003mm以下にて成形可能となる。特に、Tが0.5〜0.8mmであるとよく、Tがこの範囲内を外れると、異形断面条の厚み方向の寸法精度が±0.005mm程度まで低下する傾向が見られる。
また、異形断面条の厚み方向の寸法精度を±0.003mm以下にて成形可能となるので、寸法精度を上げる為の仕上げ圧延工程を省略することができ、平板状銅合金材がNi;0.01〜0.050質量%を含有しているので耐熱性を有しており、異形断面条に耐熱性を付与する為の焼鈍工程も不要となる。
The flat copper alloy material having this component composition is particularly compatible with the method for producing a deformed section copper alloy strip of the present invention, and can be formed with a dimensional accuracy in the thickness direction of the deformed section strip of ± 0.003 mm or less. Become. In particular, T is preferably 0.5 to 0.8 mm, and when T is out of this range, there is a tendency that the dimensional accuracy in the thickness direction of the irregular cross-section strips decreases to about ± 0.005 mm.
Further, since the dimensional accuracy in the thickness direction of the irregular cross section can be formed within ± 0.003 mm, the finish rolling step for increasing the dimensional accuracy can be omitted, and the flat copper alloy material is Ni; Since it contains 0.01 to 0.050% by mass, it has heat resistance, and an annealing step for imparting heat resistance to the irregular shaped cross section is not required.

更に、本発明の異形断面銅合金条の製造方法は、前記平板状銅合金材の製造原料の一部として、半導体用リードフレーム材等の製造時に発生する廃棄物から得られるニッケルめっき付き銅合金を使用することを特徴とする。   Furthermore, the method for producing a deformed cross-section copper alloy strip according to the present invention is a copper alloy with nickel plating obtained from waste generated during the production of a semiconductor leadframe material or the like as a part of the raw material for producing the flat copper alloy material. It is characterized by using.

Fe;0.05〜0.15質量%、P;0.015〜0.050質量%およびZn;0.01〜0.20質量%、Ni;0.01〜0.50質量%を含有し、残部がCuおよび不可避的不純物からなる組成の平板状銅合金材を製造する際のNiの供給源として、半導体用リードフレーム材等の機械加工時に発生するNiめっき付き銅合金屑を使用することにより、廃棄物のリサイクルが図れ、製造コストも低減することになる。   Fe; 0.05 to 0.15 mass%, P; 0.015 to 0.050 mass% and Zn; 0.01 to 0.20 mass%, Ni; 0.01 to 0.50 mass% As a Ni source when manufacturing a flat copper alloy material having a composition consisting of Cu and inevitable impurities as the balance, use copper alloy scraps with Ni plating generated during machining of semiconductor leadframe materials, etc. As a result, waste can be recycled and the manufacturing cost can be reduced.

本発明は、材料ロスにより歩留まり低下させることがなく、設備費の増大等を招くことがなく、仕上げ圧延工程を必要とせず、厚み方向の寸法精度を±0.005mm以下に成形することができる異形断面銅合金条を製造することができる。   The present invention does not cause a decrease in yield due to material loss, does not cause an increase in equipment costs, does not require a finish rolling process, and can be formed with a dimensional accuracy in the thickness direction of ± 0.005 mm or less. An irregular cross-section copper alloy strip can be produced.

本発明に係る異形断面銅合金条の製造方法の一実施形態において用いられる段付きロールと平ロールとの間で平板状銅合金材を圧延している状態を示す斜視図である。It is a perspective view which shows the state which is rolling the flat copper alloy material between the step roll and flat roll used in one Embodiment of the manufacturing method of the irregular cross-section copper alloy strip which concerns on this invention. 図1の段付きロールと平ロールとの圧延部分を示す縦断面図である。It is a longitudinal cross-sectional view which shows the rolling part of the stepped roll and flat roll of FIG. 図1の段付きロールの正面図である。It is a front view of the stepped roll of FIG. 一実施形態の方法で製造された異形断面銅合金条の縦断面図であり、(a)が圧延後の状態、(b)が圧延後に両端縁部を切り落とした状態を示す。It is a longitudinal cross-sectional view of the irregular cross-section copper alloy strip manufactured by the method of one Embodiment, (a) is the state after rolling, (b) shows the state which cut off the both-ends edge part after rolling. 段付きロールの凸条部についての変形例を示す部分断面図である。It is a fragmentary sectional view which shows the modification about the protruding item | line part of a stepped roll.

次に本発明の実施形態につき図を参照に説明する。
本実施形態では、図1に示す製造装置を使用することが好ましい。
この製造装置は、図1に示すように、段付きロール1と平ロール2とを備えている。段付きロール1は、半径R1とされた複数の大径部3と、半径R2とされた複数の小径部4とが幅方向に交互に並んだ形状とされ、平ロール2は、幅方向にわたって均一な半径R3とされることにより、外周面が凹凸のない平坦な円周面とされている。これら両ロール1,2は、その間に間隙を開けて両軸線P1,P2を平行にして配置され、図示略の駆動機構によって回転駆動される構成とされている。これら段付きロール1と平ロール2との間に平板状銅合金材5を通すことにより、段付きロール1の大径部3と小径部4とに対応して、薄肉部6と厚肉部7とが幅方向に並んだ異形断面条8が形成されるようになっている。
Next, an embodiment of the present invention will be described with reference to the drawings.
In this embodiment, it is preferable to use the manufacturing apparatus shown in FIG.
As shown in FIG. 1, the manufacturing apparatus includes a step roll 1 and a flat roll 2. The step roll 1 has a shape in which a plurality of large diameter portions 3 having a radius R1 and a plurality of small diameter portions 4 having a radius R2 are alternately arranged in the width direction. By setting the uniform radius R3, the outer circumferential surface is a flat circumferential surface without irregularities. The two rolls 1 and 2 are arranged with a gap therebetween and the axes P1 and P2 being parallel to each other, and are configured to be rotationally driven by a drive mechanism (not shown). By passing the flat copper alloy material 5 between the stepped roll 1 and the flat roll 2, the thin portion 6 and the thick portion correspond to the large diameter portion 3 and the small diameter portion 4 of the stepped roll 1. 7 is formed.

段付きロール1は、図示例では3個の大径部3が小径部4を介して幅方向に並んで配置され、両端部が小径部4とされている。各大径部3は、その外周面が軸線P1方向に平行に形成され、図2及び図3に示すように、両側面11が半径内方に向かうにしたがって漸次大径部3の幅を大きくするように半径方向に対して所定の角度で傾斜した傾斜面とされ、また、小径部4は、その外周面が軸線P1方向に平行に形成されている。したがって、小径部4の外周面と大径部3の側面11との間の角部のなす角度は90°よりも大きく、また、大径部3の外周面と側面11との間の角部のなす角度も90°より大きく形成されており、大径部3は台形状の断面となるように形成されている。さらに、大径部3の外周面と側面11との間は例えば0.05〜0.2mmの曲率半径r1で面取り加工されている。   In the illustrated example, the stepped roll 1 includes three large-diameter portions 3 arranged in the width direction via small-diameter portions 4, and both end portions are small-diameter portions 4. Each large-diameter portion 3 has an outer peripheral surface formed in parallel to the direction of the axis P1, and as shown in FIGS. 2 and 3, the width of the large-diameter portion 3 gradually increases as both side surfaces 11 go radially inward. Thus, the inclined surface is inclined at a predetermined angle with respect to the radial direction, and the outer peripheral surface of the small diameter portion 4 is formed in parallel to the direction of the axis P1. Therefore, the angle formed by the corner portion between the outer peripheral surface of the small diameter portion 4 and the side surface 11 of the large diameter portion 3 is larger than 90 °, and the corner portion between the outer peripheral surface of the large diameter portion 3 and the side surface 11. Is formed to be larger than 90 °, and the large-diameter portion 3 is formed to have a trapezoidal cross section. Further, the outer peripheral surface of the large diameter portion 3 and the side surface 11 are chamfered with a curvature radius r1 of 0.05 to 0.2 mm, for example.

また、この段付きロール1の両端部の小径部4には、大径部3の半径R1より小さいが小径部4の半径R2より大きい半径R4を有し、小径部4から若干の高さで突出する凸条部12が形成されている。この凸条部12は、平板状銅合金材5の幅方向両端部に形成される厚肉部7の端縁部を押圧加工するようになっている。
この場合、凸条部12は、段付きロール1の幅方向内方に位置する側縁部で平板状銅合金材5を押圧加工するようになっており、その部分の側面13は、半径方向内方に向かうにしたがって隣接する大径部3の側面11に近づくように、半径方向に対して所定の角度で傾斜した傾斜面とされ、この側面13と外周面との間の角度が90°よりも大きく形成されている。また、その傾斜面13と外周面との間は0.1〜0.2mmの曲率半径r2で面取り加工されている。
Further, the small diameter portions 4 at both ends of the stepped roll 1 have a radius R4 that is smaller than the radius R1 of the large diameter portion 3 but larger than the radius R2 of the small diameter portion 4, and is slightly higher than the small diameter portion 4. A protruding ridge portion 12 is formed. The ridges 12 press the edge portions of the thick portions 7 formed at both ends in the width direction of the flat copper alloy material 5.
In this case, the ridge portion 12 is configured to press the flat copper alloy material 5 at the side edge portion located inward in the width direction of the stepped roll 1, and the side surface 13 of the portion is formed in the radial direction. The inclined surface is inclined at a predetermined angle with respect to the radial direction so as to approach the side surface 11 of the adjacent large-diameter portion 3 as it goes inward, and the angle between the side surface 13 and the outer peripheral surface is 90 °. It is formed larger than. Further, chamfering is performed between the inclined surface 13 and the outer peripheral surface with a curvature radius r2 of 0.1 to 0.2 mm.

次に、このように構成した製造装置によって平板状銅合金材5から異形断面条8を製造する方法について説明する。
平板状銅合金材5は、銅を97.0質量%以上含有し、Fe、P、Mg、Zn、Si、Ni、Sn、Zr等の金属を少なくとも一種以上含み、他が不可避不純物である組成の厚さ0.6〜1.0mmの銅合金材を用途に応じて適宜選択することが好ましい。
具体的には、三菱伸銅(株)製の商品名OFC、TC、C151、TAMAC194、TAMAC4、TAMAC2、DC1B、ZC、MZC1等の銅合金条であり、強度と導電率のバランスの優れた、Cu−Fe−P系のTAMAC194、TAMAC4、TAMAC2、或いは、Cu−Zr系のZC、MZC1を適用するのが好ましい。
更に、Fe;0.05〜0.15質量%、P;0.015〜0.050質量%およびZn;0.01〜0.20質量%、Ni;0.01〜0.50質量%を含有し、残部がCuおよび不可避的不純物からなる組成を有する銅合金材を適用するのが特に好ましい。
Next, a method for manufacturing the modified cross-section strip 8 from the flat copper alloy material 5 using the manufacturing apparatus configured as described above will be described.
The flat copper alloy material 5 contains 97.0% by mass or more of copper, contains at least one metal such as Fe, P, Mg, Zn, Si, Ni, Sn, Zr, etc., and the other is an inevitable impurity. It is preferable to appropriately select a copper alloy material having a thickness of 0.6 to 1.0 mm depending on the application.
Specifically, it is a copper alloy strip such as trade names OFC, TC, C151, TAMAC194, TAMAC4, TAMAC2, DC1B, ZC, MZC1, etc., manufactured by Mitsubishi Shindoh Co., Ltd., and has an excellent balance between strength and conductivity. It is preferable to apply Cu-Fe-P-based TAMAC194, TAMAC4, TAMAC2, or Cu-Zr-based ZC or MZC1.
Furthermore, Fe; 0.05 to 0.15 mass%, P; 0.015 to 0.050 mass% and Zn; 0.01 to 0.20 mass%, Ni; 0.01 to 0.50 mass% It is particularly preferable to use a copper alloy material having a composition containing the balance of Cu and inevitable impurities.

図1に示すように、段付きロール1と平ロール2との間に平板状銅合金材5を通過させて圧延すると、段付きロール1の大径部3によって薄肉部6が形成され、小径部4によって厚肉部7が形成され、これら薄肉部6と厚肉部7とが幅方向に交互に並んだ異形断面銅合金条8が形成される。   As shown in FIG. 1, when a flat copper alloy material 5 is passed between a step roll 1 and a flat roll 2 and rolled, a thin portion 6 is formed by a large diameter portion 3 of the step roll 1, and a small diameter is formed. A thick-walled portion 7 is formed by the portion 4, and a deformed cross-section copper alloy strip 8 in which the thin-walled portions 6 and the thick-walled portions 7 are alternately arranged in the width direction is formed.

この場合、図2に示すように、平ロール2の上で段付きロール1の大径部3によって平板状銅合金材5が圧縮されることにより、この平板状銅合金材5が異形断面条8に変形される過程で、大径部3に押圧される部分には破線矢印に示すようにメタルフローが生じる。このうち、大径部3の外周面で押圧される部分では、この大径部3の外周面と平ロール2との間の薄い部分から、隣接する小径部4と平ロール2との間の厚い部分へ回り込むように材料が流動し、また、大径部3の側面11で押圧される部分では、この側面11が傾斜面であることから、この大径部3に小径部4を介して隣接する他方の大径部3に向けて材料が流動する。このようなメタルフローにおいて、小径部4の両側に大径部3が配置されている部分、例えば図2の右側半分の部分では、両大径部3の間で、その一方の大径部3から他方の大径部3に向けて材料が相互に押圧されるので、大径部3と小径部4との間で形成される溝状部分に緊密に材料が充満して、精度よく厚肉部7を形成することができる。
一方、段付きロール1の両端部に位置する小径部4の部分(図2の左側半分の部分)では、その内側の大径部3の側面11によって材料が押圧されるので、凸条部12がなければ外側に材料が逃げてしまい、大径部3と小径部4との間に鎖線で示すような欠肉部Aが生じることになるが、凸条部12が平板状銅合金材5の端縁部を押圧することにより、図2に実線矢印で示したように、この凸条部12の外周面と平ロール2との間で材料が、小径部4と平ロール2との間に回り込むように流動し、また、凸条部12の内側の側面13は傾斜面であるので、この側面13が小径部4を介して隣接する大径部3に向けて材料を押圧する。
In this case, as shown in FIG. 2, the flat copper alloy material 5 is compressed on the flat roll 2 by the large diameter portion 3 of the stepped roll 1, so that the flat copper alloy material 5 is deformed in cross section. In the process of being deformed to 8, a metal flow is generated at the portion pressed by the large diameter portion 3 as shown by the broken line arrow. Among these, in the part pressed by the outer peripheral surface of the large diameter part 3, from the thin part between the outer peripheral surface of this large diameter part 3 and the flat roll 2, between the adjacent small diameter part 4 and the flat roll 2 is provided. The material flows so as to wrap around the thick portion, and in the portion pressed by the side surface 11 of the large diameter portion 3, since the side surface 11 is an inclined surface, the large diameter portion 3 is interposed through the small diameter portion 4. The material flows toward the other adjacent large diameter portion 3. In such a metal flow, in the portion where the large diameter portion 3 is arranged on both sides of the small diameter portion 4, for example, the right half portion in FIG. Since the materials are pressed against each other toward the other large-diameter portion 3, the material is tightly filled in the groove-like portion formed between the large-diameter portion 3 and the small-diameter portion 4, so that the thickness is high. The part 7 can be formed.
On the other hand, since the material is pressed by the side surface 11 of the large-diameter portion 3 on the inside of the small-diameter portion 4 (the left half portion in FIG. 2) located at both ends of the stepped roll 1, the ridge portion 12 If there is no material, the material will escape to the outside, and a lacking portion A as shown by a chain line between the large-diameter portion 3 and the small-diameter portion 4 will be generated. 2 by pressing the end edge portion between the small diameter portion 4 and the flat roll 2 between the outer peripheral surface of the ridge portion 12 and the flat roll 2 as shown by solid arrows in FIG. Since the inner side surface 13 of the ridge portion 12 is an inclined surface, the side surface 13 presses the material toward the adjacent large diameter portion 3 via the small diameter portion 4.

この際に、平板状銅合金材5の端縁部を押圧加工して形成される端縁溝部14(図4参照)により残る厚さT1が、厚肉部7の厚さをTとするとき、T1=0.3×T〜0.9×Tの範囲に設定され、厚肉部7に隣接する薄肉部6の厚さをT2するとき、T2=0.20×T〜0.85×Tの範囲に設定され、押圧加工されている端縁溝部14を有する厚肉部7の側面(厚肉部7と薄肉部6との間の傾斜面)7aと半径方向に沿う垂線とのなす角度θをθ=0〜60°(厚肉部7の外周面と側面7aとのなす角度では90〜150°)の範囲に設定することにより、幅方向の両端部では、段付きロール1の大径部3の側面11と小径部4の外周面との間に形成される角部にも緊密に材料が充満し、前述したような欠肉部Aの発生を確実に防止し、精度よく厚肉部7を形成し、異形断面条の厚み方向の寸法精度を±0.005mm以下とすることができる。したがって、その後の仕上げ圧延工程及び焼鈍工程は不要である。   At this time, when the thickness T1 remaining by the edge groove portion 14 (see FIG. 4) formed by pressing the edge portion of the flat copper alloy material 5 is T, the thickness of the thick portion 7 is T. , T1 = 0.3 × T to 0.9 × T, and when the thickness of the thin portion 6 adjacent to the thick portion 7 is T2, T2 = 0.20 × T to 0.85 × The side surface (inclined surface between the thick portion 7 and the thin portion 6) 7a of the thick portion 7 having the edge groove portion 14 which is set in the range of T and is pressed is formed with a perpendicular along the radial direction. By setting the angle θ to a range of θ = 0 to 60 ° (90 to 150 ° in the angle formed by the outer peripheral surface of the thick portion 7 and the side surface 7a), the both ends of the widthwise direction of the stepped roll 1 The corner portion formed between the side surface 11 of the large diameter portion 3 and the outer peripheral surface of the small diameter portion 4 is also closely filled with the material, thereby reliably preventing the occurrence of the lacking portion A as described above. The thick portion 7 can be formed frequently, and the dimensional accuracy in the thickness direction of the irregular cross-section can be made ± 0.005 mm or less. Therefore, the subsequent finish rolling process and annealing process are unnecessary.

T1が0.3×T未満であると、厚み方向の寸法精度が低下すると共にねじれ変形が起き、0.9×Tを超えると、メタルフローを抑制する効果が薄れて厚み方向の寸法精度が低下する。
T2が0.20×T未満であると、厚み方向の寸法精度が低下すると共にねじれ変形が起き、0.85×Tを超えると、メタルフローを抑制する効果が薄れて、角部にダレが起き易く、厚み方向の寸法精度が低下する。
角度θが60°を超えると、メタルフローを抑制する効果が薄れて角部のだれがおき易くなり、厚み方向の寸法精度も低下する。
When T1 is less than 0.3 × T, the dimensional accuracy in the thickness direction is lowered and torsional deformation occurs. When it exceeds 0.9 × T, the effect of suppressing metal flow is reduced, and the dimensional accuracy in the thickness direction is reduced. descend.
When T2 is less than 0.20 × T, the dimensional accuracy in the thickness direction is lowered and torsional deformation occurs. When it exceeds 0.85 × T, the effect of suppressing metal flow is reduced, and sagging occurs at the corners. It tends to occur and the dimensional accuracy in the thickness direction is reduced.
When the angle θ exceeds 60 °, the effect of suppressing the metal flow is weakened, and the corner portion is liable to be bent, and the dimensional accuracy in the thickness direction is also lowered.

更に、Fe;0.05〜0.15質量%、P;0.015〜0.050質量%およびZn;0.01〜0.20質量%、Ni;0.01〜0.50質量%を含有し、残部がCuおよび不可避的不純物からなる組成を有する銅合金材を適用すれば、異形断面条の厚み方向の寸法精度を±0.003mm以下とすることができる。   Furthermore, Fe; 0.05 to 0.15 mass%, P; 0.015 to 0.050 mass% and Zn; 0.01 to 0.20 mass%, Ni; 0.01 to 0.50 mass% If the copper alloy material which contains and the remainder consists of a composition which consists of Cu and an unavoidable impurity is applied, the dimensional accuracy of the thickness direction of a deformed cross-section can be set to +/- 0.003 mm or less.

なお、この幅方向両端部の厚肉部7の端縁部には、凸条部12によって押圧加工されることにより、図4(a)に示すように若干窪んだ端縁溝部14が形成されるが、この端縁溝部14の部分は図4(b)に示すように切り落としてもよいし、0〜3mmの範囲で残しておいてもよい。   In addition, the edge groove part 14 slightly depressed as shown in FIG. 4A is formed at the edge part of the thick part 7 at both ends in the width direction by pressing with the protruding line part 12. However, the edge groove portion 14 may be cut off as shown in FIG. 4B or may be left in the range of 0 to 3 mm.

幅50mmで厚さ1.0mmの三菱伸銅(株)TAMAC194銅合金材(質量にてCu:97.0%以上、Fe:2.3%、P:0.03%、Zn:0.12%)を使用し、図1に示す製造装置を使用して、本発明の製造方法にて、厚肉部の厚さT、厚肉部の端縁部を押圧加工して形成される端縁溝部により残る厚さT1、薄肉部の厚さT2、押圧加工されている端縁溝部を有する厚肉部の側面と半径方向に沿う垂線とのなす角度θを表1の様に変えて、厚肉部の幅が1.0mm、薄肉部の幅が4.0mmの異形断面条を製造し、この異形断面条に仕上げ圧延工程を施さずに、厚肉部及び薄肉部の厚さの加工精度を測定した。また、比較例として、T、T1、T2、θを表1に示すように変えた異形断面条を製造して、同様に加工精度を測定した。その結果を表1に示す。   Mitsubishi Shindoh Co., Ltd. TAMAC194 copper alloy material having a width of 50 mm and a thickness of 1.0 mm (by mass: Cu: 97.0% or more, Fe: 2.3%, P: 0.03%, Zn: 0.12 1), and using the manufacturing apparatus shown in FIG. 1, in the manufacturing method of the present invention, the thickness T of the thick portion and the edge formed by pressing the end portion of the thick portion The thickness T1 remaining by the groove part, the thickness T2 of the thin part, the angle θ between the side surface of the thick part having the edge groove part subjected to pressing and the perpendicular along the radial direction is changed as shown in Table 1, and the thickness is changed. Manufacturing a deformed section with a width of 1.0 mm and a width of a thin section of 4.0 mm, and processing the thickness of the thick and thin sections without subjecting the deformed section to a finish rolling step Was measured. In addition, as a comparative example, an irregular cross section having T, T1, T2, and θ changed as shown in Table 1 was manufactured, and the machining accuracy was measured in the same manner. The results are shown in Table 1.

Figure 2012024813
Figure 2012024813

表1から明らかな様に、本発明の製造方法により製造された異形断面銅合金条は、仕上げ圧延をすることなく、厚み方向の寸法精度が±0.005mm以下となることがわかる。   As is apparent from Table 1, it can be seen that the deformed cross-section copper alloy strip produced by the production method of the present invention has a dimensional accuracy of ± 0.005 mm or less without finish rolling.

表面にNiめっきがなされた銅合金屑をNi源として、一般的な手法、例えば、銅合金鋳塊を加熱又は均質加熱処理した後に熱間圧延し、熱間圧延後の板を水冷し、冷間圧延を行い、焼鈍を行うことにより製造された、Fe;0.05〜0.15質量%、P;0.015〜0.050質量%およびZn;0.01〜0.20質量%、Ni;0.01〜0.050質量%を含有し、残部がCuおよび不可避的不純物からなる組成を有する銅合金材を使用し、図1に示す製造装置を使用して、本発明の製造方法にて、厚肉部の厚さT、厚肉部の端縁部を押圧加工して形成される端縁溝部により残る厚さT1、薄肉部の厚さT2、押圧加工されている端縁溝部を有する厚肉部の側面と半径方向に沿う垂線とのなす角度θを表2の様に変えて、厚肉部の幅が1.0mm、薄肉部の幅が4.0mmの異形断面条を製造し、この異形断面条に仕上げ圧延工程及び焼鈍工程を施さずに、厚肉部及び薄肉部の厚さの加工精度を測定した。また、比較例として、T、T1、T2、θを表2に示すように変えた異形断面条を製造して、同様に加工精度を測定した。その結果を表2に示す。   Copper alloy scraps with Ni plating on the surface are used as a Ni source, and a general method, for example, a copper alloy ingot is heated or homogeneously heated and then hot-rolled, and the hot-rolled plate is water-cooled and cooled. Fe; 0.05 to 0.15 mass%, P; 0.015 to 0.050 mass% and Zn; 0.01 to 0.20 mass%, manufactured by performing hot rolling and annealing Ni: 0.01 to 0.050% by mass, a copper alloy material having a composition consisting of Cu and unavoidable impurities in the balance is used, and the manufacturing apparatus shown in FIG. The thickness T of the thick portion, the thickness T1 remaining by the edge groove formed by pressing the edge portion of the thick portion, the thickness T2 of the thin portion, the edge groove portion subjected to the press processing By changing the angle θ between the side surface of the thick part having the vertical axis and the perpendicular along the radial direction as shown in Table 2, the thick part Manufacturing a deformed section with a width of 1.0 mm and a width of the thin section of 4.0 mm, and processing accuracy of the thickness of the thick section and the thin section without subjecting the deformed section to a finish rolling process and an annealing process Was measured. In addition, as a comparative example, an irregular cross section having T, T1, T2, and θ changed as shown in Table 2 was manufactured, and the machining accuracy was measured in the same manner. The results are shown in Table 2.

Figure 2012024813
Figure 2012024813

表2から明らかな様に、本発明の製造方法により製造された異形断面銅合金条は、仕上げ圧延をすることなく、厚み方向の寸法精度が±0.003mm以下となることがわかる。   As is apparent from Table 2, it can be seen that the deformed cross-section copper alloy strip manufactured by the manufacturing method of the present invention has a dimensional accuracy of ± 0.003 mm or less without finish rolling.

更に、実施例2−1〜2−6の異形断面銅合金条の薄肉部から試料を切り出し、400℃で5分間の加熱を行い、その前後でビッカース硬さ(Hv)を測定した。ビッカース硬さの測定は、マイクロビッカース硬度計にて、4.9N(0.5kgf)の加重を加えて行った。
その結果を表3に示す。
Furthermore, the sample was cut out from the thin part of the deformed cross-section copper alloy strips of Examples 2-1 to 2-6, heated at 400 ° C. for 5 minutes, and before and after that Vickers hardness (Hv) was measured. The measurement of Vickers hardness was performed by applying a weight of 4.9 N (0.5 kgf) with a micro Vickers hardness tester.
The results are shown in Table 3.

Figure 2012024813
Figure 2012024813

表3から明らかな様に、本発明の製造方法により製造された異形断面銅合金条は、十分な耐熱性を有していることがわかり、耐熱性を付与するための焼鈍処理が不要であることがわかる。   As is apparent from Table 3, the deformed cross-section copper alloy strip produced by the production method of the present invention has sufficient heat resistance, and annealing treatment for imparting heat resistance is unnecessary. I understand that.

これらの結果より、本発明の製造方法により、材料ロスにより歩留まりを低下させることがなく、設備費の増大等を招くことがなく、仕上げ圧延工程を必要とせず、厚み方向の寸法精度を±0.005mm以下に成形された異形断面銅合金条を得られることがわかる。   From these results, according to the manufacturing method of the present invention, the yield is not reduced due to material loss, the equipment cost is not increased, the finish rolling process is not required, and the dimensional accuracy in the thickness direction is ± 0. It can be seen that a deformed cross-section copper alloy strip molded to 0.005 mm or less can be obtained.

以上、本発明の実施形態の製造方法について説明したが、本発明はこの実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
例えば、上記実施形態では、凸条部12に、その側面13と外周面との間の角部を若干の曲率半径r2で面取りしたが、図7に示す段付きロール21の凸条部22のように、曲率半径r3をさらに大きくして、断面が凸円弧面となる側面23としてもよい。
要は、凸条部は、段付きロールの幅方向内方に向く側面が、その外周端から半径方向内方に向かうにしたがって隣接する大径部の側面に漸次近づく方向に傾斜している形状であればよく、平坦面、凸円弧面のいずれでもよい。
また、厚肉部と薄肉部との数や寸法等は図示例に限定されるものではなく、複数の厚肉部どうし、薄肉部どうしの厚さや幅をそれぞれ同じ寸法に設定してもよいし、それぞれ異なる寸法に設定したものとしてもよい。
The manufacturing method of the embodiment of the present invention has been described above, but the present invention is not limited to this embodiment, and various modifications can be made without departing from the spirit of the present invention.
For example, in the said embodiment, although the corner | angular part between the side surface 13 and an outer peripheral surface was chamfered with the some curvature radius r2 to the protruding item | line part 12, of the protruding item | line part 22 of the stepped roll 21 shown in FIG. As described above, the radius of curvature r3 may be further increased so that the side surface 23 has a convex arc surface in cross section.
In short, the shape of the ridge portion is such that the side surface facing the inner side in the width direction of the stepped roll is inclined in a direction gradually approaching the side surface of the adjacent large diameter portion from the outer peripheral end toward the inner side in the radial direction. Any of a flat surface and a convex arc surface may be used.
Further, the number and dimensions of the thick and thin portions are not limited to the illustrated example, and the thickness and width of the plurality of thick portions may be set to the same size. These may be set to different dimensions.

1 段付きロール
2 平ロール
3 大径部
4 小径部
5 平板状銅合金材
6 薄肉部
7 厚肉部
7a 側面
8 異形断面銅合金条
11 側面(傾斜面)
12 凸条部
13 側面(傾斜面)
14 溝状部
21 段付きロール
22 凸条部
23 側面(傾斜面)
DESCRIPTION OF SYMBOLS 1 Roll with a step 2 Flat roll 3 Large diameter part 4 Small diameter part 5 Flat copper alloy material 6 Thin part 7 Thick part 7a Side 8 Deformed cross-section copper alloy strip 11 Side (inclined surface)
12 ridges 13 side surface (inclined surface)
14 Grooved portion 21 Stepped roll 22 Convex portion 23 Side surface (inclined surface)

Claims (3)

複数の大径部と小径部とが交互に並んだ段付きロールと、該段付きロールと平行に配置した平ロールとの間で平板状銅合金材を圧延して、複数の厚肉部と薄肉部とが幅方向に並んだ異形断面銅合金条を製造する方法であって、前記段付きロールと平ロールとの間で前記平板状銅合金材を圧延するに際し、前記平板状銅合金材の幅方向の両端部に、前記段付きロールの小径部により厚肉部を形成しつつ、前記小径部から突出する凸条部により、前記厚肉部の端縁部の少なくとも一部を幅方向の内方に向けて押圧加工を施し、当該厚肉部の厚さをTとするとき、前記厚肉部の端縁部を押圧加工して形成される端縁溝部により残る厚さT1が、T1=0.3×T〜0.9×Tの範囲に設定され、前記厚肉部に隣接する前記薄肉部の厚さT2が、T2=0.20×T〜0.85×Tの範囲に設定され、前記端縁溝部を有する厚肉部の側面と半径方向に沿う垂線とのなす角度θが、θ=0〜60°の範囲に設定されていることを特徴とする異形断面銅合金条の製造方法。   A flat copper alloy material is rolled between a stepped roll in which a plurality of large diameter portions and small diameter portions are alternately arranged, and a flat roll arranged in parallel with the stepped roll, and a plurality of thick portions A method for producing a deformed cross-section copper alloy strip in which thin portions are arranged in the width direction, and when rolling the flat copper alloy material between the stepped roll and a flat roll, the flat copper alloy material At the both ends in the width direction, the thick portion is formed by the small diameter portion of the stepped roll, and at least part of the edge portion of the thick portion is formed in the width direction by the protruding strip portion protruding from the small diameter portion. When the thickness of the thick part is T, the thickness T1 remaining by the edge groove formed by pressing the edge of the thick part is T. T1 = 0.3 × T to 0.9 × T is set, and the thickness T2 of the thin portion adjacent to the thick portion is T2 = The angle θ between the side surface of the thick portion having the edge groove portion and the perpendicular along the radial direction is set in the range of 0.20 × T to 0.85 × T, and θ = 0 to 60 °. A method for producing a modified cross-section copper alloy strip characterized by being set. 前記平板状銅合金材が、Fe;0.05〜0.15質量%、P;0.015〜0.050質量%およびZn;0.01〜0.20質量%、Ni;0.01〜0.50質量%を含有し、残部がCuおよび不可避的不純物からなる組成を有することを特徴とする請求項1に記載の異形断面銅合金条の製造方法。   The flat copper alloy material is Fe; 0.05 to 0.15% by mass, P; 0.015 to 0.050% by mass and Zn; 0.01 to 0.20% by mass, Ni; 0.01 to The method for producing a deformed cross-section copper alloy strip according to claim 1, comprising 0.50% by mass, the balance being composed of Cu and inevitable impurities. 前記平板状銅合金材の製造原料の一部として、半導体用リードフレーム材等の製造時に発生する廃棄物から得られるNiめっき付き銅合金を使用することを特徴とする請求項2に記載の異形断面銅合金条の製造方法。   The deformed copper alloy according to claim 2, wherein a copper alloy with Ni plating obtained from a waste generated at the time of manufacturing a semiconductor lead frame material or the like is used as a part of a raw material for manufacturing the flat copper alloy material. Method for producing a cross-section copper alloy strip.
JP2010165871A 2010-07-23 2010-07-23 Method for producing irregular cross-section copper alloy strip Active JP5623169B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010165871A JP5623169B2 (en) 2010-07-23 2010-07-23 Method for producing irregular cross-section copper alloy strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010165871A JP5623169B2 (en) 2010-07-23 2010-07-23 Method for producing irregular cross-section copper alloy strip

Publications (2)

Publication Number Publication Date
JP2012024813A true JP2012024813A (en) 2012-02-09
JP5623169B2 JP5623169B2 (en) 2014-11-12

Family

ID=45778403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010165871A Active JP5623169B2 (en) 2010-07-23 2010-07-23 Method for producing irregular cross-section copper alloy strip

Country Status (1)

Country Link
JP (1) JP5623169B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103801560A (en) * 2014-01-23 2014-05-21 中冶华天工程技术有限公司 Two-roller reversible mill roller device and technology using continuous casting round billets for carrying out rolling production
JP2018053288A (en) * 2016-09-27 2018-04-05 新日鐵住金株式会社 Convex bar-attached type melting galvanized steel plate and production method for the same, and hot stamp molded body

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08155576A (en) * 1994-12-05 1996-06-18 Nisshin Steel Co Ltd Production of deformed cross sectional band material and roll with projecting line
JP2006083465A (en) * 2004-08-17 2006-03-30 Kobe Steel Ltd Copper alloy sheet for electric and electronic parts having bendability
JP2007211317A (en) * 2006-02-12 2007-08-23 Sanbo Copper Alloy Co Ltd Plastic worked material made of copper alloy and its production method
JP2009291798A (en) * 2008-06-03 2009-12-17 Mitsubishi Shindoh Co Ltd Method for manufacturing deformed bar material, and deformed bar material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08155576A (en) * 1994-12-05 1996-06-18 Nisshin Steel Co Ltd Production of deformed cross sectional band material and roll with projecting line
JP2006083465A (en) * 2004-08-17 2006-03-30 Kobe Steel Ltd Copper alloy sheet for electric and electronic parts having bendability
JP2007211317A (en) * 2006-02-12 2007-08-23 Sanbo Copper Alloy Co Ltd Plastic worked material made of copper alloy and its production method
JP2009291798A (en) * 2008-06-03 2009-12-17 Mitsubishi Shindoh Co Ltd Method for manufacturing deformed bar material, and deformed bar material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103801560A (en) * 2014-01-23 2014-05-21 中冶华天工程技术有限公司 Two-roller reversible mill roller device and technology using continuous casting round billets for carrying out rolling production
CN103801560B (en) * 2014-01-23 2016-06-01 中冶华天工程技术有限公司 Two-roller reversible milling train adopts roll device and the technique of continuous cast round billets Rolling Production
JP2018053288A (en) * 2016-09-27 2018-04-05 新日鐵住金株式会社 Convex bar-attached type melting galvanized steel plate and production method for the same, and hot stamp molded body

Also Published As

Publication number Publication date
JP5623169B2 (en) 2014-11-12

Similar Documents

Publication Publication Date Title
EP3239998B1 (en) Material for laminated iron core, and method of manufacturing laminated iron core
TWI574809B (en) A punching processing method, a punching processing apparatus, and a laminated core manufacturing method
WO2010090352A1 (en) Titanium material for hot rolling and manufacturing method thereof
JP6608675B2 (en) Heat sink and manufacturing method thereof
EP3428298A1 (en) Martensitic stainless steel foil and method for manufacturing same
TWI616242B (en) Manufacturing method of metal plate with convex strip
WO2009142007A1 (en) Method for producing deformed cross-section strip
JP2018145466A (en) Manufacturing method of aluminum alloy sheet for beverage can excellent in bottom moldability and bottom part strength
JP5623169B2 (en) Method for producing irregular cross-section copper alloy strip
JP2009160641A (en) Edge treatment method of metal strip
EP2770072A2 (en) Non-heat treated magnesium alloy sheet with excellent formability at room temperature in which segregation is minimized
JP2018053288A (en) Convex bar-attached type melting galvanized steel plate and production method for the same, and hot stamp molded body
JP4780600B2 (en) Magnesium alloy sheet excellent in deep drawability and manufacturing method thereof
JP5869288B2 (en) Modified cross-section copper alloy sheet with excellent bending workability and low anisotropy and method for producing the same
JP2003136103A (en) Method for manufacturing deformed steel bar and lead frame
CN103700641A (en) Steel strip for lead frame and production method thereof
EP3521459B1 (en) METHOD FOR PRODUCING Fe-Ni-BASED ALLOY THIN PLATE AND Fe-Ni-BASED ALLOY THIN PLATE
JP6684568B2 (en) Method for producing aluminum alloy plate for beverage can body or beverage bottle can body excellent in anisotropy and neck formability
JP5573414B2 (en) Steel forging method
JP5448023B2 (en) Steel fine wire or strip steel plate with excellent plastic workability
KR102286363B1 (en) Manufacturing method of clad thin plate with uniform thickness variation
JP2010005659A (en) Method of manufacturing magnesium sheet
JP5237867B2 (en) Fe-Ni alloy material for lead frame and method for producing the same
KR20200025416A (en) Small u type bar cold strip technology
JP2005034887A (en) Projecting die for width press and method for manufacturing hot-rolled steel sheet using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140916

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140924

R150 Certificate of patent or registration of utility model

Ref document number: 5623169

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250