JP2012020309A - Hot rolled steel plate superior in coating corrosion resistance and fatigue property, and method for manufacturing the same - Google Patents

Hot rolled steel plate superior in coating corrosion resistance and fatigue property, and method for manufacturing the same Download PDF

Info

Publication number
JP2012020309A
JP2012020309A JP2010159634A JP2010159634A JP2012020309A JP 2012020309 A JP2012020309 A JP 2012020309A JP 2010159634 A JP2010159634 A JP 2010159634A JP 2010159634 A JP2010159634 A JP 2010159634A JP 2012020309 A JP2012020309 A JP 2012020309A
Authority
JP
Japan
Prior art keywords
corrosion resistance
less
rolled steel
scale
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010159634A
Other languages
Japanese (ja)
Other versions
JP5471918B2 (en
Inventor
Naoki Maruyama
直紀 丸山
Kazuhiko Honda
和彦 本田
Koji Seto
厚司 瀬戸
Ryoichi Nishiyama
亮一 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2010159634A priority Critical patent/JP5471918B2/en
Publication of JP2012020309A publication Critical patent/JP2012020309A/en
Application granted granted Critical
Publication of JP5471918B2 publication Critical patent/JP5471918B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a hot rolled steel plate superior in coating corrosion resistance and fatigue property, wherein, even if an electrodeposition baking finish is applied to the hot rolled steel plate having scale layers, a fine chemical conversion film can still be formed thereon without losing adhesion between the scale and a base iron, and to provide a method for manufacturing the same.SOLUTION: The hot rolled steel plate is characterized in that the volume fraction of magnetite in the scale layers is 60% or more, the average crystal grain size of the magnetite is 3 μm or less, and the average roughness of the scale/base iron interface is 1.5 μm or less by the average roughness Ra.

Description

本発明は、電着塗装後の耐食性と疲労特性に優れた、スケール層を有する熱延鋼板およびその製造方法に関するものであり、特に、自動車やトラックのフレームやメンバー、シャシーなどの素材として好適な、塗装耐食性と疲労特性に優れた熱延鋼板およびその製造方法に関するものである。   The present invention relates to a hot-rolled steel sheet having a scale layer, which has excellent corrosion resistance and fatigue properties after electrodeposition coating, and a method for producing the same, and is particularly suitable as a material for automobiles, truck frames, members, chassis, and the like. The present invention relates to a hot-rolled steel sheet excellent in paint corrosion resistance and fatigue characteristics and a method for producing the same.

通常、熱延鋼板はコイルとして巻き取った後の状態において、表面に鉄酸化物を主体とする10μm前後のスケール層を有する。このような熱延鋼板を自動車やトラック等の部材に用いる場合、防食を目的として、スケール層付きままの鋼板の表面に電着焼付塗装が施される場合があるが、この際、所望の塗装後耐食性が得られないということが従来から問題となっていた。   Usually, a hot-rolled steel sheet has a scale layer of about 10 μm mainly composed of iron oxide on the surface after being wound as a coil. When such a hot-rolled steel sheet is used for a member such as an automobile or a truck, an electrodeposition baking coating may be applied to the surface of the steel sheet with a scale layer for the purpose of corrosion prevention. It has been a problem that post-corrosion resistance cannot be obtained.

一方、自動車やトラックのフレームやシャシー等に用いられる鋼板には、塗装後の耐食性に加えて、疲労特性が併せて求められる。一般に、疲労特性は鋼板表面の粗さの影響を強く受けることが良く知られており、例えば、特許文献1に記載されたような、仕上げ圧延前のデスケーリングを十分に行うことによって表面を平滑化し、疲労特性を向上させる方法が知られている。しかしながら、この方法によって鋼板を製造した場合、疲労特性は良好となるものの、スケール付きまま材の塗装後耐食性が劣位となる場合があり、疲労特性と塗装後耐食性の両立が求められていた。   On the other hand, in addition to corrosion resistance after coating, fatigue characteristics are also required for steel sheets used in automobiles, truck frames, chassis, and the like. In general, it is well known that fatigue characteristics are strongly influenced by the roughness of the steel sheet surface. For example, as described in Patent Document 1, the surface is smoothed by sufficiently performing descaling before finish rolling. There is known a method for improving fatigue characteristics. However, when a steel sheet is produced by this method, the fatigue characteristics are good, but the corrosion resistance after painting of the material may be inferior with the scale attached, and both the fatigue characteristics and the corrosion resistance after painting have been demanded.

一般的に、スケール層付きの鋼板に塗装処理を行った場合、その塗装後の耐食性は、「(1)スケールと地鉄との密着性」と、「(2)電着塗装の前処理として行う化成処理性」に大きく左右されると考えられる。スケールの密着性を改善する技術としては、例えば、スケール層の構造をマグネタイト(Fe)主体にする方法(例えば、特許文献2〜4を参照)、薄スケール化する方法(例えば、特許文献3〜7を参照)、スケール層中のMnFeの比率を低下させる方法(例えば、特許文献8を参照)が開示されている。 In general, when a steel sheet with a scale layer is coated, the corrosion resistance after painting is "(1) Adhesion between scale and ground iron" and "(2) Pretreatment of electrodeposition coating. It is thought that it depends greatly on the chemical conversion process to be performed. Examples of techniques for improving the adhesion of the scale include, for example, a method in which the structure of the scale layer is mainly magnetite (Fe 3 O 4 ) (see, for example, Patent Documents 2 to 4), and a method for reducing the scale (eg, patent References 3 to 7) and a method of reducing the ratio of MnFe 2 O 4 in the scale layer (see, for example, Patent Document 8) are disclosed.

しかしながら、上記した従来の技術においては、スケールと地鉄の密着性は改善するものの、電着塗装の前処理である化成処理をスケール付き鋼板に行った場合、良好な化成処理皮膜が形成されないため、その後に設けられる電着塗装皮膜との密着性が低下し、塗装後の耐食性が劣化するという問題があった。また、薄スケール化を図るために、高圧水デスケーリング装置(例えば、特許文献1、9を参照)等により、仕上げ圧延前のデスケーリングを行うと、化成処理性が十分に得られず、その結果、電着塗装皮膜の密着性が低下し、塗装耐食性が劣化するという問題点があった。   However, in the above-described conventional technology, although the adhesion between the scale and the base iron is improved, when a chemical conversion treatment, which is a pretreatment of electrodeposition coating, is performed on a steel plate with a scale, a good chemical conversion treatment film is not formed. Then, there was a problem that the adhesion with an electrodeposition coating film provided thereafter was lowered and the corrosion resistance after coating was deteriorated. In addition, when descaling before finish rolling is performed with a high-pressure water descaling apparatus (for example, see Patent Documents 1 and 9) in order to reduce the scale, chemical conversion processability cannot be sufficiently obtained. As a result, there was a problem that the adhesion of the electrodeposition coating film was lowered and the coating corrosion resistance was deteriorated.

特開平09−137249号公報JP 09-137249 A 特開平09−271806号公報JP 09-271806 A 特開2000−87185号公報JP 2000-87185 A 特開2002−143905号公報JP 2002-143905 A 特開平07−252593号公報Japanese Patent Application Laid-Open No. 07-252593 特開平09−272918号公報JP 09-272918 A 特開平11−277105号公報JP 11-277105 A 特開2004−346416号公報JP 2004-346416 A 特開2000−015323号公報JP 2000-015323 A

本発明は上記問題に鑑みてなされたものであり、スケール層を有する熱延鋼板に電着焼付塗装を施した場合であっても、スケールと地鉄との密着性を損なうことが無く、且つ、良好な化成処理皮膜を形成することが可能な、塗装耐食性と疲労特性に優れた熱延鋼板およびその製造方法を提供することを目的とする。   The present invention has been made in view of the above problems, and even when electrodeposition baking coating is applied to a hot-rolled steel sheet having a scale layer, the adhesion between the scale and the ground iron is not impaired, and An object of the present invention is to provide a hot-rolled steel sheet that is capable of forming a good chemical conversion coating film and has excellent coating corrosion resistance and fatigue characteristics, and a method for producing the hot-rolled steel sheet.

本発明者等は、先ず、鋼板の電着塗装前処理として行う化成処理性に及ぼすスケール構造の影響について詳細に調査した。その結果、化成処理によって鋼板表面に形成された皮膜は、スケール中のマグネタイト(Fe)分率が高いほど、また、マグネタイトの粒径が微細であるほど、良好な形態を示すことを見出した。そして、良好な形態の化成処理皮膜が形成された熱延鋼板は、電着塗装後の耐食性が良好となることを発見した(図1に示すグラフを参照)。 The inventors first investigated in detail the influence of the scale structure on the chemical conversion treatment performed as a pretreatment for electrodeposition coating of steel sheets. As a result, the film formed on the steel sheet surface by the chemical conversion treatment shows a better form as the magnetite (Fe 3 O 4 ) fraction in the scale is higher and the particle size of the magnetite is finer. I found it. And it discovered that the hot-rolled steel plate in which the chemical conversion treatment film of the favorable form was formed became favorable in the corrosion resistance after electrodeposition coating (refer the graph shown in FIG. 1).

次いで、本発明者等は、スケール層内のマグネタイト粒を微細化する条件について鋭意検討を行った。その結果、図2のグラフに示すように、従来から通常行われているような、デスケーリングを完全に施した状態で仕上げ熱延を実施した場合には、マグネタイト結晶粒は微細化しないことを知見した。その一方、所定範囲内の厚さのスケールが存在する状態で仕上げ圧延を開始し、さらに、所定の温度範囲内でスケールに適正量の歪を付加した場合には、鋼板の冷却後に形成されるマグネタイトの結晶が微細化することを見出した。なお、マグネタイトの結晶が微細化する原因は定かではないが、主にウスタイトからなるスケール中(高温の仕上げ圧延時に形成されるスケールはウスタイトが主相)に、歪付加によって導入される微細な欠陥が、冷却中に形成されるマグネタイトの変態核として働いている可能性があるものと考えられる。   Next, the present inventors conducted extensive studies on the conditions for refining the magnetite grains in the scale layer. As a result, as shown in the graph of FIG. 2, the magnetite crystal grains are not refined when finishing hot rolling is performed in a state where descaling has been completely performed as is conventionally performed. I found out. On the other hand, when finishing rolling is started in a state where a scale having a thickness within a predetermined range exists, and when an appropriate amount of strain is applied to the scale within a predetermined temperature range, the steel sheet is formed after cooling the steel plate. It was found that the magnetite crystals were refined. Although the cause of the refinement of magnetite crystals is not clear, the fine defects introduced by the addition of strain in the scale mainly composed of wustite (the scale formed during high-temperature finish rolling is mainly wustite) However, it is thought that it may function as a transformation nucleus of magnetite formed during cooling.

一方で、本発明者等が鋭意実験を繰り返したところ、仕上げ圧延開始時のスケール厚さが大き過ぎると、マグネタイト分率が低下して塗装耐食性が低下傾向になるとともに、スケール/地鉄界面粗さが増加し、その結果、疲労特性が低下することが明らかとなった。
さらに、本発明者等は、マグネタイト分率に及ぼす製造条件の影響について調査した。その結果、仕上げ圧延開始時のスケール厚さの他に、仕上げ圧延温度、巻取り温度、および650〜300℃間の冷却速度が影響因子であることを見出した。
On the other hand, when the inventors repeated diligent experiments, if the scale thickness at the start of finish rolling is too large, the magnetite fraction decreases and the coating corrosion resistance tends to decrease, and the scale / base metal interface roughening occurs. As a result, it became clear that the fatigue characteristics decreased.
Furthermore, the present inventors investigated the influence of manufacturing conditions on the magnetite fraction. As a result, it was found that, in addition to the scale thickness at the start of finish rolling, the finish rolling temperature, the coiling temperature, and the cooling rate between 650 and 300 ° C. are influential factors.

上記各実験の結果、本発明者等は、熱延条件を適正化してスケールの構造と結晶粒径、並びに、スケール/地鉄界面の厚さを最適化することにより、スケール層付きの鋼板においても良好な電着塗装後の塗装耐食性を確保でき、さらに良好な疲労特性も具備することを明らかにし、本発明を完成させた。
即ち、本発明の要旨は以下のとおりである。
As a result of the above experiments, the present inventors optimized the hot rolling conditions to optimize the scale structure and crystal grain size, and the thickness of the scale / base metal interface. As a result, it was clarified that the coating corrosion resistance after the electrodeposition coating could be secured and that the tires also had good fatigue characteristics, and the present invention was completed.
That is, the gist of the present invention is as follows.

[1] スケール層中のマグネタイトの体積分率が60%以上、かつ、前記マグネタイトの平均結晶粒径が3μm以下であり、スケール/地鉄界面の粗さが平均粗さRaで1.5μm以下であることを特徴とする塗装耐食性と疲労特性に優れた熱延鋼板。
[2] 質量%で、C:0.2%以下、Si:2.0%以下、Mn:3.0%以下、P:0.1%以下、S:0.02%以下、Al:2.0%以下、Cr:3.0%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成を有することを特徴とする上記[1]に記載の塗装耐食性と疲労特性に優れた熱延鋼板。
[3] 曲げ疲労限度比が0.45以上であることを特徴とする上記[1]又は[2]に記載の塗装耐食性と疲労特性に優れた熱延鋼板。
[4] 上記[1]〜[3]の何れか1項に記載の塗装耐食性と疲労特性に優れた熱延鋼板を製造する方法であって、仕上げ圧延開始時の平均スケール厚が3〜30μmとなるようにデスケーリングを行った後、鋼板表面温度:800〜980℃の範囲内での累積圧下率が30%以上であり、さらに仕上げ圧延終了温度:800℃以上となる仕上げ圧延を行い、その後、300〜650℃で巻き取ることを特徴とする塗装耐食性と疲労特性に優れた熱延鋼板の製造方法。
[5] 上記[1]〜[3]の何れか1項に記載の塗装耐食性と疲労特性に優れた熱延鋼板を製造する方法であって、仕上げ圧延開始時の平均スケール厚が3〜30μmとなるようにデスケーリングを行った後、鋼板表面温度:800〜980℃の範囲内での累積圧下率が30%以上であり、さらに仕上げ圧延終了温度:800℃以上となる仕上げ圧延を行い、その後、300〜650℃間を平均冷却速度5℃/分以下で冷却することを特徴とする塗装耐食性と疲労特性に優れた熱延鋼板の製造方法。
[1] The volume fraction of magnetite in the scale layer is 60% or more, the average crystal grain size of the magnetite is 3 μm or less, and the roughness of the scale / base metal interface is 1.5 μm or less in terms of the average roughness Ra. A hot-rolled steel sheet with excellent paint corrosion resistance and fatigue characteristics.
[2] By mass%, C: 0.2% or less, Si: 2.0% or less, Mn: 3.0% or less, P: 0.1% or less, S: 0.02% or less, Al: 2 0.0% or less, Cr: 3.0% or less, the balance having a component composition consisting of Fe and inevitable impurities, the heat excellent in coating corrosion resistance and fatigue characteristics according to the above [1] Rolled steel sheet.
[3] The hot-rolled steel sheet having excellent coating corrosion resistance and fatigue characteristics according to [1] or [2] above, wherein a bending fatigue limit ratio is 0.45 or more.
[4] A method for producing a hot-rolled steel sheet having excellent coating corrosion resistance and fatigue characteristics according to any one of [1] to [3], wherein an average scale thickness at the start of finish rolling is 3 to 30 μm. The steel sheet surface temperature is 30% or more within the range of 800 to 980 ° C., and the finish rolling finish temperature is 800 ° C. or more. Then, the manufacturing method of the hot-rolled steel plate excellent in the coating corrosion resistance and fatigue characteristics characterized by winding at 300-650 degreeC.
[5] A method for producing a hot-rolled steel sheet having excellent coating corrosion resistance and fatigue characteristics according to any one of [1] to [3], wherein an average scale thickness at the start of finish rolling is 3 to 30 μm. The steel sheet surface temperature is 30% or more within the range of 800 to 980 ° C., and the finish rolling finish temperature is 800 ° C. or more. Then, the manufacturing method of the hot-rolled steel plate excellent in the coating corrosion resistance and fatigue characteristics characterized by cooling between 300-650 degreeC with an average cooling rate of 5 degrees C / min or less.

本発明の塗装耐食性と疲労特性に優れた熱延鋼板によれば、上記構成により、スケール層を有する熱延鋼板に電着焼付塗装を施した場合であっても、スケールと地鉄との密着性を損なうことが無く、且つ、良好な化成処理皮膜を形成することが可能となり、優れた塗装耐食性と疲労耐久性が得られる。これにより、従来の鋼板において腐食による減肉量を見込んだ部品板厚が設定されていたのに対し、本発明の熱延鋼板は、優れた塗装耐食性が得られることから、部品の板厚を薄くすることが可能となり、自動車あるいはトラック等の軽量化が可能となる。また、鋼板の板厚が薄い場合、鋼材料には高い疲労強度が求められるが、本発明の熱延鋼板は優れた疲労特性を具備することから、部材の軽量化に極めて好適である。
また、本発明の塗装耐食性と疲労特性に優れた熱延鋼板の製造方法によれば、上記手順並びに条件を採用することにより、優れた塗装耐食性並びに疲労特性を備える熱延鋼板を製造することが可能となる。
According to the hot-rolled steel sheet having excellent corrosion resistance and fatigue characteristics according to the present invention, the above-described configuration enables adhesion between the scale and the base iron even when the electrodeposition baking coating is applied to the hot-rolled steel sheet having the scale layer. It is possible to form a good chemical conversion film without impairing the properties, and excellent coating corrosion resistance and fatigue durability can be obtained. As a result, the thickness of the component plate was set in anticipation of the thickness reduction due to corrosion in the conventional steel plate, whereas the hot rolled steel plate of the present invention provides excellent coating corrosion resistance. It is possible to reduce the thickness of the vehicle or the truck or the like. Moreover, when the steel plate is thin, the steel material is required to have high fatigue strength. However, the hot-rolled steel plate of the present invention has excellent fatigue characteristics, and is therefore extremely suitable for reducing the weight of the member.
Moreover, according to the method for producing a hot rolled steel sheet having excellent coating corrosion resistance and fatigue characteristics according to the present invention, by adopting the above procedure and conditions, it is possible to produce a hot rolled steel sheet having excellent coating corrosion resistance and fatigue characteristics. It becomes possible.

本発明に係る塗装耐食性と疲労特性に優れた熱延鋼板およびその製造方法を模式的に説明する図であり、電着塗装焼付け後の耐食性に及ぼすスケール層中のマグネタイトの体積分率とマグネタイト粒径との関係を示すグラフである。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram schematically illustrating a hot-rolled steel sheet excellent in coating corrosion resistance and fatigue characteristics according to the present invention and a method for producing the same, and affects the volume fraction of magnetite in a scale layer and magnetite grains on the corrosion resistance after electrodeposition coating baking It is a graph which shows the relationship with a diameter. 本発明に係る塗装耐食性と疲労特性に優れた熱延鋼板およびその製造方法を模式的に説明する図であり、仕上げ圧延直前のスケール厚さと最終熱延板におけるスケール層中に存在するマグネタイトの粒径との関係を示すグラフである。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram schematically illustrating a hot-rolled steel sheet having excellent coating corrosion resistance and fatigue characteristics according to the present invention and a method for producing the hot-rolled steel sheet. It is a graph which shows the relationship with a diameter.

以下、本発明の塗装耐食性と疲労特性に優れた熱延鋼板およびその製造方法の一実施形態について、図面を適宜参照しながら詳細に説明する。なお、本実施形態は、本発明の塗装耐食性と疲労特性に優れた熱延鋼板およびその製造方法の趣旨をより良く理解させるために詳細に説明するものであるから、特に指定の無い限り本発明を限定するものではない。   Hereinafter, an embodiment of a hot-rolled steel sheet having excellent coating corrosion resistance and fatigue characteristics and a method for producing the same according to the present invention will be described in detail with reference to the drawings as appropriate. The present embodiment will be described in detail in order to better understand the purpose of the hot rolled steel sheet having excellent coating corrosion resistance and fatigue properties and the manufacturing method thereof according to the present invention, and unless otherwise specified, the present invention. It is not intended to limit.

[熱延鋼板]
本実施形態の塗装耐食性と疲労特性に優れた熱延鋼板は、スケール層中のマグネタイトの体積分率が60%以上、かつ、前記マグネタイトの平均結晶粒径が3μm以下であり、スケール/地鉄界面の粗さが平均粗さRaで1.5μm以下として概略構成されている。
[Hot rolled steel sheet]
The hot rolled steel sheet having excellent coating corrosion resistance and fatigue characteristics according to this embodiment has a volume fraction of magnetite in the scale layer of 60% or more and an average crystal grain size of the magnetite of 3 μm or less. The interface is roughly configured with an average roughness Ra of 1.5 μm or less.

『スケール層中のマグネタイトの体積分率』
本発明の熱延鋼板において、スケール層中のマグネタイトの体積分率は、塗装後の耐食性を確保する上で極めて重要な因子である。スケール層中のマグネタイト分率が60%未満だと、良好な化成処理皮膜が形成されにくくなり、その結果、化成皮膜上に行う電着塗装との密着性が低下して耐食性が劣化する。このため、本発明においては、スケール層中のマグネタイトの体積分率を60%未満に規定した。また、本発明においては、耐食性をさらに向上させる観点から、スケール層中のマグネタイトの体積分率を85%以上とすることがより好適である。
"Volume fraction of magnetite in the scale layer"
In the hot-rolled steel sheet of the present invention, the volume fraction of magnetite in the scale layer is a very important factor for ensuring the corrosion resistance after coating. When the magnetite fraction in the scale layer is less than 60%, it becomes difficult to form a good chemical conversion coating film. As a result, the adhesion with the electrodeposition coating performed on the chemical conversion coating is lowered, and the corrosion resistance is deteriorated. For this reason, in this invention, the volume fraction of the magnetite in a scale layer was prescribed | regulated to less than 60%. In the present invention, it is more preferable that the volume fraction of magnetite in the scale layer is 85% or more from the viewpoint of further improving the corrosion resistance.

『マグネタイトの平均結晶粒径』
本発明の熱延鋼板において、マグネタイトの平均結晶粒径は、塗装後耐食性を確保する上で極めて重要な因子である。マグネタイトの結晶粒径が3μmを超えると、良好な下地化成皮膜が形成されにくくなり、電着塗装後の耐食性が劣化するので、その適正範囲を3μm以下とした。また、本発明におけるマグネタイトの平均結晶粒径は、2μm以下がより好適な範囲である。
"Average grain size of magnetite"
In the hot-rolled steel sheet of the present invention, the average crystal grain size of magnetite is a very important factor in securing the corrosion resistance after coating. If the crystal grain size of magnetite exceeds 3 μm, it becomes difficult to form a good base chemical conversion film, and the corrosion resistance after electrodeposition coating deteriorates. Therefore, the appropriate range was set to 3 μm or less. The average crystal grain size of magnetite in the present invention is more preferably 2 μm or less.

なお、本発明において説明するマグネタイトとは、Feの化学式からなるスピネル型の結晶構造を有する酸化物である。また、結晶構造において、Feの原子位置にMn、Al、Ti等の原子が一部置換した場合でも塗装耐食性に及ぼす効果は変わらないが、他原子による置換率が30%を超えるとスケールの割れを引き起こす場合があることから、Fe位置の他原子による置換率はこれを上限とする。 Note that the magnetite described in the present invention, an oxide having a spinel crystal structure consisting of the chemical formula of Fe 3 O 4. In addition, in the crystal structure, even if atoms such as Mn, Al, Ti, etc. are partially substituted at the atomic positions of Fe, the effect on coating corrosion resistance is not changed, but if the substitution rate by other atoms exceeds 30%, scale cracks Therefore, the upper limit of the substitution rate with other atoms in the Fe position is set.

『スケール/地鉄界面の粗さ』
スケール/地鉄間の界面粗さは、疲労特性を判断する指標の一つであり、本発明において重要な因子である。スケール/地鉄間の界面の平均粗さRaが1.5μmを超えると、疲労特性が顕著に低下するため、その適正範囲を1.5μmとした。また、本発明におけるスケール/地鉄間の界面の平均粗さRaは、1.3μm以下がより好適な範囲である。
"Roughness of scale / geite interface"
The interface roughness between the scale and the ground iron is one of the indexes for judging the fatigue characteristics and is an important factor in the present invention. When the average roughness Ra of the scale / base iron interface exceeds 1.5 μm, the fatigue characteristics are remarkably lowered. Therefore, the appropriate range is set to 1.5 μm. In addition, the average roughness Ra of the scale / base iron interface in the present invention is more preferably 1.3 μm or less.

『鋼成分』
本発明の熱延鋼板においては、スケール層中のマグネタイトの体積分率、マグネタイトの平均結晶粒径、並びに、スケール/地鉄間の界面の平均粗さを上記範囲とするにあたり、鋼成分を、以下のように制御することがより好ましい。即ち、本発明の熱延鋼板は、質量%で、C:0.2%以下、Si:2.0%以下、Mn:3.0%以下、P:0.1%以下、S:0.02%以下、Al:2.0%以下、Cr:3.0%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成とすることがより好ましい。
以下、鋼成分を構成する各成分について説明する。
"Steel component"
In the hot-rolled steel sheet of the present invention, when the volume fraction of magnetite in the scale layer, the average crystal grain size of the magnetite, and the average roughness of the interface between the scale / base metal are within the above range, the steel components are It is more preferable to control as follows. That is, the hot-rolled steel sheet of the present invention is, in mass%, C: 0.2% or less, Si: 2.0% or less, Mn: 3.0% or less, P: 0.1% or less, S: 0.00. It is more preferable that the composition contains 02% or less, Al: 2.0% or less, and Cr: 3.0% or less, with the balance being Fe and inevitable impurities.
Hereinafter, each component which comprises a steel component is demonstrated.

「C:炭素」0.2%以下
本発明においては、C量が0.2%を超えると、パーライト組織の割合やセメンタイトの体積分率が増加し、スケール/地鉄界面粗さを平滑にしても、良好な疲労特性が得られないため、Cの適正範囲を0.2%以下に限定した。また、C量の下限は特に限定しないが、0.0003%未満であると製造コストが増大するため、0.0003%が実質的な下限である。
“C: Carbon” 0.2% or less In the present invention, when the amount of C exceeds 0.2%, the ratio of the pearlite structure and the volume fraction of cementite increase, and the scale / steel interface roughness is smoothed. However, since good fatigue characteristics cannot be obtained, the appropriate range of C is limited to 0.2% or less. Further, the lower limit of the amount of C is not particularly limited, but if it is less than 0.0003%, the production cost increases, so 0.0003% is a substantial lower limit.

「Si:ケイ素」2.0%以下
本発明においては、Si量が2.0%を超えると、デスケーリング性が低下し、その結果、仕上げ圧延前のスケール厚さが大きくなり、熱延後のスケール/地鉄界面の粗さが大きくなることから疲労特性が低下するため、その適正範囲を2.0%以下とした。また、Siはマグネタイト分率への影響を通じて、塗装耐食性にも影響するため、この塗装耐食性の観点から、0.5%以下とすることがより好ましい。また、Si量の下限は特に限定しないが、0.001%未満であると製造コストが増大するため、0.001%が実質的な下限である。
“Si: silicon” 2.0% or less In the present invention, when the amount of Si exceeds 2.0%, descaling property decreases, and as a result, the scale thickness before finish rolling increases, and after hot rolling Since the roughness of the scale / base metal interface increases and the fatigue characteristics deteriorate, the appropriate range is set to 2.0% or less. Further, since Si affects the coating corrosion resistance through the influence on the magnetite fraction, from the viewpoint of this coating corrosion resistance, it is more preferable to set it to 0.5% or less. Further, the lower limit of the amount of Si is not particularly limited, but if it is less than 0.001%, the manufacturing cost increases, so 0.001% is a substantial lower limit.

「Mn:マンガン」3.0%以下
Mnは、鋼の強度確保のために用いられる元素であるが、3.0%を超えて含有すると、スケールの密着性が低下するとともにマグネタイトの体積分率が低下し、その結果、塗装後耐食性も低下することから、その適正範囲は3.0%以下とする。また、Mn量の下限は特に限定しないが、0.001%未満であると製造コストが増大するため、0.001%が実質的な下限である。
“Mn: Manganese” 3.0% or less Mn is an element used for securing the strength of steel. However, when it exceeds 3.0%, the adhesion of the scale is reduced and the volume fraction of magnetite is reduced. As a result, the corrosion resistance after coating also decreases, so the appropriate range is made 3.0% or less. Moreover, although the minimum of the amount of Mn is not specifically limited, Since manufacturing cost will increase when it is less than 0.001%, 0.001% is a substantial minimum.

「P:リン」0.1%以下
Pは、鋼の強度確保のために用いられる。しかしながら、0.1%を超えてPを含有すると塗装耐食性が低下するので、その適正範囲を0.1%以下とする。また、P量の下限は特に限定しないが、0.001%未満であると製造コストが増大するため、0.001%が実質的な下限である。
“P: Phosphorus” 0.1% or less P is used for securing the strength of steel. However, if the P content exceeds 0.1%, the coating corrosion resistance decreases, so the appropriate range is made 0.1% or less. Further, the lower limit of the amount of P is not particularly limited, but if it is less than 0.001%, the manufacturing cost increases, so 0.001% is a substantial lower limit.

「S:硫黄」0.02%以下
Sは、母材の疲労特性に影響する元素である。しかしながら、0.02%を超えてSを含有すると、スケール/地鉄界面粗さを平滑にしても良好な疲労特性が得られないため、その適正範囲を0.02%以下とする。また、S量の下限は特に限定しないが、0.0003%未満であると製造コストが増大するため、0.0003%が実質的な下限である。
“S: Sulfur” 0.02% or less S is an element that affects the fatigue characteristics of the base material. However, if the S content exceeds 0.02%, good fatigue properties cannot be obtained even if the scale / base metal interface roughness is smoothed, so the appropriate range is made 0.02% or less. Further, the lower limit of the amount of S is not particularly limited, but if it is less than 0.0003%, the production cost increases, so 0.0003% is a substantial lower limit.

「Al:アルミニウム」2.0%以下
Alは、脱酸および鋼板の組織制御のために用いられる。しかしながら、2.0%を超えてAlを含有すると、マグネタイト結晶粒が粗大になって塗装耐食性が低下するので、その適正範囲を2.0%以下とする。また、Al量の下限は特に限定しないが、0.001%未満であると製造コストが増大するため、0.001%が実質的な下限である。
“Al: Aluminum” 2.0% or less Al is used for deoxidation and structure control of a steel sheet. However, if the Al content exceeds 2.0%, the magnetite crystal grains become coarse and the coating corrosion resistance decreases, so the appropriate range is made 2.0% or less. Moreover, the lower limit of the amount of Al is not particularly limited, but if it is less than 0.001%, the manufacturing cost increases, so 0.001% is a substantial lower limit.

「Cr:クロム」3.0%以下
Crは、鋼板の組織制御のために用いられる。しかしながら、3.0%を超えてCrを含有すると、マグネタイト分率が低下するとともにスケールの密着性が低下し、その結果、塗装後耐食性も低下するため、Cr量の適正範囲を3.0%以下とする。また、Cr量の下限は特に限定しないが、0.001%未満であると製造コストが増大するため、0.001%が実質的な下限である。
“Cr: Chromium” 3.0% or less Cr is used for controlling the structure of a steel sheet. However, if Cr is contained in excess of 3.0%, the magnetite fraction is reduced and the adhesion of the scale is lowered. As a result, the corrosion resistance after coating is also lowered. The following. Further, the lower limit of the Cr amount is not particularly limited, but if it is less than 0.001%, the manufacturing cost increases, so 0.001% is a substantial lower limit.

なお、本実施形態における鋼成分は、その他の元素については特に限定はなく、強度調整のために各種元素を適宜含有しても良い。   In addition, the steel component in this embodiment does not have limitation in particular about another element, You may contain various elements suitably for intensity | strength adjustment.

『曲げ疲労限度比』
本発明の熱延鋼板においては、スケール層中のマグネタイトの体積分率、マグネタイトの平均結晶粒径、スケール/地鉄間の界面の平均粗さ、並びに、鋼成分を上記範囲に規定したうえで、さらに、曲げ疲労限度比を0.45以上とすることがより好ましい。
ここで、本発明において説明する曲げ疲労限度比とは、疲労限をTSで除した値であり、熱延鋼板の有する疲労特性を示す値である。この曲げ疲労限度比が0.45以上であれば、実用上、疲労破壊が起きないことから、疲労限度比の範囲を0.45以上に限定した。
"Bending fatigue limit ratio"
In the hot-rolled steel sheet of the present invention, the volume fraction of magnetite in the scale layer, the average crystal grain size of the magnetite, the average roughness of the interface between the scale / base metal, and the steel components are specified in the above ranges. Furthermore, the bending fatigue limit ratio is more preferably 0.45 or more.
Here, the bending fatigue limit ratio described in the present invention is a value obtained by dividing the fatigue limit by TS, and is a value indicating the fatigue characteristics of the hot-rolled steel sheet. If this bending fatigue limit ratio is 0.45 or more, fatigue fracture does not occur practically, so the range of the fatigue limit ratio is limited to 0.45 or more.

[熱延鋼板の製造方法]
次に、上記構成を備えた本発明の塗装耐食性と疲労特性に優れた熱延鋼板を製造する方法について説明する。
本発明の塗装耐食性と疲労特性に優れた熱延鋼板の製造方法は、仕上げ圧延開始時の平均スケール厚が3〜30μmとなるようにデスケーリングを行った後、鋼板表面温度:800〜980℃の範囲内での累積圧下率が30%以上であり、さらに仕上げ圧延終了温度:800℃以上となる仕上げ圧延を行い、その後、300〜650℃で巻き取る方法である。
また、本発明においては、上記構成を備えた熱延鋼板を製造するにあたり、仕上げ圧延までを上記同様の手順及び条件で行った後、300〜650℃間を平均冷却速度5℃/分以下で冷却する方法とすることができる。
以下、本発明の熱延鋼板の製造方法で規定する各手順並びに条件について説明する。
[Method for producing hot-rolled steel sheet]
Next, a method for producing a hot-rolled steel sheet having the above-described structure and excellent in coating corrosion resistance and fatigue characteristics will be described.
In the method for producing a hot rolled steel sheet having excellent coating corrosion resistance and fatigue characteristics according to the present invention, after performing descaling so that the average scale thickness at the start of finish rolling becomes 3 to 30 μm, the steel sheet surface temperature: 800 to 980 ° C. The rolling reduction within the range of 30% or more, and finish rolling at a finish rolling end temperature of 800 ° C. or higher, followed by winding at 300 to 650 ° C.
In the present invention, in producing a hot-rolled steel sheet having the above-described configuration, the process up to finish rolling is performed in the same procedure and conditions as described above, and then between 300 to 650 ° C. at an average cooling rate of 5 ° C./min or less. It can be set as the method of cooling.
Hereinafter, each procedure and conditions prescribed | regulated with the manufacturing method of the hot rolled sheet steel of this invention are demonstrated.

まず、上記成分からなるスラブを加熱し、その後、粗圧延、仕上げ圧延を順次行う。この際、スラブ加熱条件、並びに、粗圧延の条件は特に限定されるものではなく、従来から用いられている各条件を採用することができる。   First, a slab composed of the above components is heated, and then rough rolling and finish rolling are sequentially performed. At this time, the slab heating condition and the rough rolling condition are not particularly limited, and each conventionally used condition can be adopted.

また、本発明において、仕上げ圧延開始時の平均スケール厚は、熱延後の塗装耐食性と疲労特性に影響する重要な因子である。ここで、従来の製造方法では、通常、仕上げ圧延前にデスケーリングを完全に行うことが一般的である。しかしながら、デスケーリングを完全に行い、仕上げ圧延開始時の平均スケール厚さが3μm未満になると、熱延後において微細なマグネタイト結晶が得られないために良好な化成処理皮膜が得られず、その結果、電着塗装後の耐食性が劣化する。一方、仕上げ圧延開始時の平均スケール厚さが30μmを超えると、仕上げ圧延後のスケール/地鉄界面の凹凸が大きくなって疲労特性が劣化するとともに、マグネタイト分率の低下およびスケールと地鉄の密着性低下を通して、塗装耐食性の劣化も引き起こす。このため、本発明の製造方法においては、仕上げ圧延開始時の平均スケール厚の適正範囲を3〜30μmに限定した。   In the present invention, the average scale thickness at the start of finish rolling is an important factor influencing the coating corrosion resistance and fatigue characteristics after hot rolling. Here, in the conventional manufacturing method, it is general to perform descaling completely before finish rolling. However, when descaling is completely performed and the average scale thickness at the start of finish rolling is less than 3 μm, a fine magnetite crystal cannot be obtained after hot rolling, so that a good chemical conversion film cannot be obtained. Corrosion resistance after electrodeposition coating deteriorates. On the other hand, if the average scale thickness at the start of finish rolling exceeds 30 μm, the unevenness of the scale / base iron interface after finish rolling becomes large and fatigue characteristics deteriorate, and the magnetite fraction decreases and the scale and Through the decrease in adhesion, it also causes deterioration of paint corrosion resistance. For this reason, in the manufacturing method of the present invention, the appropriate range of the average scale thickness at the start of finish rolling is limited to 3 to 30 μm.

なお、仕上げ圧延前に行うデスケーリングの方法は特に限定するものではない。但し、デスケーリングの処理の程度は、鋼成分やデスケーリング時の鋼板温度に応じて変化するので、これら鋼成分や鋼板温度に応じて吐出水の水圧・水量や噴射角度を変化させることにより、デスケーリング後のスケール厚さを調整する。   In addition, the descaling method performed before finish rolling is not particularly limited. However, the degree of descaling treatment changes according to the steel composition and the steel plate temperature at the time of descaling, so by changing the water pressure, the amount of water and the injection angle according to these steel components and the steel plate temperature, Adjust the scale thickness after descaling.

また、仕上げ圧延において、圧延時の表面温度と歪付加量は、冷却後のマグネタイトの結晶粒径に影響を及ぼす重要な因子である。鋼板表面温度が800℃未満の条件で仕上げ圧延を行うと、スケールは破砕されてスケール内に空隙が形成され、この結果、マグネタイトの体積分率が低下する。一方、鋼板表面温度が980℃を超える条件で仕上げ圧延を行うと、冷却後にマグネタイトが細粒化しない。このため、本発明の製造方法においては、鋼板表面温度の適正範囲を800〜980℃に限定した。   In finish rolling, the surface temperature and the amount of strain applied during rolling are important factors that affect the crystal grain size of magnetite after cooling. When the finish rolling is performed under the condition that the surface temperature of the steel sheet is less than 800 ° C., the scale is crushed and voids are formed in the scale. As a result, the volume fraction of magnetite is lowered. On the other hand, if the finish rolling is performed under conditions where the steel sheet surface temperature exceeds 980 ° C., the magnetite does not become finer after cooling. For this reason, in the manufacturing method of this invention, the appropriate range of the steel plate surface temperature was limited to 800-980 degreeC.

また、仕上げ圧延において、上記適正温度範囲内での累積圧下率が30%未満であると、マグネタイトの細粒化効果が得られない。このため、上記適正温度範囲内での累積圧下率の適正範囲を30%以上に制限した。また、本発明において、上記適正温度範囲内での累積圧下率は、60%以上がより好ましい範囲である。
なお、本発明で説明する累積圧下率とは、上記温度範囲内で行った圧延に関して、初期板厚をt0、圧延後の板厚をtfとした場合に、次式{(t0−tf)/t0×100}によって求められる量である。
In addition, in the finish rolling, if the cumulative rolling reduction within the above appropriate temperature range is less than 30%, the magnetite refinement effect cannot be obtained. For this reason, the appropriate range of the cumulative rolling reduction within the above appropriate temperature range is limited to 30% or more. In the present invention, the cumulative rolling reduction within the appropriate temperature range is more preferably 60% or more.
The cumulative rolling reduction described in the present invention is the following expression {(t0−tf) / when the initial plate thickness is t0 and the plate thickness after rolling is tf with respect to rolling performed within the above temperature range. This is the amount obtained by t0 × 100}.

また、仕上げ圧延終了温度が800℃未満であると、マグネタイト分率が減少し、この結果、塗装耐食性が低下する。このため、本発明においては、仕上げ圧延終了温度の適正範囲を800℃以上に制限した。
なお、仕上げ圧延においては、通常は複数回のロール圧延を行うので、上記温度範囲内での累積圧下率30%以上の圧延を含む条件であれば、それ以外の条件の圧延処理を行っても構わない。
On the other hand, if the finish rolling finish temperature is less than 800 ° C., the magnetite fraction decreases, and as a result, the coating corrosion resistance decreases. For this reason, in this invention, the appropriate range of finish rolling completion temperature was restrict | limited to 800 degreeC or more.
In finish rolling, roll rolling is usually performed a plurality of times. Therefore, as long as the conditions include rolling with a cumulative rolling reduction of 30% or more within the above temperature range, rolling under other conditions may be performed. I do not care.

次に、本発明の製造方法において、仕上げ圧延を完了した鋼帯を巻き取る際の温度は、スケール層中のマグネタイトの体積分率とマグネタイト粒径に影響する重要な因子である。鋼帯の巻き取り温度が300℃未満の場合、マグネタイトへの変態が十分に起こらないために良好な塗装耐食性が得られない。一方、鋼帯の巻き取り温度が650℃を超えると、マグネタイトの粒径が粗大化する。このため、本発明の製造方法においては、鋼帯の巻き取り温度の適正範囲を300〜650℃の範囲内に制限した。また、本発明では、マグネタイト分率を最大化する観点から、巻き取り温度の上限を590℃以下とすることがより好ましい。   Next, in the production method of the present invention, the temperature at which the steel strip that has been subjected to finish rolling is wound is an important factor that affects the volume fraction of magnetite in the scale layer and the magnetite particle size. When the winding temperature of the steel strip is less than 300 ° C., the transformation to magnetite does not occur sufficiently, so that good coating corrosion resistance cannot be obtained. On the other hand, when the coiling temperature of the steel strip exceeds 650 ° C., the particle size of the magnetite becomes coarse. For this reason, in the manufacturing method of this invention, the appropriate range of the winding temperature of a steel strip was restrict | limited to the range of 300-650 degreeC. Moreover, in this invention, it is more preferable that the upper limit of coiling temperature shall be 590 degrees C or less from a viewpoint of maximizing a magnetite fraction.

また、本発明において、仕上げ圧延を行った後、300〜650℃の間で鋼板を冷却する方法を採用した場合、この300〜650℃間の冷却速度は、スケール層中のマグネタイトの体積分率とマグネタイト粒径に影響する重要な因子となる。この温度範囲内の平均冷却速度が5℃/分を超えると、マグネタイトへの変態が十分に起こらず、また、マグネタイト粒径も十分に微細化しない。このため、本発明においては、仕上げ圧延を行った後に300〜650℃の間で鋼板を冷却する際の、平均冷却速度の適正範囲内を5℃/分以下に制限した。   In the present invention, when the method of cooling the steel plate at 300 to 650 ° C. after finishing rolling is adopted, the cooling rate between 300 and 650 ° C. is determined by the volume fraction of magnetite in the scale layer. And an important factor affecting the magnetite particle size. If the average cooling rate within this temperature range exceeds 5 ° C./min, the transformation to magnetite does not occur sufficiently, and the magnetite particle size is not sufficiently refined. For this reason, in this invention, after finishing rolling, the suitable range of the average cooling rate at the time of cooling a steel plate between 300-650 degreeC was restrict | limited to 5 degrees C / min or less.

なお、マグネタイトの体積分率は、熱延鋼板表面をX線回折法で測定するか、あるいは、鋼板断面をEBSD法(電子線後方散乱電子回折法)によって測定してもよい。また、マグネタイトの平均結晶粒径は、鋼板断面において、EBSD法によって100個以上の結晶粒を測定し、その公称粒径として求めることができる。   The volume fraction of magnetite may be measured by measuring the surface of the hot-rolled steel sheet by X-ray diffraction or by measuring the cross section of the steel sheet by EBSD (electron beam backscattered electron diffraction). The average crystal grain size of magnetite can be obtained as a nominal grain size by measuring 100 or more crystal grains by EBSD method in the cross section of the steel sheet.

以上説明したような本発明に係る塗装耐食性と疲労特性に優れた熱延鋼板によれば、上記構成により、スケール層を有する熱延鋼板に電着焼付塗装を施した場合であっても、スケールと地鉄との密着性を損なうことが無く、且つ、良好な化成処理皮膜を形成することが可能となり、優れた塗装耐食性と疲労耐久性が得られる。これにより、従来の鋼板において腐食による減肉量を見込んだ部品板厚が設定されていたのに対し、本発明の熱延鋼板は、優れた塗装耐食性が得られることから、部品の板厚を薄くすることが可能となり、自動車あるいはトラック等の軽量化が可能となる。また、鋼板の板厚が薄い場合、鋼材料には高い疲労強度が求められるが、本発明の熱延鋼板は優れた疲労特性を具備することから、部材の軽量化に極めて好適である。
また、本発明の塗装耐食性と疲労特性に優れた熱延鋼板の製造方法によれば、上記手順並びに条件を採用することにより、優れた塗装耐食性並びに疲労特性を備える熱延鋼板を製造することが可能となる。
According to the hot-rolled steel sheet having excellent coating corrosion resistance and fatigue characteristics according to the present invention as described above, the scale can be applied to the hot-rolled steel sheet having the scale layer even when electrodeposition baking is applied. It is possible to form a good chemical conversion treatment film without impairing the adhesion between the steel and the ground iron, and excellent coating corrosion resistance and fatigue durability can be obtained. As a result, the thickness of the component plate was set in anticipation of the thickness reduction due to corrosion in the conventional steel plate, whereas the hot rolled steel plate of the present invention provides excellent coating corrosion resistance. It is possible to reduce the thickness of the vehicle or the truck or the like. Moreover, when the steel plate is thin, the steel material is required to have high fatigue strength. However, the hot-rolled steel plate of the present invention has excellent fatigue characteristics, and is therefore extremely suitable for reducing the weight of the member.
Moreover, according to the method for producing a hot rolled steel sheet having excellent coating corrosion resistance and fatigue characteristics according to the present invention, by adopting the above procedure and conditions, it is possible to produce a hot rolled steel sheet having excellent coating corrosion resistance and fatigue characteristics. It becomes possible.

以下、本発明に係る塗装耐食性と疲労特性に優れた熱延鋼板の実施例を挙げ、本発明をより具体的に説明するが、本発明は、もとより下記実施例に限定されるものではなく、前、後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれるものである。   Hereinafter, examples of the hot-rolled steel sheet excellent in coating corrosion resistance and fatigue characteristics according to the present invention will be given and the present invention will be described more specifically, but the present invention is not limited to the following examples from the beginning, The present invention can be implemented with appropriate modifications within a range that can be adapted to the gist of the following, and these are all included in the technical scope of the present invention.

本実施例においては、まず、下記表1に示す化学成分を有するA〜Pの鋼を鋳造した後、このスラブを1050〜1250℃の範囲内で再加熱し、粗圧延を行った。
次いで、デスケーリング装置を用いて、スケールの残存厚さを変化させた上で、下記表2に示す条件で仕上げ圧延を行なった。その後、所定の温度で巻き取り処理を行うか、あるいは、連続冷却で650℃〜300℃間の冷却速度を変化させる処理を行った。
In this example, first, steels A to P having chemical components shown in Table 1 below were cast, and then the slab was reheated within a range of 1050 to 1250 ° C. and subjected to rough rolling.
Next, the remaining thickness of the scale was changed using a descaling apparatus, and finish rolling was performed under the conditions shown in Table 2 below. Thereafter, a winding process was performed at a predetermined temperature, or a process of changing the cooling rate between 650 ° C. and 300 ° C. by continuous cooling was performed.

そして、上記手順で得られた本発明例及び比較例の熱延鋼板について、以下に説明するような評価試験を行った。
まず、スケール層中のマグネタイトの体積分率については、X線回折法により定量し、スケール層中に存在するマグネタイトの結晶粒径はEBSD法にてマグネタイト相の分離を行ったうえで、その粒径を測定した。
また、スケール/地鉄界面の粗さは、酸洗によってスケールを除去した後、その表面について、JIS 0601Bに記載の方法で測定し、算術平均粗さRaによって評価した。
また、鋼板の引張特性は、各々の鋼板からJIS5号試験片を採取し、引張方向が圧延方向垂直方向(C方向)になるような条件で行った。
また、鋼板の疲労特性は、JIS Z2275に記載の方法に従い、応力比=−1の条件下で平面曲げ疲労試験を行い、1000万回疲労限で評価した後、次式{疲労限/TS(引張強度)}から疲労限度比を算出した。
And the evaluation test which is demonstrated below was done about the hot-rolled steel sheet of the example of the present invention obtained by the above-mentioned procedure, and a comparative example.
First, the volume fraction of magnetite in the scale layer is quantified by the X-ray diffraction method, and the crystal grain size of the magnetite present in the scale layer is determined by separating the magnetite phase by the EBSD method. The diameter was measured.
Further, the roughness of the scale / base iron interface was measured by the method described in JIS 0601B for the surface after removing the scale by pickling, and evaluated by the arithmetic average roughness Ra.
In addition, the tensile properties of the steel plates were measured under the condition that a JIS No. 5 test piece was taken from each steel plate and the tensile direction was perpendicular to the rolling direction (C direction).
Further, the fatigue properties of the steel sheet were evaluated by the plane bending fatigue test under the condition of stress ratio = −1 according to the method described in JIS Z2275, and evaluated at the fatigue limit of 10 million times. Fatigue limit ratio was calculated from (tensile strength)}.

また、塗装耐食性については、まず、スケール層付き鋼板を脱脂し、次いで、前処理としてリン酸亜鉛処理(化成処理)を行った後、カチオン電着塗装を25μmの厚さで行った。そして、電着塗装表面に線状の疵を付与した後、JIS Z2371に記載の方法に従って200hの塩水噴霧試験(SST試験)を行い、この試験後に、テープ剥離試験を行った際の塗膜剥離幅を測定した。そして、塗膜剥離幅が2mm以下のものを「○(耐食性OK)」、2mmを超えるものを「×(耐食性NG)」として二段階評価した。   As for the coating corrosion resistance, first, a steel sheet with a scale layer was degreased, and after a zinc phosphate treatment (chemical conversion treatment) as a pretreatment, a cationic electrodeposition coating was performed at a thickness of 25 μm. And after giving a linear wrinkle to the electrodeposition coating surface, according to the method of JISZ2371, the 200h salt spray test (SST test) is performed, and the coating film peeling at the time of performing a tape peeling test after this test The width was measured. Then, the film peeling width of 2 mm or less was evaluated in two stages as “◯ (corrosion resistance OK)” and the film exceeding 2 mm as “× (corrosion resistance NG)”.

下記表1に鋼成分の一覧を示すとともに、下記表2に、作製した熱延鋼板に存在するスケール層の解析結果、スケール/地鉄界面粗さ、引張強さ(TS)、疲労特性、塗装耐食性の評価結果の一覧を示す。なお、下記表2中において、各見出しは以下の項目を示す。
scale :仕上げ圧延開始時のスケール厚さ(mm)
Red :800〜980℃間の累積圧下率(%)
FT :最終仕上げ圧延温度(℃)
CT :巻き取り温度(℃)
CR :300〜650℃間の平均冷却速度(℃/分)
mag :スケール層中のマグネタイトの体積分率(%)
dmag :マグネタイトの平均粒径(μm)
Ra :スケール/地鉄界面の算術平均粗さ(μm)
Table 1 below shows a list of steel components, and Table 2 below shows the analysis results of the scale layer present in the produced hot-rolled steel sheet, scale / base metal interface roughness, tensile strength (TS), fatigue characteristics, and coating. A list of evaluation results of corrosion resistance is shown. In Table 2 below, each heading indicates the following item.
t scale : Scale thickness at the start of finish rolling (mm)
Red: Cumulative rolling reduction between 800 and 980 ° C. (%)
FT: Final finish rolling temperature (° C)
CT: Winding temperature (° C)
CR: Average cooling rate between 300-650 ° C. (° C./min)
f v mag: volume fraction of magnetite in the scale layer (%)
dmag: average particle diameter of magnetite (μm)
Ra: Arithmetic average roughness (μm) of scale / base metal interface

Figure 2012020309
Figure 2012020309

Figure 2012020309
Figure 2012020309

表2に示すように、本発明で規定する各条件で作製され、また、本発明で規定する範囲のスケール層中のマグネタイトの体積分率、マグネタイトの平均結晶粒径、並びに、スケール/地鉄間の界面の平均粗さに制御された本発明例の熱延鋼板は、何れも、疲労限度比が0.46以上であり、また、塗装耐食性の評価が「○」であった。これにより、本発明の熱延鋼板が、塗装耐食性と疲労特性に優れていることが明らかとなった。   As shown in Table 2, the volume fraction of magnetite in the scale layer within the range specified by the present invention, the average crystal grain size of the magnetite, and the scale / base iron were prepared under the conditions defined by the present invention. Each of the hot-rolled steel sheets of the examples of the present invention controlled to the average roughness of the interface between them had a fatigue limit ratio of 0.46 or more, and the evaluation of coating corrosion resistance was “◯”. Thereby, it became clear that the hot-rolled steel sheet of the present invention is excellent in coating corrosion resistance and fatigue characteristics.

これに対して、表2に示す比較例の熱延鋼板は、スケール層中のマグネタイトの体積分率、マグネタイトの平均結晶粒径、並びに、スケール/地鉄間の界面の平均粗さの何れかが本発明の規定範囲を満たしていないことから、塗装耐食性か疲労特性の少なくとも何れかが劣る結果となった。   On the other hand, the hot-rolled steel sheet of the comparative example shown in Table 2 is any one of the volume fraction of magnetite in the scale layer, the average crystal grain size of magnetite, and the average roughness of the interface between the scale / base metal. However, since the specified range of the present invention was not satisfied, at least one of coating corrosion resistance and fatigue characteristics was inferior.

試験番号A−3、D−2、I−2は、デスケーリングを十分に行い、初期スケール厚が小さい状態で仕上げ圧延を開始したものであり、マグネタイト結晶粒が大きく、塗装耐食性がNGの評価となった例である。
また、試験番号A−2、H−2は、仕上げ圧延前のスケール厚が本発明の規定範囲に比べて過大であったため、スケール/地鉄界面粗さが大きくなって疲労特性が低下するとともに、マグネタイト分率が少ないために塗装耐食性もNGの評価となった例である。
また、試験番号A−4、F−2、J−2は、仕上げ圧延前のスケール厚は適正だったものの、圧延中にスケールに歪が付与されなかったため、マグネタイト結晶粒が微細化せず、塗装耐食性がNGとなった例である。
Test Nos. A-3, D-2, and I-2 are those in which descaling is sufficiently performed and finish rolling is started with a small initial scale thickness, and the magnetite crystal grains are large and the coating corrosion resistance is NG. This is an example.
In addition, in test numbers A-2 and H-2, the scale thickness before finish rolling was excessive as compared with the specified range of the present invention. This is an example in which the coating corrosion resistance is evaluated as NG because the magnetite fraction is small.
In addition, although test numbers A-4, F-2, and J-2 had an appropriate scale thickness before finish rolling, no distortion was imparted to the scale during rolling, so that the magnetite crystal grains were not refined, This is an example in which the coating corrosion resistance is NG.

また、試験番号A−6は、最終仕上げ圧延温度が低かったため、スケールの破壊が起こり、マグネタイト分率も小さくなり、塗装耐食性がNGとなった例である。
また、試験番号A−5は、巻き取り温度が適正範囲以下であったことから、ウスタイトからマグネタイトへの変態が十分に起こらなかったため、耐食性がNGとなった例である。
また、試験番号F−3は、巻き取り温度が適正範囲以上であったため、マグネタイト結晶粒が粗大化して、塗装耐食性がNGとなった例である。
また、試験番号K−1、L−1、M−1、N−1、O−1、P−1は、鋼成分が適正でなかったため、これに伴ってマグネタイト分率やマグネタイト粒径が適正範囲外となり、塗装耐食性がNGとなった例である。
Test No. A-6 is an example in which the final finish rolling temperature was low, the scale was broken, the magnetite fraction was reduced, and the coating corrosion resistance was NG.
Test No. A-5 is an example in which the corrosion resistance was NG because the transformation from wustite to magnetite did not occur sufficiently because the coiling temperature was below the appropriate range.
Test number F-3 is an example in which the coiling temperature was equal to or higher than the appropriate range, so that the magnetite crystal grains were coarsened and the coating corrosion resistance was NG.
Moreover, since the steel components were not appropriate for test numbers K-1, L-1, M-1, N-1, O-1, and P-1, the magnetite fraction and the magnetite particle size were appropriate accordingly. This is an example in which the coating corrosion resistance is NG.

以上説明した実施例の結果より、本発明の熱延鋼板およびその製造方法が、スケール層を有する熱延鋼板に電着焼付塗装を施した場合であっても、スケールと地鉄との密着性を損なうことが無く、且つ、良好な化成処理皮膜を形成することが可能であり、塗装耐食性と疲労特性に優れていることが明らかである。   From the results of the examples described above, even when the hot-rolled steel sheet of the present invention and the manufacturing method thereof are subjected to electrodeposition baking coating on a hot-rolled steel sheet having a scale layer, the adhesion between the scale and the base iron It is clear that it is possible to form a good chemical conversion film without impairing the coating, and to have excellent coating corrosion resistance and fatigue characteristics.

本発明によれば、例えば、自動車やトラックのフレームやメンバー、シャシー等の素材として好適な、塗装耐食性と疲労特性に優れた熱延鋼板を提供することが可能となる。このように、自動車やトラックのフレームやメンバー、シャシー等の部材に本発明を適用することにより、塗装後の耐食性や疲労強度の向上、さらに、軽量化等のメリットを十分に享受することができ、産業上の効果は極めて高い。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide the hot-rolled steel plate excellent in coating corrosion resistance and a fatigue characteristic suitable as raw materials, such as a frame, a member, and a chassis of a motor vehicle or a truck, for example. In this way, by applying the present invention to members such as automobiles and truck frames, members, chassis, etc., it is possible to fully enjoy the benefits such as improved corrosion resistance and fatigue strength after painting, and weight reduction. Industrial effect is extremely high.

Claims (5)

スケール層中のマグネタイトの体積分率が60%以上、かつ、前記マグネタイトの平均結晶粒径が3μm以下であり、スケール/地鉄界面の粗さが平均粗さRaで1.5μm以下であることを特徴とする塗装耐食性と疲労特性に優れた熱延鋼板。   The volume fraction of magnetite in the scale layer is 60% or more, the average crystal grain size of the magnetite is 3 μm or less, and the roughness of the scale / base metal interface is 1.5 μm or less in terms of the average roughness Ra. Hot rolled steel sheet with excellent coating corrosion resistance and fatigue characteristics. 質量%で、
C :0.2%以下、
Si:2.0%以下、
Mn:3.0%以下、
P :0.1%以下、
S :0.02%以下、
Al:2.0%以下、
Cr:3.0%以下
を含有し、残部がFeおよび不可避的不純物からなる成分組成を有することを特徴とする請求項1に記載の塗装耐食性と疲労特性に優れた熱延鋼板。
% By mass
C: 0.2% or less,
Si: 2.0% or less,
Mn: 3.0% or less,
P: 0.1% or less,
S: 0.02% or less,
Al: 2.0% or less,
The hot-rolled steel sheet having excellent coating corrosion resistance and fatigue characteristics according to claim 1, wherein Cr: 3.0% or less, and the balance has a composition composed of Fe and inevitable impurities.
曲げ疲労限度比が0.45以上であることを特徴とする請求項1又は請求項2に記載の塗装耐食性と疲労特性に優れた熱延鋼板。   The hot-rolled steel sheet having excellent coating corrosion resistance and fatigue characteristics according to claim 1 or 2, wherein a bending fatigue limit ratio is 0.45 or more. 請求項1〜請求項3の何れか1項に記載の塗装耐食性と疲労特性に優れた熱延鋼板を製造する方法であって、
仕上げ圧延開始時の平均スケール厚が3〜30μmとなるようにデスケーリングを行った後、
鋼板表面温度:800〜980℃の範囲内での累積圧下率が30%以上であり、さらに仕上げ圧延終了温度:800℃以上となる仕上げ圧延を行い、
その後、300〜650℃で巻き取ることを特徴とする塗装耐食性と疲労特性に優れた熱延鋼板の製造方法。
A method for producing a hot-rolled steel sheet having excellent coating corrosion resistance and fatigue properties according to any one of claims 1 to 3,
After performing descaling so that the average scale thickness at the start of finish rolling is 3 to 30 μm,
Steel sheet surface temperature: The cumulative rolling reduction within the range of 800 to 980 ° C. is 30% or more, and finish rolling finish temperature is 800 ° C. or more.
Then, the manufacturing method of the hot-rolled steel plate excellent in the coating corrosion resistance and fatigue characteristics characterized by winding at 300-650 degreeC.
請求項1〜請求項3の何れか1項に記載の塗装耐食性と疲労特性に優れた熱延鋼板を製造する方法であって、
仕上げ圧延開始時の平均スケール厚が3〜30μmとなるようにデスケーリングを行った後、
鋼板表面温度:800〜980℃の範囲内での累積圧下率が30%以上であり、さらに仕上げ圧延終了温度:800℃以上となる仕上げ圧延を行い、
その後、300〜650℃間を平均冷却速度5℃/分以下で冷却することを特徴とする塗装耐食性と疲労特性に優れた熱延鋼板の製造方法。
A method for producing a hot-rolled steel sheet having excellent coating corrosion resistance and fatigue properties according to any one of claims 1 to 3,
After performing descaling so that the average scale thickness at the start of finish rolling is 3 to 30 μm,
Steel sheet surface temperature: The cumulative rolling reduction within the range of 800 to 980 ° C. is 30% or more, and finish rolling finish temperature is 800 ° C. or more.
Then, the manufacturing method of the hot-rolled steel plate excellent in the coating corrosion resistance and fatigue characteristics characterized by cooling between 300-650 degreeC with an average cooling rate of 5 degrees C / min or less.
JP2010159634A 2010-07-14 2010-07-14 Hot-rolled steel sheet with excellent coating corrosion resistance and fatigue characteristics and method for producing the same Active JP5471918B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010159634A JP5471918B2 (en) 2010-07-14 2010-07-14 Hot-rolled steel sheet with excellent coating corrosion resistance and fatigue characteristics and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010159634A JP5471918B2 (en) 2010-07-14 2010-07-14 Hot-rolled steel sheet with excellent coating corrosion resistance and fatigue characteristics and method for producing the same

Publications (2)

Publication Number Publication Date
JP2012020309A true JP2012020309A (en) 2012-02-02
JP5471918B2 JP5471918B2 (en) 2014-04-16

Family

ID=45775024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010159634A Active JP5471918B2 (en) 2010-07-14 2010-07-14 Hot-rolled steel sheet with excellent coating corrosion resistance and fatigue characteristics and method for producing the same

Country Status (1)

Country Link
JP (1) JP5471918B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014031537A (en) * 2012-08-02 2014-02-20 Nippon Steel & Sumitomo Metal Hot rolled steel plate having superior scale adhesiveness and method for manufacturing the same
JP2014218692A (en) * 2013-05-07 2014-11-20 新日鐵住金株式会社 High yield ratio and high strength hot rolled steel and manufacturing method therefor
JP2018502987A (en) * 2014-12-22 2018-02-01 ポスコPosco Hot-rolled steel sheet for high-strength galvanized steel sheet with excellent surface quality and manufacturing method thereof
JP2019183267A (en) * 2018-04-03 2019-10-24 Jfeスチール株式会社 Hot rolled steel sheet excellent in scale adhesion and manufacturing method therefor
WO2020065549A1 (en) * 2018-09-25 2020-04-02 Arcelormittal High strength hot rolled steel having excellent scale adhesivness and a method of manufacturing the same
RU2772064C1 (en) * 2018-09-25 2022-05-16 Арселормиттал High-strength hot-rolled steel characterised by excellent scale adhesion and method for manufacture thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113227416B (en) 2019-03-11 2023-04-04 日本制铁株式会社 Hot rolled steel plate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09271806A (en) * 1996-04-02 1997-10-21 Nippon Steel Corp Thick plate with uniform scale having satisfactory adhesion and its manufacture
JPH11302782A (en) * 1998-04-21 1999-11-02 Kawasaki Steel Corp High strength steel sheet for drum can, its production and drum can made of steel
JP2000087185A (en) * 1998-09-07 2000-03-28 Nippon Steel Corp Hot rolled steel plate excellent in surface characteristic and scale adhesion, and its manufacture
JP2001198604A (en) * 2000-01-13 2001-07-24 Nkk Corp Method for producing hot rolled steel sheet excellent in adhesion of scale
JP2002143905A (en) * 2000-11-09 2002-05-21 Nippon Steel Corp Hot-rolled steel sheet excellent in appearance quality of coating
JP2012021192A (en) * 2010-07-14 2012-02-02 Nippon Steel Corp High strength hot rolled steel sheet superior in coating corrosion resistance and punched part fatigue characteristic, and method for manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09271806A (en) * 1996-04-02 1997-10-21 Nippon Steel Corp Thick plate with uniform scale having satisfactory adhesion and its manufacture
JPH11302782A (en) * 1998-04-21 1999-11-02 Kawasaki Steel Corp High strength steel sheet for drum can, its production and drum can made of steel
JP2000087185A (en) * 1998-09-07 2000-03-28 Nippon Steel Corp Hot rolled steel plate excellent in surface characteristic and scale adhesion, and its manufacture
JP2001198604A (en) * 2000-01-13 2001-07-24 Nkk Corp Method for producing hot rolled steel sheet excellent in adhesion of scale
JP2002143905A (en) * 2000-11-09 2002-05-21 Nippon Steel Corp Hot-rolled steel sheet excellent in appearance quality of coating
JP2012021192A (en) * 2010-07-14 2012-02-02 Nippon Steel Corp High strength hot rolled steel sheet superior in coating corrosion resistance and punched part fatigue characteristic, and method for manufacturing the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014031537A (en) * 2012-08-02 2014-02-20 Nippon Steel & Sumitomo Metal Hot rolled steel plate having superior scale adhesiveness and method for manufacturing the same
JP2014218692A (en) * 2013-05-07 2014-11-20 新日鐵住金株式会社 High yield ratio and high strength hot rolled steel and manufacturing method therefor
JP2018502987A (en) * 2014-12-22 2018-02-01 ポスコPosco Hot-rolled steel sheet for high-strength galvanized steel sheet with excellent surface quality and manufacturing method thereof
JP2019183267A (en) * 2018-04-03 2019-10-24 Jfeスチール株式会社 Hot rolled steel sheet excellent in scale adhesion and manufacturing method therefor
WO2020065549A1 (en) * 2018-09-25 2020-04-02 Arcelormittal High strength hot rolled steel having excellent scale adhesivness and a method of manufacturing the same
WO2020065372A1 (en) * 2018-09-25 2020-04-02 Arcelormittal High strength hot rolled steel having excellent scale adhesivness and a method of manufacturing the same
CN112739841A (en) * 2018-09-25 2021-04-30 安赛乐米塔尔公司 High-strength hot-rolled steel having excellent scale adhesion and method for manufacturing same
KR20210049879A (en) * 2018-09-25 2021-05-06 아르셀러미탈 High-strength hot-rolled steel with excellent scale adhesion and its manufacturing method
RU2772064C1 (en) * 2018-09-25 2022-05-16 Арселормиттал High-strength hot-rolled steel characterised by excellent scale adhesion and method for manufacture thereof
CN112739841B (en) * 2018-09-25 2022-11-15 安赛乐米塔尔公司 High-strength hot-rolled steel having excellent scale adhesion and method for manufacturing same
KR102560819B1 (en) 2018-09-25 2023-07-28 아르셀러미탈 High-strength hot-rolled steel with excellent scale adhesion and manufacturing method thereof

Also Published As

Publication number Publication date
JP5471918B2 (en) 2014-04-16

Similar Documents

Publication Publication Date Title
JP5440431B2 (en) High-strength hot-rolled steel sheet with excellent paint corrosion resistance and punched portion fatigue characteristics and method for producing the same
JP5162924B2 (en) Steel plate for can and manufacturing method thereof
JP5471918B2 (en) Hot-rolled steel sheet with excellent coating corrosion resistance and fatigue characteristics and method for producing the same
JP6136547B2 (en) High yield ratio high strength hot-rolled steel sheet and method for producing the same
WO2013114850A1 (en) Hot-dip galvanized steel sheet and production method therefor
JP5967318B1 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP5939368B1 (en) Steel plate for can and manufacturing method thereof
JP7244723B2 (en) High-strength steel material with excellent durability and its manufacturing method
JP2013237923A (en) High strength steel sheet and method for producing the same
WO2016157878A1 (en) Steel sheet for cans and method for manufacturing steel sheet for cans
JP5870861B2 (en) High-strength hot-dip galvanized steel sheet with excellent fatigue characteristics and ductility and small in-plane anisotropy of ductility and method for producing the same
WO2012124823A1 (en) Steel sheet for aerosol can bottom having high pressure resistance and excellent workability and method for producing same
JP6471807B2 (en) Oriented electrical steel sheet and hot rolled steel sheet for grain oriented electrical steel sheet
JP3900619B2 (en) Hot rolled steel sheet, plated steel sheet, and hot rolled steel sheet manufacturing method excellent in bake hardenability and room temperature aging resistance
JP2002012947A (en) Hot dip zinc-plated steel sheet with excellent strength- flangeability and production method for the same
TWI504760B (en) Steel sheet for 3-piece can and manufacturing method thereof
JP2001089829A (en) Steel sheet for can and method for manufacting the same
JP6361553B2 (en) Steel plate for high workability and high strength can and manufacturing method thereof
JP5857694B2 (en) High-strength hot-rolled steel sheet with excellent coating corrosion resistance and bending fatigue characteristics and method for producing the same
JP5655839B2 (en) Hot-rolled steel sheet used as a base material for steel sheet for can and manufacturing method thereof
JP2001107185A (en) High strength steel sheet excellent in fatigue resistance and chemical convertibility
JP2001316762A (en) Hot rolled steel sheet excellent in cold aging resistance and strain aging characteristic and its producing method
JP6070616B2 (en) Manufacturing method of hot-rolled steel sheet
JP5920281B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JP3546299B2 (en) Manufacturing method of cold rolled steel sheet with small material fluctuation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140120

R151 Written notification of patent or utility model registration

Ref document number: 5471918

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350