JP2012009702A - Heating device and manufacturing method of semiconductor device - Google Patents

Heating device and manufacturing method of semiconductor device Download PDF

Info

Publication number
JP2012009702A
JP2012009702A JP2010145457A JP2010145457A JP2012009702A JP 2012009702 A JP2012009702 A JP 2012009702A JP 2010145457 A JP2010145457 A JP 2010145457A JP 2010145457 A JP2010145457 A JP 2010145457A JP 2012009702 A JP2012009702 A JP 2012009702A
Authority
JP
Japan
Prior art keywords
heating element
wall
heat
pair
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010145457A
Other languages
Japanese (ja)
Other versions
JP2012009702A5 (en
JP5529646B2 (en
Inventor
Tetsuya Kosugi
哲也 小杉
Hitoshi Murata
等 村田
Masaaki Ueno
正昭 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2010145457A priority Critical patent/JP5529646B2/en
Priority to US12/838,831 priority patent/US9064912B2/en
Priority to KR1020100069368A priority patent/KR101096602B1/en
Priority to TW099123773A priority patent/TWI423339B/en
Priority to CN2010102361453A priority patent/CN101964303B/en
Priority to CN201210129802.3A priority patent/CN102709213B/en
Publication of JP2012009702A publication Critical patent/JP2012009702A/en
Publication of JP2012009702A5 publication Critical patent/JP2012009702A5/ja
Application granted granted Critical
Publication of JP5529646B2 publication Critical patent/JP5529646B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To reduce contact between a heating element and a heat insulator at the time of thermal expansion of the heating element and reduce damage of components constituting a heating device.SOLUTION: A heating device comprises an annularly formed heating element, a heat insulator placed around the circumference of the heating element, and a fixing part which fixes the heating element onto an inner wall of the heat insulator. At least when the heating element is at a room temperature, the distance between the heating element and the inner wall of the heat insulator is set to be larger as it moves away from the fixing part.

Description

本発明は、加熱装置及び半導体装置の製造方法に関する。   The present invention relates to a heating device and a method for manufacturing a semiconductor device.

DRAM等の半導体装置の製造方法の一工程として、シリコンウエハ等の基板を加熱して処理する基板処理工程が実施されることがある。係る工程は、基板を収容して処理する処理室と、該処理室内を加熱する加熱装置と、を備えた基板処理装置により実施される。加熱装置は、処理室の外周を囲う環状の発熱体と、発熱体の外周を囲うように設けられる断熱体と、発熱体を断熱体の内壁に固定する保持部材と、を備えている(例えば特許文献1参照)。   As one step of a method of manufacturing a semiconductor device such as a DRAM, a substrate processing step of heating and processing a substrate such as a silicon wafer may be performed. Such a process is performed by a substrate processing apparatus including a processing chamber that accommodates and processes a substrate, and a heating device that heats the processing chamber. The heating device includes an annular heating element that surrounds the outer periphery of the processing chamber, a heat insulator that is provided so as to surround the outer periphery of the heating element, and a holding member that fixes the heating element to the inner wall of the heat insulator (for example, Patent Document 1).

特開平4−318923号公報JP-A-4-318923

しかしながら、上述の加熱装置においては、昇温に伴い発熱体が熱膨張すると、発熱体と断熱体とが接触してしまい、これらの部材が損傷を受けてしまう場合があった。特に、発熱体の変位量は保持部材から離れるにつれて累積的に大きくなることから、保持部材から離れた場所で発熱体と断熱体との接触が生じ易かった。   However, in the above-described heating device, when the heating element thermally expands as the temperature rises, the heating element and the heat insulator come into contact with each other, and these members may be damaged. In particular, since the amount of displacement of the heating element increases cumulatively with distance from the holding member, contact between the heating element and the heat insulator tends to occur at a location away from the holding member.

そこで本発明は、発熱体が熱膨張した際における発熱体と断熱体との接触、あるいは発熱体とピン部材との干渉を抑制し、加熱装置の構成部材の損傷を低減することが可能な加熱装置及び半導体装置の製造方法を提供することを目的とする。   Therefore, the present invention provides a heating that can suppress the contact between the heating element and the heat insulator when the heating element is thermally expanded, or the interference between the heating element and the pin member, and reduce the damage to the components of the heating device. An object is to provide a device and a method for manufacturing a semiconductor device.

本発明の一態様によれば、環状に形成された発熱体と、前記発熱体の外周を囲うように設けられる断熱体と、前記発熱体を前記断熱体の内壁に固定する固定部と、を備えた加熱装置であって、少なくとも前記発熱体が室温状態の時に、前記発熱体と前記断熱体の内壁との間の距離が、前記固定部から離れるにつれて大きくなるように設定されている加熱装置が提供される。   According to an aspect of the present invention, an annular heating element, a heat insulator provided so as to surround an outer periphery of the heat generator, and a fixing portion that fixes the heat generator to an inner wall of the heat insulator. A heating device provided, wherein at least when the heating element is at room temperature, a distance between the heating element and the inner wall of the heat insulator is set so as to increase as the distance from the fixing portion increases. Is provided.

本発明の他の態様によれば、環状に形成された発熱体と、前記発熱体の外周を囲うように設けられる断熱体と、前記発熱体を前記断熱体の内壁に固定する固定部と、を備えた加熱装置の前記発熱体の内側に設けられた処理室内に基板を搬入する工程と、前記発熱体を昇温させて前記処理室内の基板を加熱して処理する工程と、を有し、少なくとも前記発熱体が室温状態の時に、前記発熱体と前記断熱体の内壁との間の距離が、前記固定部から離れるにつれて大きくなるように設定する半導体装置の製造方法が提供される。   According to another aspect of the present invention, an annularly formed heating element, a heat insulating body provided so as to surround an outer periphery of the heating element, a fixing portion that fixes the heating element to an inner wall of the heat insulating body, And a step of carrying a substrate into a processing chamber provided inside the heating element of the heating device, and a step of heating the substrate in the processing chamber by heating the heating element to process the substrate. There is provided a method for manufacturing a semiconductor device, wherein at least when the heating element is at room temperature, a distance between the heating element and an inner wall of the heat insulator is set to increase as the distance from the fixing portion increases.

本発明に係る加熱装置及び半導体装置の製造方法によれば、発熱体が熱膨張した際における発熱体と断熱体との接触を抑制でき、加熱装置の構成部材の損傷を低減することが可能となる。   According to the heating device and the method for manufacturing a semiconductor device according to the present invention, it is possible to suppress contact between the heating element and the heat insulator when the heating element thermally expands, and to reduce damage to the components of the heating device. Become.

本発明の第1の実施形態に係る基板処理装置の垂直断面図である。1 is a vertical sectional view of a substrate processing apparatus according to a first embodiment of the present invention. 本発明の第1の実施形態に係るヒータユニットの斜視図である。It is a perspective view of the heater unit which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係るヒータユニットの部分拡大図である。It is the elements on larger scale of the heater unit which concerns on the 1st Embodiment of this invention. (a)は本発明の第1の実施形態に係る発熱体を構成し得る線状材料を例示する概略図であり、(b)は該発熱体を構成し得る板状材料を例示する概略図である。(A) is the schematic which illustrates the linear material which can comprise the heat generating body which concerns on the 1st Embodiment of this invention, (b) is the schematic which illustrates the plate-shaped material which can comprise this heat generating body It is. (a)は本発明の第1の実施形態に係る給電部周辺の部分拡大図であり、(b)は拡大部分の側面図である。(A) is the elements on larger scale of the electric power feeding part periphery which concerns on the 1st Embodiment of this invention, (b) is a side view of an enlarged part. 本発明の第1の実施形態に係る昇温前のヒータユニットの水平断面図である。It is a horizontal sectional view of the heater unit before temperature rising concerning the 1st embodiment of the present invention. 本発明の第1の実施形態に係る昇温後のヒータユニットの水平断面図である。It is a horizontal sectional view of the heater unit after temperature rising concerning the 1st embodiment of the present invention. 本発明の第1の実施形態に係る発熱体の膨張方向を示す概略図である。It is the schematic which shows the expansion direction of the heat generating body which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る発熱体の熱膨張に関する測定結果を例示する概略図である。It is the schematic which illustrates the measurement result regarding the thermal expansion of the heat generating body which concerns on the 1st Embodiment of this invention. (a)は本発明の第2の実施形態に係るダミー端子周辺の部分拡大図であり、(b)は拡大部分の側面図である。(A) is the elements on larger scale around the dummy terminal which concerns on the 2nd Embodiment of this invention, (b) is a side view of an enlarged part. (a)は本発明に係る固定部の変形例としてのピン部材周辺の部分拡大図であり、(b)は拡大部分の側面図である。(A) is the elements on larger scale around a pin member as a modification of the fixed part concerning the present invention, and (b) is a side view of an enlarged part. 本発明の第2の実施形態に係る昇温前のヒータユニットの水平断面図である。It is a horizontal sectional view of the heater unit before temperature rising concerning the 2nd Embodiment of the present invention. 本発明の第2の実施形態に係る昇温後のヒータユニットの水平断面図である。It is a horizontal sectional view of the heater unit after temperature rising concerning the 2nd Embodiment of the present invention. 本発明の第2の実施形態に係る発熱体の膨張方向を示す概略図である。It is the schematic which shows the expansion direction of the heat generating body which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る発熱体の熱膨張に関する測定結果を例示する概略図である。It is the schematic which illustrates the measurement result regarding the thermal expansion of the heat generating body which concerns on the 2nd Embodiment of this invention. 室温状態において発熱体と断熱体とが同心円状になるようにした場合の発熱体の熱変形の様子を示す概略図であり、(a)は昇温前の様子を、(b)は昇温後の様子をそれぞれ示している。It is the schematic which shows the mode of the heat deformation of a heat generating body at the time of making a heat generating body and a heat insulator into concentric form in a room temperature state, (a) is a state before temperature rising, (b) is temperature rising. Each of the following is shown. 発熱体の熱変形の様子を示す部分拡大図であり、(a)は昇温前の様子を、(b)は昇温後の様子を、(c)は熱変形により保持部材の剪断、発熱体の割れ、発熱体の短絡が生じた様子を、(d)は熱変形により保持部材の抜けが生じる様子をそれぞれ示している。It is the elements on larger scale which show the mode of heat deformation of a heat generating body, (a) is a state before temperature rising, (b) is a state after temperature rising, (c) is shearing of a holding member and heat_generation | fever by heat deformation. (D) shows a state in which the holding member is pulled out due to thermal deformation.

<第1の実施形態>
以下に本発明の第1の実施形態について、図面を参照しながら説明する。
<First Embodiment>
A first embodiment of the present invention will be described below with reference to the drawings.

図1は、本発明の第1の実施形態に係る基板処理装置の垂直断面図である。図2は、本発明の第1の実施形態に係るヒータユニットの斜視図である。図3は、本発明の第1の実施形態に係るヒータユニットの部分拡大図である。図4(a)は本発明の第1の実施形態に係る発熱体を構成する線状材料を例示する概略図であり、図4(b)は該発熱体を構成する板状材料を例示する概略図である。図5(a)は本発明の第1の実施形態に係る給電部周辺の部分拡大図であり、図5(b)は拡大部分の側面図である。   FIG. 1 is a vertical sectional view of a substrate processing apparatus according to a first embodiment of the present invention. FIG. 2 is a perspective view of the heater unit according to the first embodiment of the present invention. FIG. 3 is a partially enlarged view of the heater unit according to the first embodiment of the present invention. FIG. 4A is a schematic view illustrating a linear material constituting the heating element according to the first embodiment of the present invention, and FIG. 4B illustrates a plate-like material constituting the heating element. FIG. Fig.5 (a) is the elements on larger scale around the electric power feeding part which concerns on the 1st Embodiment of this invention, FIG.5 (b) is a side view of an enlarged part.

(1)基板処理装置の構成 (1) Configuration of substrate processing apparatus

以下、本発明の一実施に係る基板処理装置の構成について説明する。本実施形態に係る基板処理装置は、図1に例示するようにバッチ式縦形ホットウオール形減圧CVD(Chemical Vapor Deposition)装置として構成されている。   The configuration of the substrate processing apparatus according to one embodiment of the present invention will be described below. The substrate processing apparatus according to the present embodiment is configured as a batch type vertical hot wall type low pressure CVD (Chemical Vapor Deposition) apparatus as illustrated in FIG.

本実施形態に係る基板処理装置は、垂直に支持された縦形のプロセスチューブ11を備
えている。プロセスチューブ11は、アウタチューブ12とインナチューブ13とを備えている。アウタチューブ12及びインナチューブ13は、例えば石英(SiO)や炭化珪素(SiC)等の耐熱性の高い材料によってそれぞれ一体成形されている。アウタチューブ12は、上端が閉塞し下端が開口した円筒形状に形成されている。インナチューブ13は、上下両端が開口した円筒形状に形成されている。アウタチューブ12の内径は、インナチューブ13の外径よりも大きく構成されている。アウタチューブ12は、インナチューブ13の外側を取り囲むように、インナチューブ13に対して同心円状に設けられている。インナチューブ13内には、基板保持具としてのボート22によって水平姿勢で多段に積層されたウエハ1を収納して処理する処理室14が形成されている。インナチューブ13の下端開口は、ボート22を出し入れするための炉口15を構成している。
The substrate processing apparatus according to this embodiment includes a vertical process tube 11 that is vertically supported. The process tube 11 includes an outer tube 12 and an inner tube 13. The outer tube 12 and the inner tube 13 are each integrally formed of a material having high heat resistance such as quartz (SiO 2 ) and silicon carbide (SiC). The outer tube 12 is formed in a cylindrical shape with the upper end closed and the lower end opened. The inner tube 13 is formed in a cylindrical shape with both upper and lower ends opened. The inner diameter of the outer tube 12 is configured to be larger than the outer diameter of the inner tube 13. The outer tube 12 is provided concentrically with the inner tube 13 so as to surround the outer side of the inner tube 13. In the inner tube 13, a processing chamber 14 is formed for storing and processing the wafers 1 stacked in multiple stages in a horizontal posture by a boat 22 as a substrate holder. The lower end opening of the inner tube 13 constitutes a furnace port 15 for taking in and out the boat 22.

アウタチューブ12とインナチューブ13との間の下端部は、円形リング形状に形成されたマニホールド16によってそれぞれ気密に封止されている。マニホールド16は、例えばステンレス鋼(SUS)により形成される。マニホールド16は、インナチューブ13およびアウタチューブ12についての交換等のために、インナチューブ13およびアウタチューブ12にそれぞれ着脱自在に取り付けられている。マニホールド16がヒータベース19により水平姿勢で支持されることで、プロセスチューブ11は垂直に据え付けられた状態になっている。   Lower ends between the outer tube 12 and the inner tube 13 are hermetically sealed by a manifold 16 formed in a circular ring shape. The manifold 16 is made of, for example, stainless steel (SUS). The manifold 16 is detachably attached to the inner tube 13 and the outer tube 12 for replacement of the inner tube 13 and the outer tube 12, respectively. Since the manifold 16 is supported in a horizontal posture by the heater base 19, the process tube 11 is installed vertically.

マニホールド16の側壁には、排気管17の上流端が接続されている。排気管17内は、インナチューブ13とアウタチューブ12との間に円筒形状の中空体(隙間)として形成された排気路18内に連通している。排気路18の横断面形状は、例えば一定幅の円形リング形状になっている。排気管17は、円筒形状の中空体である排気路18の最下端部に接続された状態になっている。排気管17には、上流から順に、圧力センサ17a、圧力調整バルブとしてのAPC(Auto Pressure Controller)バルブ17b、真空排気装置17cが設けられている。真空排気装置を作動させつつ、圧力センサにより検出された圧力に基づいてAPCバルブの開度を制御することで、処理室14内の圧力が所定の圧力(真空度)とすることが可能ように構成されている。主に排気管17、圧力センサ17a、APCバルブ17b、真空排気装置17cにより、処理室14内の雰囲気を排気する排気ラインが構成されている。圧力センサ17a、APCバルブ17b、真空排気装置17cは、制御部としてのコントローラ280に接続されている。コントローラ280は、圧力センサ17aにより検出された圧力情報に基づいて、APCバルブ17bの弁開度を制御することで、処理室14内の圧力を所定の処理圧力とすることが可能なように構成されている。   An upstream end of the exhaust pipe 17 is connected to the side wall of the manifold 16. The inside of the exhaust pipe 17 communicates with an exhaust path 18 formed as a cylindrical hollow body (gap) between the inner tube 13 and the outer tube 12. The cross-sectional shape of the exhaust path 18 is, for example, a circular ring shape with a constant width. The exhaust pipe 17 is in a state of being connected to the lowermost end portion of the exhaust path 18 which is a cylindrical hollow body. The exhaust pipe 17 is provided with a pressure sensor 17a, an APC (Auto Pressure Controller) valve 17b as a pressure adjusting valve, and a vacuum exhaust device 17c in order from the upstream. By controlling the opening degree of the APC valve based on the pressure detected by the pressure sensor while operating the vacuum exhaust device, the pressure in the processing chamber 14 can be set to a predetermined pressure (degree of vacuum). It is configured. An exhaust line for exhausting the atmosphere in the processing chamber 14 is mainly configured by the exhaust pipe 17, the pressure sensor 17a, the APC valve 17b, and the vacuum exhaust device 17c. The pressure sensor 17a, the APC valve 17b, and the vacuum exhaust device 17c are connected to a controller 280 as a control unit. The controller 280 is configured to control the valve opening degree of the APC valve 17b based on the pressure information detected by the pressure sensor 17a so that the pressure in the processing chamber 14 can be set to a predetermined processing pressure. Has been.

マニホールド16には、マニホールド16の下端開口を閉塞する円盤形状のシールキャップ20が、垂直方向下側から当接されるようになっている。シールキャップ20の外径は、アウタチューブ12、マニホールド16の外径と略等しく構成されている。シールキャップ20は、プロセスチューブ11の外部に設備されたボートエレベータ21(一部のみが図示されている。)によって垂直方向に昇降されるように構成されている。シールキャップ20の下方には回転機構25が設けられている。回転機構25の回転軸はシールキャップ20を垂直に貫通している。回転機構25の回転軸上には、上述のボート22が垂直に立脚されて支持されている。上述したように、ボート22は、複数枚のウエハ1を水平姿勢かつ互いに中心を揃えた状態で多段に積層させて保持するように構成されている。回転機構25を作動させることで、処理室14内でボート22を回転させることが可能なように構成されている。   A disk-shaped seal cap 20 that closes the lower end opening of the manifold 16 is brought into contact with the manifold 16 from the lower side in the vertical direction. The outer diameter of the seal cap 20 is substantially equal to the outer diameter of the outer tube 12 and the manifold 16. The seal cap 20 is configured to be raised and lowered in the vertical direction by a boat elevator 21 (only a part of which is shown) provided outside the process tube 11. A rotation mechanism 25 is provided below the seal cap 20. The rotating shaft of the rotating mechanism 25 passes through the seal cap 20 vertically. On the rotating shaft of the rotating mechanism 25, the above-described boat 22 is vertically supported and supported. As described above, the boat 22 is configured to hold a plurality of wafers 1 stacked in multiple stages in a horizontal posture with the centers aligned. The boat 22 can be rotated in the processing chamber 14 by operating the rotating mechanism 25.

シールキャップ20には、ガス導入管23が垂直方向に接続されている。ガス導入管23の上流側端(下端)には、原料ガス供給装置23aおよびキャリアガス供給装置23bがそれぞれ接続されている。ガス導入管23の下流側端(上端)は、処理室14内に向け
てガスを供給(噴出)するように構成されている。ガス導入管23から処理室14内(インナチューブ13内)に供給されたガスは、処理室14内に保持された各ウエハ1の表面を流通した後、インナチューブ13の上端開口から排気路18内に流出して排気管17から排気される。主に、ガス導入管23、原料ガス供給装置23a、キャリアガス供給装置23bにより、処理室14内にガスを供給するガス供給ラインが構成されている。原料ガス供給装置23a、キャリアガス供給装置23bは、制御部としてのコントローラ280に接続されている。コントローラ280は、原料ガス供給装置23aおよびキャリアガス供給装置23bを制御することで、処理室14内へ所定のタイミングで所定の流量の原料ガス及びキャリアガスを供給することが可能なように構成されている。
A gas introduction pipe 23 is connected to the seal cap 20 in the vertical direction. A source gas supply device 23 a and a carrier gas supply device 23 b are connected to the upstream side end (lower end) of the gas introduction pipe 23. The downstream end (upper end) of the gas introduction pipe 23 is configured to supply (spout) gas into the processing chamber 14. The gas supplied from the gas introduction pipe 23 into the processing chamber 14 (inner tube 13) flows through the surface of each wafer 1 held in the processing chamber 14, and then is exhausted from the upper end opening of the inner tube 13. It flows out into the exhaust pipe 17 and is exhausted from the exhaust pipe 17. A gas supply line for supplying gas into the processing chamber 14 is mainly configured by the gas introduction pipe 23, the raw material gas supply device 23a, and the carrier gas supply device 23b. The source gas supply device 23a and the carrier gas supply device 23b are connected to a controller 280 as a control unit. The controller 280 is configured to control the source gas supply device 23a and the carrier gas supply device 23b so as to supply the source gas and the carrier gas at a predetermined flow rate into the processing chamber 14 at a predetermined timing. ing.

また、アウタチューブ12とインナチューブ13との間の隙間には、温度センサ24が鉛直方向に配設されている。温度センサ24は、コントローラ280に接続されている。コントローラ280は、温度センサ24により検出された温度情報に基づいて、後述するヒータユニット30が備える各発熱体42への通電具合(一対の給電部45,46による電力供給)を制御することで、処理室14内に保持されているウエハ1の表面温度を所定の処理温度とすることが可能ように構成されている。   A temperature sensor 24 is disposed in the vertical direction in the gap between the outer tube 12 and the inner tube 13. The temperature sensor 24 is connected to the controller 280. Based on the temperature information detected by the temperature sensor 24, the controller 280 controls the energization state (power supply by the pair of power supply units 45 and 46) to each heating element 42 included in the heater unit 30 described later. The surface temperature of the wafer 1 held in the processing chamber 14 is configured to be a predetermined processing temperature.

(2)ヒータユニットの構成
アウタチューブ12の外部には、プロセスチューブ11の内部を加熱する加熱装置としてのヒータユニット30が、アウタチューブ12の周囲を囲うように設けられている。ヒータユニット30は、環状に形成された発熱体42と、発熱体42の外周を囲うように設けられる断熱体33と、発熱体42の両端にそれぞれ接続される固定部としての一対の給電部45,46と、断熱体33の外側を囲うケース31と、を備えている。
(2) Configuration of Heater Unit A heater unit 30 as a heating device for heating the inside of the process tube 11 is provided outside the outer tube 12 so as to surround the outer tube 12. The heater unit 30 includes an annular heating element 42, a heat insulating body 33 provided so as to surround the outer periphery of the heating element 42, and a pair of power supply units 45 as fixed parts connected to both ends of the heating element 42. , 46 and a case 31 surrounding the outside of the heat insulator 33.

発熱体42は、アウタチューブ12の周囲を囲うように、鉛直方向に少なくとも1つ以上設けられている。図2、図3に示すように、発熱体42は、アウタチューブ12の外周を囲うように環状に構成されている。発熱体42の両端部は、接触することなく近接して固定されており、電気的には非接触の状態となっている。すなわち、発熱体42は、電気的には完全な円形ではなく、例えばC字状のリング形状に構成されている。発熱体42を構成する材料としては、例えばFe−Cr−Al合金、MoSi、SiC等の抵抗発熱材料を用いることが可能であり、その形状は、図4(a)に示すような線状材料であっても良く、(b)に示すような板状材料であっても良い。なお、図2,図3,図5に例示するように、発熱体42の上下端には、山部(突出部)42aと谷部(切り欠け部)42bとがそれぞれ交互に複数連なっている。すなわち、発熱体42は蛇行状(波状)に形成されている。 At least one heating element 42 is provided in the vertical direction so as to surround the outer tube 12. As shown in FIGS. 2 and 3, the heating element 42 is configured in an annular shape so as to surround the outer periphery of the outer tube 12. Both end portions of the heating element 42 are fixed in close proximity without being in contact with each other, and are in an electrically non-contact state. In other words, the heating element 42 is not electrically completely circular but is configured in a C-shaped ring shape, for example. As a material constituting the heating element 42, for example, a resistance heating material such as Fe—Cr—Al alloy, MoSi 2 , SiC or the like can be used, and the shape thereof is a linear shape as shown in FIG. A material may be sufficient and a plate-shaped material as shown in (b) may be sufficient. 2, 3, and 5, a plurality of ridges (projections) 42 a and valleys (notches) 42 b are alternately connected to the upper and lower ends of the heating element 42. . That is, the heating element 42 is formed in a meandering shape (wave shape).

上述の発熱体42の両端部には、一対の給電部45,46の端部がそれぞれ接続されている。一対の給電部45,46は、後述する断熱体33(側壁部35)を貫通して断熱体33に固定されている。すなわち、一対の給電部45,46は、発熱体42を断熱体33の内壁に固定する固定部として機能する。図5(a)に、発熱体42の中心側から見た(プロセスチューブ11側から見た)給電部45,46周辺の部分拡大図(平面図)を示す。このように、発熱体42は、固定部としての一対の給電部45,46により、1箇所(発熱体42の端部)のみで固定されている。すなわち、一対の給電部45,46以外では、ピンなどの保持体を用いた固定を行わないようにしている。   The ends of the pair of power feeding portions 45 and 46 are connected to both ends of the heating element 42 described above. The pair of power feeding portions 45 and 46 are fixed to the heat insulating body 33 through a heat insulating body 33 (side wall portion 35) described later. That is, the pair of power feeding units 45 and 46 functions as a fixing unit that fixes the heat generating body 42 to the inner wall of the heat insulating body 33. FIG. 5A shows a partially enlarged view (plan view) around the power feeding portions 45 and 46 viewed from the center side of the heating element 42 (viewed from the process tube 11 side). As described above, the heating element 42 is fixed only at one place (an end portion of the heating element 42) by a pair of power feeding parts 45 and 46 as fixing parts. That is, the fixing using a holding body such as a pin is not performed except for the pair of power feeding units 45 and 46.

一対の給電部45,46は、金属などの導電性材料により構成されている。一対の給電部45,46を介して発熱体42の一端から他端に向けて電流を流すことで、発熱体42が加熱されてプロセスチューブ11内が昇温されるように構成されている。一対の給電部45,46を介した発熱体42への給電は、コントローラ280により制御される。   A pair of electric power feeding parts 45 and 46 is comprised by electroconductive materials, such as a metal. By passing a current from one end of the heat generating element 42 to the other end via the pair of power supply units 45 and 46, the heat generating element 42 is heated and the inside of the process tube 11 is heated. Power supply to the heating element 42 via the pair of power supply units 45 and 46 is controlled by the controller 280.

断熱体33は、発熱体42の外周を囲うように設けられている。断熱体33は、上下端が開口した円筒状の側壁部35と、側壁部35の上部開口を覆う天井壁部34と、を備えており、下端が開口した円筒形状に形成されている。断熱体33は、アウタチューブ12に対して同心円状に設けられている。側壁部35と天井壁部34とは、例えば、繊維状または球状のアルミナ(Al)やシリカ(SiO)等の断熱材料により形成されている。側壁部35と天井壁部34は、それぞれ例えばバキュームフォーム法等によって一体成形されている。なお、側壁部35は、一体成型されている場合に限らず、複数の円形の断熱材が複数積み上げられることで構成されていてもよい。このように構成することで、側壁部35に応力が加わったときの側壁部35の破損を抑制したり、メンテナンス性を向上させたりすることが可能となる。 The heat insulator 33 is provided so as to surround the outer periphery of the heating element 42. The heat insulator 33 includes a cylindrical side wall portion 35 whose upper and lower ends are open, and a ceiling wall portion 34 that covers an upper opening of the side wall portion 35, and is formed in a cylindrical shape with its lower end opened. The heat insulator 33 is provided concentrically with respect to the outer tube 12. The side wall portion 35 and the ceiling wall portion 34 are formed of a heat insulating material such as fibrous or spherical alumina (Al 2 O 3 ) or silica (SiO 2 ), for example. The side wall portion 35 and the ceiling wall portion 34 are integrally formed by, for example, a vacuum foam method or the like. The side wall portion 35 is not limited to being integrally molded, and may be configured by stacking a plurality of circular heat insulating materials. By comprising in this way, it becomes possible to suppress the damage of the side wall part 35 when stress is added to the side wall part 35, or to improve maintainability.

ケース31は、断熱体33の外周を囲うように設けられている。ケース31は、例えば上端が閉塞し下端が開口した円筒形状に形成されている。ケース31は、例えばステンレス鋼(SUS)より形成されている。断熱体33の外周面とケース31の内周面との間の隙間32は、空冷のための空間として機能する。なお、天井壁部34およびケース31の天井壁を貫通する排気口を設け、断熱体33とアウタチューブ12との間の雰囲気を強制空冷させるように構成してもよい。   The case 31 is provided so as to surround the outer periphery of the heat insulator 33. The case 31 is formed in, for example, a cylindrical shape with the upper end closed and the lower end opened. The case 31 is made of, for example, stainless steel (SUS). A gap 32 between the outer peripheral surface of the heat insulator 33 and the inner peripheral surface of the case 31 functions as a space for air cooling. In addition, you may comprise so that the exhaust port which penetrates the ceiling wall part 34 and the ceiling wall of case 31 may be provided, and the atmosphere between the heat insulating body 33 and the outer tube 12 may be forced-air-cooled.

発熱体42は、加熱されると熱膨張により周方向や半径方向に伸びる特性がある。その結果、発熱体42と断熱体33の内壁とが接触・干渉してしまうことがある。特に、本実施形態のように発熱体42が蛇行状に形成されていると、伸び量が大きくなり、接触が生じ易くなる。発熱体42と断熱体33の内壁とが接触・干渉すると、発熱体42の局所的な温度上昇(異常温度上昇)が発生し、発熱体42が溶断してしまうことがある。また、発熱体42や断熱体33に応力が加わり、これらの部材の損傷が生じてしまう恐れがある。また、発熱体42の半径方向への伸長により、発熱体42と断熱体33の内壁との間の距離が発熱体42の周方向にわたり不均一となると、発熱体42の温度分布の均一性が周方向に渡り低下し、基板処理の品質が低下してしまう場合がある。すなわち、発熱体42と断熱体33の内壁との距離が近い箇所で発熱体42の温度が異常上昇したり、発熱体42と断熱体33の内壁との距離が遠い箇所で発熱体42の温度が低下したりすることがある。   When the heating element 42 is heated, it has a characteristic of extending in the circumferential direction and the radial direction due to thermal expansion. As a result, the heating element 42 and the inner wall of the heat insulating body 33 may contact and interfere with each other. In particular, when the heating element 42 is formed in a meandering manner as in the present embodiment, the amount of elongation increases and contact is likely to occur. When the heating element 42 and the inner wall of the heat insulating body 33 come into contact with each other and interfere with each other, a local temperature increase (abnormal temperature increase) of the heating element 42 may occur, and the heating element 42 may melt. Further, stress is applied to the heat generating body 42 and the heat insulating body 33, and there is a possibility that these members may be damaged. Further, if the distance between the heating element 42 and the inner wall of the heat insulating body 33 becomes non-uniform along the circumferential direction of the heating element 42 due to the extension of the heating element 42 in the radial direction, the temperature distribution of the heating element 42 becomes uniform. There is a case where the quality of the substrate processing deteriorates due to a decrease in the circumferential direction. That is, the temperature of the heating element 42 rises abnormally at a location where the distance between the heating element 42 and the inner wall of the heat insulating body 33 is short, or the temperature of the heating element 42 at a location where the distance between the heating element 42 and the inner wall of the heat insulating body 33 is far. May decrease.

そこで本実施形態では、少なくとも発熱体42が室温状態の時に、発熱体42と断熱体33の内壁との間の距離が、固定部としての給電部45,46から離れるにつれて大きくなるようにすることで、上述の課題を解決している。図6は、本実施形態に係る昇温前の(室温状態の)ヒータユニット30の水平断面図である。図6に示すように、少なくとも発熱体42が室温状態の時には、発熱体42と断熱体33の内壁との間の距離が、一対の給電部45,46から遠のくに従って徐々に大きくなり、図中ではA<B<Cとなっている。   Therefore, in the present embodiment, at least when the heating element 42 is at room temperature, the distance between the heating element 42 and the inner wall of the heat insulating body 33 is increased as the distance from the power feeding parts 45 and 46 as the fixing parts increases. Thus, the above-mentioned problems are solved. FIG. 6 is a horizontal sectional view of the heater unit 30 (in a room temperature state) before the temperature increase according to the present embodiment. As shown in FIG. 6, when at least the heating element 42 is at room temperature, the distance between the heating element 42 and the inner wall of the heat insulating body 33 gradually increases as the distance from the pair of power feeding portions 45 and 46 increases. Then, A <B <C.

この状態で、発熱体42を例えば基板処理時の温度にまで昇温すると、発熱体42の各部は、熱膨張により図8に示す方向に伸長する。図8は、発熱体42の各部の変位方向及び変位量を、矢印の向き及び長さでそれぞれ示している。発熱体42が一対の給電部45,46により1箇所で固定されているため、発熱体42の各部は、一対の給電部45,46付近の領域(符号A1で示す領域)を起点として、外側へ膨らむように(一対の給電部45,46から遠ざかるように)変位する。なお、発熱体42の変位量は、一対の給電部45,46から離れるにつれて大きくなる。   In this state, when the heating element 42 is heated to a temperature at the time of substrate processing, for example, each part of the heating element 42 expands in the direction shown in FIG. 8 due to thermal expansion. FIG. 8 shows the displacement direction and displacement amount of each part of the heating element 42 by the direction and length of the arrow, respectively. Since the heating element 42 is fixed at one place by the pair of power feeding portions 45 and 46, each part of the heating element 42 starts from the area near the pair of power feeding sections 45 and 46 (area indicated by reference numeral A <b> 1). Displacement so that it swells (so as to move away from the pair of power supply portions 45 and 46). Note that the amount of displacement of the heating element 42 increases as the distance from the pair of power supply units 45 and 46 increases.

その結果、少なくとも発熱体42が基板処理時の温度状態の時に、発熱体42と断熱体33の内壁との間の距離が、発熱体42の周方向にわたり同等となる。図7は、本実施形態に係る昇温後の(基板処理時の温度状態の)ヒータユニット30の水平断面図である。
図7に示すように、少なくとも発熱体42が基板処理時の温度状態の時には、発熱体42と断熱体33の内壁との間の距離が、熱膨張によって発熱体42の周方向にわたり同等となり、図中ではA≒B≒Cとなっている。
As a result, at least when the heating element 42 is in the temperature state during substrate processing, the distance between the heating element 42 and the inner wall of the heat insulating body 33 is equal in the circumferential direction of the heating element 42. FIG. 7 is a horizontal cross-sectional view of the heater unit 30 after the temperature rise (in the temperature state during substrate processing) according to the present embodiment.
As shown in FIG. 7, at least when the heating element 42 is in a temperature state during substrate processing, the distance between the heating element 42 and the inner wall of the heat insulating body 33 becomes equal over the circumferential direction of the heating element 42 due to thermal expansion. In the figure, A≈B≈C.

(3)基板処理工程
次に、上述の基板処理装置により実施される基板処理(加熱処理)工程の一例としての成膜工程を簡単に説明する。以下の説明において、基板処理装置の各部の動作はコントローラ280によって制御される。
(3) Substrate Processing Step Next, a film forming step as an example of a substrate processing (heat treatment) step performed by the above-described substrate processing apparatus will be briefly described. In the following description, the operation of each part of the substrate processing apparatus is controlled by the controller 280.

図1に示すように、複数枚のウエハ1を装填(ウエハチャージ)したボート22を、ボートエレベータ21によって持ち上げて処理室14内に搬入(ボートローディング)する。この状態で、シールキャップ20はマニホールド16の下端開口をシールした状態となる。   As shown in FIG. 1, a boat 22 loaded with a plurality of wafers 1 (wafer charging) is lifted by a boat elevator 21 and loaded into a processing chamber 14 (boat loading). In this state, the seal cap 20 is in a state where the lower end opening of the manifold 16 is sealed.

プロセスチューブ11の内部が所定の圧力(真空度)となるように排気管17を介して真空排気する。また、プロセスチューブ11の内部が所定の温度となるようにヒータユニット30によって加熱する。すなわち、一対の給電部45,46を介して発熱体42の一端から他端に向けて電流を流すことで、蛇行状の発熱体42を加熱してプロセスチューブ11内を昇温する。この際、処理室14内が所定の温度分布となるように、温度センサ24が検出した温度情報に基づきヒータユニット30の発熱体42への通電具合をフィードバック制御する。続いて、回転機構25を作動させ、ウエハ1の回転を開始させる。   The process tube 11 is evacuated through the exhaust pipe 17 so that the inside of the process tube 11 has a predetermined pressure (degree of vacuum). Further, the process tube 11 is heated by the heater unit 30 so that the inside of the process tube 11 becomes a predetermined temperature. That is, by passing an electric current from one end of the heating element 42 to the other end via the pair of power supply units 45 and 46, the meandering heating element 42 is heated to raise the temperature in the process tube 11. At this time, feedback control of the state of energization to the heating element 42 of the heater unit 30 is performed based on the temperature information detected by the temperature sensor 24 so that the inside of the processing chamber 14 has a predetermined temperature distribution. Subsequently, the rotation mechanism 25 is operated to start the rotation of the wafer 1.

次いで、所定の流量に制御された原料ガスを、ガス導入管23を通じて処理室14内へ導入する。導入した原料ガスは、処理室14内を流通した後、インナチューブ13の上端開口から排気路18内に流出して排気管17から排気される。原料ガスは処理室14内を通過する際にウエハ1の表面と接触し、この際に、ウエハ1が処理され、例えば熱CVD反応によってウエハ1の表面上に所望の薄膜が堆積(デポジション)される。   Next, the raw material gas controlled to a predetermined flow rate is introduced into the processing chamber 14 through the gas introduction pipe 23. The introduced source gas flows through the processing chamber 14, then flows out from the upper end opening of the inner tube 13 into the exhaust path 18 and is exhausted from the exhaust pipe 17. The raw material gas contacts the surface of the wafer 1 as it passes through the processing chamber 14. At this time, the wafer 1 is processed, and a desired thin film is deposited (deposition) on the surface of the wafer 1 by, for example, a thermal CVD reaction. Is done.

予め設定された処理時間が経過したら、不活性ガス供給源(図示せず)から不活性ガスを供給し、処理室14内を不活性ガスに置換するとともに、処理室14内の圧力を常圧に復帰する。また、回転機構25の動作を停止させる。   When a preset processing time has elapsed, an inert gas is supplied from an inert gas supply source (not shown), the inside of the processing chamber 14 is replaced with an inert gas, and the pressure in the processing chamber 14 is set to normal pressure. Return to. Further, the operation of the rotation mechanism 25 is stopped.

その後、ボートエレベータ21によりシールキャップ20を下降して、マニホールド16の下端を開口するとともに、処理済のウエハ1を保持したボート22を、マニホールド16の下端からプロセスチューブ11の外部に搬出(ボートアンローディング)する。その後、処理済のウエハ1をボート22から取り出す(ウエハディスチャージ)。   Thereafter, the seal cap 20 is lowered by the boat elevator 21 to open the lower end of the manifold 16, and the boat 22 holding the processed wafer 1 is unloaded from the lower end of the manifold 16 to the outside of the process tube 11 (boat unloading). Loading). Thereafter, the processed wafer 1 is taken out from the boat 22 (wafer discharge).

(4)本実施形態に係る効果
本実施形態によれば、以下に示す(a)〜(e)のうち一つ又は複数の効果を奏する。
(4) Effects according to the present embodiment According to the present embodiment, one or more of the following effects (a) to (e) are achieved.

(a)本実施形態によれば、少なくとも発熱体42が室温状態の時に、発熱体42と断熱体33の内壁との間の距離が、固定部としての給電部45,46から離れるにつれて大きくなるようにしている。その結果、発熱体42が基板処理時の温度状態の時に、発熱体42と断熱体33の内壁との間の距離が、熱膨張により発熱体42の周方向にわたり同等となる。これにより、発熱体42と断熱体33の内壁との不要な接触・干渉を防ぐことができる。そして、ヒータユニット30の構成部材の損傷を抑制することができる。例えば、発熱体42の局所的な温度上昇(異常温度上昇)の発生を防ぐことができ、発熱体42の溶断を回避することができる。また例えば、発熱体42と断熱体33の内壁とが接触しなくなることから、これらの部材に加わる応力を低減できる。 (A) According to the present embodiment, at least when the heating element 42 is at room temperature, the distance between the heating element 42 and the inner wall of the heat insulating body 33 increases as the distance from the power feeding parts 45 and 46 as the fixing parts increases. I am doing so. As a result, when the heating element 42 is in the temperature state during substrate processing, the distance between the heating element 42 and the inner wall of the heat insulating body 33 becomes equal over the circumferential direction of the heating element 42 due to thermal expansion. Thereby, unnecessary contact and interference between the heating element 42 and the inner wall of the heat insulating body 33 can be prevented. And the damage of the structural member of the heater unit 30 can be suppressed. For example, the local temperature rise (abnormal temperature rise) of the heating element 42 can be prevented and the fusing of the heating element 42 can be avoided. For example, since the heat generating body 42 and the inner wall of the heat insulating body 33 are not in contact with each other, the stress applied to these members can be reduced.

(b)本実施形態によれば、少なくとも発熱体42が基板処理時の温度状態の時に、発熱体42と断熱体33の内壁との間の距離が、熱膨張により発熱体42の周方向にわたり同等となる。その結果、ウエハ1に対し、発熱体42の周方向に渡り均一に加熱することができる。その結果、基板処理の面内均一性を向上させることができる。 (B) According to the present embodiment, when at least the heating element 42 is in the temperature state during substrate processing, the distance between the heating element 42 and the inner wall of the heat insulating body 33 extends over the circumferential direction of the heating element 42 due to thermal expansion. It becomes equivalent. As a result, the wafer 1 can be heated uniformly over the circumferential direction of the heating element 42. As a result, the in-plane uniformity of substrate processing can be improved.

(c)本実施形態によれば、発熱体42を、固定部としての一対の給電部45,46により1箇所(端部)のみで固定している。すなわち、一対の給電部45,46以外では、ピンなどの保持体を用いた固定を行わないようにしている。その結果、熱膨張による発熱体42の損傷や短絡等を抑制することができる。すなわち、本実施形態に係る発熱体42は、給電部45,46との接続箇所以外の部位では拘束されておらず、熱膨張が妨げられないため、発熱体42や保持部材へ加わる応力を低減でき、その結果、発熱体42の変形、損傷、短絡等を抑制することができる。 (C) According to the present embodiment, the heating element 42 is fixed only at one place (end portion) by the pair of power feeding portions 45 and 46 as fixing portions. That is, the fixing using a holding body such as a pin is not performed except for the pair of power feeding units 45 and 46. As a result, the heating element 42 can be prevented from being damaged or short-circuited due to thermal expansion. In other words, the heating element 42 according to the present embodiment is not restrained at a part other than the connection part with the power feeding units 45 and 46 and thermal expansion is not hindered, so that the stress applied to the heating element 42 and the holding member is reduced. As a result, deformation, damage, short circuit, etc. of the heating element 42 can be suppressed.

参考までに、室温状態において発熱体42’と断熱体33’の内壁とが同心円状になるようにした場合の発熱体42’の熱変形の様子を、図16を用いて説明する。   For reference, the state of thermal deformation of the heating element 42 ′ when the heating element 42 ′ and the inner wall of the heat insulating body 33 ′ are concentric in a room temperature state will be described with reference to FIG. 16.

図16の(a)は発熱体42’の昇温前の様子を、(b)は発熱体42’の昇温後の様子をそれぞれ示している。図16(a)によれば、昇温前においては発熱体42’と断熱体33’の内壁との間の距離は発熱体42’の全周に渡り均一である。しかしながら、図16(b)に示すように、発熱体42’を例えば基板処理時の温度にまで昇温すると、発熱体42’は径方向へ伸長し、発熱体42’と断熱体33’の内壁との間の距離は発熱体42’の周方向にわたり不均一となる(図中A>B>Cとなる)。すなわち、一対の給電部45’,46’は断熱体33’に固定されているため、発熱体42’の各部は、一対の給電部45’,46’付近の領域を基点に膨張する。そして、一対の給電部45’,46’から離れるに従って発熱体42’と断熱体33’の内壁との間の距離が徐々に短くなり、一対の給電部45’,46’から最も離れた領域で、発熱体42’と断熱体33’とが接触してしまうことがある。その結果、発熱体42’の局所的な温度上昇(異常温度上昇)が発生し、発熱体42’が溶断してしまうことがある。また、発熱体42’等に加わる応力が増加し、これらの部材が損傷してしまうことがある。また、発熱体42’の温度分布の均一性が低下してしまうことがある。   FIG. 16A shows the state before the heating element 42 ′ is heated, and FIG. 16B shows the state after the heating element 42 ′ is heated. According to FIG. 16A, before the temperature rise, the distance between the heating element 42 'and the inner wall of the heat insulating body 33' is uniform over the entire circumference of the heating element 42 '. However, as shown in FIG. 16 (b), when the heating element 42 'is heated to, for example, the temperature during substrate processing, the heating element 42' expands in the radial direction, and the heating element 42 'and the heat insulating element 33' The distance between the inner wall and the inner wall is not uniform over the circumferential direction of the heating element 42 '(A> B> C in the figure). That is, since the pair of power feeding portions 45 ′ and 46 ′ are fixed to the heat insulating body 33 ′, each part of the heat generating body 42 ′ expands from the region near the pair of power feeding portions 45 ′ and 46 ′. The distance between the heating element 42 ′ and the inner wall of the heat insulating body 33 ′ gradually decreases as the distance from the pair of power feeding portions 45 ′ and 46 ′ increases, and the region farthest from the pair of power feeding portions 45 ′ and 46 ′. Thus, the heat generating body 42 ′ and the heat insulating body 33 ′ may come into contact with each other. As a result, a local temperature rise (abnormal temperature rise) of the heating element 42 ′ may occur, and the heating element 42 ′ may be melted. In addition, the stress applied to the heating element 42 ′ or the like increases, and these members may be damaged. In addition, the uniformity of the temperature distribution of the heating element 42 'may be reduced.

また、参考までに、複数の保持体41’により各断熱体の内壁に固定され、熱膨張による各部の変位が規制された発熱体42’の様子を、図17を用いて説明する。   For reference, the state of the heating element 42 ′ fixed to the inner wall of each heat insulator by a plurality of holding bodies 41 ′ and in which the displacement of each part due to thermal expansion is restricted will be described with reference to FIG. 17.

図17(a)は、発熱体42’の昇温前の様子を示している。発熱体42’の上下端には、山部42a’と谷部42b’とがそれぞれ交互に複数連なっており、発熱体42’は蛇行状(波状)に形成されている。発熱体42’は、保持体41’によって各谷部42b’が断熱体(図示しない)の内周側壁にそれぞれ固定されることにより、断熱体の内周側に保持されている。なお、保持体41’は谷部42b’内に直接配置されている。図17(b)は、発熱体42’の昇温後の様子を示している。上述したように、蛇行状の発熱体42’は熱膨張により周方向に伸びることになる。図17(b)は、発熱体42’の周方向の伸び量が一定量を超え、発熱体42’の周方向に沿った動き代がなくなった様子(保持体41’と発熱体42’とが干渉している様子)を示している。発熱体42’が更に伸びると図17(c)に示す状態となる。図17(c)は、熱変形により保持体41’の剪断、発熱体42’の割れ、発熱体42’の短絡が生じた様子を示している。上述したように、周方向の伸び量が一定量を超えると、保持体41’が発熱体42’に干渉し、発熱体42’に塑性応力が加わり、発熱体42’が変形することになる。符号A6に示す領域には、保持体41’が谷部42b’により両側から挟まれて剪断される様子を、符号A4に示す領域には、発熱体42’に割れが発生した様子を、符号A5に示す領域には、発熱体42’に短絡が発生した様子をそれぞれ示している。図17(d)は、図17(c)に示
す発熱体42’の側面図であり、熱変形により保持体41’の抜けが生じる様子を示している。符号A6に示す領域には、発熱体42’の変形により保持体41’が断熱体から持ち上げられ、引き抜かれようとしている様子を示している。
FIG. 17A shows a state before the heating element 42 'is heated. On the upper and lower ends of the heating element 42 ′, a plurality of ridges 42 a ′ and valleys 42 b ′ are alternately arranged, and the heating element 42 ′ is formed in a meandering shape (wave shape). The heating element 42 ′ is held on the inner peripheral side of the heat insulating body by fixing each valley 42 b ′ to the inner peripheral side wall of the heat insulating body (not shown) by the holding body 41 ′. The holding body 41 ′ is directly disposed in the valley portion 42b ′. FIG. 17B shows a state after the temperature of the heating element 42 ′ is increased. As described above, the serpentine heating element 42 'extends in the circumferential direction due to thermal expansion. FIG. 17B shows a state in which the amount of expansion in the circumferential direction of the heating element 42 ′ exceeds a certain amount, and there is no movement allowance along the circumferential direction of the heating element 42 ′ (the holding body 41 ′ and the heating element 42 ′. Is showing interference). When the heating element 42 'further extends, the state shown in FIG. FIG. 17C shows a state in which the holding body 41 ′ is sheared, the heating element 42 ′ is cracked, and the heating element 42 ′ is short-circuited due to thermal deformation. As described above, when the amount of elongation in the circumferential direction exceeds a certain amount, the holding body 41 ′ interferes with the heating element 42 ′, plastic stress is applied to the heating element 42 ′, and the heating element 42 ′ is deformed. . In the area indicated by reference numeral A6, the state where the holding body 41 ′ is sandwiched and sheared by the valley portions 42b ′ from both sides is shown, and in the area indicated by reference numeral A4, the state in which the heating element 42 ′ is cracked is indicated by reference numerals. A region indicated by A5 shows a state in which a short circuit has occurred in the heating element 42 '. FIG. 17D is a side view of the heating element 42 ′ shown in FIG. 17C, and shows how the holding body 41 ′ is detached due to thermal deformation. A region indicated by reference numeral A6 shows a state in which the holding body 41 ′ is lifted from the heat insulating body due to deformation of the heat generating body 42 ′ and is about to be pulled out.

<第2の実施形態>
以下に、本発明の第2の実施形態について図面を参照しながら説明する。
<Second Embodiment>
Below, the 2nd Embodiment of this invention is described, referring drawings.

本実施形態では、固定部が1つではなく複数設けられている。すなわち、発熱体42は、固定部としての一対の給電部45,46と、他の固定部としてのダミー端子45d,46dとを用いて、複数箇所(本実施形態では2箇所)で固定されている。なお、一対の給電部45,46及び一対のダミー端子45d,46dは、発熱体42を周方向にわたり概ね2等分するように配置されている。   In this embodiment, a plurality of fixing portions are provided instead of one. That is, the heating element 42 is fixed at a plurality of locations (two locations in the present embodiment) using a pair of power feeding portions 45 and 46 as fixed portions and dummy terminals 45d and 46d as other fixed portions. Yes. Note that the pair of power feeding portions 45 and 46 and the pair of dummy terminals 45d and 46d are arranged so as to divide the heating element 42 into two substantially in the circumferential direction.

図10(a)は、本実施形態に係る固定部としてのダミー端子45d,46d周辺の部分拡大図であり、図10(b)は拡大部分の側面図である。一対のダミー端子45d、46dは、発熱体42における一端部(給電部45,46との接続箇所の反対側)に接続されると共に、断熱体33(側壁部35)を貫通して断熱体33に固定されている。すなわち、一対のダミー端子45d、46dは、一対の給電部45,46と同様に、発熱体42を断熱体33の内壁に固定する固定部として機能する。なお、ダミー端子45d、46dは、給電部45,46と同様に金属などの導電性材料により構成されている。一対のダミー端子45d、46dを介して、発熱体42の一端から他端に向けて電流を流すことで、発熱体42が加熱されてプロセスチューブ11内が昇温されるように構成されている。なお、一対の給電部45,46を介した発熱体42への給電は、コントローラ280により制御される。なお、ダミー端子45d、46dは、電力は供給されないように構成されていても良い。この場合、ダミー端子45d、46dは必ずしも導電性材料で構成されている必要はなく、耐熱性の絶縁材料から構成されていても良い。   FIG. 10A is a partially enlarged view around the dummy terminals 45d and 46d as fixing portions according to the present embodiment, and FIG. 10B is a side view of the enlarged portion. The pair of dummy terminals 45d and 46d are connected to one end of the heating element 42 (on the opposite side to the connecting portion with the power feeding parts 45 and 46) and penetrate the heat insulating body 33 (side wall 35) to form the heat insulating body 33. It is fixed to. That is, the pair of dummy terminals 45 d and 46 d function as a fixing portion that fixes the heating element 42 to the inner wall of the heat insulating body 33, similarly to the pair of power feeding portions 45 and 46. The dummy terminals 45d and 46d are made of a conductive material such as a metal, like the power feeding units 45 and 46. A current is passed from one end of the heating element 42 to the other end via the pair of dummy terminals 45d and 46d, whereby the heating element 42 is heated and the inside of the process tube 11 is heated. . Note that the power supply to the heating element 42 via the pair of power supply units 45 and 46 is controlled by the controller 280. The dummy terminals 45d and 46d may be configured not to be supplied with power. In this case, the dummy terminals 45d and 46d are not necessarily made of a conductive material, and may be made of a heat-resistant insulating material.

また、本実施形態では、少なくとも発熱体42が室温状態の時に、発熱体42と断熱体33の内壁との間の距離が、隣接する固定部間の中央位置にて最大となり、係る中央位置から固定部(一対の給電部45,46又は一対のダミー端子45d、46d)に近づくにつれて小さくなるように設定されている。   Further, in the present embodiment, when at least the heating element 42 is in the room temperature state, the distance between the heating element 42 and the inner wall of the heat insulating body 33 is maximized at the central position between the adjacent fixed portions, and from this central position. It is set to become smaller as it approaches the fixed part (the pair of power feeding parts 45, 46 or the pair of dummy terminals 45d, 46d).

図12は、本実施形態に係る昇温前のヒータユニット30の水平断面図である。図12によれば、発熱体42と断熱体33の内壁との間の距離(図中B)は、一対の給電部45,46と一対のダミー端子45d,46dとの間の中央位置でそれぞれ最大となるように構成されている。そして、発熱体42と断熱体33の内壁との間の距離は、係る中央位置から給電部45,46またはダミー端子45d,46dに近づくにつれて、徐々に小さくなるように構成されている。すなわち、図中ではB>AでありB>Cとなっている。   FIG. 12 is a horizontal sectional view of the heater unit 30 before the temperature rise according to the present embodiment. According to FIG. 12, the distance (B in the figure) between the heating element 42 and the inner wall of the heat insulating body 33 is the central position between the pair of power feeding portions 45, 46 and the pair of dummy terminals 45d, 46d, respectively. It is configured to be maximum. The distance between the heating element 42 and the inner wall of the heat insulating body 33 is configured to gradually decrease from the center position toward the power feeding units 45 and 46 or the dummy terminals 45d and 46d. That is, B> A and B> C in the figure.

この状態で、発熱体42を例えば基板処理時の温度にまで昇温すると、発熱体42の各部は、熱膨張により図14に示す方向に伸長する。図14は、発熱体42の各部の変位方向及び変位量を、矢印の向き及び長さでそれぞれ示している。発熱体42が、一対の給電部45,46と、一対のダミー端子45d、46dと、により2箇所で固定されているため、発熱体42の各部は、一対の給電部45,46付近の領域(符号A2aで示す領域)及び一対のダミー端子45d、46d付近の領域(符号A2bで示す領域)のそれぞれを起点として、外側へ膨らむように(すなわち図中で上下に伸びるように)変位する。なお、発熱体42の変位量は、一対の給電部45,46と一対のダミー端子45d,46dとの間の中央位置(図中の上下端)に近づくにつれて大きくなり、係る中間位置で最大となる。   In this state, when the heating element 42 is heated to a temperature at the time of substrate processing, for example, each part of the heating element 42 expands in the direction shown in FIG. 14 due to thermal expansion. FIG. 14 shows the displacement direction and displacement amount of each part of the heating element 42 by the direction and length of the arrow, respectively. Since the heating element 42 is fixed at two locations by the pair of power feeding parts 45 and 46 and the pair of dummy terminals 45d and 46d, each part of the heating element 42 is an area near the pair of power feeding parts 45 and 46. The region is displaced so as to swell outward (that is, to extend up and down in the drawing) starting from each of (a region indicated by reference symbol A2a) and a region in the vicinity of the pair of dummy terminals 45d and 46d (region indicated by reference symbol A2b). The amount of displacement of the heating element 42 increases as it approaches the center position (upper and lower ends in the figure) between the pair of power supply portions 45 and 46 and the pair of dummy terminals 45d and 46d, and is maximum at the intermediate position. Become.

その結果、少なくとも発熱体42が基板処理時の温度状態の時に、発熱体42と断熱体33の内壁との間の距離が、発熱体42の周方向にわたり同等の距離となる。図13は、本実施形態に係る昇温後の(基板処理時の温度状態の)ヒータユニット30の水平断面図である。図13に示すように、少なくとも発熱体42が基板処理時の温度状態の時には、発熱体42と断熱体33の内壁との間の距離が、熱膨張によって発熱体42の周方向にわたり同等となり、図中ではA≒B≒Cとなっている。   As a result, at least when the heating element 42 is in the temperature state during substrate processing, the distance between the heating element 42 and the inner wall of the heat insulating body 33 is the same distance in the circumferential direction of the heating element 42. FIG. 13 is a horizontal cross-sectional view of the heater unit 30 after temperature increase (in the temperature state during substrate processing) according to the present embodiment. As shown in FIG. 13, when at least the heating element 42 is in a temperature state during substrate processing, the distance between the heating element 42 and the inner wall of the heat insulating body 33 becomes equal over the circumferential direction of the heating element 42 due to thermal expansion. In the figure, A≈B≈C.

本実施形態によれば、第1の実施形態で示した効果に加え、以下(a)〜(c)のうち一つ又は複数の効果を奏する。   According to this embodiment, in addition to the effects shown in the first embodiment, one or more of the following effects (a) to (c) are exhibited.

(a)本実施形態によれば、発熱体42の最大変位量を小さくできる。その結果、発熱体42と断熱体33との接触をより確実に防ぐことができる。 (A) According to the present embodiment, the maximum displacement amount of the heating element 42 can be reduced. As a result, the contact between the heating element 42 and the heat insulator 33 can be prevented more reliably.

図9は、第1の実施形態に係る発熱体の熱膨張に関する測定結果を例示する概略図であり、図15は、第2の実施形態に係る発熱体42の熱膨張に関する測定結果を例示する概略図である。図9及び図15に示す評価では、いずれも室温(20℃)で直径φが481mmである環状の発熱体42を、基板処理温度である1220℃にそれぞれ昇温させ、発熱体42の各部の変位量を測定した。なお、発熱体42は、20℃〜1250℃の温度領域で線膨張係数が15×10−6であるカンタルAPM(登録商標)により、蛇行状に形成した。なお、昇温による発熱体42外周の伸び量は、(発熱体42の長さ)×(1250−20)×15×10−6mmとなる。 FIG. 9 is a schematic view illustrating the measurement result regarding the thermal expansion of the heating element according to the first embodiment, and FIG. 15 illustrates the measurement result regarding the thermal expansion of the heating element 42 according to the second embodiment. FIG. In the evaluations shown in FIG. 9 and FIG. 15, the annular heating element 42 having a diameter φ of 481 mm at room temperature (20 ° C.) is heated to 1220 ° C., which is the substrate processing temperature. The amount of displacement was measured. The heating element 42 was formed in a serpentine shape by Kanthal APM (registered trademark) having a linear expansion coefficient of 15 × 10 −6 in a temperature range of 20 ° C. to 1250 ° C. In addition, the extension amount of the outer periphery of the heating element 42 due to the temperature rise is (length of the heating element 42) × (1250-20) × 15 × 10 −6 mm.

その結果、第1の実施形態における発熱体42では、直径φが481mmから490.2mmに増加した。また、発熱体42の各部の位置ずれ量は、図示するとおり、一対の給電部45,46から離れるにつれて徐々に大きくなり(符合A1で示す領域を基点に3.8mm、6.5mm、8.6mm)、一対の給電部45,46から最も離れた箇所で最大の9.2mmとなった。なお、一対の給電部45,46から最も離れた箇所では、周方向(接線方向)にはほとんど位置ずれせずに、半径方向にのみ位置ずれすることとなった。   As a result, in the heating element 42 in the first embodiment, the diameter φ increased from 481 mm to 490.2 mm. Further, as shown in the drawing, the amount of positional deviation of each part of the heating element 42 gradually increases as the distance from the pair of power feeding parts 45 and 46 increases (3.8 mm, 6.5 mm, 8. 6 mm), the maximum distance from the pair of power feeding portions 45 and 46 was 9.2 mm. It should be noted that the position farthest from the pair of power feeding portions 45 and 46 is not displaced in the circumferential direction (tangential direction) but displaced only in the radial direction.

これに対し、第2の実施形態における発熱体42では、固定部(一対の給電部45,46又は一対のダミー端子45d、46d)から離れるにつれて徐々に大きくなり、隣接する固定部間の中央位置(一対の給電部45,46と一対のダミー端子45d,46dとの間の中央位置)で最大の7.5mmとなった。すなわち、本実施形態によれば、第1の実施形態に比べて、発熱体42の最大変位量を20%程度小さくすることができた。なお、変位量が最大となる中央位置では、周方向(接線方向)には位置ずれせずに、半径方向への位置ずれが主体となった。   On the other hand, in the heating element 42 in the second embodiment, the distance between the fixing portions (the pair of power feeding portions 45 and 46 or the pair of dummy terminals 45d and 46d) gradually increases and becomes a central position between the adjacent fixing portions. The maximum value is 7.5 mm at (a central position between the pair of power feeding units 45 and 46 and the pair of dummy terminals 45d and 46d). That is, according to the present embodiment, the maximum displacement amount of the heating element 42 can be reduced by about 20% compared to the first embodiment. Note that, at the central position where the displacement amount is maximum, the positional deviation in the radial direction is mainly performed without the positional deviation in the circumferential direction (tangential direction).

(b)本実施形態によれば、一対の給電部45,46との接続箇所を固定すると共に、その反対側を一対のダミー端子45d,46dでさらに固定している。そのため、発熱体42の各部の変位方向を、図14に示すように発熱体42の半径方向(断熱体33の内壁に垂直な方向)とほぼ一致させることができる。特に、変位量が最大となる中央位置(一対の給電部45,46と一対のダミー端子45d,46dとの間の中央位置)では、周方向(接線方向)には位置ずれさせず、半径方向にのみ位置ずれさせることができる。その結果、係る中央位置に、固定部としてブリッジ型やT字型のピン部材を追加で設けた場合でも、熱膨張による発熱体42とピン部材との接触・干渉を抑制することができる。すなわち、本実施形態によれば、発熱体42の変形、損傷、短絡等を防ぎつつ、発熱体42の保持強度をさらに高めることが可能となる。 (B) According to the present embodiment, the connection location with the pair of power feeding portions 45 and 46 is fixed, and the opposite side is further fixed with the pair of dummy terminals 45d and 46d. Therefore, the displacement direction of each part of the heat generating element 42 can be made to substantially coincide with the radial direction of the heat generating element 42 (direction perpendicular to the inner wall of the heat insulating element 33) as shown in FIG. In particular, at the central position where the displacement is maximum (the central position between the pair of power feeding portions 45 and 46 and the pair of dummy terminals 45d and 46d), the position is not displaced in the circumferential direction (tangential direction), and the radial direction It is possible to shift the position only. As a result, even when a bridge-type or T-shaped pin member is additionally provided as a fixed portion at the center position, contact / interference between the heating element 42 and the pin member due to thermal expansion can be suppressed. That is, according to the present embodiment, it is possible to further increase the holding strength of the heating element 42 while preventing the heating element 42 from being deformed, damaged, short-circuited, or the like.

なお、給電部45,46との接続箇所の反対側を固定していない第1の実施形態では、図8に例示したように、例えば一対の給電部45,46から90°ずれた位置(第2の実
施形態における一対の給電部45,46と一対のダミー端子45d,46dとの間の中央位置に相当)における発熱体42の変位方向が、発熱体42の半径方向と一致せず、接線方向にやや近くなる。そのため、仮に一対のダミー端子45d,46dで固定することなく、一対の給電部45,46から90°ずれた位置に上述のピン部材を追加で設けることとすれば、熱膨張によって発熱体42とピン部材との接触・干渉が生じ、発熱体42の変形、損傷、短絡等を招いてしまう。
In the first embodiment in which the opposite side of the connection portion with the power feeding units 45 and 46 is not fixed, as illustrated in FIG. 8, for example, a position (first position) shifted by 90 ° from the pair of power feeding units 45 and 46. 2), the displacement direction of the heating element 42 in the central position between the pair of power feeding portions 45, 46 and the pair of dummy terminals 45d, 46d does not coincide with the radial direction of the heating element 42, and is tangential. Slightly closer to the direction. Therefore, if the above-described pin member is additionally provided at a position shifted by 90 ° from the pair of power supply portions 45 and 46 without being fixed by the pair of dummy terminals 45d and 46d, Contact / interference with the pin member occurs, and the heating element 42 is deformed, damaged, or short-circuited.

(c)本実施形態によれば、発熱体42の各部の変位方向と発熱体42の半径方向とがほぼ一致するため、例えばブリッジ型やT字型の保持部材を固定部として追加で設けた場合でも、発熱体42と保持部材との接触・干渉を回避するための切り欠き(伸び代穴)を、発熱体42側に設ける必要がない。そのため、発熱体42の強度低下や発熱量低下を回避できる。なお、仮に一対のダミー端子45d,46dで固定することなく、一対の給電部45,46から90°ずれた位置に上述のピン部材を設けることとすれば、発熱体42と保持部材との接触・干渉を回避するために切り欠きを設ける必要が生じ、発熱体42の強度低下や発熱量低下を招いてしまう恐れがある。 (C) According to the present embodiment, since the displacement direction of each part of the heating element 42 and the radial direction of the heating element 42 substantially coincide with each other, for example, a bridge-type or T-shaped holding member is additionally provided as a fixed part. Even in this case, it is not necessary to provide a notch (elongation allowance hole) on the heating element 42 side to avoid contact / interference between the heating element 42 and the holding member. For this reason, it is possible to avoid a decrease in the strength of the heating element 42 and a decrease in the amount of heat generation. If the above-described pin member is provided at a position shifted by 90 ° from the pair of power supply portions 45 and 46 without being fixed by the pair of dummy terminals 45d and 46d, the heating element 42 and the holding member are brought into contact with each other. -In order to avoid interference, it is necessary to provide a notch, and there is a possibility that the strength of the heating element 42 and the amount of heat generation may be reduced.

<他の実施形態>
以上、本発明の実施の形態を具体的に説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
<Other embodiments>
As mentioned above, although embodiment of this invention was described concretely, this invention is not limited to the above-mentioned embodiment, It can change variously in the range which does not deviate from the summary.

例えば、上述の実施形態では、断熱体33の内壁に発熱体42を固定する固定部として、一対の給電部45,46や一対のダミー端子45d,46dを例に挙げて説明したが、本発明は係る形態に限定されない。すなわち、これらの部材は必ずしも対をなしていなくてもよい。また例えば、断熱体33の内壁に固定されるピン部材を固定部として用いてもよい。図11(a)は固定部の変形例としてのブリッジ型のピン部材45b周辺の部分拡大図であり、(b)は拡大部分の側面図である。また、図示しないがT字型のピン部材や、L字型のピン部材を、固定部として用いることも可能である。   For example, in the above-described embodiment, the pair of power feeding units 45 and 46 and the pair of dummy terminals 45d and 46d are described as examples of the fixing unit that fixes the heating element 42 to the inner wall of the heat insulating body 33. Is not limited to such a form. That is, these members do not necessarily have to be paired. Further, for example, a pin member fixed to the inner wall of the heat insulating body 33 may be used as the fixing portion. FIG. 11A is a partially enlarged view around a bridge-type pin member 45b as a modified example of the fixing portion, and FIG. 11B is a side view of the enlarged portion. Although not shown, a T-shaped pin member or an L-shaped pin member can be used as the fixing portion.

また例えば、上述の実施形態では、固定部により発熱体42を固定する場所を1箇所或いは2箇所としたが、本発明は係る場合に限定されず、例えば3箇所以上で固定するようにしてもよい。この場合においても、少なくとも発熱体が室温状態の時に、発熱体と断熱体の内壁との間の距離が、隣接する固定部間の中央位置にて最大となり、係る中央位置から固定部に近づくにつれて小さくなるようにする。固定箇所を増やすほど、最大変位量を減らすことが可能となり、また、発熱体42の保持強度を向上させることが可能となる。なお、複数の固定部は、発熱体42の周方向にわたり均等な間隔で配置するとよい。   Further, for example, in the above-described embodiment, the place where the heating element 42 is fixed by the fixing portion is one place or two places. However, the present invention is not limited to this case, and may be fixed at, for example, three or more places. Good. Even in this case, at least when the heating element is in a room temperature state, the distance between the heating element and the inner wall of the heat insulator becomes maximum at the central position between the adjacent fixing parts, and as the fixing part approaches the fixing part from the center position. Make it smaller. As the number of fixing points is increased, the maximum displacement amount can be reduced, and the holding strength of the heating element 42 can be improved. Note that the plurality of fixing portions may be arranged at equal intervals over the circumferential direction of the heating element 42.

また、上述の場合、複数の固定部は、一対の給電部45,46や一対のダミー端子45d,46dのような貫通部材で統一してもよく、ブリッジ型のピン部材45bのようなピン部材で統一してもよく、或いはこれらを混在させても良い。   In the above case, the plurality of fixing portions may be unified by penetrating members such as a pair of power feeding portions 45 and 46 and a pair of dummy terminals 45d and 46d, or a pin member such as a bridge-type pin member 45b. May be unified, or these may be mixed.

また例えば、本発明は、発熱体42の上下端に山部(突出部)42aと谷部(切り欠け部)42bとが設けられている場合に限定されない。すなわち、発熱体42は、蛇行状(波状)に形成されている場合に限らず、長尺状に形成されていても良い。   Further, for example, the present invention is not limited to the case where the upper and lower ends of the heating element 42 are provided with a crest (projection) 42a and a trough (cutout) 42b. That is, the heating element 42 is not limited to being formed in a meandering shape (wave shape), and may be formed in a long shape.

また、本発明は半導体製造装置に限らず、LCD装置のようなガラス基板を処理する装置であっても好適に適用できる。また、プロセスチャンバの構成も上述の実施形態に限定されない。すなわち、基板処理の具体的内容は不問であり、成膜処理だけでなく、アニール処理、酸化処理、窒化処理、拡散処理等の処理であってもよい。また、成膜処理は、例えばCVD、PVD、酸化膜、窒化膜を形成する処理、金属を含む膜を形成する処理であってもよい。さらには、フォトリソグラフィで実施される露光処理や、レジスト液やエッ
チング液の塗布処理であってもよい。
The present invention is not limited to a semiconductor manufacturing apparatus, and can be suitably applied to an apparatus for processing a glass substrate such as an LCD apparatus. Further, the configuration of the process chamber is not limited to the above-described embodiment. That is, the specific content of the substrate processing is not questioned, and it may be processing such as annealing processing, oxidation processing, nitriding processing, and diffusion processing as well as film forming processing. The film formation process may be, for example, a process for forming a CVD, PVD, oxide film, or nitride film, or a process for forming a film containing a metal. Furthermore, it may be an exposure process performed by photolithography or a coating process of a resist solution or an etching solution.

<本発明の好ましい態様>
以下に、本発明の好ましい態様について付記する。
<Preferred embodiment of the present invention>
Hereinafter, preferred embodiments of the present invention will be additionally described.

本発明の一態様によれば、
環状に形成された発熱体と、
前記発熱体の外周を囲うように設けられる断熱体と、
前記発熱体を前記断熱体の内壁に固定する固定部と、を備えた加熱装置であって、
少なくとも前記発熱体が室温状態の時に、前記発熱体と前記断熱体の内壁との間の距離が、前記固定部から離れるにつれて大きくなるように設定されている
加熱装置が提供される。
According to one aspect of the invention,
A heating element formed in an annular shape;
A heat insulator provided to surround the outer periphery of the heating element;
A fixing unit for fixing the heating element to the inner wall of the heat insulator,
Provided is a heating device in which the distance between the heating element and the inner wall of the heat insulator is set to increase as the distance from the fixing portion increases at least when the heating element is at room temperature.

好ましくは、
前記固定部が前記発熱体の周方向に沿って複数設けられ、
少なくとも前記発熱体が室温状態の時に、前記発熱体と前記断熱体の内壁との間の距離が、隣接する前記固定部間の中央位置から前記固定部に近づくにつれて小さくなるように設定されている。
Preferably,
A plurality of the fixing portions are provided along the circumferential direction of the heating element,
At least when the heating element is at room temperature, the distance between the heating element and the inner wall of the heat insulating body is set so as to decrease from the central position between the adjacent fixing parts toward the fixing part. .

また好ましくは、
少なくとも前記発熱体が室温状態の時に、前記発熱体と前記断熱体の内壁との間の距離が、隣接する前記固定部間の中央位置にて最大となるように設定されている。
Also preferably,
At least when the heating element is at room temperature, the distance between the heating element and the inner wall of the heat insulating body is set to be maximum at the center position between the adjacent fixing portions.

また好ましくは、
前記発熱体と前記断熱体の内壁との間の距離が、少なくとも前記発熱体が加熱処理時の温度状態の時に、前記発熱体の周方向にわたり同等となるように設定されている。
Also preferably,
The distance between the heating element and the inner wall of the heat insulating body is set to be equal over the circumferential direction of the heating element at least when the heating element is in a temperature state during heat treatment.

また好ましくは、
複数の前記固定部は、前記発熱体の周方向にわたり均等な間隔で配置されている。
Also preferably,
The plurality of fixing portions are arranged at equal intervals over the circumferential direction of the heating element.

また好ましくは、
前記固定部のうち少なくとも1つは、前記断熱体を貫通して前記断熱体に固定され、前記発熱体の両端にそれぞれ接続される一対の給電部として構成されている。
Also preferably,
At least one of the fixing portions is configured as a pair of power feeding portions that pass through the heat insulating body and are fixed to the heat insulating body and connected to both ends of the heating element.

また好ましくは、
複数の前記固定部のうち少なくとも1つの前記固定部は、前記断熱体を貫通して前記断熱体に固定される貫通部材として構成されている。
Also preferably,
At least one of the plurality of fixed portions is configured as a penetrating member that penetrates the heat insulator and is fixed to the heat insulator.

また好ましくは、
複数の前記固定部のうち少なくとも1つの前記固定部は、前記断熱体の内壁に固定されるピン部材として構成されている。
Also preferably,
At least one of the plurality of fixing portions is configured as a pin member that is fixed to the inner wall of the heat insulator.

本発明の他の態様によれば、
環状に形成された発熱体と、前記発熱体の外周を囲うように設けられる断熱体と、前記発熱体を前記断熱体の内壁に固定する固定部と、を備えた加熱装置の前記発熱体の内側に設けられた処理室内に基板を搬入する工程と、
前記発熱体を昇温させて前記処理室内の基板を加熱して処理する工程と、を有し、
少なくとも前記発熱体が室温状態の時に、前記発熱体と前記断熱体の内壁との間の距離が、前記固定部から離れるにつれて大きくなるように設定する、
半導体装置の製造方法が提供される。
According to another aspect of the invention,
An annular heating element, a heat insulator provided so as to surround the outer periphery of the heat generator, and a fixing portion for fixing the heat generator to an inner wall of the heat insulator. A step of carrying the substrate into a processing chamber provided inside;
And heating the heating element to heat and process the substrate in the processing chamber,
When at least the heating element is at room temperature, the distance between the heating element and the inner wall of the heat insulator is set to increase as the distance from the fixing portion increases.
A method for manufacturing a semiconductor device is provided.

1 ウエハ(基板)
14 処理室
30 ヒータユニット(加熱装置)
33 断熱体
42 発熱体
42a 山部
42b 谷部
45,46 給電部(固定部)
45d,46d ダミー端子(固定部)
45b ピン部材(固定部)
1 Wafer (substrate)
14 Processing chamber 30 Heater unit (heating device)
33 Heat Insulator 42 Heating Element 42a Mountain 42b Valley 45, 46 Power Feed (Fixed)
45d, 46d Dummy terminal (fixed part)
45b Pin member (fixed part)

Claims (3)

環状に形成された発熱体と、
前記発熱体の外周を囲うように設けられる断熱体と、
前記発熱体を前記断熱体の内壁に固定する固定部と、を備えた加熱装置であって、
少なくとも前記発熱体が室温状態の時に、前記発熱体と前記断熱体の内壁との間の距離が、前記固定部から離れるにつれて大きくなるように設定されている
ことを特徴とする加熱装置。
A heating element formed in an annular shape;
A heat insulator provided to surround the outer periphery of the heating element;
A fixing unit for fixing the heating element to the inner wall of the heat insulator,
At least when the heating element is at room temperature, the heating apparatus is set such that a distance between the heating element and an inner wall of the heat insulating body increases as the distance from the fixing portion increases.
前記固定部が前記発熱体の周方向に沿って複数設けられ、
少なくとも前記発熱体が室温状態の時に、前記発熱体と前記断熱体の内壁との間の距離が、隣接する前記固定部間の中央位置から前記固定部に近づくにつれて小さくなるように設定されている
ことを特徴とする請求項1に記載の加熱装置。
A plurality of the fixing portions are provided along the circumferential direction of the heating element,
At least when the heating element is at room temperature, the distance between the heating element and the inner wall of the heat insulating body is set so as to decrease from the central position between the adjacent fixing parts toward the fixing part. The heating apparatus according to claim 1.
環状に形成された発熱体と、前記発熱体の外周を囲うように設けられる断熱体と、前記発熱体を前記断熱体の内壁に固定する固定部と、を備えた加熱装置の前記発熱体の内側に設けられた処理室内に基板を搬入する工程と、
前記発熱体を昇温させて前記処理室内の基板を加熱して処理する工程と、を有し、
少なくとも前記発熱体が室温状態の時に、前記発熱体と前記断熱体の内壁との間の距離が、前記固定部から離れるにつれて大きくなるように設定する
ことを特徴とする半導体装置の製造方法。
An annular heating element, a heat insulator provided so as to surround the outer periphery of the heat generator, and a fixing portion for fixing the heat generator to an inner wall of the heat insulator. A step of carrying the substrate into a processing chamber provided inside;
And heating the heating element to heat and process the substrate in the processing chamber,
A method of manufacturing a semiconductor device, characterized in that at least when the heating element is at room temperature, a distance between the heating element and an inner wall of the heat insulator is set to increase as the distance from the fixing portion increases.
JP2010145457A 2009-07-21 2010-06-25 Heating apparatus, substrate processing apparatus, substrate processing method, and semiconductor device manufacturing method Active JP5529646B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2010145457A JP5529646B2 (en) 2010-06-25 2010-06-25 Heating apparatus, substrate processing apparatus, substrate processing method, and semiconductor device manufacturing method
US12/838,831 US9064912B2 (en) 2009-07-21 2010-07-19 Heating device, substrate processing apparatus, and method of manufacturing semiconductor device
KR1020100069368A KR101096602B1 (en) 2009-07-21 2010-07-19 Heating device, substrate processing apparatus, and method of manufacturing semiconductor device
TW099123773A TWI423339B (en) 2009-07-21 2010-07-20 Heating device, substrate processing apparatus, and method of manufacturing semiconductor device
CN2010102361453A CN101964303B (en) 2009-07-21 2010-07-21 Heating device, substrate processing apparatus, and method of manufacturing semiconductor device
CN201210129802.3A CN102709213B (en) 2009-07-21 2010-07-21 The manufacture method of heater, lining processor and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010145457A JP5529646B2 (en) 2010-06-25 2010-06-25 Heating apparatus, substrate processing apparatus, substrate processing method, and semiconductor device manufacturing method

Publications (3)

Publication Number Publication Date
JP2012009702A true JP2012009702A (en) 2012-01-12
JP2012009702A5 JP2012009702A5 (en) 2013-08-08
JP5529646B2 JP5529646B2 (en) 2014-06-25

Family

ID=45539897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010145457A Active JP5529646B2 (en) 2009-07-21 2010-06-25 Heating apparatus, substrate processing apparatus, substrate processing method, and semiconductor device manufacturing method

Country Status (1)

Country Link
JP (1) JP5529646B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014158023A (en) * 2014-02-05 2014-08-28 Hitachi Kokusai Electric Inc Heating device, substrate processing apparatus, and method of manufacturing semiconductor device
US9064912B2 (en) 2009-07-21 2015-06-23 Hitachi Kokusai Electric, Inc. Heating device, substrate processing apparatus, and method of manufacturing semiconductor device
US9449849B2 (en) 2009-07-21 2016-09-20 Hitachi Kokusai Electric Inc. Method of manufacturing semiconductor device using meander-shaped heating element
CN110087354A (en) * 2018-01-26 2019-08-02 鸿成国际科技股份有限公司 A kind of heater supporter

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7122856B2 (en) * 2018-05-02 2022-08-22 東京エレクトロン株式会社 Heat treatment equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07135179A (en) * 1993-11-10 1995-05-23 Tokyo Electron Ltd Manufacture of heat-treating furnace and heat-treating furnace
JP2002329675A (en) * 2001-04-27 2002-11-15 Hitachi Kokusai Electric Inc Heating treatment equipment
JP2007088324A (en) * 2005-09-26 2007-04-05 Hitachi Kokusai Electric Inc Heating element holding structure, insulated structure, heating unit and substrate processing equipment
JP2008263170A (en) * 2007-03-20 2008-10-30 Tokyo Electron Ltd Heat treatment furnace and vertical heat treatment equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07135179A (en) * 1993-11-10 1995-05-23 Tokyo Electron Ltd Manufacture of heat-treating furnace and heat-treating furnace
JP2002329675A (en) * 2001-04-27 2002-11-15 Hitachi Kokusai Electric Inc Heating treatment equipment
JP2007088324A (en) * 2005-09-26 2007-04-05 Hitachi Kokusai Electric Inc Heating element holding structure, insulated structure, heating unit and substrate processing equipment
JP2008263170A (en) * 2007-03-20 2008-10-30 Tokyo Electron Ltd Heat treatment furnace and vertical heat treatment equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9064912B2 (en) 2009-07-21 2015-06-23 Hitachi Kokusai Electric, Inc. Heating device, substrate processing apparatus, and method of manufacturing semiconductor device
US9449849B2 (en) 2009-07-21 2016-09-20 Hitachi Kokusai Electric Inc. Method of manufacturing semiconductor device using meander-shaped heating element
JP2014158023A (en) * 2014-02-05 2014-08-28 Hitachi Kokusai Electric Inc Heating device, substrate processing apparatus, and method of manufacturing semiconductor device
CN110087354A (en) * 2018-01-26 2019-08-02 鸿成国际科技股份有限公司 A kind of heater supporter

Also Published As

Publication number Publication date
JP5529646B2 (en) 2014-06-25

Similar Documents

Publication Publication Date Title
JP5544121B2 (en) Heating apparatus, substrate processing apparatus, and semiconductor device manufacturing method
JP5358956B2 (en) Mounting table device, processing device, temperature control method, and storage medium
JP5529646B2 (en) Heating apparatus, substrate processing apparatus, substrate processing method, and semiconductor device manufacturing method
JP2007088325A (en) Heat insulation wall, heating element hold structure, heating device, and substrate processing equipment
WO2006030857A1 (en) Heat treatment apparatus and substrate manufacturing method
US11384434B2 (en) Substrate processing apparatus and heater device
JP2007088324A (en) Heating element holding structure, insulated structure, heating unit and substrate processing equipment
JP2004514287A (en) Apparatus and method for heating a heat treatment system by resistance
US9064912B2 (en) Heating device, substrate processing apparatus, and method of manufacturing semiconductor device
KR101096602B1 (en) Heating device, substrate processing apparatus, and method of manufacturing semiconductor device
US9957616B2 (en) Substrate processing apparatus and heating unit
JP4669465B2 (en) Substrate processing apparatus, semiconductor device manufacturing method, heating apparatus, and heat insulating material
JP5824082B2 (en) Heating apparatus, substrate processing apparatus, and semiconductor device manufacturing method
JP4972125B2 (en) Heat treatment apparatus, heater unit, and semiconductor manufacturing method
JP2010199493A (en) Substrate treatment device
JP2011103469A (en) Substrate processing apparatus, method of manufacturing semiconductor device, heating device, and heat insulating material
JP2011202865A (en) Substrate treatment device
JP2010272720A (en) Substrate processing device and manufacturing method of semiconductor device
JP2008258280A (en) Heating apparatus
JP2022072048A (en) Temperature sensor, heater unit, substrate processor, and method for manufacturing semiconductor device
JP5383752B2 (en) Insulating wall, heating device, substrate processing apparatus, and semiconductor device manufacturing method
JP2012033926A (en) Insulation structure, heating apparatus and substrate processing apparatus

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130624

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140417

R150 Certificate of patent or registration of utility model

Ref document number: 5529646

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250