JP2012013215A - Vibration control structure with trigger mechanism - Google Patents

Vibration control structure with trigger mechanism Download PDF

Info

Publication number
JP2012013215A
JP2012013215A JP2010153336A JP2010153336A JP2012013215A JP 2012013215 A JP2012013215 A JP 2012013215A JP 2010153336 A JP2010153336 A JP 2010153336A JP 2010153336 A JP2010153336 A JP 2010153336A JP 2012013215 A JP2012013215 A JP 2012013215A
Authority
JP
Japan
Prior art keywords
vibration
small
viscoelastic body
controlling
vibrations
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010153336A
Other languages
Japanese (ja)
Other versions
JP5612931B2 (en
Inventor
Kenichi Honda
健一 本多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiwa House Industry Co Ltd
Original Assignee
Daiwa House Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiwa House Industry Co Ltd filed Critical Daiwa House Industry Co Ltd
Priority to JP2010153336A priority Critical patent/JP5612931B2/en
Publication of JP2012013215A publication Critical patent/JP2012013215A/en
Application granted granted Critical
Publication of JP5612931B2 publication Critical patent/JP5612931B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a vibration control structure that can make a viscous elastic body effectively absorb vibration energy irrespective of a large vibration or a small vibration, and can sufficiently secure rigidity at the small vibration, and can increase a limit shearing deformation capacity of the viscous elastic body at the large vibration.SOLUTION: Small vibration controlling viscous elastic bodies 4, 4 and a large vibration controlling viscous elastic body 3 are connected with each other with a first plate 1 and a second plate 2 set in parallel states, the small vibration controlling viscous elastic body 4 and the large vibration controlling viscous elastic body 3 are in a range of the limit shearing deformation capacity at the small vibration, at the same time, the large vibration controlling viscous elastic body 3 is in the range of the limit shearing deformation capacity in the large vibration, the small vibration controlling viscous elastic bodies 4, 4 are formed so as to exceed the limit shearing deformation capacity, and the connection of the first plate 1 and the second plate 2 by the small vibration controlling viscous elastic bodies 4, 4 is released at the large vibration.

Description

本発明は、トリガー機構付き制震構造に関する。   The present invention relates to a vibration control structure with a trigger mechanism.

プレート間に粘弾性体が接着状態に介設され、震動による両プレートの相対変位によって粘弾性体にせん断変形を行わせ、それによって該粘弾性体に震動エネルギーを吸収させるようにした制震構造は、大震動時にも、小震動時にも、粘弾性体に震動エネルギーを吸収させることのできる制震構造として、従来より、知られている。   A damping structure in which a viscoelastic body is interposed between the plates and the viscoelastic body is subjected to shear deformation by relative displacement of both plates due to vibration, thereby absorbing the vibrational energy in the viscoelastic body. Has been known as a seismic control structure that allows a viscoelastic body to absorb vibration energy during both large and small vibrations.

特開2008−7935号公報JP 2008-7935 A

しかしながら、上記のような制震構造では、粘弾性体の限界せん断変形能力を大きくして、大震動時に震動エネルギーを効果的に吸収させようとすると、小震動時の剛性が充分に確保されず、挙動が不安定になってしまいやすく、その一方で、小震動時の剛性を充分に確保しようとすると、粘弾性体の限界せん断変形能力が小さくなって、大震動時に粘弾性体が破断して粘弾性体に震動エネルギーを吸収させることができなくなってしまいやすいという問題がある。   However, in the seismic control structure as described above, if the limit shear deformation capacity of the viscoelastic body is increased to absorb the vibration energy effectively during a large vibration, the rigidity during a small vibration cannot be secured sufficiently. The behavior tends to become unstable. On the other hand, if sufficient rigidity is ensured during small vibrations, the limit shear deformation capacity of the viscoelastic body decreases, and the viscoelastic body breaks during large earthquakes. Therefore, there is a problem that the viscoelastic body cannot easily absorb the vibration energy.

本発明は、上記のような問題点に鑑み、大震動時であるか小震動時であるかを問わず粘弾性体に震動エネルギーを有効的に吸収させることができ、それでいて、小震動時の剛性を充分に確保することができると共に、大震動時の粘弾性体の限界せん断変形能力を大きくすることができる制震構造を提供することを課題とする。   In view of the above problems, the present invention can effectively absorb the vibration energy in the viscoelastic body regardless of whether it is a large vibration or a small vibration, It is an object of the present invention to provide a vibration control structure that can sufficiently ensure rigidity and can increase the limit shear deformation capability of a viscoelastic body during a large earthquake.

上記の課題は、震動により相対変位をする第1のがわと第2のがわとの間に大震動制震用の粘弾性体がこれらのがわと接合状態となるように介設され、大震動時に、該大震動制震用粘弾性体がせん断変形をして震動エネルギーを吸収するようになされていると共に、
前記大震動よりも小さい小震動の制震用粘弾性体が、前記第1のがわと第2のがわとの間にこれらのがわと接合状態となるように介設され、小震動時に、該小震動制震用粘弾性体がせん断変形をして震動エネルギーを吸収するようになされており、かつ、
前記小震動制震用粘弾性体と大震動制震用粘弾性体とは、前記第1のがわと第2のがわとを並列状態となって連結しており、
前記小震動時、小震動制震用粘弾性体及び大震動制震用粘弾性体はともに限界せん断変形能力の範囲内にある一方、前記大震動時、大震動制震用粘弾性体は限界せん断変形能力の範囲内にあると共に、小震動制震用粘弾性体は限界せん断変形能力を越えるようになされていて、該大震動時、小震動制震用粘弾性体との前記接合による第1のがわと第2のがわとの連結が解除されるようになされていることを特徴とするトリガー機構付き制震構造によって解決される(第1発明)。
The above problem is that a viscoelastic body for controlling large vibrations is interposed between the first and second cavities, which are relatively displaced by the vibration, so as to be in a state of joining with these quakes. The viscoelastic body for vibration control is subjected to shear deformation and absorbs vibration energy during a large vibration,
A viscoelastic body for vibration control with a small vibration smaller than the large vibration is interposed between the first and the second so as to be in a state of being joined to the two small vibrations. Sometimes, the viscoelastic body for damping small vibrations is adapted to absorb shear energy by shear deformation, and
The viscoelastic body for controlling small vibrations and the viscoelastic body for controlling large vibrations are connected in parallel with the first and second quakes,
At the time of the small earthquake, both the viscoelastic body for small vibration control and the viscoelastic body for large vibration control are within the range of the limit shear deformation capacity. The viscoelastic body for small vibration control is within the range of the shear deformation capacity, and exceeds the limit shear deformation capacity. This is solved by a seismic control structure with a trigger mechanism, wherein the connection between the first and second chins is released (first invention).

この構造では、大震動時、小震動制震用粘弾性体は限界せん断変形能力を越えるよう設定されている構成であるので、その分、小震動時の小震動制震用粘弾性体の剛性を充分に高く確保することができ、それにより、小震動時の挙動を安定したものにすることができる。   In this structure, the viscoelastic body for small vibration control is set to exceed the limit shear deformation capacity at the time of large earthquake, so the rigidity of the viscoelastic body for small vibration control at the time of small vibration is accordingly increased. Can be secured sufficiently high, so that the behavior at the time of a small vibration can be stabilized.

しかも、小震動時には、このように、小震動制震用粘弾性体が剛性確保を担うため、大震動制震用粘弾性体に小震動時の剛性確保を担わせる必要がなく、そのため、大震動制震用粘弾性体の限界せん断変形能力を大きくすることができる。そして、大震動時は、小震動制震用粘弾性体は限界せん断変形能力を越えて、小震動制震用粘弾性体による第1のがわと第2のがわとの連結が解除される、即ちトリガー機能が働くと共に、大震動制震用粘弾性体は限界せん断変形能力の範囲内にあるので、大震動制震用粘弾性体が、その大きな限界せん断変形能力の範囲内で、震動エネルギーを吸収していくことができる。   In addition, since the viscoelastic body for small vibration control is responsible for ensuring rigidity during small earthquakes, it is not necessary for the viscoelastic body for large vibration suppression to ensure rigidity during small earthquakes. It is possible to increase the limit shear deformation capacity of the vibration control viscoelastic body. During a large earthquake, the small-vibration damping viscoelastic body exceeds the limit shear deformation capacity, and the first and second gangs are disconnected from the small-vibration damping viscoelastic body. That is, the trigger function works, and the viscoelastic body for large vibration control is within the range of the limit shear deformation capacity, so the viscoelastic body for large vibration control is within the range of the large limit shear deformation capacity, It can absorb vibration energy.

そして、小震動制震用粘弾性体も、大震動制震用粘弾性体も、いずれも粘弾性体で構成されているので、大震動時であるか小震動時であるかを問わず粘弾性体に震動エネルギーを有効的に吸収させることができる。   Since both the viscoelastic body for small vibration control and the viscoelastic body for large vibration control are composed of viscoelastic bodies, the viscoelastic body can be used regardless of whether the vibration is large or small. The elastic body can effectively absorb vibration energy.

第1発明において、第1のがわと第2のがわとの少なくともいずれか一方に対する前記小震動制震用粘弾性体の接合が摩擦接合であり、前記大震動時、該摩擦接合部に滑りを生じることで、該小震動制震用粘弾性体との前記接合による第1のがわと第2のがわとの連結が解除されるようになされているとよい(第2発明)。   In the first invention, the joining of the viscoelastic body for controlling small vibrations to at least one of the first and second quakes is a friction joining, and the friction joining portion is attached to the friction joining portion during the great shaking. It is preferable that the first and second joints by the joint with the viscoelastic body for damping small vibrations are released by causing the slip (second invention). .

この場合は、大震動時の震動エネルギーの吸収が、大震動制震用粘弾性体のせん断変形のみならず、摩擦接合部における滑りによって行われて、大震動時の震動エネルギーの吸収をより一層有効効果的なものにすることができ、しかも、大震動時に滑りを生じるだけであるから、周囲を破損することが少なく、修復を容易にすることができる。   In this case, absorption of vibration energy during large earthquakes is not only caused by shear deformation of the viscoelastic body for large vibration control, but also by slipping at the friction joints, thereby further absorbing vibration energy during large earthquakes. It can be effective and effective, and since it only causes slippage during a large vibration, the surroundings are less likely to be damaged and repair can be facilitated.

また、第1発明において、前記大震動時、小震動制震用粘弾性体が破断をすることで、該小変形時制震用粘弾性体との前記接合による第1のがわと第2のがわとの連結が解除されるようになされているのもよく(第3発明)、その場合は、第1発明によって奏される作用効果を簡素な構造により、実現することができる。   Further, in the first invention, when the viscoelastic body for damping a small vibration is broken during the large earthquake, the first and second viscoelastic bodies by the joining with the viscoelastic body for damping a small deformation are connected. It may be configured such that the connection with the glue is released (third invention). In that case, the function and effect achieved by the first invention can be realized with a simple structure.

なお、「大」「小」の語の概念は、一方に対するもう一方の相対的な概念であり、特定の大きさ、ないしは、特定範囲の大きさを指し示すものでないことはいうまでもない。   Needless to say, the concept of the words “large” and “small” is a relative concept of one to the other and does not indicate a specific size or a size of a specific range.

本発明のトリガー機構付き制震構造は、以上のとおりのものであるから、大震動時であるか小震動時であるかを問わず粘弾性体に震動エネルギーを有効的に吸収させることができ、それでいて、小震動時の剛性を充分に確保することができると共に、大震動時の粘弾性体の限界せん断変形能力を大きくすることができる。   Since the seismic control structure with a trigger mechanism of the present invention is as described above, the viscoelastic body can effectively absorb the vibration energy regardless of whether it is a large vibration or a small vibration. Nevertheless, it is possible to sufficiently ensure the rigidity at the time of a small vibration and to increase the limit shear deformation ability of the viscoelastic body at the time of a large vibration.

第1実施形態の制震構造を示すもので、図(イ)は正面図、図(ロ)は平面図である。FIG. 1 shows a vibration control structure of a first embodiment, in which FIG. (A) is a front view and FIG. (B) is a plan view. 図(イ−1)及び図(イ−2)は小震動時の作動状態を示す平面図、図(ロ−1)及び図(ロ−2)は大震動時の作動状態を示す平面図である。Fig. (A-1) and Fig. (I-2) are plan views showing the operating state during small earthquakes, and Fig. (B-1) and Fig. (B-2) are plan views showing the operating state during large earthquakes. is there. 第2実施形態の制震構造を示すもので、図(イ)は正面図、図(ロ)は平面図である。FIG. 2 shows a vibration control structure of a second embodiment, in which FIG. (A) is a front view and FIG. (B) is a plan view. 図(イ−1)及び図(イ−2)は小震動時の作動状態を示す平面図、図(ロ−1)及び図(ロ−2)は大震動時の作動状態を示す平面図である。Fig. (A-1) and Fig. (I-2) are plan views showing the operating state during small earthquakes, and Fig. (B-1) and Fig. (B-2) are plan views showing the operating state during large earthquakes. is there. 第3実施形態の制震構造を示すもので、図(イ)は正面図、図(ロ)は側面図である。The damping structure of 3rd Embodiment is shown, A figure (I) is a front view, A figure (B) is a side view. 図(イ)は第4実施形態の制震構造を示す側面図、図(ロ)は第5実施形態の側面図である。Fig. (A) is a side view showing the vibration control structure of the fourth embodiment, and Fig. (B) is a side view of the fifth embodiment.

次に、本発明の実施形態を図面に基づいて説明する。   Next, embodiments of the present invention will be described with reference to the drawings.

図1に示す第1実施形態のトリガー機構付き制震構造は、制震デバイスに適用した場合のもので、1は第1のがわとしての第1プレート、2は第2のがわとしての第2プレートであり、これら第1,第2のプレート1,2は、面と面とを向かい合わせ状態にして、地震等の水平震動により該面の広がる方向に往復の相対変位をするように備えられている。   The first embodiment of the vibration control structure with a trigger mechanism shown in FIG. 1 is applied to a vibration control device, where 1 is a first plate as a first and 2 is a second These are the second plates, and these first and second plates 1 and 2 are arranged so that the surfaces face each other and are reciprocally displaced in the direction in which the surface spreads by horizontal vibration such as an earthquake. Is provided.

これら第1及び第2のプレート1,2間には、大震動制震用粘弾性体3がこれらプレート1,2と接着等により接合状態となるように介設されて、第1及び第2のプレート1,2を連結し、大震動時に、該大震動制震用粘弾性体3がせん断変形をして震動エネルギーを吸収するようになされている。   Between the first and second plates 1 and 2, a viscoelastic body 3 for controlling large vibration is interposed so as to be joined to the plates 1 and 2 by adhesion or the like. The plates 1 and 2 are connected to each other so that, during a large vibration, the viscoelastic body 3 for controlling a large vibration undergoes shear deformation to absorb the vibration energy.

また、第1及び第2のプレート1,2間には、上記の大震動よりも小さい小震動の制震用粘弾性体4,4が、大震動制震用粘弾性体3を挟む両側に位置して、本実施形態では左右両側に位置して、大震動制震用粘弾性体3と並列状態となって、第1及び第2のプレート1,2と接合状態となるように介設され、第1及び第2のプレート1,2を連結し、小震動時に、該小震動制震用粘弾性体4,4がせん断変形をして震動エネルギーを吸収するようになされている。   Further, between the first and second plates 1 and 2, the damping viscoelastic bodies 4 and 4 having a small vibration smaller than the above large vibration are disposed on both sides sandwiching the viscoelastic body 3 for large vibration damping. In this embodiment, it is located on both the left and right sides, and is arranged in parallel with the viscoelastic body 3 for controlling large vibrations, and is joined to the first and second plates 1 and 2. The first and second plates 1 and 2 are connected to each other, and during the small vibration, the small vibration damping viscoelastic bodies 4 and 4 are subjected to shear deformation to absorb the vibration energy.

そして、本実施形態では、小震動制震用粘弾性体4,4と大震動制震用粘弾性体3は、例えば、単位厚さ寸法当たりの限界せん断変形量が同じ粘弾性体からなっていて、その厚さ寸法を小震動制震用粘弾性体4,4が小、大震動制震用粘弾性体3がそれよりも大となるように設定され、それにより、前記小震動時、小震動制震用粘弾性体4,4及び大震動制震用粘弾性体3はともに限界せん断変形能力の範囲内にある一方、前記大震動時、大震動制震用粘弾性体3は限界せん断変形能力の範囲内にあると共に、小震動制震用粘弾性体4,4は限界せん断変形能力を越える、即ち、トリガー機能が働くようになされていて、該大震動時、小震動制震用粘弾性体4,4との接合による第1プレート1と第2プレート2との連結が解除されるようになされている。第1プレート1、第2プレート2の屈曲形状は、大震動制震用粘弾性体3の厚さ寸法と小震動制震用粘弾性体4,4の厚さ寸法との違いに対応したものである。   In the present embodiment, the small-vibration damping viscoelastic bodies 4 and 4 and the large-vibration damping viscoelastic body 3 are, for example, viscoelastic bodies having the same critical shear deformation amount per unit thickness dimension. The thickness dimensions are set so that the viscoelastic bodies 4 and 4 for small vibration control are small and the viscoelastic body 3 for large vibration control is larger than that, The viscoelastic bodies 4 and 4 for controlling small vibrations and the viscoelastic body 3 for controlling large earthquakes are both within the range of the limit shear deformation capacity. The viscoelastic bodies 4 and 4 for controlling small vibrations are within the range of shear deformation capacity and exceed the limit shear deformation capacity, that is, the trigger function is activated. So that the connection between the first plate 1 and the second plate 2 by the joining with the viscoelastic bodies 4 and 4 is released. It is. The bent shape of the first plate 1 and the second plate 2 corresponds to the difference between the thickness dimension of the viscoelastic body 3 for large vibration control and the thickness dimension of the viscoelastic bodies 4 and 4 for small vibration control. It is.

また、本実施形態では、各小震動制震用粘弾性体4,4の一方の面部は接着等により一方のプレート1と接合されているが、もう一方の面部は摩擦面5となっていて、もう一方のプレート2に対して摩擦接合されていて、大震動時、摩擦面5による摩擦接合部に滑りを生じることで、上記のように小震動制震用粘弾性体4,4による第1プレート1と第2のプレート2との連結が解除されるようになされている。   In the present embodiment, one surface portion of each of the small-vibration damping viscoelastic bodies 4 and 4 is joined to one plate 1 by adhesion or the like, but the other surface portion is a friction surface 5. Since the friction plate is friction-bonded to the other plate 2 and slips in the friction-joined portion of the friction surface 5 during a large vibration, the second vibration-damping viscoelastic bodies 4 and 4 are used as described above. The connection between the first plate 1 and the second plate 2 is released.

上記の構造では、大震動時、小震動制震用粘弾性体4,4は、限界せん断変形能力を越えるよう設定されているので、その分、小震動時の小震動制震用粘弾性体4,4の剛性を充分に高く確保することができ、それにより、図2(イ−1)(イ−2)に示す小震動時の挙動を安定したものにすることができる。   In the above structure, the viscoelastic bodies 4 and 4 for controlling small vibrations during a large earthquake are set so as to exceed the limit shear deformation capacity. The rigidity of 4 and 4 can be secured sufficiently high, whereby the behavior at the time of the small vibration shown in FIGS. 2 (A-1) and (A-2) can be stabilized.

しかも、小震動時には、このように、小震動制震用粘弾性体4,4が剛性確保を担うため、大震動制震用粘弾性体3に小震動時の剛性確保を担わせる必要がなく、そのため、大震動制震用粘弾性体3の限界せん断変形能力を大きくすることができる。そして、大震動時は、図2(ロ−1)(ロ−2)に示すように、小震動制震用粘弾性体4,4は限界せん断変形能力を越えて、小震動制震用粘弾性体4,4による第1プレート1と第2プレート2との連結が解除されると共に、大震動制震用粘弾性体3は限界せん断変形能力の範囲内にあるので、大震動制震用粘弾性体3が、その大きな限界せん断変形能力の範囲内で、震動エネルギーを吸収していくことができる。   Moreover, since the viscoelastic bodies 4 and 4 for controlling small vibrations are responsible for securing rigidity during small earthquakes, it is not necessary for the viscoelastic body 3 for controlling large vibrations to ensure rigidity during small earthquakes. Therefore, the limit shear deformation ability of the viscoelastic body 3 for controlling large vibrations can be increased. When large earthquakes occur, as shown in FIGS. 2 (B-1) and (B-2), the small-vibration damping viscoelastic bodies 4, 4 exceed the limit shear deformation capacity, and the small-vibration damping viscoelastic bodies 4 and 4 The connection between the first plate 1 and the second plate 2 by the elastic bodies 4 and 4 is released, and the viscoelastic body 3 for controlling large vibrations is within the limit shear deformation capacity. The viscoelastic body 3 can absorb the vibration energy within the range of its large limit shear deformation ability.

特に、本実施形態では、大震動時、摩擦面5,5に滑りを生じるようになされているので、大震動時の震動エネルギーの吸収が、大震動制震用粘弾性体3のせん断変形のみならず、摩擦面5,5における滑りによって行われて、大震動時の震動エネルギーの吸収をより一層有効効果的なものにすることができる。   In particular, in the present embodiment, since the friction surfaces 5 and 5 are caused to slip during a large vibration, the absorption of the vibration energy during the large vibration is only the shear deformation of the viscoelastic body 3 for controlling large vibration. Rather, it is performed by sliding on the friction surfaces 5 and 5, and the absorption of vibration energy during a large vibration can be made even more effective.

そして、小震動制震用粘弾性体4,4も、大震動制震用粘弾性体3も、いずれも粘弾性体で構成されているので、図2に示すように、大震動時であるか小震動時であるかを問わず粘弾性体に震動エネルギーを有効的に吸収させることができる。   And since both the viscoelastic bodies 4 and 4 for controlling small vibrations and the viscoelastic body 3 for controlling large vibrations are made of viscoelastic bodies, as shown in FIG. The viscoelastic body can effectively absorb the vibration energy regardless of whether the vibration is small or small.

図3及び図4に示す第2実施形態のトリガー機構付き制震構造は、各小震動制震用粘弾性体4,4の一方の面部が接着等により一方のプレート1と接合されており、もう一方の面部も接着等によりもう一方のプレート2と接合されていて、大震動時、図4(ロ−1)(ロ−2)に示すように、小震動制震用粘弾性体4,4が厚さ方向の中間部において破断をすること(これが本実施形態におけるトリガーである。)で、小変形時制震用粘弾性体4,4による第1プレート1と第2プレート2との連結が解除されるようになされているものである。その他は、第1実施形態と同様であり、同様の作用効果が奏される。   In the vibration control structure with a trigger mechanism of the second embodiment shown in FIG. 3 and FIG. 4, one surface portion of each small vibration control viscoelastic body 4, 4 is joined to one plate 1 by adhesion or the like, The other surface part is also joined to the other plate 2 by bonding or the like, and during a large earthquake, as shown in FIGS. When 4 breaks in the middle part in the thickness direction (this is a trigger in this embodiment), the first plate 1 and the second plate 2 are connected by the viscoelastic bodies 4 and 4 for vibration control during small deformation. Is to be released. Others are the same as those in the first embodiment, and the same effects are achieved.

図5に示す第3実施形態のトリガー機構付き制震構造は、小震動制震用粘弾性体4,4を、大震動制震用粘弾性体3を挟む上下両側に位置するように備えさせたものである。その他は、第1,第2実施形態と同様である。   The third embodiment of the damping structure with a trigger mechanism shown in FIG. 5 is provided with the viscoelastic bodies 4 and 4 for controlling small vibrations so as to be positioned on both upper and lower sides sandwiching the viscoelastic body 3 for controlling large vibrations. It is a thing. Others are the same as those in the first and second embodiments.

図6(イ)に示す第4実施形態のトリガー機構付き制震構造は、小震動制震用粘弾性体4を挟む上下両側に大震動制震用粘弾性体3,3を備えさせたものであり、図5の示す構造の場合に比べ、小震動制震用粘弾性体4が、滑りないしは破断した後の挙動、即ち、大震動時の挙動を安定したものにすることができる。その他は、第1,第2実施形態と同様である。   The vibration control structure with a trigger mechanism of the fourth embodiment shown in FIG. 6 (a) is provided with viscoelastic bodies 3, 3 for large vibration control on both upper and lower sides sandwiching the viscoelastic body 4 for small vibration control. Compared to the structure shown in FIG. 5, the small-vibration damping viscoelastic body 4 can stabilize the behavior after slipping or breaking, that is, the behavior at the time of a large earthquake. Others are the same as those in the first and second embodiments.

図6(ロ)に示す第5実施形態のトリガー機構付き制震構造は、2面接着方式を採用したものである。その他は、第1,第2実施形態と同様である。   The vibration control structure with a trigger mechanism according to the fifth embodiment shown in FIG. 6 (B) employs a two-sided bonding method. Others are the same as those in the first and second embodiments.

以上に、本発明の実施形態を示したが、本発明はこれに限られるものではなく、発明思想を逸脱しない範囲で各種の変更が可能である。例えば、上記の実施形態では、大震動制震用粘弾性体3と小震動制震用粘弾性体4,4として、単位厚さ寸法当たりの限界せん断変形量が同じ粘弾性体を用い、その厚さ寸法を異ならせることによって、大震動制震用粘弾性体3としたり、小震動制震用粘弾性体4とした場合を示したが、単位厚さ寸法当たりの限界せん断変形量が異なる同じ厚さ寸法の粘弾性体を、大震動制震用粘弾性体としたり、小震動制震用粘弾性体としたりするのもよいし、種々の態様が採用されてよい。   Although the embodiment of the present invention has been described above, the present invention is not limited to this, and various modifications can be made without departing from the spirit of the invention. For example, in the above-described embodiment, as the viscoelastic body 3 for large vibration control and the viscoelastic bodies 4 and 4 for small vibration control, viscoelastic bodies having the same critical shear deformation amount per unit thickness dimension are used. Although the case of the viscoelastic body 3 for controlling large vibrations or the viscoelastic body 4 for controlling small vibrations is shown by changing the thickness dimension, the amount of critical shear deformation per unit thickness dimension is different. The viscoelastic body having the same thickness may be used as a viscoelastic body for large vibration control or a viscoelastic body for small vibration control, or various modes may be adopted.

1…第1プレート(第1のがわ)
2…第2プレート(第2のがわ)
3…大震動制震用粘弾性体
4…小震動制震用粘弾性体
5…摩擦面
1 ... 1st plate (1st gawa)
2 ... 2nd plate (2nd gawa)
3 ... Viscoelastic body for controlling large vibrations 4 ... Viscoelastic body for controlling small vibrations 5 ... Friction surface

Claims (3)

震動により相対変位をする第1のがわと第2のがわとの間に大震動制震用の粘弾性体がこれらのがわと接合状態となるように介設され、大震動時に、該大震動制震用粘弾性体がせん断変形をして震動エネルギーを吸収するようになされていると共に、
前記大震動よりも小さい小震動の制震用粘弾性体が、前記第1のがわと第2のがわとの間にこれらのがわと接合状態となるように介設され、小震動時に、該小震動制震用粘弾性体がせん断変形をして震動エネルギーを吸収するようになされており、かつ、
前記小震動制震用粘弾性体と大震動制震用粘弾性体とは、前記第1のがわと第2のがわとを並列状態となって連結しており、
前記小震動時、小震動制震用粘弾性体及び大震動制震用粘弾性体はともに限界せん断変形能力の範囲内にある一方、前記大震動時、大震動制震用粘弾性体は限界せん断変形能力の範囲内にあると共に、小震動制震用粘弾性体は限界せん断変形能力を越えるようになされていて、該大震動時、小震動制震用粘弾性体との前記接合による第1のがわと第2のがわとの連結が解除されるようになされていることを特徴とするトリガー機構付き制震構造。
A viscoelastic body for controlling large vibrations is interposed between the first and second wings, which are displaced relative to each other by vibration, so as to be in a state of joining with these wings. The viscoelastic body for controlling large earthquakes is adapted to absorb shear energy by shearing deformation,
A viscoelastic body for vibration control with a small vibration smaller than the large vibration is interposed between the first and the second so as to be in a state of being joined to the two small vibrations. Sometimes, the viscoelastic body for damping small vibrations is adapted to absorb shear energy by shear deformation, and
The viscoelastic body for controlling small vibrations and the viscoelastic body for controlling large vibrations are connected in parallel with the first and second quakes,
At the time of the small earthquake, both the viscoelastic body for small vibration control and the viscoelastic body for large vibration control are within the range of the limit shear deformation capacity. The viscoelastic body for small vibration control is within the range of the shear deformation capacity, and exceeds the limit shear deformation capacity. A seismic control structure with a trigger mechanism characterized in that the connection between the first and the second is released.
第1のがわと第2のがわとの少なくともいずれか一方に対する前記小震動制震用粘弾性体の接合が摩擦接合であり、前記大震動時、該摩擦接合部に滑りを生じることで、該小震動制震用粘弾性体との前記接合による第1のがわと第2のがわとの連結が解除されるようになされている請求項1に記載のトリガー機構付き制震構造。   The joint of the viscoelastic body for controlling small vibrations to at least one of the first and second quakes is a friction joint, and at the time of the large earthquake, the friction joint is slipped. 2. The damping structure with a trigger mechanism according to claim 1, wherein the connection between the first and second saws by the joint with the viscoelastic body for damping small vibrations is released. . 前記大震動時、小震動制震用粘弾性体が破断をすることで、該小変形時制震用粘弾性体との前記接合による第1のがわと第2のがわとの連結が解除されるようになされている請求項1に記載のトリガー機構付き制震構造。   When the viscoelastic body for controlling small vibrations breaks during the large earthquake, the connection between the first and the second glue due to the joining with the viscoelastic body for controlling vibrations during the small deformation is released. The vibration control structure with a trigger mechanism according to claim 1, wherein
JP2010153336A 2010-07-05 2010-07-05 Damping structure with trigger mechanism Expired - Fee Related JP5612931B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010153336A JP5612931B2 (en) 2010-07-05 2010-07-05 Damping structure with trigger mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010153336A JP5612931B2 (en) 2010-07-05 2010-07-05 Damping structure with trigger mechanism

Publications (2)

Publication Number Publication Date
JP2012013215A true JP2012013215A (en) 2012-01-19
JP5612931B2 JP5612931B2 (en) 2014-10-22

Family

ID=45599877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010153336A Expired - Fee Related JP5612931B2 (en) 2010-07-05 2010-07-05 Damping structure with trigger mechanism

Country Status (1)

Country Link
JP (1) JP5612931B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007247278A (en) * 2006-03-16 2007-09-27 Shimizu Corp Seismic control damper
JP2008190562A (en) * 2007-02-01 2008-08-21 Daiwa House Ind Co Ltd Quake control mechanism

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007247278A (en) * 2006-03-16 2007-09-27 Shimizu Corp Seismic control damper
JP2008190562A (en) * 2007-02-01 2008-08-21 Daiwa House Ind Co Ltd Quake control mechanism

Also Published As

Publication number Publication date
JP5612931B2 (en) 2014-10-22

Similar Documents

Publication Publication Date Title
JP5960812B2 (en) Passive damper
JP4355673B2 (en) Building seismic control structure
TWI571550B (en) Weighing device
WO2016038834A1 (en) Inter-member connecting structure
KR101448386B1 (en) Vibration control device of scissors toggle type having hinge friction damper
JP2006241934A (en) Damper device
TW200918782A (en) Damper equipment
JP2009041774A (en) Angle connector
JP2008138833A (en) Damper device, method of designing damper device, vibration control structure, vibration control method
KR101488596B1 (en) Vibration control damper device having three point support of toggle type
JP5946925B1 (en) Joint structure between members
JP2002357013A (en) Composite vibration-control brace
JP2007040063A (en) Bracing structure
JP5612931B2 (en) Damping structure with trigger mechanism
JP2008215071A (en) Seismic response control apparatus and seismic control structure
JP5203275B2 (en) Damping structure
JP5274851B2 (en) Friction damper and hybrid damper
JP5609028B2 (en) Steel panel joint structure, steel panel, and building provided with a steel frame material and one or more thin steel plate folded plates
JP3147013U (en) Composite vibration brace
JPWO2013024608A1 (en) Automatic warehouse rack and its vibration control method
JP2012067805A (en) Vibration control structure of joint part
JP4879766B2 (en) Vibration control mechanism
KR20200012600A (en) Complex damper for construction
JP2014222095A (en) Friction damper
JP2011163020A (en) Viscoelastic damper device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140905

R150 Certificate of patent or registration of utility model

Ref document number: 5612931

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees