JP2012013541A - Atomizer - Google Patents

Atomizer Download PDF

Info

Publication number
JP2012013541A
JP2012013541A JP2010150333A JP2010150333A JP2012013541A JP 2012013541 A JP2012013541 A JP 2012013541A JP 2010150333 A JP2010150333 A JP 2010150333A JP 2010150333 A JP2010150333 A JP 2010150333A JP 2012013541 A JP2012013541 A JP 2012013541A
Authority
JP
Japan
Prior art keywords
electrode
sample
rod
atomizer
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010150333A
Other languages
Japanese (ja)
Other versions
JP5527693B2 (en
Inventor
Masaru Hori
勝 堀
Hiroyuki Kano
浩之 加納
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya University NUC
NU Eco Engineering Co Ltd
Original Assignee
Nagoya University NUC
NU Eco Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya University NUC, NU Eco Engineering Co Ltd filed Critical Nagoya University NUC
Priority to JP2010150333A priority Critical patent/JP5527693B2/en
Priority to CN201180032590.0A priority patent/CN103026206B/en
Priority to PCT/JP2011/003719 priority patent/WO2012001968A1/en
Publication of JP2012013541A publication Critical patent/JP2012013541A/en
Application granted granted Critical
Publication of JP5527693B2 publication Critical patent/JP5527693B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Plasma Technology (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve high efficiency of an atomizer.SOLUTION: An atomizer has a rod-shaped electrode 10 and a sample electrode 11 arranged a fixed distance apart from the tip of the rod-shaped electrode 10. The tip of the rod-shaped electrode 10 is housed in a ceramic tube 14 in such a manner that the axial direction is made coincident therewith. A gap is arranged between the inside wall of the ceramic tube 14 and the rod-shaped electrode 10 and an electric discharge is passed between the gap in the tip side axial direction of the rod-shaped electrode 10. The sample electrode 11 is covered with a ceramic tube 15 and has a mortar-shaped recess 16 because the outside diameter of the tip of the ceramic tube 15 is expanded. The sample electrode 11 is exposed to the bottom surface of the recess 16. A sample is held in the recess. The rod-shaped electrode 10 and the sample electrode 11 are connected to a high pressure pulse power source 18. As shown in FIG.2, the high pressure pulse power source 18 outputs a rectangular pulse voltage that alternates between positive and negative.

Description

本発明は、大気圧プラズマを用いて試料中の目的とする元素の原子化を行うアトマイザーに関するものであり、大気圧プラズマを発生させるための電源に特徴を有するものである。   The present invention relates to an atomizer that atomizes a target element in a sample using atmospheric pressure plasma, and is characterized by a power source for generating atmospheric pressure plasma.

原子吸光分析や原子発光分析では、試料を原子化する装置(アトマイザー)が必要となるが、従来よりアトマイザーとして原子吸光分析では黒鉛炉、原子発光分析ではICP装置などが広く用いられている。また、特許文献1のように、大気圧プラズマを用いたアトマイザーも知られている。   In atomic absorption analysis and atomic emission analysis, an apparatus for atomizing a sample (atomizer) is required. Conventionally, as an atomizer, a graphite furnace has been widely used for atomic absorption analysis, and an ICP apparatus has been widely used for atomic emission analysis. Further, as in Patent Document 1, an atomizer using atmospheric pressure plasma is also known.

特許文献1には、以下のような発光分析方法が記載されている。まず、アトマイザーを用いて目的元素を含む試料に大気圧プラズマを照射して試料を原子化し、その原子化された試料中の金属元素蒸気を大気圧プラズマ中に混入させ、プラズマ中の高エネルギー電子によって励起発光させる。この発光を分光器を通して測定し、試料中の目的元素の密度などを計測する。   Patent Document 1 describes the following luminescence analysis method. First, the sample containing the target element is irradiated with atmospheric pressure plasma using an atomizer to atomize the sample, and the metal element vapor in the atomized sample is mixed into the atmospheric pressure plasma, and high-energy electrons in the plasma are mixed. Excited to emit light. This luminescence is measured through a spectroscope to measure the density of the target element in the sample.

上記アトマイザーの大気圧プラズマの発生には、商用のAC電源の電圧を昇圧して電極に印加することが記載されている。   In order to generate atmospheric pressure plasma of the atomizer, it is described that the voltage of a commercial AC power source is boosted and applied to an electrode.

特開2008−241293JP2008-241293

しかし、商用AC電源を用いた場合、電圧がなだらかに上昇するため放電開始電圧になるまでに時間遅れが生じ、原子化の効率が悪かった。そのため、目的元素の種類によっては発光強度が低下し、測定が困難であった。   However, when a commercial AC power supply is used, the voltage rises gently, so that a time delay occurs until the discharge start voltage is reached, and the atomization efficiency is poor. For this reason, depending on the type of the target element, the emission intensity is reduced, making measurement difficult.

そこで本発明の目的は、大気圧プラズマを用いたアトマイザーにおいて、原子化の高効率化を図ることである。   Accordingly, an object of the present invention is to increase the efficiency of atomization in an atomizer using atmospheric pressure plasma.

第1の発明は、電源を用いて電圧を印加して大気圧プラズマを発生させ、試料に大気圧プラズマを照射して試料を原子化するアトマイザーであって、電源は、正負が交互に反転する矩形パルス電圧を出力する、ことを特徴とするアトマイザーである。   A first invention is an atomizer that generates atmospheric pressure plasma by applying a voltage using a power source, and irradiates the sample with atmospheric pressure plasma to atomize the sample, and the power source alternately inverts positive and negative. An atomizer that outputs a rectangular pulse voltage.

第2の発明は、第1の発明において、棒状の第1電極と、管状であって、その管内に、第1電極の軸回りにおいて管内壁から第1電極が離間した状態となるように第1電極の先端部を保持し、管内壁と第1電極との隙間に、第1電極の先端部側の軸方向に放電ガスが流される絶縁管と、第1電極の先端部から一定距離隔てて配置された第2電極と、試料を保持する凹部を有し、その凹部底面に第2電極が露出した絶縁材からなる試料保持部と、を有し、電源は、第1電極および前記第2電極間に電圧を印加する、ことを特徴とするアトマイザーである。   According to a second invention, in the first invention, a rod-shaped first electrode and a tubular shape are provided so that the first electrode is separated from the inner wall of the tube around the axis of the first electrode. An insulating tube that holds the tip of one electrode, and in which a discharge gas flows in the axial direction on the tip of the first electrode in a gap between the inner wall of the tube and the first electrode, is spaced a certain distance from the tip of the first electrode. And a sample holding portion made of an insulating material having a concave portion for holding the sample and exposing the second electrode on the bottom surface of the concave portion, and the power source includes the first electrode and the first electrode An atomizer characterized by applying a voltage between two electrodes.

放電ガスには、Ar、He、窒素、酸素、空気などを用いることができる。   Ar, He, nitrogen, oxygen, air, or the like can be used as the discharge gas.

第1電極および第2電極の材料は、SUS、銅、タングステンなどを用いることができる。ただし、第2電極には、分析の目標となる元素を含む材料を用いないようにするか、もしくは分析の目標となる元素を含まない材料によって被膜、めっき等を施す必要がある。第2電極が原子化されて分析に影響を与えてしまうのを避けるためである。   As materials for the first electrode and the second electrode, SUS, copper, tungsten, or the like can be used. However, it is necessary not to use a material containing an element to be analyzed, or to coat the second electrode with a material that does not contain an element to be analyzed. This is to prevent the second electrode from being atomized and affecting the analysis.

本発明によれば、矩形波の立ち上がり、立ち下がりの鋭さから、瞬時に放電開始電圧まで印加することができ、発光強度の高い状態が一定期間保たれるため、試料の原子化の高効率化を図ることができる。その結果、発光強度が向上し、分析精度の向上を図ることができる。また、電圧をパルス化することでプラズマ温度の上昇を抑制し、原子化した試料の分散が抑えられる。その結果、原子化した試料の密度が向上し、大気圧プラズマに含まれる原子化された試料の密度も向上し、発光強度が向上する。また、正の矩形パルスと負の矩形パルスを交互に印加するため、大気圧プラズマを安定に生成することができる。   According to the present invention, since the rising and falling edges of the rectangular wave can be instantaneously applied up to the discharge start voltage, and the state of high emission intensity is maintained for a certain period, the efficiency of atomization of the sample is increased. Can be achieved. As a result, the emission intensity is improved and the analysis accuracy can be improved. Further, the voltage is pulsed to suppress an increase in the plasma temperature, and the dispersion of the atomized sample can be suppressed. As a result, the density of the atomized sample is improved, the density of the atomized sample contained in the atmospheric pressure plasma is also improved, and the emission intensity is improved. Further, since the positive rectangular pulse and the negative rectangular pulse are alternately applied, the atmospheric pressure plasma can be generated stably.

実施例1のアトマイザーの構成を示した図。FIG. 3 is a diagram illustrating a configuration of an atomizer of Embodiment 1. パルス高圧電源の電圧波形とプラズマの発光波形とを示したグラフ。The graph which showed the voltage waveform of the pulse high voltage power supply, and the light emission waveform of plasma. 商用AC電源の電圧波形とプラズマの発光波形とを示したグラフ。The graph which showed the voltage waveform of the commercial AC power supply, and the light emission waveform of plasma. 発光強度の時間依存性を示したグラフ。The graph which showed the time dependence of emitted light intensity. パルス幅と大気圧プラズマの温度との関係を示したグラフ。The graph which showed the relationship between pulse width and the temperature of atmospheric pressure plasma. パルス幅と大気圧プラズマの電子密度との関係を示したグラフ。The graph which showed the relationship between pulse width and the electron density of atmospheric pressure plasma. パルス幅と発光強度との関係を示したグラフ。The graph which showed the relationship between pulse width and emitted light intensity.

以下、本発明の具体的な実施例について、図を参照に説明するが、本発明は実施例に限定されるものではない。   Hereinafter, specific examples of the present invention will be described with reference to the drawings. However, the present invention is not limited to the examples.

図1は、実施例1のアトマイザーの構成を示した図である。実施例1のアトマイザーは、棒状電極10(本発明の第1電極)と、試料電極11(本発明の第2電極)とを有している。棒状電極10は、直径1.2mmのCu製の棒状であり、試料電極11は、外径2m、内径1mmのステンレス製の管状である。   FIG. 1 is a diagram illustrating a configuration of an atomizer according to the first embodiment. The atomizer of Example 1 has a rod-shaped electrode 10 (first electrode of the present invention) and a sample electrode 11 (second electrode of the present invention). The rod-like electrode 10 is a Cu rod having a diameter of 1.2 mm, and the sample electrode 11 is a stainless steel tube having an outer diameter of 2 m and an inner diameter of 1 mm.

棒状電極10には、Cu以外に、ステンレス、モリブデン、タングステンなどを用いることができる。また、試料電極11には、ステンレス以外に、Cu、モリブデン、タングステンなどを用いることができる。ただし、試料電極11自体が原子化してしまい、分析に影響を与えてしまうことを考慮して、試料電極11には目的元素を含まない材料を用いるか、目的元素を含まない材料で被膜、めっき等を施す必要がある。   For the rod-shaped electrode 10, stainless steel, molybdenum, tungsten, or the like can be used in addition to Cu. In addition to stainless steel, Cu, molybdenum, tungsten, or the like can be used for the sample electrode 11. However, considering that the sample electrode 11 itself is atomized and affects analysis, the sample electrode 11 is made of a material that does not contain the target element, or is coated or plated with a material that does not contain the target element. Etc. need to be applied.

棒状電極10の先端部は、セラミックス管12の管内に軸方向を一致させて納められている。セラミックス管12は、試料電極11の先端側が一段階狭くなっていて、棒状電極10は、この狭くなった管内まで伸びている。棒状電極10とセラミックス管12の内壁との間には隙間が設けられている。この棒状電極10の軸回りの空間がArガスの流路となる。   The tip of the rod-shaped electrode 10 is housed in the ceramic tube 12 so that the axial directions thereof coincide with each other. In the ceramic tube 12, the tip end side of the sample electrode 11 is narrowed by one step, and the rod electrode 10 extends into the narrowed tube. A gap is provided between the rod-shaped electrode 10 and the inner wall of the ceramic tube 12. A space around the axis of the rod-shaped electrode 10 becomes a flow path of Ar gas.

セラミックス管12は、絶縁管13と連結している。絶縁管13は軸方向に垂直な方向に分岐13aを有しており、セラミックス管12の管内から絶縁管13の管内に伸びる棒状電極10は、曲げられて絶縁管13の分岐13aの管内に挿入され、外部に露出している。絶縁管13には、フッ素樹脂などの絶縁材を用いることができる。   The ceramic tube 12 is connected to the insulating tube 13. The insulating tube 13 has a branch 13 a in a direction perpendicular to the axial direction, and the rod-like electrode 10 extending from the ceramic tube 12 into the insulating tube 13 is bent and inserted into the branch 13 a of the insulating tube 13. Is exposed to the outside. An insulating material such as a fluororesin can be used for the insulating tube 13.

さらに、セラミックス管12の試料電極11先端部側には、外径がセラミックス管12の内径にほぼ一致した短いセラミックス管14がはめ込まれている。   Further, a short ceramic tube 14 whose outer diameter substantially matches the inner diameter of the ceramic tube 12 is fitted on the tip end side of the sample electrode 11 of the ceramic tube 12.

絶縁管13は放電用ガスであるArが封入されたガスボンベ(図示しない)に、減圧・流量制御器などを介して接続されている。ガスボンベから供給されたArガスは、絶縁管13の管内からセラミックス管12の管内へと軸方向に供給され、棒状電極10とセラミックス管12の内壁との間を棒状電極10先端部側の軸方向に流れてセラミックス管14の先端からArガスが排出される。   The insulating tube 13 is connected to a gas cylinder (not shown) filled with Ar as a discharge gas via a pressure reduction / flow rate controller or the like. Ar gas supplied from the gas cylinder is supplied in the axial direction from the inside of the insulating tube 13 to the inside of the ceramic tube 12, and between the rod-shaped electrode 10 and the inner wall of the ceramic tube 12 in the axial direction on the tip side of the rod-shaped electrode 10. The Ar gas is discharged from the tip of the ceramic tube 14.

放電ガスには、Ar以外にもHe、Ne、N、空気、などを用いることができる。   As the discharge gas, He, Ne, N, air, etc. can be used in addition to Ar.

試料電極11は、内径2mm、外径3mmのセラミックス管15によって覆われている。セラミックス管15の先端は外径が拡張されており、すり鉢状の凹部16を有している。凹部16底面には、試料電極11が露出している。この凹部16によって、原子化する試料を保持する。また、試料電極11を管状とすることで、その管内を通してセラミックス管15先端の凹部16に液体の試料を供給することが可能となっている。また、セラミックス管15はフッ素樹脂材17によってさらに覆われている。なお、凹部に一定量の試料を保持する場合には、試料電極11を管状とする必要はなく、棒状などとしてもよい。   The sample electrode 11 is covered with a ceramic tube 15 having an inner diameter of 2 mm and an outer diameter of 3 mm. The tip of the ceramic tube 15 has an expanded outer diameter and has a mortar-shaped recess 16. The sample electrode 11 is exposed on the bottom surface of the recess 16. A sample to be atomized is held by the recess 16. Further, since the sample electrode 11 is tubular, a liquid sample can be supplied to the recess 16 at the tip of the ceramic tube 15 through the tube. The ceramic tube 15 is further covered with a fluororesin material 17. In addition, when holding a fixed amount of sample in a recessed part, the sample electrode 11 does not need to be tubular, and it is good also as a rod shape.

棒状電極10、試料電極11は高圧パルス電源18に接続されており、正負が交互に反転する矩形パルス電圧が印加される。Arガスを棒状電極10とセラミックス管12の内壁との間に棒状電極10先端部側の軸方向に流しながら、棒状電極10、試料電極11に電圧を印加することで、棒状電極10の先端部に大気圧プラズマが生じ、その大気圧プラズマが試料電極11に伸びていく。そして、大気圧プラズマが凹部16に保持された試料に照射され、試料が原子化される。原子化された試料の一部は、大気圧プラズマに混入して発光し、この発光を受光装置によって受光して発光スペクトルを解析することで、試料中の目的元素の定量分析などを行うことができる。また、目的元素の共鳴線スペクトルを発光する光源を用い、その光源の光を原子化された試料に照射して吸光分析を行うこともできる。   The rod-shaped electrode 10 and the sample electrode 11 are connected to a high-voltage pulse power supply 18 and a rectangular pulse voltage in which positive and negative are alternately reversed is applied. By applying a voltage to the rod-like electrode 10 and the sample electrode 11 while flowing Ar gas between the rod-like electrode 10 and the inner wall of the ceramic tube 12 in the axial direction, the tip of the rod-like electrode 10 is applied. Atmospheric pressure plasma is generated, and the atmospheric pressure plasma extends to the sample electrode 11. Then, the atmospheric pressure plasma is irradiated onto the sample held in the recess 16 and the sample is atomized. Part of the atomized sample emits light when mixed in atmospheric pressure plasma, and this light emission is received by a light receiving device, and the emission spectrum is analyzed to perform quantitative analysis of the target element in the sample. it can. Further, it is possible to perform an absorption analysis by using a light source that emits a resonance line spectrum of the target element and irradiating the atomized sample with light from the light source.

図2は、高圧パルス電源18の出力電圧波形と、実施例1のアトマイザーによる大気圧プラズマの発光波形との対応を示したグラフである。また、図3は、従来の商用AC電源の電圧波形と、比較例のアトマイザーによる大気圧プラズマの発光波形とを示したグラフである。ここで比較例のアトマイザーとは、実施例1のアトマイザーにおいて、パルス高圧電源に替えて商用AC電源の電圧を昇圧して用いたアトマイザーである。   FIG. 2 is a graph showing the correspondence between the output voltage waveform of the high-voltage pulse power supply 18 and the emission waveform of atmospheric pressure plasma by the atomizer of the first embodiment. FIG. 3 is a graph showing a voltage waveform of a conventional commercial AC power supply and an emission waveform of atmospheric pressure plasma by an atomizer of a comparative example. Here, the atomizer of the comparative example is an atomizer in which the voltage of the commercial AC power supply is boosted and used instead of the pulse high voltage power supply in the atomizer of the first embodiment.

図3のように、商用AC電源を用いた場合は、電圧がなだらかに上昇するために放電開始電圧になるまでに時間遅れが生じ、また大気圧プラズマの発光強度も徐々に増加、減少する状態となっている。すなわち、商用AC電源を用いた場合には試料の原子化の効率が低下してしまう。   As shown in FIG. 3, when a commercial AC power supply is used, the voltage gradually increases, so that there is a time delay until the discharge start voltage is reached, and the emission intensity of atmospheric pressure plasma gradually increases and decreases. It has become. That is, when a commercial AC power source is used, the efficiency of atomization of the sample is lowered.

一方、図2のように正負が交互に反転する矩形パルス電圧を用いる場合には、出力電圧が瞬時に放電開始電圧まで上昇するため、大気圧プラズマの発光強度も瞬時に上昇し、発光強度はパルス高圧電源のパルス幅とほぼ同様の期間、発光強度の高い状態で一定に維持される。そのため、試料の原子化を高効率に行うことができる。また、電圧がパルスであるため、プラズマ温度の上昇が抑制され、原子化された試料の発散が抑制される。そのため、原子化された試料の密度が向上し、大気圧プラズマに含まれる原子化された試料の密度も向上する。その結果、試料中の目的元素の発光強度を向上させることができる。また、正負が交互に反転するパルスであるため、大気圧プラズマを安定して生成することができる。   On the other hand, when a rectangular pulse voltage in which positive and negative are alternately reversed as shown in FIG. 2 is used, since the output voltage instantaneously rises to the discharge start voltage, the emission intensity of atmospheric pressure plasma also rises instantaneously, and the emission intensity is It is kept constant at a high emission intensity for a period substantially the same as the pulse width of the pulse high voltage power supply. Therefore, atomization of the sample can be performed with high efficiency. Further, since the voltage is a pulse, the rise in plasma temperature is suppressed, and the divergence of the atomized sample is suppressed. Therefore, the density of the atomized sample is improved, and the density of the atomized sample included in the atmospheric pressure plasma is also improved. As a result, the emission intensity of the target element in the sample can be improved. Further, since the positive and negative pulses are alternately reversed, atmospheric pressure plasma can be stably generated.

図4は、実施例1のアトマイザーと受光装置とを用いて発光分析装置を構成し、1ppmのPbを含む水を試料として、発光分析装置によって試料中のPbの共鳴線スペクトル(波長283.3nm)の発光強度を測定したグラフである。高圧パルス電源18は、100Hzでデューティ比が20%の電源と、150Hzでデューティ比が30%の電源を用いた。ともにパルス幅は2msであり、パルス間隔が異なっている。また、実施例1のアトマイザーに替えて、商用AC電源を用いる比較例のアトマイザーを用いた場合のPbの共鳴線スペクトルの発光強度も測定した。   FIG. 4 shows an emission analyzer using the atomizer and the light receiving device of Example 1, and using a water containing 1 ppm of Pb as a sample, the resonance line spectrum of Pb in the sample (wavelength: 283.3 nm) by the emission analyzer. It is the graph which measured the emitted light intensity of. As the high-voltage pulse power supply 18, a power supply having a duty ratio of 20% at 100 Hz and a power supply having a duty ratio of 30% at 150 Hz were used. In both cases, the pulse width is 2 ms, and the pulse interval is different. Moreover, it replaced with the atomizer of Example 1, and also measured the emitted light intensity of the resonance line spectrum of Pb at the time of using the atomizer of the comparative example using a commercial AC power supply.

図4のように、商用AC電源を用いた場合は、発光強度がピークにおいても非常に弱い。一方、高圧パルス電源18を用いた場合は、ピークにおける発光強度が商用AC電源を用いた場合に比べて強かった。特に150Hzでデューティ比30%の場合の発光強度のピークは、商用AC電源の場合よりも約5倍強く、100Hzでデューティ比が20%の場合よりも約2.5倍強かった。   As shown in FIG. 4, when a commercial AC power supply is used, the emission intensity is very weak even at the peak. On the other hand, when the high-voltage pulse power supply 18 was used, the emission intensity at the peak was stronger than when the commercial AC power supply was used. In particular, the peak of the emission intensity at 150 Hz with a duty ratio of 30% was about 5 times stronger than that with a commercial AC power supply, and about 2.5 times stronger than at 100 Hz with a duty ratio of 20%.

図5は、高圧パルス電源18の出力電圧のパルス幅と大気圧プラズマの温度の関係を示したグラフである。試料には1ppmのCuを含む水を用いた。図5のように、パルス幅が2msあたりまではプラズマ温度はゆるやかに上昇するが、2msを越えると、プラズマ温度はほぼ一定となっていることがわかる。   FIG. 5 is a graph showing the relationship between the pulse width of the output voltage of the high-voltage pulse power supply 18 and the temperature of the atmospheric pressure plasma. As the sample, water containing 1 ppm of Cu was used. As shown in FIG. 5, the plasma temperature rises slowly until the pulse width is around 2 ms, but when it exceeds 2 ms, the plasma temperature is almost constant.

図6は、高圧パルス電源18の出力電圧のパルス幅と大気圧プラズマの電子密度との関係を示したグラフである。図6のように、電子密度はパルス幅にあまり依存せず、ほぼ一定の値であることがわかる。   FIG. 6 is a graph showing the relationship between the pulse width of the output voltage of the high-voltage pulse power supply 18 and the electron density of the atmospheric pressure plasma. As can be seen from FIG. 6, the electron density does not depend much on the pulse width and is a substantially constant value.

図7は、高圧パルス電源18の出力電圧のパルス幅と発光強度との関係を示したグラフである。1ppmのCuを含む水を試料とし、試料中のCuの共鳴線スペクトル(波長324nm)の発光強度である。図7のように、発光強度はパルス幅に依存しており、パルス幅が1msぐらいの場合に発光強度のピークが存在していることがわかる。   FIG. 7 is a graph showing the relationship between the pulse width of the output voltage of the high-voltage pulse power supply 18 and the light emission intensity. This is the emission intensity of the resonance line spectrum (wavelength 324 nm) of Cu in a sample using water containing 1 ppm of Cu as a sample. As shown in FIG. 7, the emission intensity depends on the pulse width, and it can be seen that a peak of the emission intensity exists when the pulse width is about 1 ms.

図4および図7の結果から、発光強度は高圧パルス電源18の出力電圧のパルス幅、パルス間隔に依存しており、パルス幅、パルス間隔の制御によって発光強度(試料の原子化効率)を制御可能であることがわかった。 From the results of FIGS. 4 and 7, the emission intensity depends on the pulse width and pulse interval of the output voltage of the high-voltage pulse power supply 18, and the emission intensity (atomization efficiency of the sample) is controlled by controlling the pulse width and pulse interval. I found it possible.

本発明のアトマイザーは、吸光分析や発光分析などの分析装置に用いることができる。   The atomizer of the present invention can be used in analyzers such as absorption spectrometry and luminescence analysis.

10:棒状電極
11:試料電極
12、14、15:セラミックス管
13:絶縁管
16:凹部
18:電源
10: Rod electrode 11: Sample electrode 12, 14, 15: Ceramic tube 13: Insulating tube 16: Recess 18: Power supply

Claims (2)

電源を用いて電圧を印加して大気圧プラズマを発生させ、試料に前記大気圧プラズマを照射して前記試料を原子化するアトマイザーであって、
前記電源は、正負が交互に反転する矩形パルス電圧を出力する、
ことを特徴とするアトマイザー。
An atomizer that atomizes the sample by applying a voltage using a power source to generate atmospheric pressure plasma, irradiating the sample with the atmospheric pressure plasma,
The power source outputs a rectangular pulse voltage in which positive and negative are alternately reversed.
An atomizer characterized by that.
棒状の第1電極と、
管状であって、その管内に、前記第1電極の軸回りにおいて管内壁から前記第1電極が離間した状態となるように前記第1電極の先端部を保持し、管内壁と前記第1電極との隙間に、前記第1電極の先端部側の軸方向に放電ガスが流される絶縁管と、
前記第1電極の先端部から一定距離隔てて配置された第2電極と、
試料を保持する凹部を有し、その凹部底面に前記第2電極が露出した絶縁材からなる試料保持部と、
を有し、
前記電源は、前記第1電極および前記第2電極間に電圧を印加する、
ことを特徴とする請求項1に記載のアトマイザー。
A rod-shaped first electrode;
A tip of the first electrode is held in the tube so that the first electrode is separated from the tube inner wall around the axis of the first electrode, and the tube inner wall and the first electrode are held in the tube. An insulating tube through which discharge gas flows in the axial direction on the tip end side of the first electrode,
A second electrode disposed at a certain distance from the tip of the first electrode;
A sample holding portion made of an insulating material having a concave portion for holding the sample, and the second electrode exposed on the bottom surface of the concave portion;
Have
The power source applies a voltage between the first electrode and the second electrode;
The atomizer according to claim 1.
JP2010150333A 2010-06-30 2010-06-30 Atomizer Active JP5527693B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010150333A JP5527693B2 (en) 2010-06-30 2010-06-30 Atomizer
CN201180032590.0A CN103026206B (en) 2010-06-30 2011-06-29 Atomizer and emission analyzer
PCT/JP2011/003719 WO2012001968A1 (en) 2010-06-30 2011-06-29 Atomizer and emission analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010150333A JP5527693B2 (en) 2010-06-30 2010-06-30 Atomizer

Publications (2)

Publication Number Publication Date
JP2012013541A true JP2012013541A (en) 2012-01-19
JP5527693B2 JP5527693B2 (en) 2014-06-18

Family

ID=45600153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010150333A Active JP5527693B2 (en) 2010-06-30 2010-06-30 Atomizer

Country Status (1)

Country Link
JP (1) JP5527693B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018168142A1 (en) * 2017-03-14 2018-09-20 パナソニックIpマネジメント株式会社 Suctioning device and electric vacuum using same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08327552A (en) * 1995-06-02 1996-12-13 Hitachi Ltd Atomic absorption analyzer
JP2006302625A (en) * 2005-04-19 2006-11-02 Matsushita Electric Works Ltd Plasma treatment device and method
JP2008241293A (en) * 2007-03-26 2008-10-09 Univ Nagoya Atomic analyzing apparatus
JP2009289432A (en) * 2008-05-27 2009-12-10 Tokyo Institute Of Technology Plasma generating device and plasma generating method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08327552A (en) * 1995-06-02 1996-12-13 Hitachi Ltd Atomic absorption analyzer
JP2006302625A (en) * 2005-04-19 2006-11-02 Matsushita Electric Works Ltd Plasma treatment device and method
JP2008241293A (en) * 2007-03-26 2008-10-09 Univ Nagoya Atomic analyzing apparatus
JP2009289432A (en) * 2008-05-27 2009-12-10 Tokyo Institute Of Technology Plasma generating device and plasma generating method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018168142A1 (en) * 2017-03-14 2018-09-20 パナソニックIpマネジメント株式会社 Suctioning device and electric vacuum using same

Also Published As

Publication number Publication date
JP5527693B2 (en) 2014-06-18

Similar Documents

Publication Publication Date Title
Nikiforov et al. The influence of water vapor content on electrical and spectral properties of an atmospheric pressure plasma jet
JP5000350B2 (en) Atomic analyzer
Sahu et al. Development and characterization of a multi-electrode cold atmospheric pressure DBD plasma jet aiming plasma application
US11143596B2 (en) Spark emission spectrometer and method for operating same
JP5527693B2 (en) Atomizer
Gazeli et al. Propagation dynamics of a helium micro-tube plasma: Experiments and numerical modeling
RU2252412C2 (en) Method for emission spectral analysis if substance composition and device for realization of said method
WO2012001968A1 (en) Atomizer and emission analyzer
JP5467360B2 (en) Atomizer and emission analyzer
JP2016004637A (en) Plasma generating device
RU2003102349A (en) METHOD FOR EMISSION SPECTRAL ANALYSIS OF THE COMPOSITION OF THE SUBSTANCE AND DEVICE FOR ITS IMPLEMENTATION
US3192427A (en) Plasma flame generator
JP5467361B2 (en) Atomic absorption spectrometer and atomic absorption spectrometry
Pinchuk et al. Generation of guided streamers in a helium flow with gas impurities
JP2009054359A (en) Plasma generating device and plasma generation method
JP2008103141A (en) Plasma generating device and plasma generating method
JP7361324B1 (en) Spraying device and method
RU2362157C1 (en) Method of obtaining local electric discharge in liquid and device to this end (versions)
JP5467359B2 (en) Atomic absorption spectrometer and atomic absorption spectrometry
RU2764619C1 (en) Method for exposing a biological object to a cold plasma jet and unit for implementation thereof
EP3934389A1 (en) Plasma source apparatus
JP7028486B2 (en) Plasma torch, plasma generator and analyzer
Ishijima MOHAMMAD RASEL PERVEZ
Sakane et al. Improvement in signal response of in-depth elemental profiles in radio-frequency glow discharge optical emission spectrometry by using a bias-current introduction method
JP2007279016A (en) Method for exciting and/or ionizing material, and analyzing method and device using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140404

R150 Certificate of patent or registration of utility model

Ref document number: 5527693

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250