JP2012013288A - Water heater - Google Patents

Water heater Download PDF

Info

Publication number
JP2012013288A
JP2012013288A JP2010149213A JP2010149213A JP2012013288A JP 2012013288 A JP2012013288 A JP 2012013288A JP 2010149213 A JP2010149213 A JP 2010149213A JP 2010149213 A JP2010149213 A JP 2010149213A JP 2012013288 A JP2012013288 A JP 2012013288A
Authority
JP
Japan
Prior art keywords
temperature
flow rate
heat
primary
heat exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010149213A
Other languages
Japanese (ja)
Inventor
Koji Shimazaki
幸治 島崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2010149213A priority Critical patent/JP2012013288A/en
Publication of JP2012013288A publication Critical patent/JP2012013288A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a water heater capable of making a secondary-side outlet temperature accurately coincide with a target temperature.SOLUTION: The electric water heater 1 makes high-temperature water exchange heat with low-temperature water via a heat exchanger 13. A control device 24 makes the low-temperature water partially circulate through a bypass pipe 28 bypassing the heat exchanger 13, when a primary-side necessary flow rate of the high-temperature water required to make the secondary-side outlet temperature coincide with the target temperature determined depending on a set temperature falls within a first region in which the flow rate of the high-temperature water is greatly changed versus a change in a rotational speed of a circulation pump 11. Since the rate of heat transfer from the high-temperature water is reduced due to a reduction in the rate of circulation of the low-temperature water in the heat exchanger 13, the control device 24 makes the flow rate of the high-temperature water fall within a second region except the first region by being increased to compensate for a reduction in the rate of heat transfer. Since the second region is a region in which the secondary-side outlet temperature can be accurately regulated by controlling the rotational speed of the circulation pump 11, the control device 24 enables the secondary-side outlet temperature to accurately coincide with the target temperature.

Description

本発明は、ポンプで循環する熱媒体が被熱交換媒体と熱交換する給湯機に関する。   The present invention relates to a water heater in which a heat medium circulated by a pump exchanges heat with a heat exchange medium.

貯湯タンクに蓄えられる高温水を熱媒体として、被熱交換媒体となる低温水を加熱し、低温水が加熱されて生成される湯水を利用者に給湯する給湯機能付の給湯機(電気給湯機)は広く知られている。このような電気給湯機は、低温水と高温水が熱交換して低温水を加熱する給湯熱交換器を有し、高温水は、ポンプによって給湯熱交換器の高温管を流通するように構成されている。   Hot water heater (electric water heater) with a hot water supply function that uses hot water stored in a hot water storage tank as a heat medium, heats low temperature water as a heat exchange medium, and supplies hot water generated by heating the low temperature water to the user ) Is widely known. Such an electric water heater has a hot water heat exchanger that heats the low temperature water by exchanging heat between the low temperature water and the high temperature water, and the high temperature water is configured to circulate through the high temperature pipe of the hot water heat exchanger by a pump. Has been.

このように構成される電気給湯機に関し、例えば特許文献1には、利用者に給湯される湯水の温度(給湯熱交換器の二次側出口温度)が所定の給湯温度となるように、循環ポンプ(給湯循環ポンプ)の回転速度を制御して給湯熱交換器の一次側循環量(高温水の流量)を制御する電気給湯機が開示されている。   With regard to the electric water heater configured as described above, for example, Patent Document 1 circulates so that the temperature of hot water supplied to the user (secondary outlet temperature of the hot water heat exchanger) becomes a predetermined hot water temperature. An electric water heater is disclosed that controls the primary circulation amount (flow rate of high-temperature water) of a hot water supply heat exchanger by controlling the rotational speed of a pump (hot water supply circulation pump).

特開平2007−85582号公報Japanese Patent Laid-Open No. 2007-85582

しかしながら、循環ポンプには、軸受、電動モータの機械部、などの機械的抵抗を発生する機構部分があるため、所定の回転速度以下の低速回転領域では機械的抵抗の影響が大きく、循環ポンプの回転速度の変化に対してポンプ出力が大きく変化する。したがって、循環ポンプの回転速度の制御でポンプ出力を精度よく調節することが困難になる。
給湯熱交換器の一次側循環量はポンプ出力の変化に応じて変化することから、ポンプ出力を精度よく調節できない低速回転領域では、給湯熱交換器の一次側循環量を精度よく調節することができない。そこで、給湯熱交換器の一次側循環量を精度よく調節するためには、所定の回転速度以上の領域で循環ポンプを運転することが好ましい。そのため、給湯熱交換器の一次側循環量が所定の流量より多くなることが好ましい。
However, since the circulation pump has mechanical parts that generate mechanical resistance such as a bearing and a mechanical part of an electric motor, the influence of the mechanical resistance is large in a low-speed rotation region below a predetermined rotation speed. Pump output changes greatly with changes in rotational speed. Therefore, it becomes difficult to accurately adjust the pump output by controlling the rotational speed of the circulation pump.
Since the primary circulation amount of the hot water heat exchanger changes according to the change in pump output, the primary circulation amount of the hot water heat exchanger can be adjusted accurately in the low-speed rotation region where the pump output cannot be adjusted accurately. Can not. Therefore, in order to accurately adjust the primary circulation amount of the hot water supply heat exchanger, it is preferable to operate the circulation pump in a region of a predetermined rotational speed or higher. Therefore, it is preferable that the primary side circulation amount of the hot water supply heat exchanger is larger than a predetermined flow rate.

特許文献1には、給湯量が少ないときや給湯温度の設定値(設定温度)が低いときなど、一次側循環量が少ないときに一次側循環量を制御する技術に関して記載されていない。したがって、一次側循環量が少ないときに給湯量や設定温度が変化すると、一次側循環量を精度よく調節することができず、ひいては、二次側出口温度を、設定温度に応じて決定される目標温度と精度よく一致させることができないという点に関して改善の余地がある。   Patent Document 1 does not describe a technique for controlling the primary circulation amount when the primary circulation amount is small, such as when the hot water supply amount is small or when the set value (set temperature) of the hot water supply temperature is low. Therefore, if the hot water supply amount or the set temperature changes when the primary side circulation amount is small, the primary side circulation amount cannot be accurately adjusted, and the secondary side outlet temperature is determined according to the set temperature. There is room for improvement in that the target temperature cannot be accurately matched.

そこで、本発明は、常に精度よく二次側出口温度を目標温度と一致させることができる給湯機を提供することを課題とする。   Then, this invention makes it a subject to provide the water heater which can always make a secondary side exit temperature correspond with target temperature with sufficient precision.

前記課題を解決するため、本発明は、熱媒体が流通する一次側管路と、前記熱媒体と熱交換する被熱交換媒体が流通する二次側管路と、前記一次側管路および前記二次側管路に接続されて、前記熱媒体と前記被熱交換媒体が熱交換する熱交換器と、前記熱媒体を前記一次側管路に流通させるポンプと、前記熱交換器をバイパスするように前記二次側管路に備わるバイパス管と、前記熱交換器を流通する前記被熱交換媒体の流量と前記バイパス管を流通する前記被熱交換媒体の流量の流量比率を調節する流量調節機構と、を備え、前記ポンプの回転速度の変化に応じて変化する前記熱媒体の流量で前記被熱交換媒体の温度を調節して、当該被熱交換媒体の温度を目標温度と一致させる給湯機とする。そして、前記流量調節機構は、前記被熱交換媒体の温度を前記目標温度と一致させるのに必要な前記熱媒体の流量である一次側必要流量が所定の閾値より少ないときは前記バイパス管に前記被熱交換媒体を流通させ、前記一次側必要流量が前記閾値以上のときは、前記バイパス管を遮断することを特徴とする。   In order to solve the above problems, the present invention provides a primary side pipe through which a heat medium flows, a secondary side pipe through which a heat exchange medium to exchange heat with the heat medium, the primary side pipe, and the A heat exchanger connected to a secondary side pipe to exchange heat between the heat medium and the heat exchange medium, a pump for circulating the heat medium to the primary side pipe, and bypassing the heat exchanger The flow rate adjustment for adjusting the flow rate ratio between the flow rate of the heat exchange medium flowing through the bypass pipe, the flow rate of the heat exchange medium flowing through the bypass pipe, and the flow rate of the heat exchange medium flowing through the bypass pipe A hot water supply that adjusts the temperature of the heat exchange medium with a flow rate of the heat medium that changes according to a change in the rotation speed of the pump, and matches the temperature of the heat exchange medium with a target temperature. A machine. When the primary side required flow rate, which is the flow rate of the heat medium necessary for making the temperature of the heat exchange medium coincide with the target temperature, is less than a predetermined threshold, the flow rate adjusting mechanism is connected to the bypass pipe. The heat exchange medium is circulated, and the bypass pipe is shut off when the required flow rate on the primary side is equal to or greater than the threshold value.

本発明によると、常に精度よく二次側出口温度を目標温度と一致させることができる給湯機を提供できる。   According to the present invention, it is possible to provide a water heater that can always make the secondary side outlet temperature coincide with the target temperature with high accuracy.

本実施形態に係る電気給湯機の構成図である。It is a lineblock diagram of the electric water heater concerning this embodiment. (a)、(b)は、ポンプ特性の一例を示すグラフである。(A), (b) is a graph which shows an example of a pump characteristic. 給湯手順を示すフローチャートである。It is a flowchart which shows a hot water supply procedure. 混合弁が閉弁している場合に二次側流量が変化したときの制御手順を示すフローチャートである。It is a flowchart which shows the control procedure when a secondary side flow volume changes, when a mixing valve is closing. 混合弁が開弁している場合に循環ポンプの回転速度が上限に達したときの制御手順を示すフローチャートである。It is a flowchart which shows a control procedure when the rotational speed of a circulation pump reaches an upper limit when the mixing valve is open. (a)は、低温管とバイパス管の分岐点に混合弁が備わる状態を示す図、(b)は、開閉弁と定流量弁がバイパス管に備わる状態を示す図である。(A) is a figure which shows the state in which a mixing valve is provided in the branch point of a cryogenic pipe and a bypass pipe, (b) is a figure which shows the state in which an on-off valve and a constant flow valve are provided in a bypass pipe.

以下、本発明の実施形態について、適宜図を参照して詳細に説明する。
図1に示すように、本発明の実施形態に係る電気給湯機1は、被熱交換媒体である低温水と、熱媒体となる高温水が熱交換する給湯機であって、低温水を加熱する一次側10と、低温水が加熱されて生成される湯水を利用者に給湯する二次側20とを含んで構成される。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings as appropriate.
As shown in FIG. 1, an electric water heater 1 according to an embodiment of the present invention is a water heater in which low temperature water that is a heat exchange medium and high temperature water that is a heat medium exchange heat, and heats low temperature water. The primary side 10 to be heated and the secondary side 20 to supply hot water to the user with hot water generated by heating the low-temperature water.

一次側10は、モータで駆動して高温水を送出するポンプ(循環ポンプ11)、高温水が蓄えられる貯湯タンク12、および高温水と低温水が熱交換するように構成される熱交換器13を含んで構成され、循環ポンプ11、貯湯タンク12、熱交換器13は、高温水が流通する高温管14(一次側管路)で接続される。そして、一次側入口温度センサ13aで熱交換器13に取り込まれる高温水の温度を計測可能に構成される。以下、一次側入口温度センサ13aが計測する高温水の温度を一次側入口温度と称する。   The primary side 10 is a pump (circulation pump 11) driven by a motor to send out high temperature water, a hot water storage tank 12 in which high temperature water is stored, and a heat exchanger 13 configured to exchange heat between high temperature water and low temperature water. The circulation pump 11, the hot water storage tank 12, and the heat exchanger 13 are connected by a high temperature pipe 14 (primary side pipe line) through which high temperature water flows. And it is comprised so that measurement of the temperature of the high temperature water taken in into the heat exchanger 13 with the primary side inlet temperature sensor 13a is possible. Hereinafter, the temperature of the high-temperature water measured by the primary side inlet temperature sensor 13a is referred to as a primary side inlet temperature.

なお、一次側10の高温管14を流通する高温水は、例えば図示しない加熱装置(ヒートポンプユニット、ボイラなど)で加熱されて貯湯タンク12に蓄えられる。   In addition, the high temperature water which distribute | circulates the high temperature pipe 14 of the primary side 10 is heated by the heating apparatus (a heat pump unit, a boiler, etc.) which is not illustrated, for example, and is stored in the hot water storage tank 12.

二次側20は、低温水を供給する水道などの給水源21と熱交換器13が低温管25(二次側管路)で接続されて低温水が熱交換器13に取り込まれ、熱交換器13で高温水と低温水が熱交換して低温水が加熱されるように構成される。さらに、熱交換器13と蛇口22が給湯管26(二次側管路)で接続され、熱交換器13で低温水が加熱されて生成される湯水は、利用者が蛇口22の給湯栓を開いたときに利用者に給湯されるように構成される。   On the secondary side 20, a water supply source 21 such as a water supply for supplying low-temperature water and the heat exchanger 13 are connected by a low-temperature pipe 25 (secondary side pipe), and low-temperature water is taken into the heat exchanger 13 to exchange heat. The vessel 13 is configured such that the high-temperature water and the low-temperature water exchange heat and the low-temperature water is heated. Furthermore, the heat exchanger 13 and the faucet 22 are connected by a hot water supply pipe 26 (secondary side pipe line), and hot water generated by heating the low-temperature water in the heat exchanger 13 is used by the user to connect the hot water tap of the faucet 22. It is configured to supply hot water to the user when opened.

また、給水源21から熱交換器13に取り込まれる低温水の温度は二次側入口温度センサ13bで計測され、熱交換器13で加熱された湯水の温度は二次側出口温度センサ26aで計測されるように構成される。さらに、給湯管26を流通する湯水の流量を計測する二次側流量センサ27が備わっている。以下、二次側入口温度センサ13bが計測する低温水の温度を二次側入口温度、二次側出口温度センサ26aが計測する湯水の温度を二次側出口温度と称する。   Moreover, the temperature of the low temperature water taken into the heat exchanger 13 from the water supply source 21 is measured by the secondary side inlet temperature sensor 13b, and the temperature of the hot water heated by the heat exchanger 13 is measured by the secondary side outlet temperature sensor 26a. Configured to be. Furthermore, a secondary side flow rate sensor 27 for measuring the flow rate of hot water flowing through the hot water supply pipe 26 is provided. Hereinafter, the temperature of the low temperature water measured by the secondary side inlet temperature sensor 13b is referred to as a secondary side inlet temperature, and the temperature of hot water measured by the secondary side outlet temperature sensor 26a is referred to as a secondary side outlet temperature.

また、電気給湯機1には、蛇口22から利用者に給湯される湯水の温度(以下、給湯温度と称する)を設定する温度設定装置23と、温度設定装置23で設定された設定温度が給湯温度になるように電気給湯機1を制御する制御装置24が備わっている。   The electric water heater 1 also has a temperature setting device 23 for setting the temperature of hot water supplied to the user from the faucet 22 (hereinafter referred to as hot water supply temperature), and a set temperature set by the temperature setting device 23. A control device 24 that controls the electric water heater 1 so as to reach a temperature is provided.

そして、本実施形態に係る電気給湯機1の二次側20には、熱交換器13をバイパスして低温管25と給湯管26を接続するバイパス管28が備わっている。バイパス管28は分岐点25aで低温管25と分岐し、混合弁29を介して給湯管26と接続される。混合弁29は、給水源21から供給されてバイパス管28を流通する低温水の流量(バイパス流量)を調節し、熱交換器13を流通する低温水の流量とバイパス流量の流量比率を調節する流量調節機構である。例えば、混合弁29が全開のときに給水源21から供給される低温水のα%がバイパス管28を流通するように構成される場合、混合弁29の開度がβ%であれば、バイパス管28には、給水源21から供給される低温水の(α×β/100)%が流通することになる。また、混合弁29の開度が0%、すなわち混合弁29が閉弁したとき、バイパス管28が遮断される。
なお、混合弁29の開度は、制御装置24によって制御される。
And the secondary side 20 of the electric water heater 1 which concerns on this embodiment is equipped with the bypass pipe 28 which bypasses the heat exchanger 13 and connects the low temperature pipe 25 and the hot water supply pipe 26. The bypass pipe 28 branches from the low temperature pipe 25 at a branch point 25 a and is connected to the hot water supply pipe 26 via the mixing valve 29. The mixing valve 29 adjusts the flow rate of the low-temperature water supplied from the water supply source 21 and flowing through the bypass pipe 28 (bypass flow rate) and the flow rate of the low-temperature water flowing through the heat exchanger 13 and the bypass flow rate. This is a flow control mechanism. For example, when the mixing valve 29 is configured so that α% of low-temperature water supplied from the water supply source 21 flows through the bypass pipe 28 when the mixing valve 29 is fully opened, if the opening of the mixing valve 29 is β%, the bypass is performed. In the pipe 28, (α × β / 100)% of low-temperature water supplied from the water supply source 21 flows. Further, when the opening degree of the mixing valve 29 is 0%, that is, when the mixing valve 29 is closed, the bypass pipe 28 is shut off.
The opening degree of the mixing valve 29 is controlled by the control device 24.

このように構成される電気給湯機1の二次側出口温度は一次側10における高温水の循環量によって調節され、制御装置24は、利用者が蛇口22の給湯栓を開いたとき、二次側入口温度、二次側出口温度、二次側流量センサ27で計測される湯水の流量(以下、二次側流量と称する)、一次側入口温度等に基づいて設定温度が給湯温度になるように電気給湯機1を制御する。
以下、一次側10における高温水の循環量を一次側循環量と称する。
例えば、制御装置24は、二次側出口温度と設定温度の偏差がフィードバックされるフィードバック制御によって循環ポンプ11の回転速度を制御し、二次側出口温度と設定温度の偏差がゼロになるように一次側循環量を調節する。このとき、制御装置24は、循環ポンプ11の回転速度を調節して一次側循環量を調節する。
The secondary outlet temperature of the electric water heater 1 configured as described above is adjusted by the circulation amount of the high-temperature water on the primary side 10, and the control device 24 allows the secondary outlet temperature when the user opens the hot water tap of the faucet 22. The set temperature becomes the hot water supply temperature based on the side inlet temperature, the secondary side outlet temperature, the flow rate of hot water measured by the secondary side flow rate sensor 27 (hereinafter referred to as the secondary side flow rate), the primary side inlet temperature, etc. The electric water heater 1 is controlled.
Hereinafter, the circulation amount of high-temperature water on the primary side 10 is referred to as a primary-side circulation amount.
For example, the control device 24 controls the rotational speed of the circulation pump 11 by feedback control in which a deviation between the secondary side outlet temperature and the set temperature is fed back so that the deviation between the secondary side outlet temperature and the set temperature becomes zero. Adjust the primary circulation rate. At this time, the control device 24 adjusts the rotational speed of the circulation pump 11 to adjust the primary circulation amount.

循環ポンプ11の特性(ポンプ特性)は、図2の(a)に一例を示すように、回転速度とポンプ出力(本実施形態の場合は一次側循環量に相当)の関係を示す特性曲線として示され、回転速度の上昇にともなってポンプ出力が上昇し高温水の循環量が上昇する。
二次側出口温度は、一次側入口温度および高温水の循環量によって決定されることから、図1に示す制御装置24は、二次側出口温度が設定温度より低い場合、二次側出口温度が設定温度になるように、つまり、二次側出口温度と設定温度の偏差がゼロになるように、二次側出口温度と一次側入口温度に基づいて高温水の循環量を設定し、さらに、一次側循環量が設定した循環量になるように循環ポンプ11の回転速度を決定する。
The characteristic (pump characteristic) of the circulation pump 11 is a characteristic curve showing the relationship between the rotational speed and the pump output (corresponding to the primary circulation amount in this embodiment) as shown in FIG. As shown, the pump output increases as the rotational speed increases, and the circulation rate of high-temperature water increases.
Since the secondary side outlet temperature is determined by the primary side inlet temperature and the circulation amount of the high-temperature water, the control device 24 shown in FIG. 1 has the secondary side outlet temperature when the secondary side outlet temperature is lower than the set temperature. Set the circulation rate of hot water based on the secondary side outlet temperature and the primary side inlet temperature so that the deviation between the secondary side outlet temperature and the set temperature becomes zero, The rotational speed of the circulation pump 11 is determined so that the primary circulation amount becomes the set circulation amount.

具体的に、制御装置24は、設定温度と二次側入口温度の偏差が大きいほど、循環ポンプ11を高い回転速度で運転して一次側循環量を増やし、設定温度と二次側入口温度の偏差が小さいほど、循環ポンプ11を低い回転速度で運転して一次側循環量を減らす。また、二次側流量センサ27で計測される湯水の流量(二次側流量)が多いほど循環ポンプ11を高い回転速度で運転して一次側循環量を増やし、二次側流量が少ないほど、循環ポンプ11を低い回転速度で運転して一次側循環量を減らす。さらに、制御装置24は、一次側入口温度が低いほど循環ポンプ11を高い回転速度で運転して一次側循環量を増やし、一次側入口温度が高いほど循環ポンプ11を低い回転速度で運転して一次側循環量を減らす。   Specifically, the control device 24 increases the primary circulation amount by operating the circulation pump 11 at a higher rotational speed as the deviation between the set temperature and the secondary side inlet temperature increases. The smaller the deviation, the lower the primary circulation amount by operating the circulation pump 11 at a lower rotational speed. Further, as the flow rate of the hot water (secondary flow rate) measured by the secondary flow rate sensor 27 increases, the circulation pump 11 is operated at a higher rotational speed to increase the primary circulation rate, and as the secondary flow rate decreases, The circulation pump 11 is operated at a low rotational speed to reduce the primary circulation amount. Further, the control device 24 operates the circulation pump 11 at a higher rotational speed as the primary side inlet temperature is lower to increase the primary side circulation amount, and operates the circulation pump 11 at a lower rotational speed as the primary side inlet temperature is higher. Reduce primary circulation.

このように、制御装置24は、設定温度、一次側入口温度、二次側入口温度、二次側流量に基づいて一次側循環量を決定し、さらに、決定した一次側循環量を得るように循環ポンプ11の回転速度を決定する。
制御装置24が設定温度、一次側入口温度、二次側入口温度、二次側流量に基づいて決定する一次側循環量を一次側必要流量と称する。
Thus, the control device 24 determines the primary circulation amount based on the set temperature, the primary inlet temperature, the secondary inlet temperature, and the secondary flow rate, and further obtains the determined primary circulation amount. The rotational speed of the circulation pump 11 is determined.
The primary circulation amount determined by the control device 24 based on the set temperature, the primary inlet temperature, the secondary inlet temperature, and the secondary flow rate is referred to as a primary required flow rate.

しかしながら、循環ポンプ11のポンプ出力(一次側循環量)は、例えば図2の(a)に示すように、回転速度の変化に応じてポンプ出力(一次側循環量)が大きく変化する領域(第1領域)と、それ以外の領域(第2領域)を有することが多い。この場合、第1領域は循環ポンプ11の回転速度の変化に対する一次側循環量の変化が大きいため、循環ポンプ11の回転速度の制御によって一次側循環量を精度よく調節することが困難である。
一方、第2領域は循環ポンプ11の回転速度の変化に対する一次側循環量の変化が第1領域に比べて小さく、循環ポンプ11の回転速度の制御によって一次側循環量を精度よく調節可能である。したがって、循環ポンプ11の回転速度を制御して一次側循環量を精度よく調節するためには、一次側必要流量が第2領域に入っていることが好ましい。
However, the pump output (primary circulation amount) of the circulation pump 11 is, for example, as shown in FIG. 2 (a), a region in which the pump output (primary circulation amount) changes greatly according to the change in the rotational speed (the first circulation amount). 1 region) and other regions (second region) in many cases. In this case, since the primary region has a large change in the primary circulation amount with respect to the change in the rotation speed of the circulation pump 11, it is difficult to accurately adjust the primary circulation amount by controlling the rotation speed of the circulation pump 11.
On the other hand, in the second region, the change in the primary circulation amount with respect to the change in the rotation speed of the circulation pump 11 is smaller than that in the first region, and the primary circulation amount can be accurately adjusted by controlling the rotation speed of the circulation pump 11. . Therefore, in order to control the rotational speed of the circulation pump 11 and accurately adjust the primary circulation amount, it is preferable that the required primary flow rate is in the second region.

そこで、本実施形態における制御装置24は、決定した一次側必要流量が、図2の(a)に示す第2領域に入るように構成する。この構成によって、制御装置24は、循環ポンプ11の回転速度を制御して一次側循環量を精度よく調節できる。   Therefore, the control device 24 in the present embodiment is configured such that the determined primary required flow rate falls within the second region shown in FIG. With this configuration, the control device 24 can control the rotational speed of the circulation pump 11 to accurately adjust the primary circulation amount.

なお、第1領域と第2領域の境界となる点を「変曲点P」、変曲点Pにおける一次側循環量を境界循環量L1と称する。境界循環量L1は、循環ポンプ11(図1参照)の構成等によって決定される特性値である。循環ポンプ11のポンプ特性が、図2の(a)に示すように回転速度の上昇にともなって一次側循環量の増加率が減少する特性の場合、例えば、回転速度の増加率に対する一次側循環量の増加率が所定の値(例えば「1」)になる一次側循環量を変曲点Pとする構成が考えられるが、変曲点Pとなる境界循環量L1は、循環ポンプ11の性能、電気給湯機1に要求される仕様等に基づいて適宜設定すればよい。   The point that becomes the boundary between the first region and the second region is referred to as an “inflection point P”, and the primary circulation amount at the inflection point P is referred to as a boundary circulation amount L1. The boundary circulation amount L1 is a characteristic value determined by the configuration of the circulation pump 11 (see FIG. 1) and the like. When the pump characteristic of the circulation pump 11 is such that the increase rate of the primary circulation amount decreases as the rotation speed increases as shown in FIG. 2A, for example, the primary side circulation with respect to the increase rate of the rotation speed. A configuration in which the primary circulation amount at which the rate of increase in the amount reaches a predetermined value (for example, “1”) is considered as the inflection point P. The boundary circulation amount L1 at the inflection point P is the performance of the circulation pump 11. What is necessary is just to set suitably based on the specification etc. which are requested | required of the electric water heater 1. FIG.

例えば、循環ポンプ11の定格の最大回転速度が6000rpmの場合、変曲点Pを2000rpmの付近(2000〜1500rpm)とすることが考えられる。つまり、最大回転速度(6000rpm)の1/3〜1/4程度の回転速度を変曲点Pとする構成が考えられる。   For example, when the rated maximum rotation speed of the circulation pump 11 is 6000 rpm, the inflection point P can be considered to be around 2000 rpm (2000 to 1500 rpm). That is, a configuration in which the inflection point P is a rotational speed of about 1/3 to 1/4 of the maximum rotational speed (6000 rpm) is conceivable.

また、例えば、図2の(b)に示すように、回転速度の変化にともなって一次側循環量が略直線的に大きく変化する領域を有するポンプ特性の循環ポンプ11の場合は、一次側循環量が直線的に変化する領域を第1領域、その他の領域を第2領域とし、その境界点を「変曲点P」とすればよい。   Further, for example, as shown in FIG. 2B, in the case of the circulation pump 11 having a pump characteristic having a region where the primary circulation amount changes substantially linearly with the change of the rotation speed, the primary circulation is performed. The region where the amount changes linearly may be the first region, the other region may be the second region, and the boundary point may be the “inflection point P”.

このように、本実施形態においては、循環ポンプ11の回転速度の変化に対して一次側循環量が大きく変化する領域を第1領域とし、その他の領域を第2領域とする。そして、第1領域と第2領域の境界となる変曲点P(境界循環量L1)は、循環ポンプ11の特性値として適宜設定される。   As described above, in the present embodiment, a region where the primary circulation amount changes greatly with respect to a change in the rotational speed of the circulation pump 11 is defined as a first region, and the other region is defined as a second region. Then, the inflection point P (boundary circulation amount L1) serving as a boundary between the first region and the second region is appropriately set as a characteristic value of the circulation pump 11.

本実施形態に係る制御装置24は、設定温度、一次側入口温度、二次側入口温度、二次側循環量に基づいて決定する一次側必要流量が境界循環量L1以下であって第1領域に入っているとき、混合弁29を開弁してバイパス管28に低温水を流通させる。熱交換器13を流通する低温水の流量が減少して高温水から低温水に伝熱される熱量(伝熱量)が減少する。そして、制御装置24は、減少した伝熱量を補うために循環ポンプ11の回転速度を上昇して一次側循環量を増加し、一次側循環量が境界循環量L1以上になると第2領域に入る。このように増加された一次側循環量を新たな一次側必要流量とすることによって、一次側必要流量を第2領域に入れることができる。   In the control device 24 according to the present embodiment, the primary side required flow rate determined based on the set temperature, the primary side inlet temperature, the secondary side inlet temperature, and the secondary side circulation amount is equal to or less than the boundary circulation amount L1, and the first region When in, the mixing valve 29 is opened to allow the low-temperature water to flow through the bypass pipe 28. The flow rate of the low-temperature water flowing through the heat exchanger 13 decreases, and the amount of heat (heat transfer amount) transferred from the high-temperature water to the low-temperature water decreases. Then, the control device 24 increases the rotation speed of the circulation pump 11 to compensate for the reduced heat transfer amount and increases the primary circulation amount, and enters the second region when the primary circulation amount exceeds the boundary circulation amount L1. . By making the primary-side circulation amount thus increased as a new primary-side required flow rate, the primary-side required flow rate can be put into the second region.

なお、制御装置24は、一次側必要流量が境界循環量L1以上の場合、混合弁29を開弁せず、バイパス管28を遮断してバイパス管28に低温水を流通させない。
つまり制御装置24は、境界循環量L1を所定の閾値として、一次側必要流量が境界循環量L1より少ないときに混合弁29を開弁し、一次側必要流量が境界循環量L1以上のときに混合弁29を閉弁する。
In addition, the control apparatus 24 does not open the mixing valve 29, interrupts the bypass pipe 28, and does not distribute low temperature water to the bypass pipe 28, when the primary side required flow volume is more than the boundary circulation amount L1.
That is, the control device 24 sets the boundary circulation amount L1 as a predetermined threshold value, and opens the mixing valve 29 when the primary-side required flow rate is smaller than the boundary circulation amount L1, and when the primary-side required flow rate is equal to or greater than the boundary circulation amount L1. The mixing valve 29 is closed.

利用者が蛇口22の給湯栓の開度を変更して二次側流量が変化した場合や利用者が温度設定装置23を操作して設定温度が変更した場合、制御装置24は設定温度に応じた目標温度を決定するとともに第2領域の範囲内で一次側循環量を調節し、二次側出口温度を、決定した目標温度と一致させることができる。第2領域は、循環ポンプ11の回転速度の変化に対する一次側循環量の変化が小さい領域であり、循環ポンプ11の回転速度の制御によって一次側循環量を精度よく調節できる。したがって、利用者が蛇口22の給湯栓の開度を変更した場合や設定温度を変更した場合であっても、二次側出口温度を、変更された設定温度に応じて決定される目標温度と精度よく一致させることができ、設定温度を給湯温度とする湯水を利用者に安定して給湯できる。
なお、制御装置24が決定する目標温度は、利用者によって設定される設定温度と等しい温度としてもよいし、湯水が蛇口22まで流通するときの温度低下を考慮して、設定温度より高い温度としてもよい。
When the user changes the opening of the hot water tap of the faucet 22 and the secondary flow rate changes, or when the user operates the temperature setting device 23 and changes the set temperature, the control device 24 responds to the set temperature. The target temperature is determined and the primary circulation amount is adjusted within the range of the second region, so that the secondary outlet temperature can be matched with the determined target temperature. The second region is a region in which the change in the primary circulation amount with respect to the change in the rotation speed of the circulation pump 11 is small, and the primary circulation amount can be accurately adjusted by controlling the rotation speed of the circulation pump 11. Therefore, even when the user changes the opening of the hot water tap of the faucet 22 or when the set temperature is changed, the secondary outlet temperature is set to a target temperature determined according to the changed set temperature. It can be made to coincide with accuracy, and hot water having a set temperature as the hot water supply temperature can be stably supplied to the user.
The target temperature determined by the control device 24 may be equal to the set temperature set by the user, or is set to a temperature higher than the set temperature in consideration of a temperature drop when hot water flows to the faucet 22. Also good.

図3を参照し、制御装置24が電気給湯機1を制御して利用者に湯水を給湯する手順を説明する(以下、適宜図1、図2参照)。利用者に湯水を給湯する手順を、以下、給湯手順と称する。
蛇口22の給湯栓が閉じた状態のときに利用者が当該給湯栓を開くと、給水源21の水圧によって、低温管25、熱交換器13、給湯管26の順に低温水が流通して蛇口22から吐出される。そこで制御装置24は、二次側流量センサ27が計測する二次側流量の増加を検出することによって蛇口22の給湯栓が開いたことを検知し、さらに、目標温度が、給水源21から供給される低温水の温度(二次側入口温度)より高い場合、循環ポンプ11を運転して熱交換器13で低温水を加熱する。
With reference to FIG. 3, the procedure in which the control device 24 controls the electric water heater 1 to supply hot water to the user will be described (hereinafter, refer to FIGS. 1 and 2 as appropriate). The procedure for supplying hot water to the user is hereinafter referred to as a hot water supply procedure.
When the user opens the hot water tap when the faucet 22 is closed, low-temperature water flows in the order of the low-temperature pipe 25, the heat exchanger 13, and the hot water pipe 26 due to the water pressure of the water supply source 21. 22 is discharged. Therefore, the control device 24 detects that the hot water tap of the faucet 22 has been opened by detecting an increase in the secondary flow rate measured by the secondary flow rate sensor 27, and the target temperature is supplied from the water supply source 21. When the temperature is lower than the temperature of the low-temperature water (secondary inlet temperature), the circulation pump 11 is operated to heat the low-temperature water with the heat exchanger 13.

すなわち、二次側流量が「0」から増加しない間、制御装置24は蛇口22の給湯栓が閉じていると判定し(ステップS1→No)、混合弁29を閉弁して(ステップS2)バイパス管28を遮断する。一方、二次側流量が「0」から増加した場合、制御装置24は蛇口22の給湯栓が開いたと判定し(ステップS1→Yes)、一次側入口温度、二次側入口温度、二次側流量、目標温度に基づいて、二次側出口温度を目標温度と一致させるために必要な高温水の循環量(一次側必要流量)を決定する(ステップS3)。   That is, while the secondary flow rate does not increase from “0”, the control device 24 determines that the hot water tap of the faucet 22 is closed (step S1 → No), and closes the mixing valve 29 (step S2). The bypass pipe 28 is shut off. On the other hand, when the secondary side flow rate increases from “0”, the control device 24 determines that the hot water tap of the faucet 22 has been opened (step S1 → Yes), and the primary side inlet temperature, the secondary side inlet temperature, the secondary side Based on the flow rate and the target temperature, the circulation amount of the high-temperature water (primary side required flow rate) necessary to make the secondary side outlet temperature coincide with the target temperature is determined (step S3).

一次側必要流量は、例えば次式(1)で決定することができる。

一次側必要流量=(目標温度−二次側入口温度)×二次側流量
/(一次側入口温度−一次側出口予測温度) ・・・(1)

例えば、二次側入口温度が10℃、目標温度が40℃、一次側入口温度が80℃、一次側出口予測温度が12℃、二次側流量が5L/minであるとき、一次側必要流量は、
(40−10)×5/(80−12)=2.2[L/min]
と決定できる。
なお、一次側出口予測温度は、熱交換器13で熱交換した後の高温水の温度(一次側出口温度)の予測値である。一次側出口温度は、二次側入口温度より所定温度高い温度になると予測され、この所定温度は熱交換器13の構成等によって決定される特性値である。本実施形態においては所定温度を2℃とし、一次側出口予測温度を二次側入口温度(10℃)より2℃高い12℃としている。
なお、熱交換器13の一次側出口温度を計測する図示しない温度センサを備え、当該温度センサが計測する一次側出口温度を利用して一次側必要流量を算出する構成であってもよい。
The required flow rate on the primary side can be determined by the following equation (1), for example.

Primary side required flow rate = (Target temperature-Secondary side inlet temperature) x Secondary side flow rate
/ (Primary side inlet temperature-Primary side outlet predicted temperature) (1)

For example, when the secondary side inlet temperature is 10 ° C., the target temperature is 40 ° C., the primary side inlet temperature is 80 ° C., the primary side outlet predicted temperature is 12 ° C., and the secondary side flow rate is 5 L / min, the primary side required flow rate Is
(40-10) × 5 / (80-12) = 2.2 [L / min]
Can be determined.
The primary side outlet predicted temperature is a predicted value of the temperature of the high-temperature water (primary side outlet temperature) after heat exchange in the heat exchanger 13. The primary side outlet temperature is predicted to be a predetermined temperature higher than the secondary side inlet temperature, and this predetermined temperature is a characteristic value determined by the configuration of the heat exchanger 13 or the like. In the present embodiment, the predetermined temperature is 2 ° C., and the primary side outlet predicted temperature is 12 ° C., which is 2 ° C. higher than the secondary side inlet temperature (10 ° C.).
In addition, the temperature sensor (not shown) which measures the primary side exit temperature of the heat exchanger 13 may be provided, and the primary side required flow rate may be calculated using the primary side exit temperature measured by the temperature sensor.

制御装置24は、決定した一次側必要流量と変曲点Pとなる境界循環量L1を比較する(ステップS4)。そして、制御装置24は、決定した一次側必要流量が境界循環量L1以上であれば(ステップS4→Yes)、決定した一次側必要流量に基づいて循環ポンプ11の回転速度を決定し(ステップS5)、循環ポンプ11を決定した回転速度で運転する(ステップS6)。   The control device 24 compares the determined primary required flow rate with the boundary circulation amount L1 that becomes the inflection point P (step S4). If the determined primary required flow rate is equal to or greater than the boundary circulation amount L1 (step S4 → Yes), the controller 24 determines the rotational speed of the circulation pump 11 based on the determined primary required flow rate (step S5). ), The circulating pump 11 is operated at the determined rotational speed (step S6).

例えば、循環ポンプ11の境界循環量L1が2L/minの場合、決定した一次側必要流量が2.2L/minであれば、制御装置24は2.2L/minの一次側必要流量を得るための循環ポンプ11の回転速度を、図2の(a)、(b)に示すポンプ特性を参照して決定し(ステップS5)、決定した回転速度で循環ポンプ11を運転する(ステップS6)。
制御装置24は、給湯栓が開いている間は(ステップS7→No)、一次側入口温度、二次側入口温度、二次側流量および設定温度を常時監視し、利用者が蛇口22の給湯栓の開度を変更して二次側流量が変化した場合や、利用者が温度設定装置23を操作して設定温度が変更された場合、二次側出口温度が、変更された設定温度に応じて決定される目標温度と一致するように一次側必要流量と循環ポンプ11の回転速度を再度決定して循環ポンプ11を運転する。つまり、循環ポンプ11の回転速度を制御する(ステップS8)。
For example, when the boundary circulation amount L1 of the circulation pump 11 is 2 L / min and the determined primary side required flow rate is 2.2 L / min, the control device 24 obtains the primary side required flow rate of 2.2 L / min. The rotation speed of the circulation pump 11 is determined with reference to the pump characteristics shown in FIGS. 2A and 2B (step S5), and the circulation pump 11 is operated at the determined rotation speed (step S6).
While the hot-water tap is open (step S7 → No), the control device 24 constantly monitors the primary side inlet temperature, the secondary side inlet temperature, the secondary side flow rate, and the set temperature, and the user supplies hot water to the faucet 22. When the secondary side flow rate is changed by changing the opening of the stopper, or when the user operates the temperature setting device 23 and the set temperature is changed, the secondary side outlet temperature is changed to the changed set temperature. The circulating pump 11 is operated by determining again the primary required flow rate and the rotational speed of the circulating pump 11 so as to coincide with the target temperature determined accordingly. That is, the rotational speed of the circulation pump 11 is controlled (step S8).

そして、制御装置24は給湯栓が閉じられたら(ステップS7→Yes)、混合弁29を閉弁して(ステップS2)給湯手順を終了する。制御装置24は、二次側流量が「0」になったときに給湯栓が閉じられたと判定する。   When the hot water tap is closed (step S7 → Yes), the control device 24 closes the mixing valve 29 (step S2) and ends the hot water supply procedure. The control device 24 determines that the hot water tap is closed when the secondary flow rate becomes “0”.

一方、決定した一次側必要流量が境界循環量L1より小さいとき(ステップS4→No)、制御装置24は、混合弁29の開度を設定する(ステップS9)。
例えば、二次側入口温度が20℃、目標温度が40℃、一次側入口温度が80℃、一次側出口予測温度が22℃、二次側流量が5L/minであるとき、一次側必要流量は、式(1)によって以下のように決定される。
(40−20)×5/(80−22)=1.7[L/min]
この場合、一次側必要流量(1.7L/min)は境界循環量L1(2L/min)より小さく図2の(a)、(b)に示す第1領域に入る。このとき、制御装置24は、蛇口22の給湯栓が開かれた直後の目標温度、一次側入口温度、二次側入口温度に基づいて混合弁9の開度を設定する。
On the other hand, when the determined primary required flow rate is smaller than the boundary circulation amount L1 (step S4 → No), the control device 24 sets the opening degree of the mixing valve 29 (step S9).
For example, when the secondary side inlet temperature is 20 ° C, the target temperature is 40 ° C, the primary side inlet temperature is 80 ° C, the primary side outlet predicted temperature is 22 ° C, and the secondary side flow rate is 5 L / min, the primary side required flow rate Is determined by equation (1) as follows.
(40-20) × 5 / (80-22) = 1.7 [L / min]
In this case, the required flow rate on the primary side (1.7 L / min) is smaller than the boundary circulation amount L1 (2 L / min) and enters the first region shown in FIGS. At this time, the control device 24 sets the opening degree of the mixing valve 9 based on the target temperature, the primary side inlet temperature, and the secondary side inlet temperature immediately after the faucet 22 is opened.

例えば、目標温度と一次側入口温度の温度差と、混合弁29の開度と、の関係を示すマップが予め設定されて制御装置24の図示しない記憶部に記憶される構成とすれば、制御装置24は、温度設定装置23で設定される設定温度に応じて決定する目標温度と一次側入口温度センサ13aが計測する一次側入口温度の温度差に基づいて当該マップを参照し、混合弁29の開度を設定できる。   For example, if the map showing the relationship between the temperature difference between the target temperature and the primary inlet temperature and the opening of the mixing valve 29 is set in advance and stored in a storage unit (not shown) of the control device 24, the control is performed. The device 24 refers to the map based on the temperature difference between the target temperature determined according to the set temperature set by the temperature setting device 23 and the primary inlet temperature measured by the primary inlet temperature sensor 13a, and the mixing valve 29 Can be set.

例えば、目標温度と一次側入口温度の温度差が40℃の場合に混合弁29の開度を50%と設定し、目標温度と一次側入口温度の温度差が15℃の場合に混合弁29の開度を10%と設定する構成のとき、目標温度と一次側入口温度の温度差が40℃であれば、制御装置24は混合弁29の開度を50%に設定する。また、目標温度と一次側入口温度の温度差が15℃であれば、制御装置24は混合弁29の開度を10%に設定する。   For example, when the temperature difference between the target temperature and the primary inlet temperature is 40 ° C., the opening degree of the mixing valve 29 is set to 50%, and when the temperature difference between the target temperature and the primary inlet temperature is 15 ° C., the mixing valve 29 is set. If the temperature difference between the target temperature and the primary inlet temperature is 40 ° C., the controller 24 sets the opening of the mixing valve 29 to 50%. If the temperature difference between the target temperature and the primary inlet temperature is 15 ° C., the control device 24 sets the opening of the mixing valve 29 to 10%.

さらに、二次側入口温度に応じて混合弁29の開度が補正される構成としてもよい。すなわち、二次側入口温度が高いときは、バイパス管28を流通する低温水の量を増やして熱交換器13に取り込まれる低温水を減らし、熱交換器13で高温水から低温水に伝熱される伝熱量を低下させる。例えば、二次側入口温度が20℃の場合、混合弁29の開度を5%開ける方向に補正する構成とすると、二次側入口温度が20℃で目標温度と一次側入口温度の温度差が40℃のとき、制御装置24は、混合弁29の開度を55%(50%+5%)に設定する。   Further, the opening degree of the mixing valve 29 may be corrected according to the secondary side inlet temperature. That is, when the secondary side inlet temperature is high, the amount of the low temperature water flowing through the bypass pipe 28 is increased to reduce the low temperature water taken into the heat exchanger 13, and the heat exchanger 13 transfers heat from the high temperature water to the low temperature water. Reduces the amount of heat transferred. For example, when the secondary inlet temperature is 20 ° C., if the opening of the mixing valve 29 is corrected so as to open 5%, the temperature difference between the target temperature and the primary inlet temperature when the secondary inlet temperature is 20 ° C. Is 40 ° C., the control device 24 sets the opening of the mixing valve 29 to 55% (50% + 5%).

なお、混合弁29の開度は、例えば、一次側必要流量が境界循環量L1を20〜30%程度超えるように設定されることが考えられる。一次側必要流量が境界循環量L1を大きく超えるように構成すると、循環ポンプ11の回転速度を高く維持するためのエネルギー消費量が増えて効率が低下する。また、一次側必要流量が境界循環量L1を超える量が少ないと、一次側必要流量が小さくなったときに一次側循環量が第1領域に入り、一次側循環量を精度よく調節することが困難になる。以上のことを鑑み、一次側必要流量が境界循環量L1を好適に超えるように混合弁29の開度を設定すればよい。前記した20〜30%は一例であり、循環ポンプ11の性能、電気給湯機1に要求される仕様等に基づいた値を適宜設定することができる。   The opening degree of the mixing valve 29 may be set so that, for example, the required flow rate on the primary side exceeds the boundary circulation amount L1 by about 20 to 30%. If the primary side required flow rate is configured to greatly exceed the boundary circulation amount L1, the energy consumption for maintaining the rotational speed of the circulation pump 11 increases, and the efficiency decreases. In addition, if the primary side required flow rate is less than the boundary circulation amount L1, the primary side circulation rate enters the first region when the primary side required flow rate becomes small, and the primary side circulation rate can be adjusted with high accuracy. It becomes difficult. In view of the above, the opening degree of the mixing valve 29 may be set so that the primary-side required flow rate suitably exceeds the boundary circulation amount L1. The above 20 to 30% is an example, and a value based on the performance of the circulation pump 11, specifications required for the electric water heater 1, and the like can be appropriately set.

制御装置24は、混合弁29の開度を設定したら(ステップS9)、設定した開度になるように混合弁29を開弁し(ステップS10)、さらに、二次側出口温度が目標温度と一致するように、すなわち、二次側出口温度と目標温度の偏差がゼロになるように、循環ポンプ11の回転速度を制御して(ステップS11)、循環ポンプ11を運転する。この構成によって、制御装置24は、一次側循環量が第2領域に入った状態で循環ポンプ11の回転速度を制御することができる。   When the opening degree of the mixing valve 29 is set (step S9), the control device 24 opens the mixing valve 29 so as to reach the set opening degree (step S10), and the secondary side outlet temperature is equal to the target temperature. The rotation speed of the circulation pump 11 is controlled so as to match, that is, the deviation between the secondary side outlet temperature and the target temperature becomes zero (step S11), and the circulation pump 11 is operated. With this configuration, the control device 24 can control the rotation speed of the circulation pump 11 in a state where the primary circulation amount enters the second region.

そして、制御装置24は、給湯栓が閉じるまでステップS11を実行して循環ポンプ11の回転速度を制御し(ステップS12→No)、給湯栓が閉じたら(ステップS12→Yes)混合弁29を閉弁して(ステップS2)バイパス管28を遮断し、給湯手順を終了する。   Then, the control device 24 executes step S11 until the hot water tap is closed to control the rotational speed of the circulation pump 11 (step S12 → No), and when the hot water tap is closed (step S12 → Yes), the mixing valve 29 is closed. The bypass pipe 28 is shut off (step S2), and the hot water supply procedure is terminated.

このように、本実施形態に係る電気給湯機1(図1参照)は、給湯手順において一次側必要流量が境界循環量L1より小さく第1領域に入っているとき、混合弁29(図1参照)が開弁して給湯管26(図1参照)を流通する湯水にバイパス管28(図1参照)を介して低温水が混合される。したがって、熱交換器13(図1参照)に取り込まれる低温水量が減少し、熱交換器13で高温水から低温水に伝熱される伝熱量が減少する。
そこで、制御装置24(図1参照)は、熱交換器13で高温水から低温水に伝熱される伝熱量の減少分を補うために循環ポンプ11(図1参照)の回転速度を上昇させて一次側循環量を多くする。
つまり電気給湯機1は、一次側必要流量が第1領域に入っているとき、混合弁29が閉弁して給湯管26を流通する湯水に低温水が混合されない場合に比べて一次側循環量が多くなり、一次側循環量が図2の(a)、(b)に示す第2領域に入る状態になる。
一方、一次側必要流量が境界循環量L1より大きく第2領域に入っているときに、電気給湯機1は混合弁29が閉弁し、バイパス管28(図1参照)が遮断される。
As described above, the electric water heater 1 (see FIG. 1) according to the present embodiment has the mixing valve 29 (see FIG. 1) when the required flow rate on the primary side is smaller than the boundary circulation amount L1 and enters the first region in the hot water supply procedure. ) Is opened and low temperature water is mixed with hot water flowing through the hot water supply pipe 26 (see FIG. 1) via the bypass pipe 28 (see FIG. 1). Therefore, the amount of low-temperature water taken into the heat exchanger 13 (see FIG. 1) decreases, and the amount of heat transferred from the high-temperature water to the low-temperature water in the heat exchanger 13 decreases.
Therefore, the control device 24 (see FIG. 1) increases the rotational speed of the circulation pump 11 (see FIG. 1) in order to compensate for the decrease in the amount of heat transferred from the high temperature water to the low temperature water in the heat exchanger 13. Increase primary circulation.
That is, in the electric water heater 1, when the required flow rate on the primary side is in the first region, the circulation amount on the primary side is higher than when the mixing valve 29 is closed and the low-temperature water is not mixed with the hot water flowing through the hot water supply pipe 26. The primary circulation amount enters the second region shown in FIGS. 2A and 2B.
On the other hand, when the primary-side required flow rate is larger than the boundary circulation amount L1 and enters the second region, the mixing valve 29 of the electric water heater 1 is closed and the bypass pipe 28 (see FIG. 1) is shut off.

そして、二次側流量が変化した場合や設定温度が変更された場合、制御装置24(図1参照)は、循環ポンプ11(図1参照)の回転速度を調節することで一次側循環量を精度よく調節することができ、二次側出口温度を、変更された設定温度に応じて決定される目標温度と精度よく一致させることができる。この構成によって、設定温度を給湯温度とする湯水を蛇口22から利用者に安定して給湯することができる。   When the secondary flow rate changes or the set temperature is changed, the control device 24 (see FIG. 1) adjusts the rotational speed of the circulation pump 11 (see FIG. 1) to adjust the primary circulation amount. The secondary side outlet temperature can be adjusted with high accuracy, and the target temperature determined in accordance with the changed set temperature can be matched with high accuracy. With this configuration, hot water having the set temperature as the hot water supply temperature can be stably supplied to the user from the tap 22.

なお、一次側循環量は循環ポンプ11(図1参照)の回転速度に応じて決定される値であることから、制御装置24(図1参照)は、ステップS3で一次側必要流量を決定するとともに決定した一次側必要流量に対応する循環ポンプ11の回転速度を決定し、決定した循環ポンプ11の回転速度に応じて混合弁29(図1参照)の開弁および閉弁を設定する構成としてもよい。具体的に、制御装置24は、決定した循環ポンプ11の回転速度が予め決定されている所定回転速度より低いときに混合弁29を開弁し、決定した循環ポンプ11の回転速度が予め決定されている所定回転速度以上のときに混合弁29を閉弁する構成としてもよい。
この場合、一次側循環量が境界循環量L1となる循環ポンプ11の回転速度を所定回転速度とすることで、一次側必要流量が境界循環量L1より小さいときに混合弁29を開弁する場合と同等の効果を得ることができる。
Since the primary circulation amount is a value determined according to the rotational speed of the circulation pump 11 (see FIG. 1), the control device 24 (see FIG. 1) determines the primary required flow rate in step S3. In addition, the rotation speed of the circulation pump 11 corresponding to the determined primary-side required flow rate is determined, and the opening and closing of the mixing valve 29 (see FIG. 1) are set according to the determined rotation speed of the circulation pump 11. Also good. Specifically, the control device 24 opens the mixing valve 29 when the determined rotation speed of the circulation pump 11 is lower than the predetermined rotation speed, and the determined rotation speed of the circulation pump 11 is determined in advance. The mixing valve 29 may be closed when the rotation speed is equal to or higher than the predetermined rotation speed.
In this case, the mixing valve 29 is opened when the primary side required flow rate is smaller than the boundary circulation amount L1 by setting the rotation speed of the circulation pump 11 at which the primary side circulation amount becomes the boundary circulation amount L1 to a predetermined rotation speed. The same effect can be obtained.

次に、混合弁29(図1参照)が閉弁した状態で循環ポンプ11(図1参照)が運転されているときに利用者が蛇口22の給湯栓の開度を変更して二次側流量が変化した場合の制御手順について説明する(以下、適宜図1、図2参照)。この制御手順は、図3に示すステップS8で制御装置24が実行するものである。   Next, when the circulating pump 11 (see FIG. 1) is operated with the mixing valve 29 (see FIG. 1) closed, the user changes the opening of the hot water tap of the faucet 22 to the secondary side. A control procedure when the flow rate is changed will be described (see FIGS. 1 and 2 as appropriate). This control procedure is executed by the control device 24 in step S8 shown in FIG.

図4に示すように、混合弁29が閉弁した状態のときに制御装置24が循環ポンプ11を運転中に二次側流量が変化しなければ(ステップS20→No)、制御装置24は、混合弁29を開弁することなく循環ポンプ11の回転速度を制御するが(ステップS26)、二次側流量が変化した場合(ステップS20→Yes)、制御装置24は、一次側入口温度、二次側入口温度、二次側流量、目標温度に基づいて一次側必要流量を決定する(ステップS21)。そして、制御装置24は、決定した一次側必要流量が従前(例えば、図3のステップS3)に決定した一次側必要流量より減少しない場合(ステップS22→No)、混合弁29を開弁することなく循環ポンプ11の回転速度を制御する(ステップS26)。   As shown in FIG. 4, if the secondary flow rate does not change while the control device 24 is operating the circulation pump 11 when the mixing valve 29 is closed (step S20 → No), the control device 24 Although the rotational speed of the circulation pump 11 is controlled without opening the mixing valve 29 (step S26), when the secondary side flow rate changes (step S20 → Yes), the control device 24 determines that the primary side inlet temperature, two The primary side required flow rate is determined based on the secondary side inlet temperature, the secondary side flow rate, and the target temperature (step S21). And the control apparatus 24 opens the mixing valve 29, when the determined primary side required flow rate does not reduce from the primary side required flow rate determined before (for example, step S3 of FIG. 3) (step S22-> No). Instead, the rotational speed of the circulation pump 11 is controlled (step S26).

一方、一次側必要流量が従前に決定した一次側必要流量より減少した場合(ステップS22→Yes)、制御装置24は一次側必要流量と境界循環量L1を比較し(ステップS23)、一次側必要流量が境界循環量L1以上のときは(ステップS23→Yes)、混合弁29を開弁することなく循環ポンプ11の回転速度を制御する(ステップS26)。
また、一次側必要流量が境界循環量L1より小さいとき(ステップS23→No)、制御装置24は、図3のステップS9と同じ手順で混合弁29の開度を設定し(ステップS24)、混合弁29を設定した開度まで徐々に開弁する(ステップS25)。そして、制御装置24は、混合弁29が開弁した状態で循環ポンプ11の回転速度を制御する(ステップS26)。
On the other hand, when the primary side required flow rate is smaller than the previously determined primary side required flow rate (step S22 → Yes), the control device 24 compares the primary side required flow rate with the boundary circulation amount L1 (step S23), and the primary side required flow rate. When the flow rate is equal to or greater than the boundary circulation amount L1 (step S23 → Yes), the rotational speed of the circulation pump 11 is controlled without opening the mixing valve 29 (step S26).
When the primary side required flow rate is smaller than the boundary circulation amount L1 (step S23 → No), the control device 24 sets the opening of the mixing valve 29 in the same procedure as step S9 in FIG. 3 (step S24), and the mixing is performed. The valve 29 is gradually opened to the set opening (step S25). And the control apparatus 24 controls the rotational speed of the circulation pump 11 in the state which the mixing valve 29 opened (step S26).

制御装置24が、二次側出口温度を二次側出口温度センサ26aで計測して目標温度と二次側出口温度の偏差を算出するとともに当該偏差がゼロに収束するように循環ポンプ11の回転速度を変更する一連のサイクルを「循環ポンプの制御周期」とする場合、制御装置24は、循環ポンプの制御周期の数倍から数十倍の時間で混合弁29を開弁する構成が好適である。   The control device 24 measures the secondary side outlet temperature with the secondary side outlet temperature sensor 26a, calculates the deviation between the target temperature and the secondary side outlet temperature, and rotates the circulation pump 11 so that the deviation converges to zero. When a series of cycles for changing the speed is a “circulation pump control cycle”, the control device 24 is preferably configured to open the mixing valve 29 in a time several to several tens of times the control cycle of the circulation pump. is there.

混合弁29が急速に開弁すると、熱交換器13を流通する低温水の流量が急減して高温水から低温水に伝熱される伝熱量が急速に減少する。さらに、給湯管26に低温水が一気に流れ込む。したがって、二次側出口温度が急速に低下し、制御装置24は循環ポンプ11の回転速度を急速に上昇させるように制御する。この結果、循環ポンプ11の回転速度にオーバシュートやハンチングなどの現象が発生し制御上好ましくない状態になる。また、利用者に供給される湯水の給湯温度が不安定になる。   When the mixing valve 29 is opened rapidly, the flow rate of the low-temperature water flowing through the heat exchanger 13 decreases rapidly, and the amount of heat transferred from the high-temperature water to the low-temperature water decreases rapidly. Furthermore, low temperature water flows into the hot water supply pipe 26 at a stretch. Therefore, the secondary side outlet temperature rapidly decreases, and the control device 24 performs control so that the rotational speed of the circulation pump 11 is rapidly increased. As a result, a phenomenon such as overshoot or hunting occurs in the rotational speed of the circulation pump 11 and the control is not preferable. Moreover, the hot water supply temperature supplied to the user becomes unstable.

そこで、制御装置24は循環ポンプの制御周期より充分に長い時間で混合弁29を開弁し、循環ポンプ11の回転速度を安定して制御する。例えば、循環ポンプの制御周期が1秒で、設定された混合弁29の開度が50%の場合、制御装置24は10秒で混合弁29を開弁するように構成する。なお、前記した10秒は一例であり、混合弁29を開弁する時間は、電気給湯機1の構成等に応じて適宜設定すればよい設計値である。   Therefore, the control device 24 opens the mixing valve 29 in a time sufficiently longer than the control period of the circulation pump, and stably controls the rotation speed of the circulation pump 11. For example, when the control period of the circulation pump is 1 second and the set opening degree of the mixing valve 29 is 50%, the control device 24 is configured to open the mixing valve 29 in 10 seconds. The 10 seconds described above is an example, and the time for opening the mixing valve 29 is a design value that can be set as appropriate according to the configuration of the electric water heater 1.

混合弁29が閉弁した状態で循環ポンプ11が運転されている場合に二次側流量が変化したとき、制御装置24は図4に示す制御手順を実行して、必要に応じて混合弁29を開弁し、一次側循環量を図2の(a)、(b)に示す第2領域に入れることができる。そして、その後は、循環ポンプ11の回転速度の制御によって一次側循環量を精度よく調節できる。したがって、利用者が蛇口22の給湯栓の開度を変更した場合や設定温度を変更した場合であっても、二次側出口温度を、設定温度に応じて決定される目標温度と精度よく一致させることができ、設定温度を給湯温度とする湯水を利用者に安定して給湯できる。   When the secondary pump flow rate changes when the circulating pump 11 is operated with the mixing valve 29 closed, the control device 24 executes the control procedure shown in FIG. And the primary circulation amount can be put in the second region shown in FIGS. 2 (a) and 2 (b). Thereafter, the primary circulation amount can be accurately adjusted by controlling the rotational speed of the circulation pump 11. Therefore, even when the user changes the opening of the hot water tap of the faucet 22 or when the set temperature is changed, the secondary side outlet temperature matches the target temperature determined in accordance with the set temperature with high accuracy. Hot water having a set temperature as the hot water supply temperature can be stably supplied to the user.

また、制御装置24は混合弁29を開弁するとき、循環ポンプ11の制御周期より充分に長い時間で開弁する。この構成によって、制御装置24は、循環ポンプ11の回転速度を安定して制御できる。   Further, when the control device 24 opens the mixing valve 29, it opens in a time sufficiently longer than the control cycle of the circulation pump 11. With this configuration, the control device 24 can stably control the rotation speed of the circulation pump 11.

なお、混合弁29が閉弁した状態で制御装置24が循環ポンプ11を運転している場合に設定温度が変更されたときも、図4に示す制御手順のステップS21以降を実行することによって、必要に応じて混合弁29を開弁できる。   Even when the set temperature is changed when the control device 24 is operating the circulation pump 11 with the mixing valve 29 closed, by executing step S21 and subsequent steps of the control procedure shown in FIG. The mixing valve 29 can be opened as necessary.

次に、混合弁29が開弁した状態の場合に循環ポンプ11の回転速度が上限に達し、一次側循環量が上限に達したときの制御手順について説明する(以下、適宜図1、図2参照)。この制御手順は、図3に示すステップS11で循環ポンプ11の回転速度が上限に達した場合に制御装置24が実行する。   Next, the control procedure when the rotational speed of the circulation pump 11 reaches the upper limit and the primary circulation amount reaches the upper limit when the mixing valve 29 is opened will be described (hereinafter, FIG. 1 and FIG. reference). This control procedure is executed by the control device 24 when the rotational speed of the circulation pump 11 reaches the upper limit in step S11 shown in FIG.

図5に示すように、混合弁29が開弁した状態で二次側流量が変化しなければ(ステップS30→No)、制御装置24は、混合弁29を閉弁することなく循環ポンプ11の回転速度を制御するが(ステップS35)、二次側流量が変化した場合(ステップS30→Yes)、制御装置24は目標温度と二次側出口温度を比較する(ステップS31)。
そして、二次側出口温度が目標温度以上の場合(ステップS31→No)、制御装置24は、混合弁29を閉弁することなく循環ポンプ11の回転速度を制御する(ステップS35)。
As shown in FIG. 5, if the secondary flow rate does not change when the mixing valve 29 is opened (step S30 → No), the control device 24 sets the circulation pump 11 without closing the mixing valve 29. Although the rotational speed is controlled (step S35), when the secondary flow rate has changed (step S30 → Yes), the control device 24 compares the target temperature with the secondary outlet temperature (step S31).
When the secondary side outlet temperature is equal to or higher than the target temperature (step S31 → No), the control device 24 controls the rotational speed of the circulation pump 11 without closing the mixing valve 29 (step S35).

一方、二次側出口温度が目標温度より低い場合(ステップS31→Yes)、循環ポンプ11の回転速度が上限に達しておらず循環ポンプ11の出力上限でなければ(ステップS32→No)、制御装置24は混合弁29を閉弁することなく循環ポンプ11の回転速度を制御するが(ステップS35)、循環ポンプ11の回転測度が上限に達して循環ポンプ11の出力上限のとき(ステップS32→Yes)、制御装置24は、混合弁29を徐々に閉弁する(ステップS33)。このとき、制御装置24は、図4のステップS25で混合弁29を徐々に開弁するときと同様に、循環ポンプの制御周期の数倍から数十倍の時間をかけて混合弁29を閉弁し、二次側出口温度が急速に上昇することを回避する。   On the other hand, when the secondary side outlet temperature is lower than the target temperature (step S31 → Yes), the control is performed when the rotational speed of the circulation pump 11 does not reach the upper limit and is not the output upper limit of the circulation pump 11 (step S32 → No). The device 24 controls the rotation speed of the circulation pump 11 without closing the mixing valve 29 (step S35), but when the rotation measure of the circulation pump 11 reaches the upper limit and the output upper limit of the circulation pump 11 is reached (step S32 → Yes), the control device 24 gradually closes the mixing valve 29 (step S33). At this time, the control device 24 closes the mixing valve 29 over several times to several tens of times the control period of the circulation pump, as in the case of gradually opening the mixing valve 29 in step S25 of FIG. Valve to avoid a rapid rise in secondary outlet temperature.

そして、制御装置24は混合弁29を閉弁した後(ステップS33)、混合弁29を閉弁に固定した状態で(ステップS34)、循環ポンプ11の回転速度を制御する(ステップS35)。   Then, after closing the mixing valve 29 (step S33), the control device 24 controls the rotational speed of the circulation pump 11 (step S35) while the mixing valve 29 is fixed to the closed valve (step S34).

二次側出口温度が目標温度より低い場合、制御装置24は、循環ポンプ11の回転速度を上昇してポンプ出力を上昇し、一次側循環量を増加するように循環ポンプ11の回転速度を制御する。しかしながら、循環ポンプ11の回転測度が上限のとき制御装置24は循環ポンプ11の回転速度をさらに上昇することができず、二次側出口温度を上昇できない。
このような場合、本実施形態に係る制御装置24は、混合弁29を閉弁して給湯管26における湯水と低温水の混合を中止する。給湯管26を流通する湯水の温度が低温水の温度で低下することが抑制されて二次側出口温度が上昇する。そして、循環ポンプ11の回転速度を上昇することなく二次側出口温度を目標温度まで上昇させることができる。
When the secondary side outlet temperature is lower than the target temperature, the control device 24 increases the rotation speed of the circulation pump 11 to increase the pump output, and controls the rotation speed of the circulation pump 11 so as to increase the primary circulation amount. To do. However, when the rotation measure of the circulation pump 11 is the upper limit, the control device 24 cannot further increase the rotation speed of the circulation pump 11 and cannot increase the secondary side outlet temperature.
In such a case, the control device 24 according to the present embodiment closes the mixing valve 29 and stops mixing hot water and low temperature water in the hot water supply pipe 26. A decrease in the temperature of the hot water flowing through the hot water supply pipe 26 due to the temperature of the low temperature water is suppressed, and the secondary side outlet temperature rises. Then, the secondary outlet temperature can be increased to the target temperature without increasing the rotational speed of the circulation pump 11.

このとき、制御装置24は、混合弁29を徐々に閉弁することによって二次側出口温度が急速に上昇することを回避し、循環ポンプ11の回転速度にオーバシュートやハンチングなどの現象が発生することを防いでいる。   At this time, the control device 24 avoids a rapid rise in the secondary outlet temperature by gradually closing the mixing valve 29, and a phenomenon such as overshoot or hunting occurs in the rotational speed of the circulation pump 11. To prevent you from doing.

このように、混合弁29が開弁した状態で循環ポンプ11の回転速度が上限に達した場合、混合弁29を閉弁して循環ポンプ11の回転速度を制御することで二次側出口温度を目標温度と精度よく一致させることができ、設定温度を給湯温度とする湯水を利用者に安定して給湯できる。   Thus, when the rotational speed of the circulation pump 11 reaches the upper limit with the mixing valve 29 opened, the secondary side outlet temperature is controlled by closing the mixing valve 29 and controlling the rotational speed of the circulation pump 11. Can be accurately matched with the target temperature, and hot water having the set temperature as the hot water supply temperature can be stably supplied to the user.

以上のように、本実施形態に係る電気給湯機1(図1参照)は、給水源21(図1参照)から供給される低温水を、熱交換器13(図1参照)をバイパスして流通させるバイパス管28(図1参照)と混合弁29(図1参照)を備え、制御装置24(図1参照)は、二次側出口温度を目標温度と一致させるために必要な一次側必要流量が図2の(a)、(b)に示す第2領域に入るように電気給湯機1を制御することを特徴とする。この構成によって制御装置24は、循環ポンプ11(図1参照)の回転速度の制御で一次側循環量を精度よく調節することができ、ひいては、二次側出口温度を精度よく調節できる。
したがって、蛇口22の給湯栓の開度が変化した場合や設定温度が変更された場合に、制御装置24は二次側出口温度を目標温度と精度よく一致させることができ、設定温度を給湯温度とする湯水を利用者に安定して給湯できるという優れた効果を奏する。
As described above, the electric water heater 1 (see FIG. 1) according to the present embodiment bypasses the low-temperature water supplied from the water supply source 21 (see FIG. 1) by the heat exchanger 13 (see FIG. 1). A bypass pipe 28 (see FIG. 1) to be circulated and a mixing valve 29 (see FIG. 1) are provided, and the control device 24 (see FIG. 1) is required on the primary side to make the secondary side outlet temperature coincide with the target temperature. The electric water heater 1 is controlled so that the flow rate falls in the second region shown in FIGS. 2A and 2B. With this configuration, the control device 24 can accurately adjust the primary circulation amount by controlling the rotational speed of the circulation pump 11 (see FIG. 1), and thus can accurately adjust the secondary outlet temperature.
Therefore, when the opening degree of the hot water tap of the faucet 22 is changed or the set temperature is changed, the control device 24 can accurately match the secondary side outlet temperature with the target temperature, and the set temperature is set to the hot water temperature. It has an excellent effect of stably supplying hot water to the user.

なお、本実施形態は発明の趣旨を逸脱しない範囲で適宜設計変更が可能である。
例えば、図1に示すように、バイパス管28と給湯管26の合流点に混合弁29が備わる構成に限定されず、図6の(a)に示すように、低温管25とバイパス管28の分岐点に混合弁29が備わる構成であってもよい。この構成であっても、図1に示す電気給湯機1と同様の効果を奏する。
Note that the design of this embodiment can be changed as appropriate without departing from the spirit of the invention.
For example, as shown in FIG. 1, the present invention is not limited to the configuration in which the mixing valve 29 is provided at the junction of the bypass pipe 28 and the hot water supply pipe 26, and as shown in FIG. A configuration in which a mixing valve 29 is provided at the branch point may be employed. Even if it is this structure, there exists an effect similar to the electric water heater 1 shown in FIG.

また、図6の(b)に示すように、混合弁29(図1参照)を備えず、バイパス管28を開閉する開閉弁28aと、バイパス管28を流通する低温水のバイパス流量を一定にするための弁機構となる定流量弁28b(オリフィスなど)を備える構成とすることも可能である。この構成の場合、開閉弁28aが開弁すると、定流量弁28bで設定される流量で低温水がバイパス管28を流通し、熱交換器13(図1参照)を流通する低温水の流量とバイパス管28を流通する低温水のバイパス流量の流量比率が決定される。また、開閉弁28aが閉弁するとバイパス管28が遮断されて、給水源21(図1参照)から供給される低温水の全てが熱交換器13を流通する。このように、開閉弁28aと定流量弁28bとが、熱交換器13(図1参照)を流通する低温水の流量とバイパス管28を流通する低温水のバイパス流量の流量比率を調節する流量調節機構になる。   Further, as shown in FIG. 6B, the mixing valve 29 (see FIG. 1) is not provided, and the on-off valve 28a for opening and closing the bypass pipe 28 and the bypass flow rate of the low-temperature water flowing through the bypass pipe 28 are kept constant. It is also possible to adopt a configuration provided with a constant flow valve 28b (orifice or the like) serving as a valve mechanism for this purpose. In this configuration, when the on-off valve 28a is opened, low-temperature water flows through the bypass pipe 28 at a flow rate set by the constant flow valve 28b, and the flow rate of low-temperature water flowing through the heat exchanger 13 (see FIG. 1) The flow rate ratio of the bypass flow rate of the low-temperature water flowing through the bypass pipe 28 is determined. When the on-off valve 28a is closed, the bypass pipe 28 is shut off, and all the low-temperature water supplied from the water supply source 21 (see FIG. 1) flows through the heat exchanger 13. As described above, the on-off valve 28a and the constant flow valve 28b adjust the flow rate ratio between the flow rate of the low-temperature water flowing through the heat exchanger 13 (see FIG. 1) and the flow rate of the low-temperature water flowing through the bypass pipe 28. Become an adjustment mechanism.

図6の(b)に示すように開閉弁28aを備える構成の場合、制御装置24(図1参照)は、図3のステップS2で混合弁29(図1参照)の替わりに開閉弁28aを閉弁してバイパス管28を遮断し、ステップS10で開閉弁28aを開弁することで、混合弁29を備える場合と同等に電気給湯機1を制御できる。
また、開閉弁28aが閉弁した状態で二次側流量が変化した場合、制御装置24は、図4のステップS25で混合弁29の替わりに開閉弁28aを開弁する。開閉弁28aは急速に開弁するが、定流量弁28bが備わることによってバイパス管28(図1参照)を流通する低温水の流量が一気に増えることが抑制され、熱交換器13(図1参照)を流通する低温水の流量が一気に減少することが抑制される。したがって、二次側出口温度が急速に低下することが回避される。このように、制御装置24は、開閉弁28aを開弁することによって混合弁29を備える場合と同等に電気給湯機1を制御できる。
As shown in FIG. 6B, in the case of the configuration including the on-off valve 28a, the control device 24 (see FIG. 1) sets the on-off valve 28a instead of the mixing valve 29 (see FIG. 1) in step S2 of FIG. By closing the valve and shutting off the bypass pipe 28 and opening the on-off valve 28a in step S10, the electric water heater 1 can be controlled in the same manner as when the mixing valve 29 is provided.
When the secondary flow rate changes with the on-off valve 28a closed, the control device 24 opens the on-off valve 28a instead of the mixing valve 29 in step S25 of FIG. Although the on-off valve 28a opens rapidly, the provision of the constant flow valve 28b suppresses the rapid increase in the flow rate of the low-temperature water flowing through the bypass pipe 28 (see FIG. 1), and the heat exchanger 13 (see FIG. 1). ), The flow rate of the low-temperature water flowing through is reduced at once. Therefore, a rapid decrease in the secondary side outlet temperature is avoided. Thus, the control device 24 can control the electric water heater 1 by opening the on-off valve 28a in the same manner as when the mixing valve 29 is provided.

また、開閉弁28aが開弁した状態で循環ポンプ11の回転速度が上限に達した場合、制御装置24(図1参照)は、図5のステップS33で混合弁29(図1参照)の替わりに開閉弁28aを閉弁してバイパス管28を遮断する。開閉弁28aは急速に閉弁するが、定流量弁28bが備わることによって、開閉弁28aの閉弁後しばらくの間、バイパス管28の低温水が給湯管26を流通する湯水に混合し、二次側出口温度が急速に上昇することが回避される。したがって制御装置24は、開閉弁28aを閉弁することによって混合弁29を備える場合と同等に電気給湯機1を制御できる。   When the rotational speed of the circulation pump 11 reaches the upper limit with the on-off valve 28a opened, the control device 24 (see FIG. 1) replaces the mixing valve 29 (see FIG. 1) in step S33 of FIG. Then, the on-off valve 28a is closed to shut off the bypass pipe 28. The on-off valve 28a closes rapidly, but by providing the constant flow valve 28b, for a while after the on-off valve 28a is closed, low temperature water in the bypass pipe 28 is mixed with hot water flowing through the hot water supply pipe 26. A rapid rise in the secondary outlet temperature is avoided. Therefore, the control device 24 can control the electric water heater 1 by closing the on-off valve 28a as in the case where the mixing valve 29 is provided.

このように、混合弁29(図1参照)を備えず、図6の(b)に示すように、バイパス管28を開閉する開閉弁28aと定流量弁28bを備える構成としても、図1に示す電気給湯機1と同等の効果を奏する。   As shown in FIG. 6B, the mixing valve 29 (see FIG. 1) is not provided. As shown in FIG. 6B, the open / close valve 28a for opening and closing the bypass pipe 28 and the constant flow valve 28b may be used. There exists an effect equivalent to the electric water heater 1 shown.

なお、本実施形態は、図1に示すように貯湯タンク12に蓄えられる高温水を循環ポンプ11で循環する構成としたが、COなどの冷媒を循環ポンプ11で循環させる電気給湯機に本発明を適用することもできる。
また、貯湯タンク12を備えず、図示しない冷凍装置等で加熱される高温水や冷媒を直接循環ポンプ11で循環する電気給湯機に本発明を適用することもできる。
また、高温水(熱媒体)で低温水(被熱交換媒体)を加熱する電気給湯機(給湯機)に限定されず、冷媒(熱媒体)で被熱交換媒体を冷却する給湯機にも本発明を適用できる。
In this embodiment, as shown in FIG. 1, the high-temperature water stored in the hot water storage tank 12 is circulated by the circulation pump 11, but the present invention is applied to an electric water heater that circulates a refrigerant such as CO 2 by the circulation pump 11. The invention can also be applied.
Further, the present invention can also be applied to an electric water heater that does not include the hot water storage tank 12 and circulates high-temperature water or refrigerant heated by a refrigeration apparatus (not shown) directly by the circulation pump 11.
Further, the present invention is not limited to an electric water heater (hot water heater) that heats low-temperature water (heat exchange medium) with high-temperature water (heat medium), but also to a water heater that cools the heat exchange medium with a refrigerant (heat medium). The invention can be applied.

以上のように本発明によると、被熱交換媒体である低温水の温度を、設定温度に応じて決定される目標温度と一致させるのに必要な熱媒体の流量(一次側循環量)である一次側必要流量が、所定の閾値(境界循環量L1)より少ない領域(第1領域)にある場合、熱交換器13をバイパスして被熱交換媒体の一部を流通することができる。したがって、熱交換器13における低温水の流量が減少して熱交換器13で熱媒体から低温水に伝熱される伝熱量が減少し、伝熱量の減少分を補うために一次側必要流量を増加できる。そして、一次側必要流量を第1領域以外の第2領域に入れることができる。第2領域は、循環ポンプ11の回転速度の変化に応じて熱媒体の流量が小さく変化する領域であり、循環ポンプ11の回転速度を制御することによって熱媒体の流量を精度よく調節できる。したがって、二次側出口温度である低温水の温度を循環ポンプ11の回転速度の制御で精度よく調節することができ、二次側出口温度を精度よく目標温度と一致させることができる。   As described above, according to the present invention, the flow rate of the heat medium (primary circulation amount) necessary to match the temperature of the low-temperature water that is the heat exchange medium with the target temperature determined according to the set temperature. When the required flow rate on the primary side is in a region (first region) that is smaller than a predetermined threshold (boundary circulation amount L1), the heat exchanger 13 can be bypassed and a part of the heat exchange medium can be circulated. Accordingly, the flow rate of the low-temperature water in the heat exchanger 13 is reduced, the amount of heat transferred from the heat medium to the low-temperature water is reduced in the heat exchanger 13, and the primary side required flow rate is increased to compensate for the decrease in the heat transfer amount. it can. And the primary side required flow volume can be put into 2nd area | regions other than a 1st area | region. The second region is a region in which the flow rate of the heat medium changes small according to the change in the rotation speed of the circulation pump 11, and the flow rate of the heat medium can be accurately adjusted by controlling the rotation speed of the circulation pump 11. Therefore, the temperature of the low temperature water which is the secondary side outlet temperature can be adjusted with high accuracy by controlling the rotational speed of the circulation pump 11, and the secondary side outlet temperature can be made to coincide with the target temperature with high accuracy.

1 電気給湯機(給湯機)
10 一次側
11 循環ポンプ(ポンプ)
13 熱交換器
14 高温管(一次側管路)
20 二次側
24 制御装置
25 低温管(二次側管路)
26 給湯管(二次側管路)
28 バイパス管
28a 開閉弁(流量調節機構)
28b 定流量弁(流量調節機構)
29 混合弁(流量調節機構)
L1 境界循環量(閾値)
1 Electric water heater (water heater)
10 Primary side 11 Circulation pump (pump)
13 Heat exchanger 14 High-temperature pipe (primary side pipe line)
20 Secondary side 24 Control device 25 Cryogenic pipe (secondary side pipe line)
26 Hot water supply pipe (secondary pipe line)
28 Bypass pipe 28a On-off valve (flow rate adjusting mechanism)
28b Constant flow valve (Flow control mechanism)
29 Mixing valve (Flow control mechanism)
L1 Boundary circulation amount (threshold)

Claims (5)

熱媒体が流通する一次側管路と、
前記熱媒体と熱交換する被熱交換媒体が流通する二次側管路と、
前記一次側管路および前記二次側管路に接続されて、前記熱媒体と前記被熱交換媒体が熱交換する熱交換器と、
前記熱媒体を前記一次側管路に流通させるポンプと、
前記熱交換器をバイパスするように前記二次側管路に備わるバイパス管と、
前記熱交換器を流通する前記被熱交換媒体の流量と前記バイパス管を流通する前記被熱交換媒体の流量の流量比率を調節する流量調節機構と、を備え、
前記ポンプの回転速度の変化に応じて変化する前記熱媒体の流量で前記被熱交換媒体の温度を調節して、当該被熱交換媒体の温度を目標温度と一致させる給湯機であって、
前記流量調節機構は、
前記被熱交換媒体の温度を前記目標温度と一致させるのに必要な前記熱媒体の流量である一次側必要流量が所定の閾値より少ないときは前記バイパス管に前記被熱交換媒体を流通させ、
前記一次側必要流量が前記閾値以上のときは、前記バイパス管を遮断することを特徴とする給湯機。
A primary conduit through which a heat medium flows;
A secondary side pipe through which a heat exchange medium to exchange heat with the heat medium flows;
A heat exchanger connected to the primary side pipe and the secondary side pipe to exchange heat between the heat medium and the heat exchange medium;
A pump for circulating the heat medium through the primary side pipe line;
A bypass pipe provided in the secondary side pipe line so as to bypass the heat exchanger;
A flow rate adjusting mechanism for adjusting a flow rate ratio between the flow rate of the heat exchange medium flowing through the heat exchanger and the flow rate of the heat exchange medium flowing through the bypass pipe;
A water heater that adjusts the temperature of the heat exchange medium with the flow rate of the heat medium that changes in accordance with a change in the rotation speed of the pump, and matches the temperature of the heat exchange medium with a target temperature,
The flow rate adjusting mechanism includes:
When the primary side required flow rate, which is the flow rate of the heat medium necessary to match the temperature of the heat exchange medium with the target temperature, is less than a predetermined threshold, the heat exchange medium is circulated through the bypass pipe,
When the primary-side required flow rate is equal to or higher than the threshold value, the bypass pipe is shut off.
前記流量調節機構は混合弁を含んで構成されることを特徴とする請求項1に記載の給湯機。   The water heater according to claim 1, wherein the flow rate adjusting mechanism includes a mixing valve. 前記流量調節機構は、前記バイパス管を開閉する開閉弁と、前記バイパス管を流通する前記被熱交換媒体の流量を一定に維持する弁機構を含んで構成されることを特徴とする請求項1に記載の給湯機。   2. The flow rate adjusting mechanism includes an on-off valve that opens and closes the bypass pipe, and a valve mechanism that maintains a constant flow rate of the heat exchange medium flowing through the bypass pipe. The water heater described in 1. 前記一次側必要流量が前記閾値より少ないとき、前記バイパス管を流通する前記被熱交換媒体の流量を、前記目標温度および前記一次側管路を流通する前記熱媒体の温度に基づいて設定することを特徴とする請求項1乃至請求項3のいずれか1項に記載の給湯機。   When the primary side required flow rate is less than the threshold, the flow rate of the heat exchange medium flowing through the bypass pipe is set based on the target temperature and the temperature of the heat medium flowing through the primary side pipe line. The water heater according to any one of claims 1 to 3, wherein 熱媒体が流通する一次側管路と、
前記熱媒体と熱交換する被熱交換媒体が流通する二次側管路と、
前記一次側管路および前記二次側管路に接続されて、前記熱媒体と前記被熱交換媒体が熱交換する熱交換器と、
前記熱媒体を前記一次側管路に流通させるポンプと、
前記熱交換器をバイパスするように前記二次側管路に備わるバイパス管と、
前記熱交換器を流通する前記被熱交換媒体の流量と前記バイパス管を流通する前記被熱交換媒体の流量の流量比率を調節する流量調節機構と、を備え、
前記ポンプの回転速度の変化に応じて変化する前記熱媒体の流量で前記被熱交換媒体の温度を調節して、当該被熱交換媒体の温度を目標温度と一致させる給湯機であって、
前記流量調節機構は、
前記ポンプの回転速度が所定回転速度より低いときに前記バイパス管に前記被熱交換媒体を流通させ、
前記ポンプの回転速度が前記所定回転速度以上のときに前記バイパス管を遮断することを特徴とする給湯機。
A primary conduit through which a heat medium flows;
A secondary side pipe through which a heat exchange medium to exchange heat with the heat medium flows;
A heat exchanger connected to the primary side pipe and the secondary side pipe to exchange heat between the heat medium and the heat exchange medium;
A pump for circulating the heat medium through the primary side pipe line;
A bypass pipe provided in the secondary side pipe line so as to bypass the heat exchanger;
A flow rate adjusting mechanism for adjusting a flow rate ratio between the flow rate of the heat exchange medium flowing through the heat exchanger and the flow rate of the heat exchange medium flowing through the bypass pipe;
A water heater that adjusts the temperature of the heat exchange medium with the flow rate of the heat medium that changes in accordance with a change in the rotation speed of the pump, and matches the temperature of the heat exchange medium with a target temperature,
The flow rate adjusting mechanism includes:
When the rotational speed of the pump is lower than a predetermined rotational speed, the heat exchange medium is circulated through the bypass pipe,
The hot water heater characterized by shutting off the bypass pipe when the rotational speed of the pump is equal to or higher than the predetermined rotational speed.
JP2010149213A 2010-06-30 2010-06-30 Water heater Withdrawn JP2012013288A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010149213A JP2012013288A (en) 2010-06-30 2010-06-30 Water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010149213A JP2012013288A (en) 2010-06-30 2010-06-30 Water heater

Publications (1)

Publication Number Publication Date
JP2012013288A true JP2012013288A (en) 2012-01-19

Family

ID=45599937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010149213A Withdrawn JP2012013288A (en) 2010-06-30 2010-06-30 Water heater

Country Status (1)

Country Link
JP (1) JP2012013288A (en)

Similar Documents

Publication Publication Date Title
JP5084768B2 (en) Hot water system
JP5202261B2 (en) Water heater
JP5101548B2 (en) Hot water system
JP2019027637A (en) Heating water heater and its control method
WO2016117220A1 (en) Heat supply system
JP5828219B2 (en) Cogeneration system, waste heat utilization apparatus, cogeneration system control method, and heat pump hot water supply apparatus
JP4752347B2 (en) Hot water storage water heater
JP5058193B2 (en) Hot water system
KR101797646B1 (en) Hot water proportional control device to the season of the instantaneous boiler and method thereof
JP2012013288A (en) Water heater
JP5816226B2 (en) Hot water storage water heater
JP3945361B2 (en) Heat pump water heater
CN112283784A (en) Heating water heating device and control method thereof
JP2008304153A (en) Heat pump water heater
JP2004205140A (en) Reheating device for bath
JP5982238B2 (en) Hot water storage water heater
JP2015190739A (en) heat source device
JP7277719B2 (en) Control method for storage hot water supply device
JP3811688B2 (en) Heat pump water heater
KR101588538B1 (en) Storage type hot water supply device
JP2017075750A (en) Water heater
JP6385071B2 (en) Hot water storage water heater
JP6508965B2 (en) Hot water storage type water heater
JP5989481B2 (en) Hot water storage water heater
JP2004100978A (en) Heat pump hot-water supply device

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130903