JP2012020291A5 - - Google Patents

Download PDF

Info

Publication number
JP2012020291A5
JP2012020291A5 JP2010157933A JP2010157933A JP2012020291A5 JP 2012020291 A5 JP2012020291 A5 JP 2012020291A5 JP 2010157933 A JP2010157933 A JP 2010157933A JP 2010157933 A JP2010157933 A JP 2010157933A JP 2012020291 A5 JP2012020291 A5 JP 2012020291A5
Authority
JP
Japan
Prior art keywords
welded
laser beam
molten pool
welding
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010157933A
Other languages
Japanese (ja)
Other versions
JP5600837B2 (en
JP2012020291A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2010157933A priority Critical patent/JP5600837B2/en
Priority claimed from JP2010157933A external-priority patent/JP5600837B2/en
Publication of JP2012020291A publication Critical patent/JP2012020291A/en
Publication of JP2012020291A5 publication Critical patent/JP2012020291A5/ja
Application granted granted Critical
Publication of JP5600837B2 publication Critical patent/JP5600837B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

請求項2記載の発明は、被溶接母材(3)の表面に対してレーザ光(1)の照射角度θ1が80〜100°で、溶接ワイヤ(2)の溶融池(5)への挿入角度θ2が90〜120°であることを特徴とする請求項1記載の狭開先多層盛レーザ溶接方法である。 According to the second aspect of the present invention, the irradiation angle θ1 of the laser beam (1) is 80 to 100 ° with respect to the surface of the base material (3) to be welded, and the welding wire (2) is inserted into the molten pool (5). angle θ2 is narrow groove multi-pass laser welding method of claim 1, wherein 90 to 120 ° der Rukoto.

すなわち、請求項記載の発明によれば、ホットワイヤ2はレーザ光1より溶接方向に対して後行させることで溶融池5の表面でのレーザ光1の反射の障害にならないようにし、さらに請求項2記載の発明によれば、ホットワイヤ2の溶融池5の表面に対する挿入角度θ2を母材3の表面に対して溶接進行方向の後方向側に90度から120度の挿入角度θ2、望ましくは100〜110度の挿入角度θ2で溶融池5の上方から挿入することで溶接ビード4が凹形状となり多層盛溶接に適した形状とすることができた。前記挿入角度θ2が90度未満であるとレーザ光1とワイヤ2が干渉し、また前記挿入角度θ2が120度を超えるとワイヤ2が溶融池5後方に挿入されることになり溶接ビード4が凸形状になり次層溶接時に開先壁7の溶融が難しくなり融合不良発生の原因になる。 That is, according to the first aspect of the invention, e Ttowaiya 2 so as not to disorder the reflection of the laser beam 1 on the surface of the molten pool 5 by causing the rear row for welding direction from the laser beam 1, further According to the second aspect of the invention, the insertion angle θ2 of the hot wire 2 with respect to the surface of the molten pool 5 is set to an insertion angle θ2 of 90 to 120 degrees on the rear side in the welding progress direction with respect to the surface of the base material 3. Desirably, by inserting the weld bead 4 from above the molten pool 5 at an insertion angle θ2 of 100 to 110 degrees, the weld bead 4 has a concave shape and can be made into a shape suitable for multi-layer welding. When the insertion angle θ2 is less than 90 degrees, the laser beam 1 and the wire 2 interfere with each other, and when the insertion angle θ2 exceeds 120 degrees, the wire 2 is inserted behind the molten pool 5 and the weld bead 4 is formed. Due to the convex shape, it becomes difficult to melt the groove wall 7 at the time of the next layer welding, which causes a fusion failure.

また、図5に示すワイヤ2の溶融池5への挿入位置も重要なパラメータになり、ワイヤ
挿入位置とレーザ光1の中心軸の溶融池5への照射位置との間隔が大き過ぎると溶融池5の端にワイヤ2が挿入されることになり、ビード4の表面形状が凸形状になり次層溶接時に開先壁7の溶融が難しくなり融合不良発生の原因になる。逆にワイヤ2の溶融池5への挿入位置とレーザ光1の中心軸の溶融池5への照射位置との間隔が小さいとワイヤ2にレーザ光1が当たるようになり、ワイヤ2がレーザ光1により溶融され、溶断する現象が発生し、溶融池5の表面における波打ち溶接現象が乱れてビード4の形状に凹凸が発生する
Further, the insertion position of the wire 2 in the molten pool 5 shown in FIG. 5 is also an important parameter, and if the distance between the wire insertion position and the irradiation position of the central axis of the laser beam 1 to the molten pool 5 is too large, the molten pool. Since the wire 2 is inserted into the end of the bead 5, the surface shape of the bead 4 becomes convex, and it becomes difficult to melt the groove wall 7 at the time of the next layer welding, which causes fusion failure. Conversely, if the distance between the insertion position of the wire 2 into the molten pool 5 and the irradiation position of the central axis of the laser beam 1 onto the molten pool 5 is small, the laser beam 1 will hit the wire 2 and the wire 2 will be irradiated with the laser beam. 1 melts and melts, and the wave welding phenomenon on the surface of the molten pool 5 is disturbed, resulting in irregularities in the shape of the beads 4 .

また、図5に示すように溶融池5の表面におけるワイヤ2の挿入位置も重要なパラメータになり、前記ワイヤ2の溶融池5の表面での挿入位置はレーザ光1の中心軸の溶融池5の表面より、例えば1〜3mmだけ溶接進行方向の後側とする。ワイヤ2の溶融池5の表面での挿入位置をレーザ光1の中心軸の溶融池5の表面より、例えば3mmより大き過ぎると溶融池5の端にワイヤ2が挿入されることになり、ビード形状が凸形状になって次層の溶接時に開先壁7の溶融が難しくなり、融合不良発生の原因になる。逆にワイヤ2の溶融池5の表面への前記挿入位置がレーザ光1の中心軸の溶融池5の表面より1mmより小さいとワイヤ2にレーザ光1が当たるようになり、ワイヤ2がレーザ光1により溶融されて溶断する現象が発生し、溶融池5の表面が波打ち溶接現象により乱れてビード4の表面に凹凸が発生する。ワイヤ2の前記挿入位置はレーザ光1の中心軸の溶融池5の表面より、例えば2mm前後が最良であった。 As shown in FIG. 5, the insertion position of the wire 2 on the surface of the molten pool 5 is also an important parameter. The insertion position of the wire 2 on the surface of the molten pool 5 is the molten pool 5 on the central axis of the laser beam 1. From the surface , for example, 1 to 3 mm is set as the rear side in the welding progress direction. If the insertion position of the wire 2 on the surface of the molten pool 5 is too larger than, for example, 3 mm from the surface of the molten pool 5 at the central axis of the laser beam 1 , the wire 2 is inserted at the end of the molten pool 5, and the bead The shape becomes convex, and it becomes difficult to melt the groove wall 7 during the welding of the next layer, which causes poor fusion. Conversely, when the insertion position of the wire 2 on the surface of the molten pool 5 is smaller than 1 mm from the surface of the molten pool 5 at the central axis of the laser beam 1, the laser beam 1 hits the wire 2, and the wire 2 is irradiated with the laser beam. 1 melts and melts, and the surface of the molten pool 5 is disturbed by the wave welding phenomenon, and the surface of the bead 4 is uneven. The insertion position of the wire 2 was best , for example, about 2 mm from the surface of the molten pool 5 at the central axis of the laser beam 1 .

レーザ光1の中心軸の母材3の表面に対して溶接進行方向前側に傾斜させた傾斜角度θ1は80度〜110度が最適で、溶融池5の前記傾斜角度α(パラメータは溶接速度、レーザパワー、ワイヤの送給量、ワイヤの挿入角度θ2)により変更する必要がある。
ステンレス鋼を用いた代表的溶接試験条件は、開先幅3mm、レーザパワー3kW、溶接速度0.5m/min、ワイヤ径1.2mm、ワイヤ送給速度6m/minでビード高さ6mmの溶接ビードを施工することができた。なお、上記ワイヤ径は1.2mmに限定されるものではない。
The inclination angle θ1 inclined to the front side of the welding progress direction with respect to the surface of the base material 3 of the central axis of the laser beam 1 is optimally 80 degrees to 110 degrees, and the inclination angle α of the molten pool 5 (the parameter is the welding speed, The laser power, the wire feed amount, and the wire insertion angle θ2) need to be changed.
Typical welding test conditions using stainless steel are: a weld bead having a groove width of 3 mm, a laser power of 3 kW, a welding speed of 0.5 m / min, a wire diameter of 1.2 mm, a wire feed speed of 6 m / min and a bead height of 6 mm. Was able to be constructed. The wire diameter is not limited to 1.2 mm.

Claims (2)

溶加材として溶接ワイヤ(2)を用いて狭開先に加工した被溶接母材(3)を多層盛で
溶接する狭開先多層盛レーザ溶接方法において、
レーザ光(1)を該レーザ光(1)の焦点を外して前記狭開先に加工した被溶接母材(
3)に照射して該被溶接母材(3)を溶融すると共に、前記溶接ワイヤ(2)を該溶接ワ
イヤ(2)と前記被溶接母材(3)間に通電して該ワイヤ(2)の抵抗発熱により加熱す
るホットワイヤとし、前記レーザ光(1)の後方に前記レーザ光(1)の照射角度と近似
した角度で前記被溶接母材(3)の溶融により形成した溶融池(5)に挿入し、
前記被溶接母材(3)の溶融および前記溶接ワイヤ(2)の挿入により形成した溶融池
(5)に対して前記レーザ光(1)を開先幅一杯に照射し、レーザ光(1)の反射光(1
’)を前記溶融池(5)の溶接方向前方の前記狭両開先壁(7)から開先底(8)、また
は両側壁(7)から既に溶接した積層(10’)上に照射して溶融して溶融池(5)を連
続的に形成することを特徴とする狭開先多層盛レーザ溶接方法。
In a narrow groove multi-layer laser welding method in which a base material (3) to be welded that has been processed into a narrow groove using a welding wire (2) as a filler metal is welded with a multi-layer core,
A base material to be welded (laser beam (1)) that has been processed into the narrow groove by defocusing the laser beam (1).
3) is irradiated to melt the base metal (3) to be welded, and the welding wire (2) is energized between the welding wire (2) and the base metal (3) to be welded. ), A hot wire heated by resistance heat generation, and a molten pool (3) formed by melting the welded base material (3) at an angle approximate to the irradiation angle of the laser beam (1) behind the laser beam (1). 5)
The laser beam (1) is irradiated to the molten pool (5) formed by melting the base material (3) to be welded and inserting the welding wire (2) to the full groove width. Reflected light (1
′) Is irradiated from the narrow groove walls (7) ahead of the weld pool (5) in the welding direction to the groove bottom (8) or the already welded laminate (10 ′) from both side walls (7). And a molten pool (5) is continuously formed by melting and narrow gap multi-layer laser welding.
被溶接母材(3)の表面に対してレーザ光(1)の照射角度θ1が80〜100°で、
溶接ワイヤ(2)の溶融池(5)への挿入角度θ2が90〜120°であることを特徴とする請求項1記載の狭開先多層盛レーザ溶接方法。
The irradiation angle θ1 of the laser beam (1) with respect to the surface of the base material (3) to be welded is 80 to 100 °,
Narrow Gap multi-pass laser welding method of claim 1, wherein the insertion angle θ2 of the molten pool of the welding wire (2) (5), characterized in 90 to 120 ° der Rukoto.
JP2010157933A 2010-07-12 2010-07-12 Narrow groove multi-layer laser welding method Expired - Fee Related JP5600837B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010157933A JP5600837B2 (en) 2010-07-12 2010-07-12 Narrow groove multi-layer laser welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010157933A JP5600837B2 (en) 2010-07-12 2010-07-12 Narrow groove multi-layer laser welding method

Publications (3)

Publication Number Publication Date
JP2012020291A JP2012020291A (en) 2012-02-02
JP2012020291A5 true JP2012020291A5 (en) 2012-03-15
JP5600837B2 JP5600837B2 (en) 2014-10-08

Family

ID=45775007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010157933A Expired - Fee Related JP5600837B2 (en) 2010-07-12 2010-07-12 Narrow groove multi-layer laser welding method

Country Status (1)

Country Link
JP (1) JP5600837B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6213332B2 (en) * 2014-03-25 2017-10-18 新日鐵住金株式会社 Hot wire laser combined welding method for thick steel plate
JP6470225B2 (en) * 2016-04-15 2019-02-13 株式会社ビアーチェ Welding method for jewelry or jewelry
US10799986B2 (en) * 2016-06-27 2020-10-13 Illinois Tool Works Inc. Wide path welding, cladding, additive manufacturing
DE102018210773A1 (en) * 2018-06-29 2020-01-02 Robert Bosch Gmbh Manufacturing process of a housing for electronics
CN111299837A (en) * 2019-11-27 2020-06-19 北京工业大学 Efficient laser additive manufacturing method based on wire thermal conduction welding
CN111299828B (en) * 2019-11-27 2022-02-08 北京工业大学 Thick plate ultra-narrow gap laser wire-filling thermal conduction welding method
CN112935549A (en) * 2021-03-23 2021-06-11 徐州徐工挖掘机械有限公司 Narrow-gap laser wire filling welding equipment and method thereof
CN113695744A (en) * 2021-09-02 2021-11-26 天津科技大学 Energy-constrained narrow-gap laser filler wire welding method
CN114178698B (en) * 2021-12-13 2024-04-09 湖南华菱涟源钢铁有限公司 9Ni steel narrow-gap laser filler wire welding method
CN114309932B (en) * 2021-12-24 2023-11-10 中国机械总院集团哈尔滨焊接研究所有限公司 Efficient welding method suitable for ultra-narrow gap welding of thick-wall titanium alloy component
CN115029692B (en) * 2022-03-09 2023-07-18 南京辉锐光电科技有限公司 Copper base material and preparation method of silver-coated layer on surface of copper base material
CN114799526B (en) * 2022-05-13 2023-09-05 上海交通大学 Narrow-gap laser swing-filler wire composite welding method for ultra-high-strength steel thick plate

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61232081A (en) * 1985-04-09 1986-10-16 Nippon Kokan Kk <Nkk> Laser welding method
JPS61235088A (en) * 1985-04-09 1986-10-20 Mitsubishi Electric Corp Laser beam welding method
JP2711655B2 (en) * 1995-12-30 1998-02-10 川崎重工業株式会社 Irradiator for laser welding

Similar Documents

Publication Publication Date Title
JP2012020291A5 (en)
JP5600837B2 (en) Narrow groove multi-layer laser welding method
JP5531623B2 (en) Laser lap welding method of galvanized steel sheet
JP5595913B2 (en) Laser lap welding method of galvanized steel sheet
CN102357734B (en) Method for connecting 2XXX and 7XXX heterogeneous aluminum alloy by laser filler wire
US8546720B2 (en) Hybrid welding apparatus and system and method of welding
JP5551792B2 (en) Welding method of two metal constituent members and joint structure having two metal constituent members
JP5495118B2 (en) Laser lap welding method of galvanized steel sheet
JP5658579B2 (en) Laser welded section steel
CN105643103A (en) Galvanized steel sheet laser lapping welding method
ES2511024T3 (en) Welding procedure of elements for the electrical industry, in particular sealed boiler wall panels using MIG / MAG and laser welding
JP2008272826A (en) Stiffened plate and process for producing the same
CN111299828B (en) Thick plate ultra-narrow gap laser wire-filling thermal conduction welding method
RU2547987C1 (en) Laser welding method
JP5954009B2 (en) Manufacturing method of welded steel pipe
JP5600838B2 (en) Laser welding method
JP5812527B2 (en) Hot wire laser welding method and apparatus
JP2012206144A (en) Laser narrow groove multi-pass welding method and apparatus
JP6607050B2 (en) Laser-arc hybrid welding method
WO2014016935A1 (en) Laser-welded shaped steel
JP2012223799A (en) Method of manufacturing welded joint
JP6213332B2 (en) Hot wire laser combined welding method for thick steel plate
KR101428973B1 (en) Method of laser welding
JP2010023082A (en) Lap laser welding method of plated steel sheet and lap laser welding structure of plated steel sheet
JP5987305B2 (en) Laser welding method