JP2012020954A - Method for producing vinyl ether compound - Google Patents

Method for producing vinyl ether compound Download PDF

Info

Publication number
JP2012020954A
JP2012020954A JP2010159146A JP2010159146A JP2012020954A JP 2012020954 A JP2012020954 A JP 2012020954A JP 2010159146 A JP2010159146 A JP 2010159146A JP 2010159146 A JP2010159146 A JP 2010159146A JP 2012020954 A JP2012020954 A JP 2012020954A
Authority
JP
Japan
Prior art keywords
group
vinyl ether
general formula
compound represented
ether compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010159146A
Other languages
Japanese (ja)
Other versions
JP5504080B2 (en
Inventor
Takeshi Inazaki
毅 稲崎
Takayuki Ito
孝之 伊藤
Tomotaka Tsuchimura
智孝 土村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2010159146A priority Critical patent/JP5504080B2/en
Publication of JP2012020954A publication Critical patent/JP2012020954A/en
Application granted granted Critical
Publication of JP5504080B2 publication Critical patent/JP5504080B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a vinyl ether compound, by which the high purity vinyl ether compound can be produced at a low cost with a general reaction apparatus without a special or expensive precious metal catalyst and a reactive gas.SOLUTION: The method for producing the vinyl ether compound comprises a process (A) of reacting a compound represented by formula (1) with a compound represented by formula (2) to obtain a compound represented by formula (3), and a process (B) of reacting the compound represented by formula (3) with a compound represented by formula (4) or formula (5) to obtain the vinyl ether compound represented by formula (6).

Description

本発明は、医薬品、農薬、ポリマーなどの原料として有用なビニルエーテル化合物の製造方法に関する。   The present invention relates to a method for producing a vinyl ether compound useful as a raw material for pharmaceuticals, agricultural chemicals, polymers and the like.

ビニルエーテル化合物は、非対称アセタール化合物の有用な合成原料であり、医薬品、農薬やレジスト用樹脂のような化学品の原料のほか、インキ、塗料の反応性希釈剤として使用されている。また、ビニルエーテルは一般的にカチオン重合性を有し、光学樹脂、透明性樹脂などのポリマー原料や、架橋剤としてUV硬化剤、接着剤などにも使用されており、有用である。更に、ビニルエーテル化合物はアクリル系化合物やスチレン系化合物と比較して、保存安定性が高く、臭気や皮膚刺激性も少ない為、作業性や取扱いに優れるという利点もある。しかしながら、ビニルエーテル化合物はアクリル系化合物に比べてその種類が少なく、また高価であるため、ビニルエーテル化合物に対する需要は充分には満たされていないのが現状である。   Vinyl ether compounds are useful raw materials for asymmetric acetal compounds, and are used as reactive diluents for inks and paints, as well as raw materials for chemicals such as pharmaceuticals, agricultural chemicals, and resist resins. Vinyl ethers are generally cationically polymerizable and are useful because they are used in polymer raw materials such as optical resins and transparent resins, UV curing agents and adhesives as crosslinking agents. Furthermore, since vinyl ether compounds have higher storage stability and less odor and skin irritation compared to acrylic compounds and styrene compounds, they also have the advantage of excellent workability and handling. However, since vinyl ether compounds are less in kind and more expensive than acrylic compounds, the demand for vinyl ether compounds is not sufficiently satisfied.

ビニルエーテル化合物の製造方法については、様々な方法が知られている(例えば特許文献1及び2、非特許文献1参照)。特許文献1では、イリジウム化合物などの遷移金属触媒の存在下で、カルボン酸ビニルエステル化合物とヒドロキシ化合物とを反応させることでビニルエーテル化合物が得られる。しかしながら、触媒として用いる遷移金属触媒は一般的に高価であり、大気中の酸素や水分の影響を受けて触媒活性が変化し、安定した収率が得られない。また、生成したビニルエーテル化合物と、未反応のヒドロキシ化合物の沸点が近く、蒸留精製を行っても高純度のビニルエーテル化合物が得られない場合がある。特許文献2では、アセチレンガスとヒドロキシ化合物を反応させることでビニルエーテル化合物が得られるが、反応性ガスを使用する為には耐圧反応容器等、特殊な設備が必要となる。非特許文献1では、塩酸ガス存在下でアルコールとアルデヒド化合物を反応させた後、塩基と反応させることでビニルエーテル化合物が得られるが、酸性ガスを使用する為、反応容器が耐酸性・耐腐食性を有している必要がある。また、アルコールとアルデヒド化合物との反応後、脱水・精製の工程が必要であり、同一反応容器で次の塩基との反応を実施することができない。   Various methods for producing vinyl ether compounds are known (see, for example, Patent Documents 1 and 2 and Non-Patent Document 1). In Patent Document 1, a vinyl ether compound is obtained by reacting a carboxylic acid vinyl ester compound with a hydroxy compound in the presence of a transition metal catalyst such as an iridium compound. However, a transition metal catalyst used as a catalyst is generally expensive, and its catalytic activity changes under the influence of atmospheric oxygen and moisture, so that a stable yield cannot be obtained. Moreover, the boiling point of the produced | generated vinyl ether compound and an unreacted hydroxy compound is near, and even if it refine | purifies by distillation, a highly purified vinyl ether compound may not be obtained. In Patent Document 2, a vinyl ether compound is obtained by reacting an acetylene gas and a hydroxy compound. However, in order to use a reactive gas, special equipment such as a pressure-resistant reaction vessel is required. In Non-Patent Document 1, a vinyl ether compound is obtained by reacting an alcohol with an aldehyde compound in the presence of hydrochloric acid gas and then reacting with a base. However, since an acid gas is used, the reaction vessel is resistant to acid and corrosion. It is necessary to have. Further, after the reaction between the alcohol and the aldehyde compound, a dehydration / purification step is required, and the reaction with the next base cannot be carried out in the same reaction vessel.

特開2005−126395号公報JP 2005-126395 A 特許第3817316号公報Japanese Patent No. 3817316

Eur.J.Org.Chem.2005,2548−57Eur. J. et al. Org. Chem. 2005, 2548-57

本発明は、特殊又高価な貴金属触媒や反応性ガスを使用することなく、一般的な反応装置を用いて高純度のビニルエーテル化合物を安価に製造する方法を提供することを目的とする。   An object of the present invention is to provide a method for producing a high-purity vinyl ether compound at low cost using a general reaction apparatus without using a special or expensive noble metal catalyst or reactive gas.

本発明は、下記の構成であり、これにより本発明の上記課題が解決される。   The present invention has the following configuration, which solves the above-described problems of the present invention.

〔1〕 下記一般式(1)で表される化合物と、下記一般式(2)で表される化合物とを反応し、下記一般式(3)で表される化合物を得る工程(A)と、下記一般式(3)で表される化合物と、下記一般式(4)又は下記一般式(5)で表される化合物とを反応し、下記一般式(6)で表されるビニルエーテル化合物を得る工程(B)とを含む、ビニルエーテル化合物の製造方法。 [1] Step (A) of obtaining a compound represented by the following general formula (3) by reacting a compound represented by the following general formula (1) with a compound represented by the following general formula (2) The compound represented by the following general formula (3) reacts with the compound represented by the following general formula (4) or the following general formula (5) to give a vinyl ether compound represented by the following general formula (6). A process for producing a vinyl ether compound, comprising the step (B) of obtaining.

Figure 2012020954
Figure 2012020954

式中、R及びRは、それぞれ独立に、水素原子、アルキル基、アリール基又はアラルキル基を表す。RとRとは互いに連結して環を形成してもよい。
はアルキル基、アリール基又はアラルキル基を表す。
は、アルキル基、アルケニル基、アリール基又はアラルキル基を表す。
、R及びRは、それぞれ独立に、アルキル基、アリール基、アラルキル基を表す。
Xはハロゲン原子を表す。
は一価の置換基を表す。
は0〜4の整数を表す。
In the formula, R 1 and R 2 each independently represent a hydrogen atom, an alkyl group, an aryl group, or an aralkyl group. R 1 and R 2 may be linked to each other to form a ring.
R 3 represents an alkyl group, an aryl group or an aralkyl group.
R 4 represents an alkyl group, an alkenyl group, an aryl group or an aralkyl group.
R 5 , R 6 and R 7 each independently represents an alkyl group, an aryl group or an aralkyl group.
X represents a halogen atom.
R 8 represents a monovalent substituent.
n 1 represents an integer of 0-4.

〔2〕 下記一般式(7)で表される化合物と、下記一般式(8)又は下記一般式(9)で表される化合物とを反応し、前記一般式(1)で表される化合物を得る工程(C)を含む、上記〔1〕に記載のビニルエーテル化合物の製造方法。 [2] A compound represented by the following general formula (1) reacts with a compound represented by the following general formula (8) or the following general formula (9), and the compound represented by the above general formula (1) The manufacturing method of the vinyl ether compound as described in said [1] including the process (C) which obtains.

Figure 2012020954
Figure 2012020954

式中、R、R及びRは、それぞれ、上記一般式(1)におけるR、R及びRと同義である。 Wherein, R 1, R 2 and R 3 each have the same meanings as R 1, R 2 and R 3 in the general formula (1).

〔3〕 前記工程(A)及び工程(B)を、同一反応容器内で一括して行う、上記〔1〕又は〔2〕に記載のビニルエーテル化合物の製造方法。 [3] The process for producing a vinyl ether compound according to the above [1] or [2], wherein the step (A) and the step (B) are collectively performed in the same reaction vessel.

〔4〕 前記工程(C)、前記工程(A)及び前記工程(B)を、同一反応容器内で一括して行う、上記〔2〕に記載のビニルエーテル化合物の製造方法。 [4] The method for producing a vinyl ether compound according to [2], wherein the step (C), the step (A), and the step (B) are collectively performed in the same reaction vessel.

〔5〕 R、R、Rの炭素数の総和が7以上である、上記〔1〕〜〔4〕のいずれか1項に記載のビニルエーテル化合物の製造方法。 [5] The method for producing a vinyl ether compound according to any one of [1] to [4] above, wherein the total number of carbon atoms of R 1 , R 2 and R 3 is 7 or more.

〔6〕 前記一般式(1)〜(3)及び(6)において、R及びRの炭素数の総和が2以下であり、Rの炭素数が7以上であり、かつ、Rの炭素数が7以上である、上記〔1〕〜〔4〕のいずれか1項に記載のビニルエーテル化合物の製造方法。 [6] In the general formulas (1) to (3) and (6), the total number of carbon atoms of R 1 and R 2 is 2 or less, the carbon number of R 3 is 7 or more, and R 4 The method for producing a vinyl ether compound according to any one of the above [1] to [4], wherein the number of carbon atoms is 7 or more.

〔7〕 前記一般式(1)〜(3)において、R及びRの炭素数の総和が6以上であり、かつ、Rの炭素数が3以下である、上記〔1〕〜〔4〕のいずれか1項に記載のビニルエーテル化合物の製造方法。 [7] In the above general formulas (1) to (3), the total number of carbon atoms of R 1 and R 2 is 6 or more, and the carbon number of R 4 is 3 or less. [4] The method for producing a vinyl ether compound according to any one of [4].

〔8〕 前記一般式(1)、(3)及び(6)において、Rが、下記一般式(10)で表される基である、上記〔1〕〜〔7〕のいずれか1項に記載のビニルエーテル化合物の製造方法。 [8] In any one of the above-mentioned [1] to [7], in the general formulas (1), (3) and (6), R 3 is a group represented by the following general formula (10) The manufacturing method of the vinyl ether compound as described in 1 ..

Figure 2012020954
Figure 2012020954

式中、nは1〜6の整数を表し、Yは環状アルキル基又はアリール基を表す。*は、酸素原子に接続する結合手を示す。 In the formula, n 2 represents an integer of 1 to 6, and Y represents a cyclic alkyl group or an aryl group. * Indicates a bond connected to an oxygen atom.

〔9〕 前記工程(A)及び前記工程(B)の各々において、反応溶媒として炭化水素系溶媒を使用する、上記〔1〕〜〔8〕のいずれか1項に記載のビニルエーテル化合物の製造方法。 [9] The method for producing a vinyl ether compound according to any one of [1] to [8] above, wherein a hydrocarbon solvent is used as a reaction solvent in each of the step (A) and the step (B). .

〔10〕 前記工程(A)及び前記工程(B)において、同じ反応溶媒を使用する、上記〔1〕〜〔9〕のいずれか1項に記載のビニルエーテル化合物の製造方法。 [10] The method for producing a vinyl ether compound according to any one of [1] to [9], wherein the same reaction solvent is used in the step (A) and the step (B).

〔11〕 前記工程(C)において、反応溶媒として炭化水素系溶媒を使用する、上記〔2〕〜〔10〕のいずれか1項に記載のビニルエーテル化合物の製造方法。 [11] The method for producing a vinyl ether compound according to any one of [2] to [10], wherein a hydrocarbon solvent is used as a reaction solvent in the step (C).

〔12〕 前記工程(C)、前記工程(A)及び前記工程(B)において、同じ反応溶媒を使用する、上記〔2〕〜〔11〕のいずれか1項に記載のビニルエーテル化合物の製造方法。 [12] The method for producing a vinyl ether compound according to any one of the above [2] to [11], wherein the same reaction solvent is used in the step (C), the step (A) and the step (B). .

本発明は、更に下記の構成であることが好ましい。   The present invention preferably further has the following configuration.

〔13〕 Rの炭素数が11以上である、上記〔6〕に記載のビニルエーテル化合物の製造方法。 [13] The method for producing a vinyl ether compound according to [6], wherein R 4 has 11 or more carbon atoms.

〔14〕 Rの炭素数が2以下である、上記〔7〕に記載のビニルエーテル化合物の製造方法。 [14] The method for producing a vinyl ether compound according to [7], wherein R 4 has 2 or less carbon atoms.

〔15〕 上記工程(C)において、反応活性化剤を添加する、上記〔1〕〜〔14〕のいずれか1項に記載のビニルエーテル化合物の製造方法。 [15] The method for producing a vinyl ether compound according to any one of [1] to [14], wherein a reaction activator is added in the step (C).

〔16〕 上記工程(C)において、酸触媒を添加する、上記〔2〕〜〔15〕のいずれか1項に記載のビニルエーテル化合物の製造方法。 [16] The method for producing a vinyl ether compound according to any one of [2] to [15] above, wherein an acid catalyst is added in the step (C).

本発明によれば、特殊又は高価な貴金属触媒や反応性ガスを使用することなく、一般的な反応装置を用いて高純度のビニルエーテル化合物を安価に製造することが可能である。   According to the present invention, it is possible to produce a high purity vinyl ether compound at low cost using a general reaction apparatus without using a special or expensive noble metal catalyst or reactive gas.

以下、本発明の実施の形態について詳細に説明する。
なお、本明細書に於ける基(原子団)の表記において、置換及び無置換を記していない表記は、置換基を有していないものと置換基を有しているものとの双方が含まれることとする。例えば、置換又は無置換を明示していない「アルキル基」は、置換基を有していないアルキル基(無置換アルキル基)のみならず、置換基を有しているアルキル基(置換アルキル基)をも包含することとする。
Hereinafter, embodiments of the present invention will be described in detail.
In addition, in the description of the group (atomic group) in this specification, the description which does not describe substitution and unsubstituted includes both the thing which does not have a substituent, and the thing which has a substituent. Suppose that For example, an “alkyl group” that does not clearly indicate substitution or unsubstituted is not only an alkyl group that does not have a substituent (unsubstituted alkyl group) but also an alkyl group that has a substituent (substituted alkyl group) Is also included.

本発明に係るビニルエーテル化合物の製造方法は、下記一般式(1)で表される化合物と、下記一般式(2)で表される化合物とを反応し、下記一般式(3)で表される化合物を得る工程(A)と、下記一般式(3)で表される化合物と、下記一般式(4)又は下記一般式(5)で表される化合物とを反応し、下記一般式(6)で表されるビニルエーテル化合物を得る工程(B)とを含む。   The method for producing a vinyl ether compound according to the present invention is represented by the following general formula (3) by reacting a compound represented by the following general formula (1) with a compound represented by the following general formula (2). The step (A) for obtaining a compound, the compound represented by the following general formula (3), and the compound represented by the following general formula (4) or the following general formula (5) are reacted, and the following general formula (6) And (B) to obtain a vinyl ether compound represented by

Figure 2012020954
Figure 2012020954

式中、R及びRは、それぞれ独立に、水素原子、アルキル基、アリール基又はアラルキル基を表す。RとRとは互いに連結して環を形成してもよい。
はアルキル基、アリール基又はアラルキル基を表す。
は、アルキル基、アルケニル基、アリール基又はアラルキル基を表す。
、R及びRは、それぞれ独立に、アルキル基、アリール基又はアラルキル基を表す。R、R及びRの内の2つが互いに連結して環を形成してもよい。
Xはハロゲン原子を表す。
は一価の置換基を表す。
は0〜4の整数を表す。
In the formula, R 1 and R 2 each independently represent a hydrogen atom, an alkyl group, an aryl group, or an aralkyl group. R 1 and R 2 may be linked to each other to form a ring.
R 3 represents an alkyl group, an aryl group or an aralkyl group.
R 4 represents an alkyl group, an alkenyl group, an aryl group or an aralkyl group.
R 5 , R 6 and R 7 each independently represents an alkyl group, an aryl group or an aralkyl group. Two of R 5 , R 6 and R 7 may be linked to each other to form a ring.
X represents a halogen atom.
R 8 represents a monovalent substituent.
n 1 represents an integer of 0-4.

以下、各工程について詳細に説明する。   Hereinafter, each step will be described in detail.

〔工程(A)〕
工程(A)は、下記一般式(1)で表される化合物と、下記一般式(2)で表される化合物とを反応し、下記一般式(3)で表される化合物を得る工程である。
[Process (A)]
Step (A) is a step of reacting a compound represented by the following general formula (1) with a compound represented by the following general formula (2) to obtain a compound represented by the following general formula (3). is there.

Figure 2012020954
Figure 2012020954

上記一般式(1)中、R及びRは、それぞれ独立に、水素原子、アルキル基、アリール基又はアラルキル基を表す。RとRとは互いに連結して環を形成してもよい。 In the general formula (1), R 1 and R 2 each independently represent a hydrogen atom, an alkyl group, an aryl group, or an aralkyl group. R 1 and R 2 may be linked to each other to form a ring.

及びRとしてのアルキル基は、直鎖状アルキル基、分岐状アルキル基、環状アルキル基のいずれでもよく、また、これらの組み合わせも好ましい。アルキル基の炭素数は、好ましくは1〜20とし、更に好ましくは1〜10であり、1〜6であることが特に好ましい。 The alkyl group as R 1 and R 2 may be a linear alkyl group, a branched alkyl group, or a cyclic alkyl group, and a combination thereof is also preferable. The number of carbon atoms of the alkyl group is preferably 1-20, more preferably 1-10, and particularly preferably 1-6.

直鎖状アルキル基としては、炭素数1〜20の直鎖状アルキル基であることが好ましく、炭素数1〜20の直鎖状アルキル基、炭素数1〜10の直鎖状アルキル基であることがより好ましく、炭素数1〜6の直鎖状アルキル基であることが特に好ましい。直鎖状アルキル基の具体例としては、例えば、メチル基、エチル基、n−プロピル基、n−ブチル基、n−ペンチル基、n−ヘキシル基、n−オクチル基及びn−ドデシル基などが挙げられる。中でも、メチル基、エチル基、n−プロピル基が特に好ましい。   The linear alkyl group is preferably a linear alkyl group having 1 to 20 carbon atoms, and is a linear alkyl group having 1 to 20 carbon atoms or a linear alkyl group having 1 to 10 carbon atoms. It is more preferable, and it is especially preferable that it is a C1-C6 linear alkyl group. Specific examples of the linear alkyl group include a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an n-pentyl group, an n-hexyl group, an n-octyl group, and an n-dodecyl group. Can be mentioned. Of these, a methyl group, an ethyl group, and an n-propyl group are particularly preferable.

分岐状アルキル基としては、炭素数1〜10の分岐状アルキル基であることがより好ましく、炭素数1〜6の分岐状アルキル基であることが特に好ましい。分岐状アルキル基の具体例としては、例えば、イソプロピル基、sec−ブチル基、tert−ブチル基、2−エチルヘキシル基、ネオペンチル基などが挙げられ、中でもイソプロピル基、tert−ブチル基が好ましい。   As the branched alkyl group, a branched alkyl group having 1 to 10 carbon atoms is more preferable, and a branched alkyl group having 1 to 6 carbon atoms is particularly preferable. Specific examples of the branched alkyl group include, for example, isopropyl group, sec-butyl group, tert-butyl group, 2-ethylhexyl group, neopentyl group, etc. Among them, isopropyl group and tert-butyl group are preferable.

環状アルキル基は単環型であってもよく、多環型であってもよく、炭素数3〜20の環状アルキル基であることが好ましく、炭素数3〜10の環状アルキル基であることがより好ましい。環状アルキル基の具体例としては、例えば、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、アダマンチル基、イソボルニル基、ノルボルニル基、トリシクロ[5,2,1,02,6]デカニル基、ジアマンチル基などが挙げられ、中でもシクロペンチル基、シクロヘキシル基、アダマンチル基が好ましい。 The cyclic alkyl group may be monocyclic or polycyclic, preferably a cyclic alkyl group having 3 to 20 carbon atoms, and preferably a cyclic alkyl group having 3 to 10 carbon atoms. More preferred. Specific examples of the cyclic alkyl group is, for example, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, adamantyl group, an isobornyl group, a norbornyl group, a tricyclo [5,2,1,0 2,6] decanyl group, etc. diamantyl group Among them, a cyclopentyl group, a cyclohexyl group, and an adamantyl group are preferable.

直鎖状、分岐状、環状アルキル基の組み合わせとしては、炭素数4〜10のものが好ましく、炭素数7〜10のものがより好ましく、その具体例としては、例えば、シクロヘキシルメチル基、シクロヘキシルエチル基などが挙げられる。   As a combination of linear, branched, and cyclic alkyl groups, those having 4 to 10 carbon atoms are preferable, those having 7 to 10 carbon atoms are more preferable, and specific examples thereof include, for example, a cyclohexylmethyl group and cyclohexylethyl. Group and the like.

とRとが互いに連結して形成してもよい環としては、4〜10員環が好ましく、5又は6員環がより好ましい。 The R 1 and R 2 are may be formed by connecting each other to form a ring, preferably a 4-10 membered ring, 5 or 6-membered ring is more preferable.

及びRとしてのアリール基は、炭素数4〜20のアリール基であることが好ましく、炭素数6〜14のアリール基であることがより好ましい。このアリール基は、環員としてヘテロ原子を有していてもよく、また、環上に置換基を更に有していてもよい。
このアリール基の具体例としては、例えば、フェニル基、ナフチル基、アントラニル基、ピレニル基、ピリジル基、ピロリル基、インドリル基、カルバゾリル基、チオフェニル基などが挙げられ、中でもフェニル基、ナフチル基が好ましい。
The aryl group as R 1 and R 2 is preferably an aryl group having 4 to 20 carbon atoms, and more preferably an aryl group having 6 to 14 carbon atoms. This aryl group may have a hetero atom as a ring member, and may further have a substituent on the ring.
Specific examples of the aryl group include a phenyl group, a naphthyl group, an anthranyl group, a pyrenyl group, a pyridyl group, a pyrrolyl group, an indolyl group, a carbazolyl group, and a thiophenyl group. Among them, a phenyl group and a naphthyl group are preferable. .

アリール基が有し得る置換基としては、例えば、ニトロ基、フッ素原子等のハロゲン原子、カルボキシ基、水酸基、アミノ基、シアノ基、アルキル基(好ましくは炭素数1〜15)、アルコキシ基(好ましくは炭素数1〜15)、シクロアルキル基(好ましくは炭素数3〜15)、アリール基(好ましくは炭素数6〜14)、アルコキシカルボニル基(好ましくは炭素数2〜7)、アシル基(好ましくは炭素数2〜12)、アシルオキシ基(好ましくは炭素数2〜12)及びアルコキシカルボニルオキシ基(好ましくは炭素数2〜7)が挙げられる。   Examples of the substituent that the aryl group may have include a nitro group, a halogen atom such as a fluorine atom, a carboxy group, a hydroxyl group, an amino group, a cyano group, an alkyl group (preferably having a carbon number of 1 to 15), and an alkoxy group (preferably Has 1 to 15 carbon atoms, a cycloalkyl group (preferably 3 to 15 carbon atoms), an aryl group (preferably 6 to 14 carbon atoms), an alkoxycarbonyl group (preferably 2 to 7 carbon atoms), an acyl group (preferably Includes an acyloxy group (preferably having a carbon number of 2 to 12) and an alkoxycarbonyloxy group (preferably having a carbon number of 2 to 7).

及びRとしてのアラルキル基は、炭素数6〜21のアラルキル基であることが好ましく、炭素数7〜15のアラルキル基であることがより好ましい。このアラルキル基は、環員としてヘテロ原子を有していてもよく、また、環上に置換基を更に有していてもよい。
アラルキル基の具体例としては、例えば、ベンジル基、フェネチル基、プロピルフェニル基、ナフチルメチル基、ナフチルエチル基、アントラニルメチル基などが挙げられ、中でもベンジル基、フェネチル基、ナフチルメチル基が好ましい。
アラルキル基が有し得る置換基としては、アリール基が有し得る置換基として列挙したものと同様のものが挙げられる。
The aralkyl group as R 1 and R 2 is preferably an aralkyl group having 6 to 21 carbon atoms, and more preferably an aralkyl group having 7 to 15 carbon atoms. This aralkyl group may have a hetero atom as a ring member, and may further have a substituent on the ring.
Specific examples of the aralkyl group include a benzyl group, a phenethyl group, a propylphenyl group, a naphthylmethyl group, a naphthylethyl group, and an anthranylmethyl group. Among them, a benzyl group, a phenethyl group, and a naphthylmethyl group are preferable.
Examples of the substituent that the aralkyl group may have include those listed as the substituents that the aryl group may have.

一般式(1)中、Rはアルキル基、アリール基又はアラルキル基を表し、これらの炭素数の範囲及び具体例としては、例えば、先にR及びRとして列挙したのと同様のものが挙げられる。 In the general formula (1), R 3 represents an alkyl group, an aryl group or an aralkyl group, and the range and specific examples of these carbon atoms are the same as those listed above as R 1 and R 2 , for example. Is mentioned.

は、下記一般式(10)で表される基であることが更に好ましい。 R 3 is more preferably a group represented by the following general formula (10).

Figure 2012020954
Figure 2012020954

式中、nは1〜6の整数を表し、1〜4の整数が好ましく、1又は2が特に好ましい。Yは環状アルキル基又はアリール基を表し、これらの炭素数範囲及び具体例しては、例えば、先にR及びRとして列挙したのと同様のものが挙げられる。 Wherein, n 2 represents an integer of 1-6, preferably an integer of 1 to 4, 1 or 2 are particularly preferred. Y represents a cyclic alkyl group or an aryl group. Examples of these carbon number ranges and specific examples include the same as those enumerated above as R 1 and R 2 .

以下に一般式(10)で表される基の具体例を示すが、本発明がこれらに限定されるものではない。   Specific examples of the group represented by the general formula (10) are shown below, but the present invention is not limited thereto.

Figure 2012020954
Figure 2012020954

以下に一般式(1)で表される化合物の具体例を示すが、本発明がこれらに限定されるものではない。   Specific examples of the compound represented by the general formula (1) are shown below, but the present invention is not limited thereto.

Figure 2012020954
Figure 2012020954

Figure 2012020954
Figure 2012020954

Figure 2012020954
Figure 2012020954

Figure 2012020954
Figure 2012020954

Figure 2012020954
Figure 2012020954

上記一般式(2)中、Rはアルキル基、アルケニル基、アリール基又はアラルキル基を表す。
の炭素数は1〜20であることが好ましい。
In the general formula (2), R 4 represents an alkyl group, an alkenyl group, an aryl group, or an aralkyl group.
R 4 preferably has 1 to 20 carbon atoms.

のアルキル基、アリール基及びアラルキル基の炭素数の範囲及び具体例としては、例えば、先にR及びRとして列挙したのと同様のものが挙げられる。
のアルケニル基としては、炭素数2〜20のアルケニル基であることが好ましく、ビニル基、プロペニル基、ブテニル基、ヘキセニル基、ヘプタニル基、オクタニル基、デカニル基、ウンデカニル基、ドデカニル基などを挙げることができる。
Examples of the carbon number range and specific examples of the alkyl group, aryl group, and aralkyl group of R 4 include the same as those enumerated above as R 1 and R 2 .
The alkenyl group for R 4 is preferably an alkenyl group having 2 to 20 carbon atoms, and includes a vinyl group, a propenyl group, a butenyl group, a hexenyl group, a heptanyl group, an octanyl group, a decanyl group, an undecanyl group, and a dodecanyl group. Can be mentioned.

一般式(2)中、Xはハロゲン原子を表し、フッ素原子、塩素原子、臭素原子、ヨウ素原子が好ましく、中でも塩素原子が更に好ましい。   In general formula (2), X represents a halogen atom, preferably a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom, and more preferably a chlorine atom.

一般式(2)で表される化合物としては、例えば、アセチルクロリド、プロピオニルクロリド、酪酸クロリド、イソ酪酸クロリド、ピバロイルクロリド、イソバレリルクロリド、バレリルクロリド、tert−ブチルアセチルクロリド、ヘキサノイルクロリド、ヘプタノイルクロリド、オクタノイルクロリド、ノナノイルクロリド、5−クロロ吉草酸クロリド、6−ブロモヘキサノイルクロリド、シクロヘキサンカルボニルクロリド、2−エチルヘキサノイルクロリド、2−プロピルバレリルクロリド、3,5,5−トリメチルヘキサノイルクロリド、デカン酸クロリド、ウンデカノイルクロリド、ラウロイルクロリド、ミリスチン酸クロリド、パルミトイルクロリド、ヘプタデカノイルクロリド、ステアロイルクロリド、オレオイルクロリド、リノレオイルクロリド、10−ウンデセノイルクロリド、アセチルブロミド、プロピオニルブロミド、イソ酪酸ブロミド、バレリルブロミド、2−ブロモブチリルブロミド、2−ブロモプロピオニルブロミド、アセチルヨージドが挙げられるが、本発明がこれらに限定されるものではない。   Examples of the compound represented by the general formula (2) include acetyl chloride, propionyl chloride, butyric chloride, isobutyric chloride, pivaloyl chloride, isovaleryl chloride, valeryl chloride, tert-butylacetyl chloride, hexanoyl. Chloride, heptanoyl chloride, octanoyl chloride, nonanoyl chloride, 5-chlorovaleric acid chloride, 6-bromohexanoyl chloride, cyclohexanecarbonyl chloride, 2-ethylhexanoyl chloride, 2-propylvaleryl chloride, 3,5,5 5-trimethylhexanoyl chloride, decanoic acid chloride, undecanoyl chloride, lauroyl chloride, myristic acid chloride, palmitoyl chloride, heptadecanoyl chloride, stearoyl chloride, oleoyl chloride Linoleoyl chloride, 10-undecenoyl chloride, acetyl bromide, propionyl bromide, isobutyric acid bromide, valeryl bromide, 2-bromobutyryl bromide, 2-bromopropionyl bromide, and acetyl iodide. However, it is not limited to these.

一般式(3)中のR〜R及びXは、それぞれ、一般式(1)又は(2)に記載のR〜R及びXと同義であり、好ましい例も同様である。 R < 1 > -R < 3 > and X in General formula (3) are synonymous with R < 1 > -R < 3 > and X as described in General formula (1) or (2), respectively, A preferable example is also the same.

、R及びRの各々における炭素数は特に限定されないが、R、R及びRの炭素数の総和が7以上である形態は、本発明の好ましい形態の内の1つである。
この形態において、R〜Rの炭素数の総和の上限値は、60以下であることが好ましく、45以下であることがより好ましい。
The number of carbon atoms in each of R 1 , R 2 and R 3 is not particularly limited, but the form in which the total number of carbon atoms in R 1 , R 2 and R 3 is 7 or more is one of preferred forms of the present invention. It is.
In this embodiment, the upper limit of the total number of carbon atoms of R 1 to R 3 is preferably 60 or less, and more preferably 45 or less.

また、前記一般式(1)〜(3)において、(i)R及びRの炭素数の総和が2以下、Rの炭素数が7以上である場合は、Rの炭素数は7以上であることが好ましく(より好ましくはRの炭素数は11以上)、(ii)R及びRの炭素数の総和が6以上である場合は、Rの炭素数は3以下(より好ましくはRの炭素数は2以下、更に好ましくはRの炭素数は1)であることが好ましい。
換言すれば、上記形態(i)は、R及びRの炭素数の総和が2以下であり、Rの炭素数が7以上であり、かつ、Rの炭素数が7以上である形態であり、上記形態(ii)は、R及びRの炭素数の総和が6以上であり、かつ、Rの炭素数が3以下である形態である。
In the general formulas (1) to (3), (i) when the total number of carbon atoms of R 1 and R 2 is 2 or less and the carbon number of R 3 is 7 or more, the carbon number of R 4 is It is preferably 7 or more (more preferably, the carbon number of R 4 is 11 or more), and (ii) when the total number of carbon atoms of R 1 and R 2 is 6 or more, the carbon number of R 4 is 3 or less. (more preferably the carbon number of R 4 is 2 or less, more preferably carbon number of R 4 is 1) is preferably.
In other words, in the above form (i), the total number of carbon atoms of R 1 and R 2 is 2 or less, the carbon number of R 3 is 7 or more, and the carbon number of R 4 is 7 or more. The form (ii) is a form in which the total number of carbon atoms of R 1 and R 2 is 6 or more and the number of carbon atoms of R 4 is 3 or less.

上記形態(i)において、R及びRの炭素数の総和は、0〜2の整数であり、0又は1であることがより好ましい。Rの炭素数は7〜20の整数であることが好ましく、7〜15の整数であることがより好ましく、7〜10の整数であることが更に好ましい。Rの炭素数は7〜20の整数であることが好ましく、11〜20の整数であることがより好ましい。
上記形態(ii)において、R及びRの炭素数の総和は、6〜20の整数であることが好ましく、6〜15の整数であることがより好ましい。Rの炭素数は1〜3であり、1又は2であることが好ましい。
In the above embodiment (i), the total number of carbon atoms of R 1 and R 2 are an integer of 0 to 2, more preferably 0 or 1. The number of carbon atoms in R 3 is preferably an integer of 7 to 20, more preferably an integer of 7 to 15, and still more preferably an integer of 7 to 10. The number of carbon atoms in R 4 is preferably an integer of 7 to 20, and more preferably an integer of 11 to 20.
In the above embodiment (ii), the total number of carbon atoms of R 1 and R 2 is preferably 6-20 integer, and more preferably an integer of 6 to 15. R 4 has 1 to 3 carbon atoms, and preferably 1 or 2.

上記形態(i)において、Rのアルキル基、アリール基又はアラルキル基としては、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基等の炭素数7〜20のアルキル基、トルイル基、ナフチル基、ジメチルフェニル基等の炭素数7〜20のアリール基、ベンジル基、1−フェニルプロピル基、2−フェニルエチル基等の炭素数7〜21のアラルキル基が挙げられる。
のアルキル基、アルケニル基、アリール基又はアラルキル基としては、上記したRのアルキル基、アリール基及びアラルキル基の例に加え、ヘプタニル基、オクタニル基、デカニル基、ウンデカニル基、ドデカニル基等の炭素数7〜20のアルケニル基を挙げることができ、中でもアルキル基が好ましい。
としてのアルキル基は、n−ヘプチル基、n−ウンデシル基、n−トリデシル基、n−ペンタデシル基又はn−ヘプタデシル基が更に好ましい。
In the above form (i), as the alkyl group, aryl group or aralkyl group of R 3 , heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group Alkyl groups having 7 to 20 carbon atoms such as heptadecyl group, aryl groups having 7 to 20 carbon atoms such as toluyl group, naphthyl group and dimethylphenyl group, benzyl group, 1-phenylpropyl group and 2-phenylethyl group Examples thereof include aralkyl groups having 7 to 21 carbon atoms.
Examples of the alkyl group, alkenyl group, aryl group or aralkyl group of R 4 include heptanyl group, octanyl group, decanyl group, undecanyl group, dodecanyl group and the like in addition to the examples of the alkyl group, aryl group and aralkyl group of R 3 described above. The alkenyl group having 7 to 20 carbon atoms can be exemplified, and among them, an alkyl group is preferable.
The alkyl group as R 4 is more preferably an n-heptyl group, n-undecyl group, n-tridecyl group, n-pentadecyl group or n-heptadecyl group.

上記形態(ii)において、R及びRの炭素数の総和が6〜20の整数である限り、R及びRは特に限定されない。
また、形態(ii)において、Rは炭素数が3以下であることから、Rとしては、炭素数1〜3のアルキル基、又は、炭素数2若しくは3のアルケニル基を挙げることができ、中でも、炭素数1〜3のアルキル基が好ましい。炭素数1〜3のアルキル基の具体例としては、メチル基、エチル基、プロピル基が挙げられ、中でもメチル基が好ましい。
In the above embodiment (ii), as long as the total number of carbon atoms of R 1 and R 2 are 6 to 20 integer, R 1 and R 2 are not particularly limited.
Also, in (ii), since R 4 is 3 or less carbon atoms, the R 4, an alkyl group having 1 to 3 carbon atoms, or there may be mentioned an alkenyl group having 2 or 3 carbon atoms Among these, an alkyl group having 1 to 3 carbon atoms is preferable. Specific examples of the alkyl group having 1 to 3 carbon atoms include a methyl group, an ethyl group, and a propyl group. Among them, a methyl group is preferable.

[反応溶媒]
工程(A)の反応を行う溶媒としては、ヘキサン、ヘプタン、デカン、ベンゼン、トルエン、キシレン等の炭化水素系溶媒、ジクロロメタン、ジクロロエタン、クロロホルム等のハロゲン系溶媒、酢酸エチル、酢酸ブチル等のエステル系溶媒、テトラヒドロフラン、ジエチルエーテル等のエーテル系溶媒、アセトニトリル等が好適に用いられ、中でも炭化水素系溶媒が更に好ましく、ヘキサン、ヘプタンが特に好ましい。後述する工程(C)で用いた溶媒をそのまま工程(A)の溶媒として使用することもできる。また、一般式(1)で表される化合物と一般式(2)で表される化合物の少なくとも何れか一方が液体である場合には、無溶媒で工程(A)の反応を行うことも出来、溶媒を使用する場合よりもコスト面、環境面でより好ましい。
[Reaction solvent]
Solvents for the reaction in the step (A) include hydrocarbon solvents such as hexane, heptane, decane, benzene, toluene and xylene, halogen solvents such as dichloromethane, dichloroethane and chloroform, and ester solvents such as ethyl acetate and butyl acetate. Solvents, ether solvents such as tetrahydrofuran and diethyl ether, acetonitrile, and the like are preferably used. Of these, hydrocarbon solvents are more preferable, and hexane and heptane are particularly preferable. The solvent used in the step (C) described later can be used as it is as the solvent in the step (A). Further, when at least one of the compound represented by the general formula (1) and the compound represented by the general formula (2) is a liquid, the reaction of the step (A) can be performed without a solvent. More preferable in terms of cost and environment than when a solvent is used.

[一般式(1)で表される化合物に対する一般式(2)で表される化合物の使用量]
工程(A)において、一般式(2)で表される化合物は一般式(1)で表される化合物1モルに対して、1〜10モルで用いられることが好ましく、1〜2モルで用いられることがより好ましい。
[Amount of Compound Represented by General Formula (2) with respect to Compound Represented by General Formula (1)]
In the step (A), the compound represented by the general formula (2) is preferably used at 1 to 10 mol, and used at 1 to 2 mol with respect to 1 mol of the compound represented by the general formula (1). More preferably.

[その他の添加剤]
工程(A)の反応を行う際の添加剤としては、反応活性化剤として、塩化亜鉛、臭化亜鉛、ヨウ化亜鉛、酢酸亜鉛、トリフルオロメタンスルホン酸亜鉛、トリフルオロメタンスルホン酸スカンジウム(III)等を加えてもよい。添加量としては、一般式(1)で表される化合物に対し、0.001〜10モル%が好ましく、0.01〜0.1モル%が更に好ましい。
[Other additives]
As an additive at the time of performing the reaction in the step (A), as a reaction activator, zinc chloride, zinc bromide, zinc iodide, zinc acetate, zinc trifluoromethanesulfonate, scandium trifluoromethanesulfonate (III), etc. May be added. As addition amount, 0.001-10 mol% is preferable with respect to the compound represented by General formula (1), and 0.01-0.1 mol% is still more preferable.

[反応温度・時間]
工程(A)の反応を行う温度としては、0〜100℃が好ましく、25〜80℃が更に好ましく、40〜60℃が特に好ましい。
工程(A)の反応を行う時間としては、0.5〜24時間が好ましく、1〜6時間が更に好ましく、1〜2時間が特に好ましい。
[Reaction temperature / time]
As temperature which performs reaction of a process (A), 0-100 degreeC is preferable, 25-80 degreeC is further more preferable, and 40-60 degreeC is especially preferable.
The time for performing the reaction in the step (A) is preferably 0.5 to 24 hours, more preferably 1 to 6 hours, and particularly preferably 1 to 2 hours.

[反応後の処理]
工程(A)の反応では、下記一般式(11)で表されるエステル化合物が、上記一般式(3)で表される化合物に対して等モル量で副生する。
[Processing after reaction]
In the reaction of step (A), an ester compound represented by the following general formula (11) is by-produced in an equimolar amount with respect to the compound represented by the above general formula (3).

Figure 2012020954
Figure 2012020954

上記一般式(11)中、R及びRは、それぞれ、上記一般式(1)及び一般式(2)中のR、Rと同義であり、好ましい例も同様である。 In the general formula (11), R 3 and R 4 are each the same meaning as R 3, R 4 in the general formula (1) and the general formula (2), and preferred examples are also the same.

一般式(11)で表される化合物の沸点が比較的低い(例えば常圧での沸点が150℃以下である)場合、(AI)工程(A)の反応終了後に、減圧留去により除去してもよく、また、(AII)工程(A)の反応終了時には除去せず、後述する工程(B)の溶媒として使用してもよい。一般式(11)で表される化合物の沸点が高い(例えば常圧での沸点が150℃より高い)場合、後述する工程(B)の溶媒として使用することが好ましい(すなわち、上記形態(AII)を採用することが好ましい)。   When the boiling point of the compound represented by the general formula (11) is relatively low (for example, the boiling point at normal pressure is 150 ° C. or lower), the compound is removed by distillation under reduced pressure after the reaction of (AI) step (A). Alternatively, it may not be removed at the end of the reaction in (AII) step (A), and may be used as a solvent in step (B) described later. When the boiling point of the compound represented by the general formula (11) is high (for example, the boiling point at normal pressure is higher than 150 ° C.), it is preferably used as a solvent in the step (B) described later (that is, the above form (AII ) Is preferred).

〔工程(B)〕
工程(B)は、前記一般式(3)で表される化合物と、一般式(4)又は一般式(5)で表される化合物とを反応し、一般式(6)で表されるビニルエーテル化合物を得る工程である。
[Process (B)]
In the step (B), the compound represented by the general formula (3) is reacted with the compound represented by the general formula (4) or the general formula (5) to obtain a vinyl ether represented by the general formula (6). This is a step of obtaining a compound.

Figure 2012020954
Figure 2012020954

一般式(4)中、R、R及びRは、それぞれ独立に、アルキル基、アリール基又はアラルキル基を表す。 In general formula (4), R 5 , R 6 and R 7 each independently represents an alkyl group, an aryl group or an aralkyl group.

〜Rの炭素数は、それぞれ独立に、1〜20であることが好ましく、1〜8がより好ましく、1〜3が更に好ましい。 The number of carbon atoms of R 5 to R 7 is preferably independently 1 to 20, more preferably 1 to 8, and still more preferably 1 to 3.

、R及びRのアルキル基は酵素原子や窒素原子などのヘテロ原子を有していてもよく、直鎖状アルキル基、分岐状アルキル基、環状アルキル基のいずれでもよく、炭素数1〜20のアルキル基であることが好ましく、炭素数1〜6のアルキル基であることがより好ましい。R、R及びRのアルキル基の具体例としては、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、ネオペンチル基、n−ヘキシル基、シクロヘキシル基、n−ヘプチル基、n−オクチル基、n−ドデシル基等が挙げられ、中でもメチル基、エチル基、n−プロピル基、イソプロピル基が好ましい。 The alkyl group of R 5 , R 6 and R 7 may have a hetero atom such as an enzyme atom or a nitrogen atom, and may be any of a linear alkyl group, a branched alkyl group and a cyclic alkyl group, and has a carbon number An alkyl group having 1 to 20 carbon atoms is preferable, and an alkyl group having 1 to 6 carbon atoms is more preferable. Specific examples of the alkyl group for R 5 , R 6 and R 7 include, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, n- A pentyl group, a neopentyl group, an n-hexyl group, a cyclohexyl group, an n-heptyl group, an n-octyl group, an n-dodecyl group, and the like can be given. Among them, a methyl group, an ethyl group, an n-propyl group, and an isopropyl group are preferable.

、R及びRのアリール基は酸素原子や窒素原子などのヘテロ原子を有していてもよく、また、環上に置換基を更に有していてもよい。
、R及びRのアリール基は、炭素数4〜20のアリール基であることが好ましく、炭素数6〜10のアリール基であることがより好ましい。このアリール基の具体例としては、例えば、フェニル基、ナフチル基、アントラニル基、ピレニル基、ピリジル基、ピロリル基、インドリル基、が挙げられ、中でもフェニル基が好ましい。
、R及びRのアラルキル基は、ヘテロ原子を有していてもよく、また、環上に置換基を更に有していてもよい。
、R及びRのアラルキル基は、炭素数6〜21のアラルキル基であること好ましく、炭素数7〜15のアラルキル基であることがより好ましい。このアラルキル基としては、例えば、ベンジル基、フェネチル基、プロピルフェニル基、ナフチルメチル基、ナフチルエチル基、アントラニルメチル基が挙げられ、中でもベンジル基が好ましい。
上記のアリール基及びアラルキル基が環上に有し得る置換基は、一般式(1)のR及びRのアリール基が有し得る置換基と同様である。
The aryl group of R 5 , R 6 and R 7 may have a hetero atom such as an oxygen atom or a nitrogen atom, and may further have a substituent on the ring.
The aryl group of R 5 , R 6 and R 7 is preferably an aryl group having 4 to 20 carbon atoms, and more preferably an aryl group having 6 to 10 carbon atoms. Specific examples of the aryl group include a phenyl group, a naphthyl group, an anthranyl group, a pyrenyl group, a pyridyl group, a pyrrolyl group, and an indolyl group, and among them, a phenyl group is preferable.
The aralkyl group of R 5 , R 6 and R 7 may have a hetero atom, and may further have a substituent on the ring.
The aralkyl group of R 5 , R 6 and R 7 is preferably an aralkyl group having 6 to 21 carbon atoms, and more preferably an aralkyl group having 7 to 15 carbon atoms. Examples of the aralkyl group include a benzyl group, a phenethyl group, a propylphenyl group, a naphthylmethyl group, a naphthylethyl group, and an anthranylmethyl group, and among them, a benzyl group is preferable.
The substituent that the aryl group and the aralkyl group may have on the ring is the same as the substituent that the aryl group represented by R 1 and R 2 in the general formula (1) may have.

、R及びRの内の2つが互いに連結して、環を形成してもよい。形成される環としては5員環、6員環、7員環が挙げられ、5員環又は6員環が好ましい。 Two of R 5 , R 6 and R 7 may be connected to each other to form a ring. Examples of the ring formed include a 5-membered ring, a 6-membered ring, and a 7-membered ring, and a 5-membered ring or a 6-membered ring is preferable.

一般式(4)で表される化合物としては、例えば、N,N−ジエチルメチルアミン、トリエチルアミン、N,N−ジメチルイソプロピルアミン、N,N−ジメチルエチルアミン、N,N−ジイソプロピルエチルアミン、1−メチルピロリジン、1−エチルピロリジン、トリプロピルアミン、トリイソブチルアミン、トリアミルアミン、トリヘキシルアミン、N,N−ジシクロヘキシルメチルアミン、トリオクチルアミン、ジデシルメチルアミン、トリス(2−エチルヘキシル)アミン、N,N−ジメチルヘキサデシルアミン、トリ−n−デシルアミン、N,N−ジエチルシクロヘキシルアミン、N,N−ジメチル−n−オクタデシルアミン、1−メチルピペリジン、1−エチルピペリジン、N−メチルモルホリン、N−エチルモルホリン、N−フェニルモルホリン、N−(4−ピリジル)モルホリン、N,N−ジメチルアニリン、N,N−ジメチル−p−トルイジン、N,N−ジメチル−o−トルイジン、N,N−ジメチル−m−トルイジン、N,N−ジメチル−1−ナフチルアミン、N,N−ジメチル−2−ナフチルアミン、N,N−ジエチルアニリン、N,N−ジプロピルアニリン、4−ジメチルアミノピリジン、トリフェニルアミン、トリ−p−トリルアミン、N−メチルジフェニルアミン、1,8−ジアザビシクロ[5.4.0]−7−ウンデセン、1,5−ジアザビシクロ[4.3.0]−5−ノネンが挙げられるが、本発明がこれらに限定されるものではない。   Examples of the compound represented by the general formula (4) include N, N-diethylmethylamine, triethylamine, N, N-dimethylisopropylamine, N, N-dimethylethylamine, N, N-diisopropylethylamine, and 1-methyl. Pyrrolidine, 1-ethylpyrrolidine, tripropylamine, triisobutylamine, triamylamine, trihexylamine, N, N-dicyclohexylmethylamine, trioctylamine, didecylmethylamine, tris (2-ethylhexyl) amine, N, N-dimethylhexadecylamine, tri-n-decylamine, N, N-diethylcyclohexylamine, N, N-dimethyl-n-octadecylamine, 1-methylpiperidine, 1-ethylpiperidine, N-methylmorpholine, N-ethyl Morpholine, N Phenylmorpholine, N- (4-pyridyl) morpholine, N, N-dimethylaniline, N, N-dimethyl-p-toluidine, N, N-dimethyl-o-toluidine, N, N-dimethyl-m-toluidine, N , N-dimethyl-1-naphthylamine, N, N-dimethyl-2-naphthylamine, N, N-diethylaniline, N, N-dipropylaniline, 4-dimethylaminopyridine, triphenylamine, tri-p-tolylamine, Examples include N-methyldiphenylamine, 1,8-diazabicyclo [5.4.0] -7-undecene, and 1,5-diazabicyclo [4.3.0] -5-nonene, but the present invention is limited to these. It is not something.

一般式(5)中、nは0〜4の整数であり、0〜3の整数であることが好ましく、0〜2の整数であることがより好ましく、0又は1であることが更に好ましい。
は一価の置換基である。一価の置換基としては、例えば、アルキル基、ハロゲン原子、アルコキシ基、ジアルキルアミノ基が挙げられる。
のアルキル基の炭素数は好ましくは1〜5であり、更に好ましくは1〜3である。このアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基が挙げられ、中でもメチル基、エチル基が好ましい。
のハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられ、中でも塩素原子、臭素原子が好ましい。
のアルコキシ基の炭素数は好ましくは1〜5であり、更に好ましくは1〜3である。このアルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、n−ブチロキシ基、sec−ブチロキシ基、tert−ブチロキシ基、n−ペンチロキシ基が挙げられ、中でもメトキシ基、エトキシ基が好ましい。
のジアルキルアミノ基の炭素数は好ましくは1〜3である。このジアルキルアミノ基としては、例えば、ジメチルアミノ基、ジエチルアミノ基、ジプロピルアミノ基が挙げられる。
In the general formula (5), n 1 is an integer from 0 to 4, preferably an integer of 0 to 3, more preferably an integer of 0 to 2, and more preferably 0 or 1 .
R 8 is a monovalent substituent. Examples of the monovalent substituent include an alkyl group, a halogen atom, an alkoxy group, and a dialkylamino group.
The carbon number of the alkyl group of R 8 is preferably 1-5, more preferably 1-3. Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, a tert-butyl group, and an n-pentyl group. preferable.
Examples of the halogen atom for R 8 include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, and among them, a chlorine atom and a bromine atom are preferable.
The number of carbon atoms of the alkoxy group for R 8 is preferably 1 to 5, and more preferably 1 to 3. Examples of the alkoxy group include a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, an n-butoxy group, a sec-butoxy group, a tert-butoxy group, and an n-pentyloxy group, and among them, a methoxy group and an ethoxy group. Is preferred.
The carbon number of the dialkylamino group of R 8 is preferably 1 to 3. Examples of the dialkylamino group include a dimethylamino group, a diethylamino group, and a dipropylamino group.

一般式(5)で表される化合物としては、例えば、ピリジン、2−ピコリン、3−ピコリン、4−ピコリン、2,3−ルチジン、2,4−ルチジン、2,5−ルチジン、2,6−ルチジン、3,4−ルチジン、3,5−ルチジン、2−エチルピリジン、2,4,6−トリメチルピリジン、2−メトキシピリジン、3−メトキシピリジン、4−メトキシピリジン、2,6−ジメトキシピリジン、2−クロロ−6−メトキシピリジン、2−ブトキシピリジン、2−クロロピリジン、3−クロロピリジン、4−クロロピリジン、2,6−ジクロロピリジン、2−クロロ−4−メチルピリジン、2−ブロモピリジン、2−ジメチルアミノピリジン、4−ジメチルアミノピリジンが挙げられるが、本発明がこれらに限定されるものではない。   Examples of the compound represented by the general formula (5) include pyridine, 2-picoline, 3-picoline, 4-picoline, 2,3-lutidine, 2,4-lutidine, 2,5-lutidine, and 2,6. -Lutidine, 3,4-lutidine, 3,5-lutidine, 2-ethylpyridine, 2,4,6-trimethylpyridine, 2-methoxypyridine, 3-methoxypyridine, 4-methoxypyridine, 2,6-dimethoxypyridine 2-chloro-6-methoxypyridine, 2-butoxypyridine, 2-chloropyridine, 3-chloropyridine, 4-chloropyridine, 2,6-dichloropyridine, 2-chloro-4-methylpyridine, 2-bromopyridine , 2-dimethylaminopyridine and 4-dimethylaminopyridine, but the present invention is not limited thereto.

[反応溶媒]
工程(B)の反応を行う溶媒としては、炭化水素系溶媒、ハロゲン系溶媒、エーテル系溶媒、アセトニトリル等が好適に用いられ、炭化水素系溶媒、ハロゲン系溶媒及びエーテル系溶媒の具体例は、工程(A)で説明したものと同様である。中でも炭化水素系溶媒が更に好ましく、ヘキサン、ヘプタンが特に好ましい。一般式(3)で表される化合物及び一般式(4)又は一般式(5)で表される化合物の少なくとも何れか一方が液体である場合には、無溶媒で工程(B)の反応を行うことがより好ましい。また、工程(A)で用いた溶媒をそのまま工程(B)の溶媒として使用してもよく、工程(A)で生成した上記一般式(11)で表される化合物を溶媒として用いてもよい。
[Reaction solvent]
As the solvent for performing the reaction in the step (B), a hydrocarbon solvent, a halogen solvent, an ether solvent, acetonitrile, or the like is preferably used. Specific examples of the hydrocarbon solvent, the halogen solvent, and the ether solvent include This is the same as that described in the step (A). Of these, hydrocarbon solvents are more preferable, and hexane and heptane are particularly preferable. When at least one of the compound represented by the general formula (3) and the compound represented by the general formula (4) or the general formula (5) is a liquid, the reaction of the step (B) is performed without a solvent. More preferably. Further, the solvent used in the step (A) may be used as it is as the solvent in the step (B), or the compound represented by the general formula (11) produced in the step (A) may be used as the solvent. .

[一般式(3)で表される化合物に対する一般式(4)又は一般式(5)で表される化合物の使用量]
工程(B)において、一般式(4)又は一般式(5)で表される化合物は一般式(3)で表される化合物1モルに対して、0.1〜10モルで用いられることが好ましく、1〜5モルで用いられることがより好ましい。
[Use amount of compound represented by general formula (4) or general formula (5) with respect to the compound represented by general formula (3)]
In the step (B), the compound represented by the general formula (4) or the general formula (5) is used in an amount of 0.1 to 10 mol with respect to 1 mol of the compound represented by the general formula (3). Preferably, it is used at 1 to 5 moles.

[反応温度・時間]
工程(B)の反応を行う温度としては、0〜150℃が好ましく、25〜100℃が更に好ましく、50〜100℃が特に好ましい。
工程(B)の反応を行う時間としては、0.5〜24時間が好ましく、1〜10時間が更に好ましく、1〜5時間が特に好ましい。
[Reaction temperature / time]
As temperature which performs reaction of a process (B), 0-150 degreeC is preferable, 25-100 degreeC is further more preferable, and 50-100 degreeC is especially preferable.
The time for performing the reaction in the step (B) is preferably 0.5 to 24 hours, more preferably 1 to 10 hours, and particularly preferably 1 to 5 hours.

[反応後の処理]
上記工程(B)の反応が終了後に得られる有機層は水洗により有機物の塩を除去することが好ましい。次いで、有機層は乾燥、濃縮後、(BI)低沸点副生成物の減圧留去、或いは蒸留による精製を行うことが好ましい。上記(BI)の方法では高純度の精製が困難な場合には、(BII)カラムクロマトグラフィーによって精製を行うことが好ましい。
[Processing after reaction]
The organic layer obtained after the completion of the reaction in the step (B) is preferably washed with water to remove organic salts. Next, the organic layer is preferably dried and concentrated, and (BI) low-boiling byproducts are distilled off under reduced pressure or purified by distillation. When purification with high purity is difficult by the method (BI), it is preferable to purify by (BII) column chromatography.

工程(A)における上記形態(AI)又は工程(B)における上記形態(BI)の精製を行う場合、目的物である一般式(3)で表されるα−ハロゲン化エーテル化合物又は一般式(6)で表されるビニルエーテル化合物と、副生成物である一般式(11)で表されるエステル化合物との沸点に差があればある程、得られるα−ハロゲン化エーテル化合物又はビニルエーテル化合物の収率及び純度が向上して好ましい。ところで、同じα−ハロゲン化エーテル化合物又はビニルエーテル化合物を製造する際でも、用いる一般式(2)で表される化合物の種類を変えることで、副生するエステルの構造が変わり、副生エステルの沸点を適宜調節することが可能である。すなわち、特に、所定の条件下においては、一般式(2)で表される化合物を特定のものに選択することで、目的物と副生物の沸点差を広げ、目的物の純度及び収率を向上させることができる。すなわち、上記形態(i)、(ii)に記載したように、一般式(2)で表される化合物を、下記のように選択することが好ましい。   When purifying the form (AI) in the step (A) or the form (BI) in the step (B), the α-halogenated ether compound represented by the general formula (3) or the general formula ( 6) The more the difference in boiling point between the vinyl ether compound represented by 6) and the ester compound represented by the general formula (11) which is a by-product, the more the α-halogenated ether compound or vinyl ether compound obtained. The rate and purity are improved, which is preferable. By the way, even when producing the same α-halogenated ether compound or vinyl ether compound, by changing the type of the compound represented by the general formula (2) to be used, the structure of the by-product ester is changed, and the boiling point of the by-product ester is changed. Can be adjusted as appropriate. That is, particularly under a predetermined condition, by selecting the compound represented by the general formula (2) as a specific one, the difference in boiling point between the target product and the by-product is widened, and the purity and yield of the target product are increased. Can be improved. That is, as described in the above forms (i) and (ii), the compound represented by the general formula (2) is preferably selected as follows.

[形態(i)] R及びRの炭素数の総和が2以下、Rの炭素数が7以上である場合
の炭素数が小さいと、目的物(すなわち、一般式(3)で表されるα−ハロゲン化エーテル化合物又は一般式(6)で表されるビニルエーテル化合物)と副生エステル(すなわち、一般式(11)で表されるエステル化合物)の沸点が近く、収率、純度の低下が懸念される為、Rの炭素数は大きい方が好ましい。具体的には、Rの炭素数は7以上が好ましく、11以上が更に好ましい。形態(i)における一般式(1)〜(3)の各基の詳細な説明は前記した通りである。
[Form (i)] When the total number of carbon atoms of R 1 and R 2 is 2 or less and the carbon number of R 3 is 7 or more If the carbon number of R 4 is small, the target product (ie, general formula (3) The boiling point of the α-halogenated ether compound represented by the formula (6) or the vinyl ether compound represented by the general formula (6)) and the by-product ester (that is, the ester compound represented by the general formula (11)) is close, yield, Since there is concern about a decrease in purity, it is preferable that R 4 has a larger number of carbon atoms. Specifically, the carbon number of R 4 is preferably 7 or more, and more preferably 11 or more. The detailed description of each group of the general formulas (1) to (3) in the form (i) is as described above.

[形態(ii)] R及びRの炭素数の総和が6以上である場合
の炭素数に依らず、上記目的物の方が上記副生エステルよりも沸点が高くなる傾向がある。その為、Rの炭素数は小さい方が沸点差は広がり、好ましい。具体的には、Rの炭素数は3以下が好ましく、2以下が更に好ましく、1が特に好ましい。形態(ii)における一般式(1)〜(3)の各基の詳細な説明は前記した通りである。
[Form (ii)] When the total number of carbon atoms of R 1 and R 2 is 6 or more The above target product tends to have a higher boiling point than the by-product ester regardless of the carbon number of R 4. . Therefore, the smaller the number of carbon atoms in R 4, the wider the difference in boiling point, which is preferable. Specifically, the carbon number of R 4 is preferably 3 or less, more preferably 2 or less, and particularly preferably 1. Detailed description of each group of the general formulas (1) to (3) in the form (ii) is as described above.

工程(A)及び工程(B)は、同一反応容器内で一括して行うことが好ましい。ここで、「同一反応容器内で一括して行う」とは、工程(A)の生成物(すなわち、一般式(3)で表される化合物)の単離操作をすることなく、また、反応液を別の容器に移すことなく、工程(A)から工程(B)までを一括して行うことを意味する。これにより、製造工程をより簡略化できるため、ビニルエーテル化合物をより安価に製造することができる。
この形態においては、工程(A)で用いた溶媒をそのまま工程(B)の溶媒として使用することが好ましい。すなわち、工程(A)における溶媒と工程(B)における溶媒とは同じであることが好ましい。これにより、製造工程を更に簡略化することができる。
It is preferable to perform a process (A) and a process (B) collectively in the same reaction container. Here, “batch in the same reaction vessel” means that the product of the step (A) (that is, the compound represented by the general formula (3)) is not isolated and the reaction is performed. It means that the steps (A) to (B) are performed collectively without transferring the liquid to another container. Thereby, since a manufacturing process can be simplified more, a vinyl ether compound can be manufactured more cheaply.
In this embodiment, it is preferable to use the solvent used in step (A) as it is as the solvent in step (B). That is, it is preferable that the solvent in the step (A) and the solvent in the step (B) are the same. Thereby, the manufacturing process can be further simplified.

〔工程(C)〕
本発明のビニルエーテル化合物の製造方法は、更に、一般式(1)で表される化合物の製造工程として、下記一般式(7)で表される化合物と、下記一般式(8)又は一般式(9)で表される化合物を反応する工程(C)を含んでもよい。
[Process (C)]
In the method for producing the vinyl ether compound of the present invention, the compound represented by the following general formula (7) and the following general formula (8) or general formula (8) The process (C) which reacts the compound represented by 9) may be included.

Figure 2012020954
Figure 2012020954

一般式(7)〜(9)中、R、R及びRは、それぞれ、一般式(1)におけるR、R及びRと同義であり、好ましい例も同様である。 In the general formula (7) ~ (9), R 1, R 2 and R 3 each have the same meaning as R 1, R 2 and R 3 in the general formula (1) and preferred examples are also the same.

以下、一般式(7)で表される化合物の具体例を例示するが、本発明がこれらに限定されるものではない。   Hereinafter, although the specific example of a compound represented by General formula (7) is illustrated, this invention is not limited to these.

Figure 2012020954
Figure 2012020954

以下、一般式(8)で表される化合物の具体例を例示するが、本発明がこれらに限定されるものではない。   Hereinafter, although the specific example of a compound represented by General formula (8) is illustrated, this invention is not limited to these.

Figure 2012020954
Figure 2012020954

以下、一般式(9)で表される化合物の具体例を例示するが、本発明がこれらに限定されるものではない。   Hereinafter, although the specific example of a compound represented by General formula (9) is illustrated, this invention is not limited to these.

Figure 2012020954
Figure 2012020954

[反応溶媒]
工程(C)の反応を行う溶媒としては、炭化水素系溶媒、ハロゲン系溶媒、エーテル系溶媒、アセトニトリル等が好適に用いられ、炭化水素系溶媒、ハロゲン系溶媒及びエーテル系溶媒の具体例は、工程(A)で説明したものと同様である。中でも、上記炭化水素系溶媒は、水と共沸混合物を形成し、ディーンスターク装置を用いることで、反応によって生成した水を除去することができるので好ましい。炭化水素系溶媒の中でもヘキサン、ヘプタンが更に好ましい。
[Reaction solvent]
As the solvent for performing the reaction in the step (C), a hydrocarbon solvent, a halogen solvent, an ether solvent, acetonitrile, or the like is preferably used. Specific examples of the hydrocarbon solvent, the halogen solvent, and the ether solvent include This is the same as that described in the step (A). Among these, the hydrocarbon-based solvent is preferable because it forms an azeotrope with water and the Dean-Stark apparatus can remove water generated by the reaction. Of the hydrocarbon solvents, hexane and heptane are more preferable.

[一般式(7)で表される化合物に対する一般式(8)又は一般式(9)で表される化合物の使用量]
工程(C)において、一般式(8)又は一般式(9)で表される化合物は一般式(7)で表される化合物1モルに対して、0.05〜10モルで用いられることが好ましく、0.5〜5モルで用いられることがより好ましい。
[Amount of Compound Represented by General Formula (8) or General Formula (9) with respect to Compound Represented by General Formula (7)]
In the step (C), the compound represented by the general formula (8) or the general formula (9) is used in an amount of 0.05 to 10 mol with respect to 1 mol of the compound represented by the general formula (7). Preferably, it is used at 0.5 to 5 mol.

[その他の添加剤]
工程(C)の反応を行う際の添加剤としては、酸触媒を添加することが好ましい。酸触媒としては、硫酸、硝酸、燐酸などの無機酸類、p−トルエンスルホン酸、カンファースルホン酸、ベンゼンスルホン酸、ナフタレンスルホン酸、p−トルエンスルホン酸ピリジニウム塩のような有機酸が好適に用いられ、中でもp−トルエンスルホン酸、カンファースルホン酸が好ましい。酸触媒の添加量としては、一般式(7)で表される化合物に対して0.001モル%〜10モル%が好ましく、0.01モル%〜5モル%が更に好ましく、0.1モル%〜1モル%が特に好ましい。
また、その他の添加剤として、モリキュラーシーブス、無水硫酸マグネシウム、無水硫酸ナトリウム等の乾燥剤を添加することもできる。
[Other additives]
As an additive for the reaction in the step (C), it is preferable to add an acid catalyst. As the acid catalyst, inorganic acids such as sulfuric acid, nitric acid and phosphoric acid, and organic acids such as p-toluenesulfonic acid, camphorsulfonic acid, benzenesulfonic acid, naphthalenesulfonic acid and p-toluenesulfonic acid pyridinium salt are preferably used. Of these, p-toluenesulfonic acid and camphorsulfonic acid are preferred. The addition amount of the acid catalyst is preferably 0.001 mol% to 10 mol%, more preferably 0.01 mol% to 5 mol%, more preferably 0.1 mol, relative to the compound represented by the general formula (7). % To 1 mol% is particularly preferred.
As other additives, desiccants such as molecular sieves, anhydrous magnesium sulfate, and anhydrous sodium sulfate can be added.

[反応温度・時間]
工程(C)の反応を行う温度としては、0〜150℃の範囲から選択することが好ましい。水と共沸混合物を形成する溶媒を用い、ディーンスターク装置により水を除去する場合には、使用する溶媒の沸点にて反応することが好ましい。上記以外の場合は、20〜80℃が好ましく、25〜60℃が更に好ましい。
工程(C)の反応を行う時間としては、0.5〜24時間が好ましく、1〜10時間が更に好ましく、1〜5時間が特に好ましい。
[Reaction temperature / time]
The temperature at which the reaction in step (C) is performed is preferably selected from the range of 0 to 150 ° C. When using a solvent that forms an azeotrope with water and removing the water with a Dean-Stark apparatus, it is preferable to react at the boiling point of the solvent used. In cases other than the above, 20 to 80 ° C is preferable, and 25 to 60 ° C is more preferable.
The time for performing the reaction in the step (C) is preferably 0.5 to 24 hours, more preferably 1 to 10 hours, and particularly preferably 1 to 5 hours.

[反応後の処理]
反応に使用した溶媒は、減圧留去により除去してもよく、また、工程(C)の反応終了時には除去せず、そのまま工程(A)の溶媒として使用してもよい。溶媒を除去する以外には、何も処理をすることなく、そのまま工程(A)に進むのが好ましい。
[Processing after reaction]
The solvent used in the reaction may be removed by distillation under reduced pressure, or may be used as it is as the solvent in the step (A) without being removed at the end of the reaction in the step (C). It is preferable to proceed to the step (A) as it is without performing any treatment other than removing the solvent.

工程(C)、工程(A)及び工程(B)は、同一反応容器内で一括して行うことが好ましい。「同一反応容器内で一括して行う」とは、前記同様、工程(C)の生成物(すなわち、一般式(1)で表される化合物)及び工程(A)の生成物(すなわち、一般式(3)で表される化合物)の単離操作をすることなく、また、反応液を別の容器に移すことなく、工程(C)から工程(B)までを一括して行うことを意味する。これにより、製造工程をより簡略化できるため、ビニルエーテル化合物をより安価に製造することができる。
この形態においては、工程(C)で用いた溶媒をそのまま工程(A)の溶媒として使用し、更に、工程(A)で用いた溶媒をそのまま工程(B)の溶媒として使用することが好ましい。すなわち、工程(C)における溶媒と工程(A)における溶媒と工程(B)における溶媒とは同じであることが好ましい。これにより、製造工程を更に簡略化することができる。
It is preferable to perform a process (C), a process (A), and a process (B) collectively in the same reaction container. “Lumping in the same reaction vessel” means the product of step (C) (that is, the compound represented by the general formula (1)) and the product of step (A) (that is, general) This means that the step (C) to the step (B) are performed at once without performing an isolation operation of the compound represented by the formula (3) and without transferring the reaction solution to another container. To do. Thereby, since a manufacturing process can be simplified more, a vinyl ether compound can be manufactured more cheaply.
In this embodiment, it is preferable to use the solvent used in step (C) as it is as the solvent in step (A), and further use the solvent used in step (A) as it is as the solvent in step (B). That is, the solvent in the step (C), the solvent in the step (A), and the solvent in the step (B) are preferably the same. Thereby, the manufacturing process can be further simplified.

以下、実施例により本発明を更に詳細に説明するが、本発明の内容はこれにより限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, the content of this invention is not limited by this.

<実施例1:ビニルエーテル(V−1)の合成1>
ディーンスターク管を備えたフラスコ内に2−シクロヘキシルエタノール75g(585mmol)、パラアルデヒド51.5g(390mmol)、カンファースルホン酸0.68g(2.9mmol)、ヘプタン105gを加え、4時間還流を行った(工程(C))。H−NMRより、92%の2−シクロヘキシルエタノールがアセタール化合物(a−1)に変換し、8%が未反応のまま存在することを確認した。反応液を50℃まで放冷した後、塩化アセチル27.6g(351mmol)を加え、45℃にて1時間攪拌した(工程(A))。H−NMRにより、アセタール化合物(a−1)の消失を確認した。反応液を25℃まで戻した後、トリエチルアミン71.0g(702mmol)を滴下し、滴下終了後、95℃にて2時間攪拌した(工程(B))。25℃まで放冷後、飽和塩化アンモニウム水溶液100mlを加えて攪拌し、水層を除去した。続いて蒸留水200mLで有機層を洗浄し、無水硫酸ナトリウムで乾燥後、エバポレーターで溶媒を除去した。この時点でガスクロマトグラフィーによる分析を行ったところ、2−シクロヘキシルエタノールに由来するピークは確認されなかった。次いで粗生成物を蒸留により精製したところ、留分25.2gを得た。得られた留分をガスクロマトグラフィーで分析したところ、21.2g(137.4mmol)がビニルエーテル(V−1)、4.0gが副生エステル(a−3)であった。ビニルエーテル(V−1)の収率は47%であり、ガスクロマトグラフィーにより求めた純度は84%であった。
<Example 1: Synthesis 1 of vinyl ether (V-1)>
In a flask equipped with a Dean-Stark tube, 75 g (585 mmol) of 2-cyclohexylethanol, 51.5 g (390 mmol) of paraaldehyde, 0.68 g (2.9 mmol) of camphorsulfonic acid and 105 g of heptane were added and refluxed for 4 hours. (Step (C)). From 1 H-NMR, it was confirmed that 92% of 2-cyclohexylethanol was converted to an acetal compound (a-1) and 8% existed unreacted. The reaction solution was allowed to cool to 50 ° C., 27.6 g (351 mmol) of acetyl chloride was added, and the mixture was stirred at 45 ° C. for 1 hour (step (A)). The disappearance of the acetal compound (a-1) was confirmed by 1 H-NMR. After returning the reaction solution to 25 ° C., 71.0 g (702 mmol) of triethylamine was dropped, and after completion of the dropping, the mixture was stirred at 95 ° C. for 2 hours (step (B)). After allowing to cool to 25 ° C., 100 ml of a saturated aqueous ammonium chloride solution was added and stirred, and the aqueous layer was removed. Subsequently, the organic layer was washed with 200 mL of distilled water, dried over anhydrous sodium sulfate, and then the solvent was removed with an evaporator. When analysis by gas chromatography was performed at this time, a peak derived from 2-cyclohexylethanol was not confirmed. The crude product was then purified by distillation to obtain 25.2 g of a fraction. When the obtained fraction was analyzed by gas chromatography, 21.2 g (137.4 mmol) was vinyl ether (V-1), and 4.0 g was a by-product ester (a-3). The yield of vinyl ether (V-1) was 47%, and the purity determined by gas chromatography was 84%.

H−NMR(400MHz,CDCl) δ=6.43(dd,1H),4.19(d,1H),3.97(d,1H),3.71(t,2H),1.90−0.84(m,13H). 1 H-NMR (400 MHz, CDCl 3 ) δ = 6.43 (dd, 1H), 4.19 (d, 1H), 3.97 (d, 1H), 3.71 (t, 2H), 1. 90-0.84 (m, 13H).

Figure 2012020954
Figure 2012020954

<実施例2:ビニルエーテル(V−1)の合成2>
ディーンスターク管を備えたフラスコ内に2−シクロヘキシルエタノール75g(585mmol)、パラアルデヒド51.5g(390mmol)、カンファースルホン酸0.68g(2.9mmol)、ヘプタン105gを加え、4時間還流を行った(工程(C))。H−NMRより、93%の2−シクロヘキシルエタノールがアセタール化合物(a−1)に変換し、7%が未反応のまま存在することを確認した。反応液を50℃まで放冷した後、塩化ラウロイル76.8g(351mmol)を加え、50℃にて1時間攪拌した(工程(A))。H−NMRにより、アセタール化合物(a−1)の消失を確認した。反応液を25℃まで戻した後、トリエチルアミン71.0g(702mmol)を滴下し、滴下終了後、95℃にて2時間攪拌した(工程(B))。25℃まで放冷後、飽和塩化アンモニウム水溶液100mlを加えて攪拌し、水層を除去した。続いて蒸留水200mLで有機層を洗浄し、無水硫酸ナトリウムで乾燥後、エバポレーターで溶媒を除去した。この時点でガスクロマトグラフィーによる分析を行ったところ、2−シクロヘキシルエタノールに由来するピークは確認されなかった。次いで粗生成物を蒸留により精製したところ、30.6g(198.4mmol)のビニルエーテル(V−1)を得た。ビニルエーテル(V−1)の収率は68%であり、ガスクロマトグラフィーにより求めた純度は99.2%であった。
<Example 2: Synthesis 2 of vinyl ether (V-1)>
In a flask equipped with a Dean-Stark tube, 75 g (585 mmol) of 2-cyclohexylethanol, 51.5 g (390 mmol) of paraaldehyde, 0.68 g (2.9 mmol) of camphorsulfonic acid and 105 g of heptane were added and refluxed for 4 hours. (Step (C)). From 1 H-NMR, it was confirmed that 93% of 2-cyclohexylethanol was converted to an acetal compound (a-1) and 7% existed unreacted. After allowing the reaction solution to cool to 50 ° C., 76.8 g (351 mmol) of lauroyl chloride was added, and the mixture was stirred at 50 ° C. for 1 hour (step (A)). The disappearance of the acetal compound (a-1) was confirmed by 1 H-NMR. After returning the reaction solution to 25 ° C., 71.0 g (702 mmol) of triethylamine was dropped, and after completion of the dropping, the mixture was stirred at 95 ° C. for 2 hours (step (B)). After allowing to cool to 25 ° C., 100 ml of a saturated aqueous ammonium chloride solution was added and stirred, and the aqueous layer was removed. Subsequently, the organic layer was washed with 200 mL of distilled water, dried over anhydrous sodium sulfate, and then the solvent was removed with an evaporator. When analysis by gas chromatography was performed at this time, a peak derived from 2-cyclohexylethanol was not confirmed. The crude product was then purified by distillation to obtain 30.6 g (198.4 mmol) of vinyl ether (V-1). The yield of vinyl ether (V-1) was 68%, and the purity determined by gas chromatography was 99.2%.

Figure 2012020954
Figure 2012020954

<比較例1:ビニルエーテル(V−1)の合成>
ディーンスターク管を備えたフラスコ内に、2−シクロヘキシルエタノール38.5g(300mmol)、酢酸ビニル38.74g(450mmol)、炭酸ナトリウム19.1g(180mmol)、トルエン150gを加え、窒素気流下で徐々に温度を上げて還流させた。ここに、ジ−μ−クロロビス(1,5−シクロオクタジエン)二イリジウム(I)[Ir(cod)Cl]0.5g(0.75mmol)を添加し、3時間還流を行った。反応液をガスクロマトグラフィーで分析したところ、2−シクロヘキシルエタノールの転化率は89%であり、未反応の2−シクロヘキシルエタノールが11%残存した。反応液を25℃まで放冷後、蒸留水200mLで3回洗浄した。有機層を無水硫酸マグネシウムで乾燥後、エバポレーターで溶媒を留去した。得られた粗生成物を蒸留により精製したところ、留分32.0gを得た。得られた留分をガスクロマトグラフィーで分析したところ、29.15g(189mmol)がビニルエーテル(V−1)、2.88gが原料の2−シクロヘキシルエタノールであった。ビニルエーテル(V−1)の収率は63%であり、ガスクロマトグラフィーにより求めた純度は91%であった。
<Comparative Example 1: Synthesis of vinyl ether (V-1)>
In a flask equipped with a Dean-Stark tube, 38.5 g (300 mmol) of 2-cyclohexylethanol, 38.74 g (450 mmol) of vinyl acetate, 19.1 g (180 mmol) of sodium carbonate, and 150 g of toluene are gradually added. The temperature was raised to reflux. Di-μ-chlorobis (1,5-cyclooctadiene) diiridium (I) [Ir (cod) Cl] 2 0.5 g (0.75 mmol) was added thereto and refluxed for 3 hours. When the reaction solution was analyzed by gas chromatography, the conversion of 2-cyclohexylethanol was 89%, and 11% of unreacted 2-cyclohexylethanol remained. The reaction solution was allowed to cool to 25 ° C. and then washed 3 times with 200 mL of distilled water. The organic layer was dried over anhydrous magnesium sulfate, and then the solvent was distilled off with an evaporator. When the obtained crude product was purified by distillation, 32.0 g of a fraction was obtained. When the obtained fraction was analyzed by gas chromatography, 29.15 g (189 mmol) was vinyl ether (V-1), and 2.88 g was 2-cyclohexylethanol as a raw material. The yield of vinyl ether (V-1) was 63%, and the purity determined by gas chromatography was 91%.

Figure 2012020954
Figure 2012020954

<実施例3:ビニルエーテル(V−1)の合成3>
ディーンスターク管を備えたフラスコ内に2−シクロヘキシルエタノール50g(390mmol)、パラアルデヒド34.4g(260mmol)、カンファースルホン酸0.45g(1.95mmol)、ヘプタン70gを加え、4時間還流を行った(工程(C))。H−NMRより、92%の2−シクロヘキシルエタノールがアセタール化合物(a−1)に変換し、8%が未反応のまま存在することを確認した。25℃に放冷後、減圧下でヘプタンを留去した。次に、反応液に塩化ラウロイル51.2g(234mmol)を加え、50℃にて1時間攪拌した(工程(A))。H−NMRにより、アセタール化合物(a−1)の消失を確認した。反応液を25℃まで戻した後、N,N−ジイソプロピルエチルアミン60.5g(468mmol)を滴下し、滴下終了後、95℃にて2時間攪拌した(工程(B))。25℃まで放冷後、飽和塩化アンモニウム水溶液100mlを加えて攪拌し、水層を除去した。続いて5wt%酢酸水溶液200mL、次いで蒸留水200mLで有機層を洗浄し、無水硫酸ナトリウムで乾燥後、エバポレーターで溶媒を除去した。この時点でガスクロマトグラフィーによる分析を行ったところ、2−シクロヘキシルエタノールに由来するピークは確認されなかった。次いで粗生成物を蒸留により精製したところ、20.6g(133.5mmol)のビニルエーテル(V−1)を得た。ビニルエーテル(V−1)の収率は68%であり、ガスクロマトグラフィーにより求めた純度は99.1%であった。
<Example 3: Synthesis 3 of vinyl ether (V-1)>
In a flask equipped with a Dean-Stark tube, 50 g (390 mmol) of 2-cyclohexylethanol, 34.4 g (260 mmol) of paraaldehyde, 0.45 g (1.95 mmol) of camphorsulfonic acid, and 70 g of heptane were added and refluxed for 4 hours. (Step (C)). From 1 H-NMR, it was confirmed that 92% of 2-cyclohexylethanol was converted to an acetal compound (a-1) and 8% existed unreacted. After cooling to 25 ° C., heptane was distilled off under reduced pressure. Next, 51.2 g (234 mmol) of lauroyl chloride was added to the reaction solution, and the mixture was stirred at 50 ° C. for 1 hour (step (A)). The disappearance of the acetal compound (a-1) was confirmed by 1 H-NMR. After returning the reaction solution to 25 ° C., 60.5 g (468 mmol) of N, N-diisopropylethylamine was added dropwise, and after completion of the dropwise addition, the mixture was stirred at 95 ° C. for 2 hours (step (B)). After allowing to cool to 25 ° C., 100 ml of a saturated aqueous ammonium chloride solution was added and stirred, and the aqueous layer was removed. Subsequently, the organic layer was washed with 200 mL of a 5 wt% acetic acid aqueous solution and then with 200 mL of distilled water, dried over anhydrous sodium sulfate, and then the solvent was removed with an evaporator. When analysis by gas chromatography was performed at this time, a peak derived from 2-cyclohexylethanol was not confirmed. The crude product was then purified by distillation to obtain 20.6 g (133.5 mmol) of vinyl ether (V-1). The yield of vinyl ether (V-1) was 68%, and the purity determined by gas chromatography was 99.1%.

Figure 2012020954
Figure 2012020954

<実施例4:ビニルエーテル(V−2)の合成>
フェニルアセトアルデヒドジメチルアセタール10.0g(60.16mmol)に塩化アセチル5.43g(69.19mmol)を加え、45℃で2時間攪拌した(工程(A))。H−NMRで原料の消失を確認した後、トリエチルアミン10.5g(103.8mmol)を加え、90℃で2時間攪拌した(工程(B))。25℃に放冷後、酢酸エチル30mL、飽和塩化アンモニウム水溶液50mLを加え、10分間攪拌後、水層を除去した。続いて蒸留水50mLで有機層を洗浄し、無水硫酸マグネシウムで乾燥後、エバポレーターで溶媒を除去した。以上の操作により、7.9g(58.88mmol)のビニルエーテル(V−2)を得た(収率98%)。H−NMRより、得られたビニルエーテル(V−2)のE体とZ体の比率はE:Z=56:44であった。
<Example 4: Synthesis of vinyl ether (V-2)>
To 10.0 g (60.16 mmol) of phenylacetaldehyde dimethyl acetal, 5.43 g (69.19 mmol) of acetyl chloride was added and stirred at 45 ° C. for 2 hours (step (A)). After confirming disappearance of the raw material by 1 H-NMR, 10.5 g (103.8 mmol) of triethylamine was added and stirred at 90 ° C. for 2 hours (step (B)). After allowing to cool to 25 ° C., 30 mL of ethyl acetate and 50 mL of a saturated aqueous ammonium chloride solution were added, and after stirring for 10 minutes, the aqueous layer was removed. Subsequently, the organic layer was washed with 50 mL of distilled water, dried over anhydrous magnesium sulfate, and then the solvent was removed with an evaporator. By the above operation, 7.9 g (58.88 mmol) of vinyl ether (V-2) was obtained (yield 98%). From 1 H-NMR, the ratio of E-form to Z-form of the obtained vinyl ether (V-2) was E: Z = 56: 44.

H−NMR(400MHz,CDCl) δ= Z−(V−2) 7.62−7.10(m,5H),6.15(d,1H),5.21(d,1H),3.79(s,3H), E−(V−2) 7.62−7.10(m,5H),7.05(d,1H),5.80(d,1H),3.65(s,3H). 1 H-NMR (400 MHz, CDCl 3 ) δ = Z- (V-2) 7.62-7.10 (m, 5H), 6.15 (d, 1H), 5.21 (d, 1H), 3.79 (s, 3H), E- (V-2) 7.62-7.10 (m, 5H), 7.05 (d, 1H), 5.80 (d, 1H), 3.65 (S, 3H).

Figure 2012020954
Figure 2012020954

<実施例5:ビニルエーテル(V−3)の合成1>
ディーンスターク管を備えたフラスコ内に2−フェニルエタノール100g(818.6mmol)、パラアルデヒド72.1g(546mmol)、カンファースルホン酸0.95g(4.1mmol)、ヘキサン100gを加え、3時間還流を行った(工程(C))。H−NMRより、94%の2−フェニルエタノールがアセタール化合物(b−1)に変換し、6%が未反応のまま存在することを確認した。反応液を50℃まで放冷した後、塩化ラウロイル107.4g(491.1mmol)を加え、50℃にて1時間攪拌した(工程(A))。H−NMRにより、アセタール化合物(b−1)の消失を確認した。反応液を25℃まで戻した後、トリエチルアミン74.55g(736.7mmol)を滴下し、滴下終了後、95℃にて2時間攪拌した(工程(B))。25℃まで放冷後、飽和塩化アンモニウム水溶液200mlを加えて攪拌し、水層を除去した。続いて蒸留水200mLで有機層を洗浄し、無水硫酸ナトリウムで乾燥後、エバポレーターで溶媒を除去した。この時点でガスクロマトグラフィーによる分析を行ったところ、2−フェニルエタノールに由来するピークは確認されなかった。次いで粗生成物を蒸留により精製したところ、41.2g(278mol)のビニルエーテル(V−3)を得た。ビニルエーテル(V−3)の収率は68%であり、ガスクロマトグラフィーにより求めた純度は99.4%であった。
<Example 5: Synthesis 1 of vinyl ether (V-3)>
In a flask equipped with a Dean-Stark tube, 100 g (818.6 mmol) of 2-phenylethanol, 72.1 g (546 mmol) of paraaldehyde, 0.95 g (4.1 mmol) of camphorsulfonic acid and 100 g of hexane were added and refluxed for 3 hours. (Step (C)). From 1 H-NMR, it was confirmed that 94% of 2-phenylethanol was converted to an acetal compound (b-1) and 6% existed unreacted. After allowing the reaction solution to cool to 50 ° C., 107.4 g (491.1 mmol) of lauroyl chloride was added, and the mixture was stirred at 50 ° C. for 1 hour (step (A)). The disappearance of the acetal compound (b-1) was confirmed by 1 H-NMR. After returning the reaction solution to 25 ° C., 74.55 g (736.7 mmol) of triethylamine was added dropwise, and after completion of the dropwise addition, the mixture was stirred at 95 ° C. for 2 hours (step (B)). After allowing to cool to 25 ° C., 200 ml of a saturated aqueous ammonium chloride solution was added and stirred, and the aqueous layer was removed. Subsequently, the organic layer was washed with 200 mL of distilled water, dried over anhydrous sodium sulfate, and then the solvent was removed with an evaporator. When analysis by gas chromatography was performed at this time, a peak derived from 2-phenylethanol was not confirmed. The crude product was then purified by distillation to obtain 41.2 g (278 mol) of vinyl ether (V-3). The yield of vinyl ether (V-3) was 68%, and the purity determined by gas chromatography was 99.4%.

H−NMR(400MHz,CDCl) δ=7.38−7.20(m,5H),6.46(dd,1H),4.20(d,1H),4.00(d,1H),3.88(t,2H),2.98(t,2H). 1 H-NMR (400 MHz, CDCl 3 ) δ = 7.38-7.20 (m, 5H), 6.46 (dd, 1H), 4.20 (d, 1H), 4.00 (d, 1H ), 3.88 (t, 2H), 2.98 (t, 2H).

Figure 2012020954
Figure 2012020954

<実施例6:ビニルエーテル(V−3)の合成2>
トリエチルアミン74.55g(736.7mmol)をピリジン58.27g(736.7mmol)に変更した以外は実施例5と同様に行った。ビニルエーテル(V−3)の収率は75%であり、ガスクロマトグラフィーにより求めた純度は99.1%であった。
<Example 6: Synthesis 2 of vinyl ether (V-3)>
The same procedure as in Example 5 was repeated except that 74.55 g (736.7 mmol) of triethylamine was changed to 58.27 g (736.7 mmol) of pyridine. The yield of vinyl ether (V-3) was 75%, and the purity determined by gas chromatography was 99.1%.

<実施例7:ビニルエーテル(V−3)の合成3>
塩化ラウロイル107.4g(491.1mmol)を塩化パルミトイル134.99g(491.1mmol)に、トリエチルアミン74.55g(736.7mmol)をN,N−ジエチルアニリン109.94g(736.7mmol)に、蒸留水200mLでの有機層洗浄を、0.1規定の塩酸水溶液200mLでの洗浄を2回実施する事に変更した以外は、実施例5と同様に行った。ビニルエーテル(V−3)の収率は72%であり、ガスクロマトグラフィーにより求めた純度は99.0%であった。
<Example 7: Synthesis 3 of vinyl ether (V-3)>
Distillation of 107.4 g (491.1 mmol) of lauroyl chloride to 134.99 g (491.1 mmol) of palmitoyl chloride and 74.55 g (736.7 mmol) of triethylamine to 109.94 g (736.7 mmol) of N, N-diethylaniline The organic layer was washed with 200 mL of water in the same manner as in Example 5 except that the washing with 200 mL of 0.1N hydrochloric acid was performed twice. The yield of vinyl ether (V-3) was 72%, and the purity determined by gas chromatography was 99.0%.

<実施例8:ビニルエーテル(V−3)の合成4>
塩化ラウロイル107.4g(491.1mmol)を塩化オレオイル147.78g(491.1mmol)に、トリエチルアミン74.55g(736.7mmol)を4−メチルモルホリン74.52g(736.7mmol)に変更した以外は、実施例5と同様に行った。ビニルエーテル(V−3)の収率は73%であり、ガスクロマトグラフィーにより求めた純度は99.4%であった。
<Example 8: Synthesis 4 of vinyl ether (V-3)>
Other than changing 107.4 g (491.1 mmol) of lauroyl chloride to 147.78 g (491.1 mmol) of oleoyl chloride and 74.55 g (736.7 mmol) of triethylamine to 74.52 g (736.7 mmol) of 4-methylmorpholine. Was carried out in the same manner as in Example 5. The yield of vinyl ether (V-3) was 73%, and the purity determined by gas chromatography was 99.4%.

<実施例9:ビニルエーテル(V−3)の合成5>
塩化ラウロイル107.4g(491.1mmol)を塩化ステアロイル148.76g(491.1mmol)に、トリエチルアミン74.55g(736.7mmol)を1,8−ジアザビシクロ[5.4.0]ウンデカ−7−エン112.16g(736.7mmol)に、蒸留水200mLでの有機層洗浄を、0.1規定の塩酸水溶液200mLでの洗浄を2回実施する事に変更した以外は、実施例5と同様に行った。ビニルエーテル(V−3)の収率は81%であり、ガスクロマトグラフィーにより求めた純度は99.1%であった。
<Example 9: Synthesis 5 of vinyl ether (V-3)>
107.4 g (491.1 mmol) of lauroyl chloride was added to 148.76 g (491.1 mmol) of stearoyl chloride, and 74.55 g (736.7 mmol) of triethylamine was added to 1,8-diazabicyclo [5.4.0] undec-7-ene. 112.16 g (736.7 mmol) was subjected to the same procedure as in Example 5 except that the organic layer was washed with 200 mL of distilled water and washed twice with 200 mL of 0.1N hydrochloric acid aqueous solution. It was. The yield of vinyl ether (V-3) was 81%, and the purity determined by gas chromatography was 99.1%.

<実施例10:ビニルエーテル(V−4)の合成>
フェニルアセトアルデヒドジメチルアセタール45.0g(270.73mmol)及びベンジルアルコール61.48g(568.52mmol)にp−トルエンスルホン酸一水和物5.16g(27.08mmol)を加え、100℃で12時間攪拌した。H−NMRより、フェニルアセトアルデヒドジメチルアセタールの93%がアセタール化合物(c−1)に変換したのを確認した。減圧留去により未反応原料を除去した後、塩化アセチル27.63g(351.95mmol)を加え、50℃にて1.5時間攪拌した(工程(A))。H−NMRにより、アセタール化合物(c−1)の消失を確認した。反応液を25℃まで戻した後、トリエチルアミン41.09g(406.10mmol)を滴下し、滴下終了後、95℃にて2時間攪拌した(工程(B))。25℃まで放冷後、飽和塩化アンモニウム水溶液200mlを加えて攪拌し、水層を除去した。続いて蒸留水200mLで有機層を洗浄し、無水硫酸ナトリウムで乾燥後、エバポレーターで溶媒を除去した。次いで粗生成物から減圧留去によりエステル化合物(c−3)を除去することで、42.13g(200.34mol)のビニルエーテル(V−4)を得た。ビニルエーテル(V−4)の収率は74%であり、ガスクロマトグラフィーにより求めた純度は97.2%であった。H−NMRより、得られたビニルエーテル(V−4)のE体とZ体の比率はE:Z=53:47であった。
<Example 10: Synthesis of vinyl ether (V-4)>
To 45.0 g (270.73 mmol) of phenylacetaldehyde dimethyl acetal and 61.48 g (568.52 mmol) of benzyl alcohol, 5.16 g (27.08 mmol) of p-toluenesulfonic acid monohydrate was added and stirred at 100 ° C. for 12 hours. did. From 1 H-NMR, it was confirmed that 93% of phenylacetaldehyde dimethyl acetal had been converted to an acetal compound (c-1). After removing unreacted raw materials by distillation under reduced pressure, 27.63 g (351.95 mmol) of acetyl chloride was added, and the mixture was stirred at 50 ° C. for 1.5 hours (step (A)). The disappearance of the acetal compound (c-1) was confirmed by 1 H-NMR. After returning the reaction solution to 25 ° C., 41.09 g (406.10 mmol) of triethylamine was added dropwise, and after completion of the dropwise addition, the mixture was stirred at 95 ° C. for 2 hours (step (B)). After allowing to cool to 25 ° C., 200 ml of a saturated aqueous ammonium chloride solution was added and stirred, and the aqueous layer was removed. Subsequently, the organic layer was washed with 200 mL of distilled water, dried over anhydrous sodium sulfate, and then the solvent was removed with an evaporator. Subsequently, 42.13 g (200.34 mol) of vinyl ether (V-4) was obtained by removing the ester compound (c-3) from the crude product by distillation under reduced pressure. The yield of vinyl ether (V-4) was 74%, and the purity determined by gas chromatography was 97.2%. From 1 H-NMR, the ratio of E-form to Z-form of the obtained vinyl ether (V-4) was E: Z = 53: 47.

H−NMR(400MHz,CDCl) δ= Z−(V−4) 7.42−7.23(m,10H),6.30(d,1H),5.29(d,1H),4.92(s,2H), E−(V−4) 7.42−72.3(m,10H),7.10(d,1H),5.98(d,1H),5.01(s,2H). 1 H-NMR (400 MHz, CDCl 3 ) δ = Z- (V-4) 7.42-7.23 (m, 10H), 6.30 (d, 1H), 5.29 (d, 1H), 4.92 (s, 2H), E- (V-4) 7.42-72.3 (m, 10H), 7.10 (d, 1H), 5.98 (d, 1H), 5.01 (S, 2H).

Figure 2012020954
Figure 2012020954

<実施例11:ビニルエーテル(V−5)の合成>
ディーンスターク管を備えたフラスコ内に4−シアノフェノール60.0g(503.69mmol)、パラアルデヒド44.41g(336.0mmol)、カンファースルホン酸0.59g(2.52mmol)、トルエン100gを加え、2時間還流を行った。その後、1時間毎にパラアルデヒド5gを添加する工程を3回行うことで、合計5時間還流した(工程(C))。H−NMRより、92%の4−シアノフェノールがアセタール化合物(d−1)に変換し、8%が未反応のまま存在することを確認した。反応液を50℃まで放冷した後、塩化ラウロイル66.11g(302.21mmol)を加え、50℃にて1時間攪拌した(工程(A))。H−NMRにより、アセタール化合物(d−1)の消失を確認した。反応液を25℃まで戻した後、トリエチルアミン45.87g(453.32mmol)を滴下し、滴下終了後、95℃にて2時間攪拌した(工程(B))。25℃まで放冷後、飽和塩化アンモニウム水溶液200mlを加えて攪拌し、水層を除去した。続いて蒸留水200mLで有機層を洗浄し、無水硫酸ナトリウムで乾燥後、エバポレーターで溶媒を除去した。この時点でガスクロマトグラフィーによる分析を行ったところ、4−シアノフェノールに由来するピークは確認されなかった。次いで粗生成物を蒸留により精製したところ、23.40g(161.18mmol)のビニルエーテル(V−5)を得た。ビニルエーテル(V−5)の収率は64%であり、ガスクロマトグラフィーにより求めた純度は99.4%であった。
<Example 11: Synthesis of vinyl ether (V-5)>
In a flask equipped with a Dean-Stark tube, 60.0 g (503.69 mmol) of 4-cyanophenol, 44.41 g (336.0 mmol) of paraaldehyde, 0.59 g (2.52 mmol) of camphorsulfonic acid, and 100 g of toluene were added. Reflux was performed for 2 hours. Thereafter, the step of adding 5 g of paraaldehyde every 1 hour was performed three times to reflux for a total of 5 hours (step (C)). From 1 H-NMR, it was confirmed that 92% of 4-cyanophenol was converted to an acetal compound (d-1) and 8% existed unreacted. The reaction solution was allowed to cool to 50 ° C., 66.11 g (302.21 mmol) of lauroyl chloride was added, and the mixture was stirred at 50 ° C. for 1 hour (step (A)). The disappearance of the acetal compound (d-1) was confirmed by 1 H-NMR. After returning the reaction solution to 25 ° C., 45.87 g (453.32 mmol) of triethylamine was added dropwise, and after completion of the dropwise addition, the mixture was stirred at 95 ° C. for 2 hours (step (B)). After allowing to cool to 25 ° C., 200 ml of a saturated aqueous ammonium chloride solution was added and stirred, and the aqueous layer was removed. Subsequently, the organic layer was washed with 200 mL of distilled water, dried over anhydrous sodium sulfate, and then the solvent was removed with an evaporator. When analysis by gas chromatography was performed at this time, a peak derived from 4-cyanophenol was not confirmed. The crude product was then purified by distillation to obtain 23.40 g (161.18 mmol) of vinyl ether (V-5). The yield of vinyl ether (V-5) was 64%, and the purity determined by gas chromatography was 99.4%.

H−NMR(400MHz,CDCl) δ=7.65(m,2H),7.09(m,2H),6.66(dd,1H),4.97(dd,1H),4.67(dd,1H). 1 H-NMR (400 MHz, CDCl 3 ) δ = 7.65 (m, 2H), 7.09 (m, 2H), 6.66 (dd, 1H), 4.97 (dd, 1H), 4. 67 (dd, 1H).

Figure 2012020954
Figure 2012020954

<実施例12:ビニルエーテル(V−6)の合成>
ディーンスターク管を備えたフラスコ内にベンジルアルコール82.61g(763.90mmol)、3−フェニルプロパナール50.0g(372.63mmol)、カンファースルホン酸0.87g(3.73mmol)、ヘキサン120gを加え、4時間還流を行った(工程(C))。H−NMRより、94%の3−フェニルプロパナールがアセタール化合物(e−1)に変換したことを確認した。反応液を50℃まで放冷した後、塩化アセチル40.95g(521.68mmol)を加え、50℃にて1時間攪拌した(工程(A))。H−NMRにより、アセタール化合物(e−1)の消失を確認した。反応液を25℃まで戻した後、トリエチルアミン79.18g(782.52mmol)を滴下し、滴下終了後、95℃にて2時間攪拌した(工程(B))。25℃まで放冷後、飽和塩化アンモニウム水溶液300mlを加えて攪拌し、水層を除去した。続いて蒸留水300mLで有機層を洗浄し、無水硫酸ナトリウムで乾燥後、エバポレーターで溶媒を除去した。この時点でガスクロマトグラフィーによる分析を行ったところ、ベンジルアルコールに由来するピークは確認されなかった。次いで粗生成物から減圧留去によりエステル化合物(e−3)を除去することで、63.52g(283.20mol)のビニルエーテル(V−6)を得た。ビニルエーテル(V−6)の収率は76%であり、ガスクロマトグラフィーにより求めた純度は97.6%であった。H−NMRより、得られたビニルエーテル(V−6)のE体とZ体の比率はE:Z=57:43であった。
<Example 12: Synthesis of vinyl ether (V-6)>
In a flask equipped with a Dean-Stark tube, 82.61 g (763.90 mmol) of benzyl alcohol, 50.0 g (372.63 mmol) of 3-phenylpropanal, 0.87 g (3.73 mmol) of camphorsulfonic acid, and 120 g of hexane were added. Reflux was performed for 4 hours (step (C)). From 1 H-NMR, it was confirmed that 94% of 3-phenylpropanal was converted to an acetal compound (e-1). The reaction solution was allowed to cool to 50 ° C., 40.95 g (521.68 mmol) of acetyl chloride was added, and the mixture was stirred at 50 ° C. for 1 hour (step (A)). The disappearance of the acetal compound (e-1) was confirmed by 1 H-NMR. After returning the reaction solution to 25 ° C., 79.18 g (782.52 mmol) of triethylamine was added dropwise, and after completion of the dropwise addition, the mixture was stirred at 95 ° C. for 2 hours (step (B)). After allowing to cool to 25 ° C., 300 ml of a saturated aqueous ammonium chloride solution was added and stirred, and the aqueous layer was removed. Subsequently, the organic layer was washed with 300 mL of distilled water, dried over anhydrous sodium sulfate, and then the solvent was removed with an evaporator. When analysis by gas chromatography was performed at this time, no peak derived from benzyl alcohol was confirmed. Subsequently, 63.52 g (283.20 mol) of vinyl ether (V-6) was obtained by removing the ester compound (e-3) from the crude product by distillation under reduced pressure. The yield of vinyl ether (V-6) was 76%, and the purity determined by gas chromatography was 97.6%. From 1 H-NMR, the ratio of E-form to Z-form of the obtained vinyl ether (V-6) was E: Z = 57: 43.

H−NMR(400MHz,CDCl) δ= Z−(V−6) 7.43−7.16(m,10H),6.15(dt,1H),4.86(s,2H),4.63(dt,1H),3.49(d,2H), E−(V−6) 7.43−7.16(m,10H),6.45(dt,1H),5.06(dt,1H),4.76(s,2H),3.28(d,2H). 1 H-NMR (400 MHz, CDCl 3 ) δ = Z- (V-6) 7.43-7.16 (m, 10H), 6.15 (dt, 1H), 4.86 (s, 2H), 4.63 (dt, 1H), 3.49 (d, 2H), E- (V-6) 7.43-7.16 (m, 10H), 6.45 (dt, 1H), 5.06 (Dt, 1H), 4.76 (s, 2H), 3.28 (d, 2H).

Figure 2012020954
Figure 2012020954

<実施例13:ビニルエーテル(V−7)の合成>
シクロヘキサンカルボキシアルデヒドジエチルアセタール80g(429.44mmol)に臭化アセチル63.36g(515.33mmol)を加え、50℃にて1時間攪拌した(工程(A))。H−NMRにより、シクロヘキサンカルボキシアルデヒドジエチルアセタールの消失を確認した。減圧留去により、生成した酢酸エチルを除去した後、トリエチルアミン78.22g(773.00mmol)を滴下し、滴下終了後、95℃にて2時間攪拌した(工程(B))。25℃まで放冷後、飽和塩化アンモニウム水溶液300mlを加えて攪拌し、水層を除去した。続いて蒸留水300mLで有機層を洗浄し、無水硫酸ナトリウムで乾燥後、エバポレーターで溶媒を除去した。次いで粗生成物を蒸留により精製することで、43.36g(309.20mol)のビニルエーテル(V−7)を得た。ビニルエーテル(V−7)の収率は72%であり、ガスクロマトグラフィーにより求めた純度は99.1%であった。
<Example 13: Synthesis of vinyl ether (V-7)>
To 80 g (429.44 mmol) of cyclohexanecarboxaldehyde diethyl acetal, 63.36 g (515.33 mmol) of acetyl bromide was added and stirred at 50 ° C. for 1 hour (step (A)). The disappearance of cyclohexanecarboxaldehyde diethyl acetal was confirmed by 1 H-NMR. After removing the produced ethyl acetate by distillation under reduced pressure, 78.22 g (773.00 mmol) of triethylamine was added dropwise, and after completion of the dropwise addition, the mixture was stirred at 95 ° C. for 2 hours (step (B)). After allowing to cool to 25 ° C., 300 ml of a saturated aqueous ammonium chloride solution was added and stirred, and the aqueous layer was removed. Subsequently, the organic layer was washed with 300 mL of distilled water, dried over anhydrous sodium sulfate, and then the solvent was removed with an evaporator. The crude product was then purified by distillation to obtain 43.36 g (309.20 mol) of vinyl ether (V-7). The yield of vinyl ether (V-7) was 72%, and the purity determined by gas chromatography was 99.1%.

H−NMR(400MHz,CDCl) δ=5.7(m,1H),3.65(q,2H),2.40−1.70(m,4H),1.65−1.35(m,6H),1.20(t,3H). 1 H-NMR (400 MHz, CDCl 3 ) δ = 5.7 (m, 1H), 3.65 (q, 2H), 2.40-1.70 (m, 4H), 1.65 to 1.35 (M, 6H), 1.20 (t, 3H).

Figure 2012020954
Figure 2012020954

<実施例14:ビニルエーテル(V−8)の合成>
イソブチルアルデヒドジベンジルアセタール40g(147.95mmol)に塩化ラウロイル35.60g(162.75mmol)を加え、50℃にて2時間攪拌した(工程(A))。H−NMRにより、イソブチルアルデヒドジベンジルアセタールの消失を確認した。反応液を25℃まで戻した後、トリエチルアミン24.70g(244.13mmol)を滴下し、滴下終了後、95℃にて2時間攪拌した(工程(B))。25℃まで放冷後、飽和塩化アンモニウム水溶液200mlを加えて攪拌し、水層を除去した。続いて蒸留水200mLで有機層を洗浄し、無水硫酸ナトリウムで乾燥後、エバポレーターで溶媒を除去した。次いで粗生成物を蒸留により精製することで、16.56g(102.09mol)のビニルエーテル(V−8)を得た。ビニルエーテル(V−8)の収率は69%であり、ガスクロマトグラフィーにより求めた純度は99.3%であった。
<Example 14: Synthesis of vinyl ether (V-8)>
35.60 g (162.75 mmol) of lauroyl chloride was added to 40 g (147.95 mmol) of isobutyraldehyde dibenzyl acetal, and the mixture was stirred at 50 ° C. for 2 hours (step (A)). The disappearance of isobutyraldehyde dibenzyl acetal was confirmed by 1 H-NMR. After returning the reaction solution to 25 ° C., 24.70 g (244.13 mmol) of triethylamine was added dropwise, and after completion of the dropwise addition, the mixture was stirred at 95 ° C. for 2 hours (step (B)). After allowing to cool to 25 ° C., 200 ml of a saturated aqueous ammonium chloride solution was added and stirred, and the aqueous layer was removed. Subsequently, the organic layer was washed with 200 mL of distilled water, dried over anhydrous sodium sulfate, and then the solvent was removed with an evaporator. The crude product was then purified by distillation to obtain 16.56 g (102.09 mol) of vinyl ether (V-8). The yield of vinyl ether (V-8) was 69%, and the purity determined by gas chromatography was 99.3%.

H−NMR(400MHz,CDCl) δ=7.39−7.26(m,5H),5.88(s,1H),4.74(s,2H),1.65(s,3H),1.54(s,3H). 1 H-NMR (400 MHz, CDCl 3 ) δ = 7.39-7.26 (m, 5H), 5.88 (s, 1H), 4.74 (s, 2H), 1.65 (s, 3H ), 1.54 (s, 3H).

Figure 2012020954
Figure 2012020954

以上のように、実施例によれば、ビニルエーテル化合物を簡便に(遷移金属を使用することもなく)、また、充分な収率及び純度で製造できたことが確認された。   As described above, according to the examples, it was confirmed that the vinyl ether compound could be produced simply (without using a transition metal) and with sufficient yield and purity.

Claims (12)

下記一般式(1)で表される化合物と、下記一般式(2)で表される化合物とを反応し、下記一般式(3)で表される化合物を得る工程(A)と、下記一般式(3)で表される化合物と、下記一般式(4)又は下記一般式(5)で表される化合物とを反応し、下記一般式(6)で表されるビニルエーテル化合物を得る工程(B)とを含む、ビニルエーテル化合物の製造方法。
Figure 2012020954
式中、R及びRは、それぞれ独立に、水素原子、アルキル基、アリール基又はアラルキル基を表す。RとRとは互いに連結して環を形成してもよい。
はアルキル基、アリール基又はアラルキル基を表す。
は、アルキル基、アルケニル基、アリール基又はアラルキル基を表す。
、R及びRは、それぞれ独立に、アルキル基、アリール基又はアラルキル基を表す。R、R及びRの内の2つが互いに連結して環を形成してもよい。
Xはハロゲン原子を表す。
は一価の置換基を表す。
は0〜4の整数を表す。
A step (A) of reacting a compound represented by the following general formula (1) with a compound represented by the following general formula (2) to obtain a compound represented by the following general formula (3); A step of reacting a compound represented by the formula (3) with a compound represented by the following general formula (4) or the following general formula (5) to obtain a vinyl ether compound represented by the following general formula (6) ( And B). A method for producing a vinyl ether compound.
Figure 2012020954
In the formula, R 1 and R 2 each independently represent a hydrogen atom, an alkyl group, an aryl group, or an aralkyl group. R 1 and R 2 may be linked to each other to form a ring.
R 3 represents an alkyl group, an aryl group or an aralkyl group.
R 4 represents an alkyl group, an alkenyl group, an aryl group or an aralkyl group.
R 5 , R 6 and R 7 each independently represents an alkyl group, an aryl group or an aralkyl group. Two of R 5 , R 6 and R 7 may be linked to each other to form a ring.
X represents a halogen atom.
R 8 represents a monovalent substituent.
n 1 represents an integer of 0-4.
下記一般式(7)で表される化合物と、下記一般式(8)又は下記一般式(9)で表される化合物とを反応し、前記一般式(1)で表される化合物を得る工程(C)を含む、請求項1に記載のビニルエーテル化合物の製造方法。
Figure 2012020954
式中、R、R及びRは、それぞれ、上記一般式(1)におけるR、R及びRと同義である。
A step of reacting a compound represented by the following general formula (7) with a compound represented by the following general formula (8) or the following general formula (9) to obtain a compound represented by the above general formula (1) The manufacturing method of the vinyl ether compound of Claim 1 containing (C).
Figure 2012020954
Wherein, R 1, R 2 and R 3 each have the same meanings as R 1, R 2 and R 3 in the general formula (1).
前記工程(A)及び工程(B)を、同一反応容器内で一括して行う、請求項1又は2に記載のビニルエーテル化合物の製造方法。   The manufacturing method of the vinyl ether compound of Claim 1 or 2 which performs the said process (A) and process (B) collectively in the same reaction container. 前記工程(C)、前記工程(A)及び前記工程(B)を、同一反応容器内で一括して行う、請求項2に記載のビニルエーテル化合物の製造方法。   The manufacturing method of the vinyl ether compound of Claim 2 which performs the said process (C), the said process (A), and the said process (B) collectively in the same reaction container. 、R及びRの炭素数の総和が7以上である、請求項1〜4のいずれか1項に記載のビニルエーテル化合物の製造方法。 The total number of carbon atoms of R 1, R 2 and R 3 is 7 or more, the production method of the vinyl ether compound according to any one of claims 1 to 4. 前記一般式(1)〜(3)及び(6)において、R及びRの炭素数の総和が2以下であり、Rの炭素数が7以上であり、かつ、Rの炭素数が7以上である、請求項1〜4のいずれか1項に記載のビニルエーテル化合物の製造方法。 In the general formulas (1) to (3) and (6), the total number of carbon atoms of R 1 and R 2 is 2 or less, the carbon number of R 3 is 7 or more, and the carbon number of R 4 The manufacturing method of the vinyl ether compound of any one of Claims 1-4 whose is 7 or more. 前記一般式(1)〜(3)において、R及びRの炭素数の総和が6以上であり、かつ、Rの炭素数が3以下である、請求項1〜4のいずれか1項に記載のビニルエーテル化合物の製造方法。 In the general formula (1) to (3), the total number of carbon atoms of R 1 and R 2 are at least 6, and the carbon number of R 4 is 3 or less, either of the preceding claims 1 The manufacturing method of the vinyl ether compound as described in a term. 前記一般式(1)、(3)及び(6)において、Rが、下記一般式(10)で表される基である、請求項1〜7のいずれか1項に記載のビニルエーテル化合物の製造方法。
Figure 2012020954
式中、nは1〜6の整数を表し、Yは環状アルキル基又はアリール基を表す。*は、酸素原子に接続する結合手を示す。
In the general formulas (1), (3), and (6), R 3 is a group represented by the following general formula (10), wherein the vinyl ether compound according to any one of claims 1 to 7 is used. Production method.
Figure 2012020954
In the formula, n 2 represents an integer of 1 to 6, and Y represents a cyclic alkyl group or an aryl group. * Indicates a bond connected to an oxygen atom.
前記工程(A)及び前記工程(B)の各々において、反応溶媒として炭化水素系溶媒を使用する、請求項1〜8のいずれか1項に記載のビニルエーテル化合物の製造方法。   The method for producing a vinyl ether compound according to any one of claims 1 to 8, wherein a hydrocarbon solvent is used as a reaction solvent in each of the step (A) and the step (B). 前記工程(A)及び前記工程(B)において、同じ反応溶媒を使用する、請求項1〜9のいずれか1項に記載のビニルエーテル化合物の製造方法。   The manufacturing method of the vinyl ether compound of any one of Claims 1-9 which uses the same reaction solvent in the said process (A) and the said process (B). 前記工程(C)において、反応溶媒として炭化水素系溶媒を使用する、請求項2〜10のいずれか1項に記載のビニルエーテル化合物の製造方法。   The method for producing a vinyl ether compound according to any one of claims 2 to 10, wherein a hydrocarbon solvent is used as a reaction solvent in the step (C). 前記工程(C)、前記工程(A)及び前記工程(B)において、同じ反応溶媒を使用する、請求項2〜11のいずれか1項に記載のビニルエーテル化合物の製造方法。   The manufacturing method of the vinyl ether compound of any one of Claims 2-11 which uses the same reaction solvent in the said process (C), the said process (A), and the said process (B).
JP2010159146A 2010-07-13 2010-07-13 Method for producing vinyl ether compound Active JP5504080B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010159146A JP5504080B2 (en) 2010-07-13 2010-07-13 Method for producing vinyl ether compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010159146A JP5504080B2 (en) 2010-07-13 2010-07-13 Method for producing vinyl ether compound

Publications (2)

Publication Number Publication Date
JP2012020954A true JP2012020954A (en) 2012-02-02
JP5504080B2 JP5504080B2 (en) 2014-05-28

Family

ID=45775520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010159146A Active JP5504080B2 (en) 2010-07-13 2010-07-13 Method for producing vinyl ether compound

Country Status (1)

Country Link
JP (1) JP5504080B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4945382B1 (en) * 1970-12-29 1974-12-04
JPS5585581A (en) * 1978-12-25 1980-06-27 Sagami Chem Res Center 4-formylchroman derivative and its preparation
JPS5832838A (en) * 1981-08-24 1983-02-25 Daicel Chem Ind Ltd Continuous preparation of methyl vinyl ether
JPH01163144A (en) * 1987-12-18 1989-06-27 Daikin Ind Ltd Production of fluorine-containing ether compound
JPH0372439A (en) * 1989-01-31 1991-03-27 Chisso Corp Production of alkenyl ethers
JP2001066779A (en) * 1999-08-30 2001-03-16 Fuji Photo Film Co Ltd Positive type photosensitive composition
WO2006107065A1 (en) * 2005-03-30 2006-10-12 Otsuka Chemical Co., Ltd. Method for producing haloalkyl ether compound
WO2006115265A1 (en) * 2005-04-26 2006-11-02 Kyowa Hakko Chemical Co., Ltd. Method for producing unsaturated ether compound
WO2006123701A1 (en) * 2005-05-17 2006-11-23 Kyowa Hakko Chemical Co., Ltd. Process for production of alkenyl ethers

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4945382B1 (en) * 1970-12-29 1974-12-04
JPS5585581A (en) * 1978-12-25 1980-06-27 Sagami Chem Res Center 4-formylchroman derivative and its preparation
JPS5832838A (en) * 1981-08-24 1983-02-25 Daicel Chem Ind Ltd Continuous preparation of methyl vinyl ether
JPH01163144A (en) * 1987-12-18 1989-06-27 Daikin Ind Ltd Production of fluorine-containing ether compound
JPH0372439A (en) * 1989-01-31 1991-03-27 Chisso Corp Production of alkenyl ethers
JP2001066779A (en) * 1999-08-30 2001-03-16 Fuji Photo Film Co Ltd Positive type photosensitive composition
WO2006107065A1 (en) * 2005-03-30 2006-10-12 Otsuka Chemical Co., Ltd. Method for producing haloalkyl ether compound
WO2006115265A1 (en) * 2005-04-26 2006-11-02 Kyowa Hakko Chemical Co., Ltd. Method for producing unsaturated ether compound
WO2006123701A1 (en) * 2005-05-17 2006-11-23 Kyowa Hakko Chemical Co., Ltd. Process for production of alkenyl ethers

Also Published As

Publication number Publication date
JP5504080B2 (en) 2014-05-28

Similar Documents

Publication Publication Date Title
CN108690007B (en) C-H coupling reaction catalyzed by transition metal for efficiently preparing o-cyanoated aromatic ring or unsaturated aliphatic ring compound
Ouyang et al. A Clean, Facile and Practical Synthesis of α‐Oxoketene S, S‐Acetals in Water
KR101539761B1 (en) Method for preparing compounds through a novel Michael-addition reaction using water or various acids as additives
JP5504080B2 (en) Method for producing vinyl ether compound
KR102079116B1 (en) Method for producing 4-haloalkyl-3-mercapto-substituted 2-hydroxy-benzoic acid derivatives
Li et al. TBAI-catalyzed oxidative coupling of β-ketoesters with carboxylic acid: synthesis of α-carboxylic-β-ketoesters
CN111662245A (en) Synthesis method of ethyl-3-oxylidene-1-oxa-4-azaspiro [5.5] undecane-9-formic acid ester
JP2018519288A (en) Method for producing benzamide compound
JP2004231524A (en) Method for producing styrene derivative
Cai et al. Regiospecific and highly stereoselective synthesis of β-amino (Z)-enylphosphonates via β-hydrogen migration reaction of dialkyl α-diazophosphonates catalyzed by AgOTf
CN111662233B (en) Method for synthesizing 4-chloro-1H-imidazole-2-carboxylic acid ethyl ester by one-step method
KR101554539B1 (en) Development of Method for Amide Bond Formation via Metal-Free Aerobic Oxidative Amination of Aldehydes
WO2014062221A1 (en) Aryl tetrafluorosulfanyl compounds
CN114957111B (en) Preparation method of N-methyl-4-chloropyridine-2-formamide
KR101522464B1 (en) New process for the production of arensulfonyl chloride from arensulfonic acid
CN116283467B (en) Method for synthesizing diaryl alkyl methane
JP2013001653A (en) Method for producing fluorosulfuric acid enol ester
KR100968576B1 (en) Process of preparing 2-acyl-3-amino-2-alkenoate
JP6914577B2 (en) Method for producing halogen-substituted styrene monomer
JP5205971B2 (en) Method for producing tetrahydropyran compound
JP2017222582A (en) Method for producing carboxylic thioester
KR101590592B1 (en) Manufacturing method of dipyrryl ketones and dipyrryl ketones made by the same
JP2017071556A (en) Manufacturing method of carboxylic acid prenyl and prenol using oxovanadium complex
JP5344287B2 (en) Process for producing α-difluorohalomethylcarbonyl compound
WO2014037308A1 (en) Process for preparing n-h or n-alkyl 2-propynamide

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111216

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20121005

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140317

R150 Certificate of patent or registration of utility model

Ref document number: 5504080

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250