JP2012007951A - Measurement device for light distribution characteristics of light source - Google Patents

Measurement device for light distribution characteristics of light source Download PDF

Info

Publication number
JP2012007951A
JP2012007951A JP2010143028A JP2010143028A JP2012007951A JP 2012007951 A JP2012007951 A JP 2012007951A JP 2010143028 A JP2010143028 A JP 2010143028A JP 2010143028 A JP2010143028 A JP 2010143028A JP 2012007951 A JP2012007951 A JP 2012007951A
Authority
JP
Japan
Prior art keywords
light
light source
aperture
integrating sphere
fan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010143028A
Other languages
Japanese (ja)
Inventor
Shuichi Nakayama
修一 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2010143028A priority Critical patent/JP2012007951A/en
Publication of JP2012007951A publication Critical patent/JP2012007951A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a measurement device for light distribution characteristics of a light source, the device that can obtain a sufficient angle resolution with a simple and compact device configuration.SOLUTION: A measurement device 1 for light distribution characteristics of a light source 11 repeats an operation of detecting intensity of light emitted from an emitting-side aperture 13b of an integrating sphere 13 using a light intensity detector 21 every time a fan-shaped rotational aperture 17 is rotated by a central angle. The light intensity detector 21 performs the detecting operation every time an aperture diameter of a variable aperture 15 is varied in accordance with a desired angle resolution, or every time at least one of the light source 11 and integrating sphere 13 is moved by a movement mechanism 19. The measurement device 1 then determines three-dimensional light distribution characteristics of the light source 11 using the detection result.

Description

本発明は、光源の基本特性である配光特性を測定する装置に関するものである。   The present invention relates to an apparatus for measuring a light distribution characteristic that is a basic characteristic of a light source.

従来、光源の配光特性の測定においては、光源から射出する光の強度を広い立体角範囲、例えば半球面座標系の立体角範囲の配光特性を測定する必要があった。具体的には、3次元ゴニオフォトメータや変角光度計を用いて、光源の周りを測定用受光器(受光素子)で以てスキャンすることにより行われており、その場合、光源が点光源として見なし得る程度に、光源と受光器との間の距離を大きく取る必要があった。   Conventionally, in measuring the light distribution characteristics of a light source, it has been necessary to measure the light distribution characteristics in a wide solid angle range, for example, a solid angle range of a hemispherical coordinate system, for the intensity of light emitted from the light source. Specifically, scanning is performed around a light source with a measuring light receiver (light receiving element) using a three-dimensional goniophotometer or a goniophotometer. In that case, the light source is a point light source. It was necessary to make the distance between the light source and the light receiver large enough to be regarded as

しかしながら、このような従来の技術では、受光器でスキャンするための機構が大きくなる。特に、光源のサイズが大きい場合や、配光の角度分解能を上げる場合には、光源と受光器との距離をより離す必要がある。このため、受光器を駆動させる装置のサイズを大きくしなければならない。このような測定空間の拡大に伴う装置の大型化は、コストの増大につながる。また、従来の技術では、3次元配光特性を測定するために、受光器を2方向に移動させなければならなかった。なお、ここで言う2方向とは、例えば、発光面の正面方向をZ軸としたとき、このZ軸を中心として受光器を回転させる円周方向と、Z軸の方向に受光器を移動させる軸方向である。   However, in such a conventional technique, a mechanism for scanning with a light receiver becomes large. In particular, when the size of the light source is large or when the angular resolution of light distribution is increased, it is necessary to further increase the distance between the light source and the light receiver. For this reason, the size of the device for driving the light receiver must be increased. Such an increase in the size of the apparatus accompanying the expansion of the measurement space leads to an increase in cost. In the conventional technique, the light receiver must be moved in two directions in order to measure the three-dimensional light distribution characteristic. The two directions referred to here are, for example, when the front direction of the light emitting surface is the Z axis, and the receiver is moved in the circumferential direction in which the receiver is rotated around the Z axis and in the direction of the Z axis. Axial direction.

このような問題を解決するものとして、発光面の正面方向のZ軸に対して、予め異なる放射方向角度に対向する位置に複数の受光器を配設した測定装置が、特許文献1に開示されている。この装置では、受光器の移動は円周方向の一方向360度回転のみであるが、やはり3次元配光特性測定装置として大きなスペースを必要としていた。   As a solution to such a problem, Patent Document 1 discloses a measuring apparatus in which a plurality of light receivers are arranged in advance at positions opposite to different radial angles with respect to the Z axis in the front direction of the light emitting surface. ing. In this apparatus, the light receiver moves only 360 degrees in one direction in the circumferential direction, but still requires a large space as a three-dimensional light distribution characteristic measuring apparatus.

そこで、測定空間を小さくした測光装置が、特許文献2に開示されている。この装置では、複数個の輝度計の各光軸が1点(点P)で交わるように、放射状に配置されている。また、個々の輝度計に対応した鏡面が、光源と点Pとを焦点とする楕円上に配置されている。   Thus, a photometric device with a small measurement space is disclosed in Patent Document 2. In this device, the optical axes of a plurality of luminance meters are arranged radially so that they intersect at one point (point P). Further, mirror surfaces corresponding to the individual luminance meters are arranged on an ellipse having the light source and the point P as focal points.

特開2005−172665号公報JP 2005-172665 A 特開平7−294328号公報JP 7-294328 A

しかしながら、上記文献2に記載の測光装置では、上述のように鏡面が楕円上に配置されているため、鏡面の位置によって光の反射角が異なる。したがって、反射率の入射角度依存性が配光測定の誤差となる。また、複数個の輝度計を配列させているので、測定装置の小型化に関しては自ら制限がある。   However, in the photometric device described in Document 2, since the mirror surface is arranged on an ellipse as described above, the reflection angle of light varies depending on the position of the mirror surface. Therefore, the dependency of the reflectance on the incident angle becomes an error in light distribution measurement. In addition, since a plurality of luminance meters are arranged, there is a limit on the downsizing of the measuring apparatus.

本発明は、このような問題に鑑みてなされたものであり、簡素且つ省スペースな装置構成でありながら、十分な角度分解能が得られる、光源の配光特性測定装置を提供することを目的とする。   The present invention has been made in view of such a problem, and an object of the present invention is to provide a light distribution characteristic measurement device for a light source that can obtain a sufficient angular resolution while having a simple and space-saving device configuration. To do.

このような目的を達成するため、本発明は、発光面が円形である光源の3次元配光特性を測定する装置であって、前記光源からの光を内部に導入するための入射側開口と、前記入射側開口から導入した光が内部で拡散反射を繰り返した結果、入射開口角に関わらず常に射出方位が等しい光として射出する射出側開口とが形成された積分球と、前記積分球の前記射出側開口から射出された光の強度を検出する光強度検出器と、前記積分球の前記入射側開口に設けられ、開口径が可変な可変アパチャーと、前記積分球の前記入射側開口の前記可変アパチャーの直前あるいは直後に設けられ、所望の角度分解能と等しい大きさの中心角を持つ扇形の開口部の頂点を中心に回転可能な扇形回転アパチャーと、前記光源及び前記積分球の少なくとも一方を移動して、前記光源から前記積分球の前記入射側開口までの距離を変化させることが可能な移動機構と、前記可変アパチャーの開口径の可変制御、前記扇形回転アパチャーの回転制御、前記移動機構による前記光源及び前記積分球の少なくとも一方の移動制御及び前記光強度検出器による光の強度を検出させるタイミングの制御を行うコントローラと、前記コントローラにより、所望の角度分解能に応じて、前記可変アパチャーの開口径を変化させるか、又は前記移動機構により前記光源及び前記積分球の少なくとも一方を移動させるかする毎に、前記光強度検出器により前記積分球の前記射出側開口からの射出光の強度を検出させる動作を、前記扇形回転アパチャーを前記中心角ずつ回転させる毎に繰り返し、得られた検出結果を用いて、前記光源の3次元配光特性を求める。   In order to achieve such an object, the present invention is an apparatus for measuring the three-dimensional light distribution characteristics of a light source having a circular light emitting surface, and includes an incident side opening for introducing light from the light source into the inside. The integrating sphere formed with an exit side opening that is always emitted as light having the same exit azimuth regardless of the incident aperture angle, as a result of light diffused and reflected internally from the entrance side opening, A light intensity detector for detecting the intensity of light emitted from the exit side opening, a variable aperture provided in the entrance side opening of the integrating sphere, the aperture diameter being variable, and the entrance side opening of the integrating sphere At least one of the light source and the integrating sphere, which is provided immediately before or after the variable aperture and is rotatable about the apex of a fan-shaped opening having a central angle equal to a desired angular resolution, and the light source and the integrating sphere A moving mechanism capable of moving and changing a distance from the light source to the incident-side opening of the integrating sphere; variable control of an aperture diameter of the variable aperture; rotation control of the fan-shaped rotary aperture; and the moving mechanism A controller that controls the movement of at least one of the light source and the integrating sphere according to the above and the timing for detecting the light intensity by the light intensity detector, and the controller controls the variable aperture according to a desired angular resolution. Each time the aperture diameter is changed or at least one of the light source and the integrating sphere is moved by the moving mechanism, the intensity of the light emitted from the exit side opening of the integrating sphere is adjusted by the light intensity detector. The detection operation is repeated each time the fan-shaped rotation aperture is rotated by the central angle, and the detection result obtained is used. Obtaining a three-dimensional light distribution characteristic of the light source.

なお、本発明に係る光源の配光特性測定装置においては、前記可変アパチャーの開口径の大きさを、最小径から所望の角度分解能に基づくピッチで徐々に拡大し、配光特性測定範囲内で最大径に達すると、この動作を前記可変アパチャーに繰り返させる可変アパチャー制御手段と、前記可変アパチャーの開口径の大きさが前記最大径に達する毎に、前記移動機構により前記光源及び前記積分球の少なくとも一方を互いが近づく方向に前記所望の角度分解能に基づくピッチで移動させ、この動作を前記光源と前記積分球の前記入射側開口とが接するまで繰り返す移動機構制御手段と、前記光源と前記積分球の前記入射側開口とが接する毎に、前記扇形回転アパチャーを前記中心角の大きさずつ回転させ、この動作を配光特性測定範囲内で端部に達するまで繰り返す扇形回転アパチャー制御手段と、前記可変アパチャーの開口径の大きさが変化する毎に、前記開口径の大きさを検出する第1の検出器と、前記扇形回転アパチャーが回転する毎に、前記扇形の開口部の位置を検出する第2の検出器と、前記光源及び前記積分球の少なくとも一方が移動する毎に、前記光源から前記積分球の前記入射側開口までの距離を検出する第3の検出器と、前記第1〜第3の検出器のいずれかが検出作動する毎に、前記積分球の前記射出側開口から射出した光の強度を検出する前記光強度検出器と、前記第1の検出器により検出された前記可変アパチャーの開口径の大きさ、前記第2の検出器により検出された前記扇形回転アパチャーの扇型開口部の位置、前記第3の検出器により検出された前記光源から前記積分球の前記入射側開口までの距離及びこれらが検出されたときに前記光強度検出器により検出された光強度から、前記光源の3次元配光特性を求めるデータ処理装置とを有する。   In the light distribution characteristic measuring apparatus of the light source according to the present invention, the size of the aperture diameter of the variable aperture is gradually increased from the minimum diameter at a pitch based on a desired angular resolution, and within the light distribution characteristic measurement range. When the maximum diameter is reached, variable aperture control means for causing the variable aperture to repeat this operation, and whenever the size of the aperture diameter of the variable aperture reaches the maximum diameter, the moving mechanism causes the light source and the integrating sphere to At least one is moved in a direction approaching each other at a pitch based on the desired angular resolution, and a movement mechanism control unit that repeats this operation until the light source and the incident-side opening of the integrating sphere contact each other, the light source, and the integration Each time the sphere comes into contact with the incident side opening, the fan-shaped rotation aperture is rotated by the size of the central angle, and this operation is performed at the end within the light distribution characteristic measurement range. Fan-shaped rotation aperture control means that repeats until the aperture diameter of the variable aperture changes, the first detector that detects the size of the aperture diameter, and the fan-shaped rotation aperture rotates each time the fan-shaped rotation aperture rotates. And a second detector for detecting the position of the fan-shaped opening and a distance from the light source to the incident-side opening of the integrating sphere each time at least one of the light source and the integrating sphere moves. A third detector, and the light intensity detector that detects the intensity of light emitted from the exit-side opening of the integrating sphere each time one of the first to third detectors performs a detection operation; The size of the aperture of the variable aperture detected by the first detector, the position of the fan-shaped opening of the fan-shaped rotary aperture detected by the second detector, and detected by the third detector Said light source From the light intensity detected by the light intensity detector when the distance to the input aperture of al the integrating sphere and these are detected, and a data processing device for determining a three-dimensional light distribution characteristic of the light source.

さらに、本発明に係る光源の配光特性測定装置において、前記移動機構により前記光源及び前記積分球の少なくとも一方が移動する方向は、前記光源から射出される光の光軸方向と平行である。なお、本発明における光軸を、光源の発光面中心を通り、且つ光源の発光面に対して垂直な直線と定義する。   Furthermore, in the light distribution characteristic measuring apparatus for a light source according to the present invention, a direction in which at least one of the light source and the integrating sphere is moved by the moving mechanism is parallel to an optical axis direction of light emitted from the light source. The optical axis in the present invention is defined as a straight line that passes through the center of the light emitting surface of the light source and is perpendicular to the light emitting surface of the light source.

また、本発明に係る光源の配光特性測定装置において、前記可変アパチャー及び前記扇形回転アパチャーは、前記積分球の前記入射側開口に、前記移動機構により前記光源及び前記積分球の少なくとも一方が移動する方向に対して垂直になるように設けられている。   Further, in the light distribution characteristic measuring apparatus of the light source according to the present invention, the variable aperture and the fan-shaped rotation aperture are moved to the incident side opening of the integrating sphere by at least one of the light source and the integrating sphere by the moving mechanism. It is provided so that it may become perpendicular | vertical with respect to the direction to do.

また、本発明に係る光源の配光特性測定装置において、前記光源に形成されている光を射出するための発光面の中心、前記可変アパチャーの開口中心及び前記扇形回転アパチャーの回転中心は、前記移動機構により前記光源及び前記積分球の少なくとも一方が移動する方向と平行な直線上にある。   Further, in the light distribution characteristic measuring apparatus of the light source according to the present invention, the center of the light emitting surface for emitting the light formed in the light source, the opening center of the variable aperture, and the rotation center of the fan-shaped rotation aperture are The moving mechanism is on a straight line parallel to the direction in which at least one of the light source and the integrating sphere moves.

本発明によれば、簡素且つ省スペースな装置構成でありながら、十分な角度分解能が得られる、光源の配光特性測定装置を提供することができる。   According to the present invention, it is possible to provide a light distribution characteristic measurement device for a light source that has a simple and space-saving device configuration and can obtain a sufficient angular resolution.

本実施形態に係る光源の配光特性測定装置の断面構成図である。It is a section lineblock diagram of a light distribution characteristic measuring device of a light source concerning this embodiment. 配光特性を表す座標系の説明図である。It is explanatory drawing of the coordinate system showing a light distribution characteristic. 本実施形態に係る光源の配光特性測定装置により検出された、ある方位角における配光特性を表す図である。It is a figure showing the light distribution characteristic in a certain azimuth angle detected by the light distribution characteristic measuring apparatus of the light source which concerns on this embodiment. 光源から可変アパチャーに至るまでの断面図である。It is sectional drawing from a light source to a variable aperture.

以下、実施形態について、図面を用いて説明する。本実施形態に係る光源の3次元配光特性測定装置1は、図1に示すように、測定対象である光源11と、入射側開口13aと射出側開口13bとが形成された積分球13と、可変アパチャー15と、扇形回転アパチャー17と、移動機構19と、光強度検出器21と、第1の検出器23と、第2の検出器25と、第3の検出器27と、コントローラ29と、データ処理装置31とを有する。   Hereinafter, embodiments will be described with reference to the drawings. As shown in FIG. 1, the light source three-dimensional light distribution characteristic measuring apparatus 1 according to this embodiment includes a light source 11 that is a measurement target, an integrating sphere 13 in which an incident side opening 13a and an emission side opening 13b are formed. The variable aperture 15, the fan-shaped rotation aperture 17, the moving mechanism 19, the light intensity detector 21, the first detector 23, the second detector 25, the third detector 27, and the controller 29. And a data processing device 31.

光源11は、円形の発光面11aが積分球13の入射側開口13aに向けて設置されている。また、可変アパチャー15の開口部の最大径及び積分球13の入射側開口13aの開口径のうちの小さい方の径よりも、円形の発光面11aの径の大きさは小さい。   In the light source 11, a circular light emitting surface 11 a is installed toward the incident side opening 13 a of the integrating sphere 13. Further, the diameter of the circular light emitting surface 11 a is smaller than the smaller one of the maximum diameter of the opening of the variable aperture 15 and the opening diameter of the incident side opening 13 a of the integrating sphere 13.

積分球13は、光源11からの光を内部に導入するための入射側開口13aと、入射側開口13aから導入した光が内部で拡散反射を繰り返し、その結果(積分球13内に導入される光の)入射開口角θに関わらず常に射出方位が等しい光として射出する射出側開口13bとを有する。   The integrating sphere 13 repeats diffuse reflection inside the incident side opening 13a for introducing the light from the light source 11 and the light introduced from the incident side opening 13a, and as a result (introduced into the integrating sphere 13). It has an exit side opening 13b that always emits light having the same exit direction regardless of the incident aperture angle θ of the light.

可変アパチャー15は、積分球13の入射側開口13aに設けられ、開口径の大きさを変化させることが可能である。   The variable aperture 15 is provided in the incident side opening 13a of the integrating sphere 13 and can change the size of the opening diameter.

扇形回転アパチャー17は、積分球13の入射側開口13aに可変アパチャー15と重なるように設けられ、所望の(後述する方位角方向の)角度分解能と等しい大きさの中心角ωを有する扇形の開口部の頂点を中心に回転させることが可能である。なお、扇形回転アパチャー17の扇形開口部の半径は、可変アパチャー15の開口部の最大径よりも大きい。また、扇形中心角ωは、小さく設定するほど、(後述する方位角方向における)角度分解能が高い測定を行うことが可能である。   The fan-shaped rotary aperture 17 is provided so as to overlap the incident aperture 13a of the integrating sphere 13 with the variable aperture 15, and has a fan-shaped aperture having a central angle ω having a magnitude equal to a desired angular resolution (in an azimuth direction described later). It is possible to rotate around the vertex of the part. In addition, the radius of the fan-shaped opening of the fan-shaped rotating aperture 17 is larger than the maximum diameter of the opening of the variable aperture 15. The smaller the sector central angle ω, the higher the angular resolution (in the azimuth angle direction described later) can be measured.

なお、可変アパチャー15及び扇形回転アパチャー17は、いずれも積分球13の入射側開口13aに、移動機構19により光源11及び積分球13の少なくとも一方が移動する方向(すなわち光軸方向)に対して垂直になるように設けられている。   Note that the variable aperture 15 and the fan-shaped rotary aperture 17 are both in the direction in which at least one of the light source 11 and the integrating sphere 13 moves to the incident side opening 13a of the integrating sphere 13 by the moving mechanism 19 (that is, the optical axis direction). It is provided to be vertical.

移動機構19は、光源11及び積分球13の少なくとも一方を移動させ、光源11から積分球13の入射側開口13aまでの距離を変化させることが可能である。   The moving mechanism 19 can move at least one of the light source 11 and the integrating sphere 13 to change the distance from the light source 11 to the incident-side opening 13 a of the integrating sphere 13.

光強度検出器21は、第1の検出器23,第2の検出器25及び第3の検出器29のいずれかが検出作動する毎に、積分球13の射出側開口13bから射出した光の強度を検出する。   The light intensity detector 21 detects the light emitted from the exit side opening 13b of the integrating sphere 13 each time any one of the first detector 23, the second detector 25, and the third detector 29 is detected. Detect intensity.

第1の検出器23は、可変アパチャー15の開口径の大きさが変化する毎に、開口径の大きさを検出する。   The first detector 23 detects the size of the opening diameter every time the size of the opening diameter of the variable aperture 15 changes.

第2の検出器25は、扇形回転アパチャー17が回転する毎に、扇形の開口部の位置を検出する。   The second detector 25 detects the position of the fan-shaped opening every time the fan-shaped rotation aperture 17 rotates.

第3の検出器27は、光源11及び積分球13の少なくとも一方が移動する毎に、光源11から積分球13の入射側開口13aまでの距離を検出する。   The third detector 27 detects the distance from the light source 11 to the incident-side opening 13a of the integrating sphere 13 every time at least one of the light source 11 and the integrating sphere 13 moves.

コントローラ29は、可変アパチャー制御部29aと、移動機構制御部29bと、扇形回転アパチャー制御部29cとを有する。   The controller 29 includes a variable aperture control unit 29a, a moving mechanism control unit 29b, and a fan-shaped rotation aperture control unit 29c.

可変アパチャー制御部29aは、可変アパチャー15の開口径の大きさを、最小径から後述の方法で算出した所望の(後述する配光角方向の)角度分解能に基づくピッチΔApで徐々に拡大し、配光特性測定範囲内で最大径に達すると、この動作を可変アパチャー15に繰り返させる制御を行う。   The variable aperture control unit 29a gradually increases the size of the aperture diameter of the variable aperture 15 at a pitch ΔAp based on a desired angle resolution (in the light distribution angle direction described later) calculated from the minimum diameter by a method described later. When the maximum diameter is reached within the light distribution characteristic measurement range, control is performed to cause the variable aperture 15 to repeat this operation.

移動機構制御部29bは、可変アパチャー15の開口径の大きさが最大径に達する毎に、移動機構19により光源11及び積分球13の少なくとも一方を、互いが近づく方向に後述の方法で算出した所望の(後述する配光角方向の)角度分解能に基づくピッチΔDで移動させ、この動作を光源11と積分球13の入射側開口13aとが接するまで繰り返させる制御を行う。   The movement mechanism control unit 29b calculates at least one of the light source 11 and the integrating sphere 13 by the movement mechanism 19 in a direction approaching each other by the movement mechanism 19 every time the opening diameter of the variable aperture 15 reaches the maximum diameter. Control is performed so as to move at a pitch ΔD based on a desired angular resolution (in the light distribution angle direction described later), and to repeat this operation until the light source 11 and the incident-side opening 13a of the integrating sphere 13 contact each other.

扇形回転アパチャー制御部29cは、光源11と積分球13の入射側開口13aとが接する毎に、扇形回転アパチャー17を(所望の角度分解能と等しい大きさの)中心角ωずつ回転させ、この動作を扇形回転アパチャー17に配光特性測定範囲内で端部に達するまで繰り返させる制御を行う。   The fan-shaped rotation aperture control unit 29c rotates the fan-shaped rotation aperture 17 by a central angle ω (with a size equal to the desired angular resolution) every time the light source 11 and the incident side opening 13a of the integrating sphere 13 contact each other. Is controlled until the fan-shaped rotary aperture 17 reaches the end within the light distribution characteristic measurement range.

データ処理装置31は、第1の検出器23により検出された可変アパチャー15の開口径の大きさ、第2の検出器25により検出された扇形回転アパチャー17の扇型開口部の位置、第3の検出器27により検出された光源11から積分球13の入射側開口までの距離、及びこれらが検出されたときに光強度検出器21により検出された光強度から、後述の方法により光源11の3次元配光特性を求める。   The data processing device 31 includes the size of the opening diameter of the variable aperture 15 detected by the first detector 23, the position of the fan-shaped opening of the fan-shaped rotary aperture 17 detected by the second detector 25, the third From the distance from the light source 11 detected by the detector 27 to the entrance-side opening of the integrating sphere 13 and the light intensity detected by the light intensity detector 21 when these are detected, The three-dimensional light distribution characteristic is obtained.

画面表示装置33は、データ処理装置31により導出された光源11の配光特性の測定結果等を表示する。   The screen display device 33 displays the measurement result of the light distribution characteristic of the light source 11 derived by the data processing device 31.

なお、本実施形態において配光特性を求めるにあたり、図2に示すように、積分球13及び光源11の移動方向(光源11の光軸方向)を基準軸として、この基準軸に交差するある面(検出面)における角度θ(以下、配光角θとも称する)と、その平面の傾きα(以下、方位角αとも称する)で、各輝度を測定する。また、測定可能な角度範囲として、光源11の正面から真横まで(θ=0〜90°)、周方向は全周(α=0〜360°)が設定されている。なお、以下において、積分球13及び光源11の移動方向に対して垂直な面上における検出方位αには、扇形回転アパチャー17の回転方位角αが対応するとともに、前記検出面内における配光角θには、積分球13内に導入される光11の入射開口角θが対応する。   In obtaining light distribution characteristics in the present embodiment, as shown in FIG. 2, a plane that intersects the reference axis with the moving direction of the integrating sphere 13 and the light source 11 (the optical axis direction of the light source 11) as a reference axis. Each luminance is measured at an angle θ (hereinafter also referred to as a light distribution angle θ) on the (detection surface) and an inclination α (hereinafter also referred to as an azimuth angle α) of the plane. Further, the measurable angle range is set from the front to the side of the light source 11 (θ = 0 to 90 °) and the entire circumference (α = 0 to 360 °) in the circumferential direction. In the following, the detection azimuth α on the plane perpendicular to the moving direction of the integrating sphere 13 and the light source 11 corresponds to the rotation azimuth α of the fan-shaped rotation aperture 17 and the light distribution angle in the detection plane. The incident aperture angle θ of the light 11 introduced into the integrating sphere 13 corresponds to θ.

続いて、上記構成の配光特性測定装置1による光源11の配光特性の測定方法について説明する。なお、測定にあたって、光源11の発光面11aの中心、可変アパチャー15の開口中心及び扇形回転アパチャー17の回転中心は、移動機構19により光源11及び積分球13の少なくとも一方が移動する方向(すなわち光軸方向)と平行な直線上にあるように調整しておく。また、移動機構19において、光源11及び積分球13の移動方向が、光源11の発光面11aから射出される光の光軸方向に対して平行になるように、常に調整しておく。   Then, the measuring method of the light distribution characteristic of the light source 11 by the light distribution characteristic measuring apparatus 1 of the said structure is demonstrated. In measurement, the center of the light emitting surface 11 a of the light source 11, the opening center of the variable aperture 15, and the rotation center of the fan-shaped rotation aperture 17 are directions in which at least one of the light source 11 and the integrating sphere 13 is moved by the moving mechanism 19 (that is, light Adjust so that it is on a straight line parallel to the axial direction. Further, the moving mechanism 19 is always adjusted so that the moving direction of the light source 11 and the integrating sphere 13 is parallel to the optical axis direction of the light emitted from the light emitting surface 11 a of the light source 11.

配光特性測定装置1では、光源11の発光面11aを通って射出した光の一部は、積分球13の入射側開口13aに設けられた扇形回転アパチャー17及び可変アパチャー15を順に通過し、積分球13内に導入される(図1参照)。   In the light distribution characteristic measuring apparatus 1, a part of the light emitted through the light emitting surface 11a of the light source 11 sequentially passes through the fan-shaped rotary aperture 17 and the variable aperture 15 provided in the incident side opening 13a of the integrating sphere 13, It is introduced into the integrating sphere 13 (see FIG. 1).

コントローラ29により、可変アパチャー15の開口部の径の大きさを、所望の配光角分解能に基づき算出された後述のピッチΔApで無限小から徐々に広げてゆくことで、積分球13内に導入される光源11からの光の入射開口角θは所望の配光角分解能ずつ大きくなり、その都度(各角度において)光強度検出器21に積分球13の射出側開口13bから射出する光の強度を検出させる。そして、検出した結果を用いて、データ処理装置31は、後述の方法により相対配光強度を求める。以上の作業を、可変アパチャー15の開口部の径の大きさが、積分球13の入射側開口13aの径と等しくなるか、あるいは積分球13の入射側開口13aの径以下であり且つ可変アパチャー15の最大径になるまで繰り返す。   The controller 29 introduces the diameter of the opening of the variable aperture 15 into the integrating sphere 13 by gradually widening from an infinitesimal pitch at a later-described pitch ΔAp calculated based on a desired light distribution angle resolution. The incident aperture angle θ of light from the light source 11 is increased by the desired light distribution angle resolution, and the intensity of light emitted from the exit side opening 13b of the integrating sphere 13 to the light intensity detector 21 each time (at each angle). Is detected. And the data processing apparatus 31 calculates | requires a relative light distribution intensity | strength by the method mentioned later using the detected result. In the above operation, the diameter of the opening of the variable aperture 15 is equal to the diameter of the incident side opening 13a of the integrating sphere 13 or is equal to or smaller than the diameter of the incident side opening 13a of the integrating sphere 13 and the variable aperture. Repeat until the maximum diameter of 15 is reached.

次に、コントローラ29により、移動機構19により光源11及び積分球13の少なくともどちらか一方を、互いが近づく方向に所望の配光角分解能に基づき算出された後述のピッチΔDで徐々に移動させてゆくことで、積分球13内に導入される光源11からの光の入射開口角θは所望の配光角分解能ずつ大きくなり、その都度(各角度において)光強度検出器21に積分球13の射出側開口13bから射出する光の強度を検出させる。そして、検出した結果を用いて、データ処理装置31は、後述の方法により相対配光強度を求める。以上の動作を、積分球13の入射側開口13a(の扇形回転アパチャー17)と光源11とが接するまで、すなわち積分球13への入射開口角θが90°になるまで繰り返す。   Next, the controller 29 causes the moving mechanism 19 to gradually move at least one of the light source 11 and the integrating sphere 13 in a direction approaching each other at a pitch ΔD, which will be described later, calculated based on a desired light distribution angle resolution. As a result, the incident aperture angle θ of the light from the light source 11 introduced into the integrating sphere 13 is increased by the desired light distribution angle resolution, and each time (at each angle), the light intensity detector 21 receives the integrating sphere 13. The intensity of light emitted from the emission side opening 13b is detected. And the data processing apparatus 31 calculates | requires a relative light distribution intensity | strength by the method mentioned later using the detected result. The above operation is repeated until the incident side opening 13a of the integrating sphere 13 (the fan-shaped rotational aperture 17) contacts the light source 11, that is, until the incident opening angle θ to the integrating sphere 13 reaches 90 °.

このように求めた配光強度を、そのときの配光角毎にプロットすれば、図3に示すような、ある方位角αにおける配光特性のグラフを得ることができる。   If the thus obtained light distribution intensity is plotted for each light distribution angle, a graph of the light distribution characteristic at a certain azimuth angle α as shown in FIG. 3 can be obtained.

以上一連の動作を、扇形回転アパチャー17を中心角ω(方位角分解能)ずつ回転させる毎に、配光特性測定範囲内で端部(例えばα=360°)に達するまで行わせることで、光源11の全周に亘り隈なく配光特性を導出することが可能である。   A series of operations as described above is performed every time the fan-shaped rotation aperture 17 is rotated by the central angle ω (azimuth resolution) until the end (for example, α = 360 °) is reached within the light distribution characteristic measurement range. It is possible to derive the light distribution characteristic over the entire circumference of the eleven.

ここで、図4を用いて、可変アパチャー制御部29aで用いる、上述した可変アパチャー15の開口径の変化ピッチΔApを導出する方法について説明する。光源11の発光面11aの径の大きさをAsとし、積分球13内に導入される光源11からの光の入射開口角をθとし、(積分球13の入射側開口13aに設けられた)可変アパチャー15の開口径の大きさをApとし、光源11から積分球13の入射側開口13aまでの距離をDとしたとき、以下の(1)式のように、幾何学的関係から可変アパチャー15の径Apをθの関数として表すことができる。   Here, a method of deriving the change pitch ΔAp of the opening diameter of the variable aperture 15 described above, which is used in the variable aperture control unit 29a, will be described with reference to FIG. The diameter of the light emitting surface 11a of the light source 11 is As, and the incident aperture angle of light from the light source 11 introduced into the integrating sphere 13 is θ (provided in the incident side aperture 13a of the integrating sphere 13). When the size of the aperture diameter of the variable aperture 15 is Ap and the distance from the light source 11 to the incident side aperture 13a of the integrating sphere 13 is D, the variable aperture is obtained from the geometrical relationship as shown in the following equation (1). A diameter Ap of 15 can be expressed as a function of θ.

Ap=2Dtanθ+As …(1)   Ap = 2Dtanθ + As (1)

ここで知りたいのは、積分球13内に導入される光源11からの光の入射開口角θが、所望の配光角分解能θrだけ変化したときの、可変アパチャー15の径Apの変化量ΔApであり、これは以下のように(2)式で表すことができる。 What we want to know here is the amount of change in the diameter Ap of the variable aperture 15 when the incident aperture angle θ of light from the light source 11 introduced into the integrating sphere 13 changes by a desired light distribution angle resolution θ r. ΔAp, which can be expressed by equation (2) as follows.

Figure 2012007951
Figure 2012007951

この(2)式に、配光角分解能θr、入射開口角θ及びこれらに対応する光源11から積分球13の入射側開口13aまでの距離Dの値を代入すれば、可変アパチャー15の径の変化ピッチΔApの具体的な値を求めることができる。 If the value of the light distribution angular resolution θ r , the incident aperture angle θ and the corresponding distance D from the light source 11 to the incident side aperture 13a of the integrating sphere 13 is substituted into this equation (2), the diameter of the variable aperture 15 The specific value of the change pitch ΔAp can be obtained.

次に、図4を用いて、移動機構制御部29bで用いる、上述した光源11から積分球13の入射側開口13aまでの距離の変化ピッチΔDを導出する方法について説明する。光源11から積分球13の入射側開口13aまでの距離をDとしたとき、以下の(3)式のように、幾何学的関係からこの距離Dをθの関数として表すことができる。   Next, a method for deriving the change pitch ΔD of the distance from the light source 11 to the incident side opening 13a of the integrating sphere 13 used in the moving mechanism control unit 29b will be described with reference to FIG. Assuming that the distance from the light source 11 to the incident side opening 13a of the integrating sphere 13 is D, the distance D can be expressed as a function of θ from the geometrical relationship as shown in the following equation (3).

Figure 2012007951
Figure 2012007951

ここで知りたいのは、積分球13内に導入される光の入射開口角θが、所望の配光角分解能θrだけ変化したときの、光源11から積分球13の入射側開口13aまでの距離Dの変化量ΔDであり、これは以下のように(4)式で表すことができる。 What we want to know here is that from the light source 11 to the incident side opening 13a of the integrating sphere 13 when the incident opening angle θ of the light introduced into the integrating sphere 13 changes by the desired light distribution angle resolution θ r . This is a change amount ΔD of the distance D, which can be expressed by the following equation (4).

Figure 2012007951
Figure 2012007951

この(4)式に、配光角分解能θr、入射開口角θ、これらに対応する可変アパチャー15の径Ap及び光源11の発光面11aの径Asの値を代入すれば、光源11から積分球13の入射側開口13aまでの距離の変化ピッチΔDの具体的な値を求めることができる。 If the values of the light distribution angle resolution θ r , the incident aperture angle θ, the diameter Ap of the variable aperture 15 and the diameter As of the light emitting surface 11 a of the light source 11 are substituted into the equation (4), the integration from the light source 11 is performed. A specific value of the change pitch ΔD of the distance to the incident side opening 13a of the sphere 13 can be obtained.

続いて、データ処理装置31において、光強度検出器21により検出された積分球13の射出光強度から、相対的な配光強度を導出する方法について説明する。光源11からの光の積分球13への入射開口角がθであった場合において光強度検出器21で検出された光の強度Iθと、前記入射開口角θから配光角分解能θr分だけ増加した角度において検出された光の強度Iθ+θrとの差が、扇形回転アパチャー17で指定された方位αの配光角θにおける放射束に相当する。但し、配光特性は配光角毎の輝度、すなわち単位面積当たりの放射束で定義される。よって、光強度の差(Iθ+θr−Iθ)を、入射開口角θが配光角分解能θrだけ変化したときの受光立体角(受光面積)の変化量で除する必要がある。 Next, a method for deriving the relative light distribution intensity from the emission light intensity of the integrating sphere 13 detected by the light intensity detector 21 in the data processing device 31 will be described. When the incident aperture angle of light from the light source 11 to the integrating sphere 13 is θ, the light intensity I θ detected by the light intensity detector 21 and the light distribution angle resolution θ r from the incident aperture angle θ. The difference from the detected light intensity I θ + θr at the increased angle corresponds to the radiant flux at the light distribution angle θ in the azimuth α specified by the sector rotation aperture 17. However, the light distribution characteristic is defined by the luminance for each light distribution angle, that is, the radiant flux per unit area. Therefore, it is necessary to divide the difference in light intensity (I θ + θr −I θ ) by the amount of change in the light receiving solid angle (light receiving area) when the incident aperture angle θ changes by the light distribution angle resolution θ r .

なお、受光立体角Ωは、積分球13内に導入される光源11からの光の入射開口角をθとし、扇形回転アパチャー17の扇形中心角をωとしたとき、以下の(5)式のように表すことができる。   The light receiving solid angle Ω is expressed by the following equation (5), where θ is the incident aperture angle of light from the light source 11 introduced into the integrating sphere 13 and ω is the sector center angle of the sector rotation aperture 17. Can be expressed as:

Figure 2012007951
Figure 2012007951

ゆえに、入射開口角θが、所望の配光角分解能θrだけ変化したときの、受光立体角の変化量ΔΩは、以下の(6)式で表すことができる。 Therefore, the change amount ΔΩ of the light receiving solid angle when the incident aperture angle θ changes by a desired light distribution angle resolution θ r can be expressed by the following equation (6).

Figure 2012007951
Figure 2012007951

よって、配光強度を得るためには、上記したように光強度の差(Iθ+θr−Iθ)を受光立体角の変化量ΔΩで除すればいいのだが、ここで知りたいのは「相対的な」配光強度であるため、上記(6)式からθに依存しない部分を定数として省いたものをとしたとき、以下の(7)式により、配光角θにおける相対配光強度を求めることができる。 Therefore, in order to obtain the light distribution intensity, the light intensity difference (I θ + θr −I θ ) can be divided by the amount of change ΔΩ of the light receiving solid angle as described above. Since it is a “relative” light distribution intensity, when the part that does not depend on θ is omitted from the above formula (6) as a constant, the following formula (7) gives the relative light distribution at the light distribution angle θ. The strength can be determined.

Figure 2012007951
Figure 2012007951

この(7)式に、配光角分解能θrと、入射開口角θと、これらに対応する検出強度Iθ(Iθ+θr)の値をそれぞれ代入すれば、配光角θにおける相対配光強度Iθrを具体的に求めることができる。 If the values of the light distribution angle resolution θ r , the incident aperture angle θ, and the corresponding detection intensity I θ (I θ + θr ) are substituted into the equation (7), the relative distribution at the light distribution angle θ is obtained. The light intensity I θr can be specifically obtained.

以上説明したように、本実施形態に係る配光特性測定装置によれば、光源と検出器との間に積分球を配置することにより、光源の配光方位に検出器(の検出面)の位置や向きが依存しなくなるため、従来のように測定角度や測定位置に応じて、検出器(の検出面)を移動させたり、複数設置したりする必要がない。よって、測定装置を簡素化・小型化できる。また、扇形回転アパチャー径の変化及び積分球と光源のうちどちらか一方を直線移動させるのみで、配光特性をスキャンすることができる。よって、駆動機構が単純になる。さらに、配光角分解能は、光強度を検出する検出器の受光面積に制限されず、積分球から光源までの距離の計測精度及び扇形回転アパチャー径の計測精度に依存するだけであるため、高分解能な測定が可能となる。   As described above, according to the light distribution characteristic measuring apparatus according to the present embodiment, by arranging the integrating sphere between the light source and the detector, the detector (the detection surface thereof) is arranged in the light distribution direction of the light source. Since the position and orientation do not depend on each other, there is no need to move the detector (or its detection surface) or to install a plurality of detectors according to the measurement angle or measurement position as in the prior art. Therefore, the measuring device can be simplified and downsized. Further, the light distribution characteristic can be scanned only by changing the fan-shaped rotational aperture diameter and linearly moving one of the integrating sphere and the light source. Therefore, the driving mechanism is simplified. Furthermore, the light distribution angle resolution is not limited to the light receiving area of the detector that detects the light intensity, but only depends on the measurement accuracy of the distance from the integrating sphere to the light source and the measurement accuracy of the fan-shaped rotation aperture diameter. Measurement with high resolution is possible.

すなわち、本実施形態によれば、簡素且つ省スペースな装置構成でありながら、十分な角度分解能が得られる、光源の配光特性測定装置を達成できる。   That is, according to the present embodiment, it is possible to achieve a light distribution characteristic measuring device for a light source that has a simple and space-saving device configuration and can obtain a sufficient angular resolution.

ここまで本発明を分かりやすくするために、実施形態の構成要件を付して説明したが、本発明がこれに限定されるものではないことは言うまでもない。   In order to make the present invention easy to understand, the configuration requirements of the embodiment have been described, but it goes without saying that the present invention is not limited to this.

例えば、本実施形態に係る光源の配光特性測定装置においては、配光角θが0°の状態から所望の角度分解能ずつ大きくなるように操作しているが、配光角θが90°の状態から所望の角度分解能ずつ小さくなるように逆の操作を行ってもよい。   For example, in the light distribution characteristic measurement device of the light source according to the present embodiment, the light distribution angle θ is operated from the state where the light distribution angle θ is 0 ° so as to increase by a desired angular resolution, but the light distribution angle θ is 90 °. The reverse operation may be performed so as to decrease the desired angular resolution from the state.

また、本実施形態に係る光源の配光特性測定装置においては、可変アパチャー15の開口部の径の大きさをピッチΔApで変化させた後に、光源11から積分球13までの距離がピッチΔDで変化するように操作しているが、これに限定されず逆の操作、すなわち光源11から積分球13までの距離をピッチΔDで変化させた後に、可変アパチャー15の開口部の径の大きさをピッチΔApで変化させてもよい。   In the light distribution characteristic measuring apparatus for the light source according to the present embodiment, the distance from the light source 11 to the integrating sphere 13 is the pitch ΔD after the diameter of the opening of the variable aperture 15 is changed by the pitch ΔAp. Although the operation is performed to change, the operation is not limited to this, but the reverse operation, that is, after the distance from the light source 11 to the integrating sphere 13 is changed by the pitch ΔD, the diameter of the opening of the variable aperture 15 is changed. You may change by pitch (DELTA) Ap.

また、本実施形態に係る光源の配光特性測定装置においては、可変アパチャー15及び扇形回転アパチャー17を積分球13の入射側開口13aに設置する際に、どちらが光源11a側に設置されても構わない。   Moreover, in the light distribution characteristic measuring apparatus of the light source according to the present embodiment, when the variable aperture 15 and the fan-shaped rotation aperture 17 are installed in the incident side opening 13a of the integrating sphere 13, either of them may be installed on the light source 11a side. Absent.

また、本実施形態に係る光源の配光特性測定装置においては、光強度検出器21を積分球13に対して固定して取り付けるのではなく、バンドルファイバーなどを介して積分球13の射出側開口13bから射出される光を光強度検出器に導入するように構成してもよい。この構成により、例えば光強度検出器が大きく、取り付けや移動が困難な場合に、積分球13のみを移動させることが可能となり、利便性が向上する。   Moreover, in the light distribution characteristic measuring apparatus of the light source according to the present embodiment, the light intensity detector 21 is not fixedly attached to the integrating sphere 13 but the exit side opening of the integrating sphere 13 through a bundle fiber or the like. You may comprise so that the light inject | emitted from 13b may be introduce | transduced into a light intensity detector. With this configuration, for example, when the light intensity detector is large and it is difficult to mount or move, it is possible to move only the integrating sphere 13 and improve convenience.

1 配光特性測定装置
11 光源
11a 発光面
13 積分球
13a 入射側開口
13b 射出側開口
15 可変アパチャー
17 扇形回転アパチャー
19 移動機構
21 光強度検出器
23 第1の検出器
25 第2の検出器
27 第3の検出器
29 コントローラ
29a 可変アパチャー制御部
29b 移動機構制御部
29c 扇形回転アパチャー制御部
31 データ処理装置
33 画面表示装置
DESCRIPTION OF SYMBOLS 1 Light distribution characteristic measuring apparatus 11 Light source 11a Light emission surface 13 Integrating sphere 13a Incident side opening 13b Emission side opening 15 Variable aperture 17 Fan-shaped rotation aperture 19 Moving mechanism 21 Light intensity detector 23 First detector 25 Second detector 27 Third detector 29 Controller 29a Variable aperture control unit 29b Moving mechanism control unit 29c Fan-shaped rotation aperture control unit 31 Data processing device 33 Screen display device

Claims (5)

発光面が円形である光源の3次元配光特性を測定する装置であって、
前記光源からの光を内部に導入するための入射側開口と、前記入射側開口から導入した光が内部で拡散反射を繰り返した結果、入射開口角に関わらず常に射出方位が等しい光として射出する射出側開口とが形成された積分球と、
前記積分球の前記射出側開口から射出された光の強度を検出する光強度検出器と、
前記積分球の前記入射側開口に設けられ、開口径が可変な可変アパチャーと、
前記積分球の前記入射側開口の前記可変アパチャーの直前あるいは直後に設けられ、所望の角度分解能と等しい大きさの中心角を持つ扇形の開口部の頂点を中心に回転可能な扇形回転アパチャーと、
前記光源及び前記積分球の少なくとも一方を移動して、前記光源から前記積分球の前記入射側開口までの距離を変化させることが可能な移動機構と、
前記可変アパチャーの開口径の可変制御、前記扇形回転アパチャーの回転制御、前記移動機構による前記光源及び前記積分球の少なくとも一方の移動制御及び前記光強度検出器による光の強度を検出させるタイミングの制御を行うコントローラと、
前記コントローラにより、所望の角度分解能に応じて、前記可変アパチャーの開口径を変化させるか、又は前記移動機構により前記光源及び前記積分球の少なくとも一方を移動させるかする毎に、前記光強度検出器により前記積分球の前記射出側開口からの射出光の強度を検出させる動作を、前記扇形回転アパチャーを前記中心角ずつ回転させる毎に繰り返し、得られた検出結果を用いて、前記光源の3次元配光特性を求めることを特徴とする配光特性測定装置。
An apparatus for measuring the three-dimensional light distribution characteristics of a light source having a circular light emitting surface,
The incident side opening for introducing the light from the light source into the inside, and the light introduced from the incident side opening repeatedly diffused and reflected internally, so that the light is always emitted as light having the same emission direction regardless of the incident opening angle. An integrating sphere formed with an exit opening;
A light intensity detector for detecting the intensity of light emitted from the exit-side opening of the integrating sphere;
A variable aperture provided in the entrance-side opening of the integrating sphere and having a variable aperture diameter;
A fan-shaped rotary aperture that is provided immediately before or after the variable aperture of the incident-side aperture of the integrating sphere, and is rotatable about the apex of a fan-shaped aperture having a central angle equal to a desired angular resolution;
A moving mechanism capable of moving at least one of the light source and the integrating sphere to change a distance from the light source to the incident-side opening of the integrating sphere;
Variable control of the aperture diameter of the variable aperture, rotation control of the fan-shaped rotation aperture, movement control of at least one of the light source and the integrating sphere by the moving mechanism, and control of timing for detecting light intensity by the light intensity detector A controller to perform
The light intensity detector each time the controller changes the aperture of the variable aperture or moves at least one of the light source and the integrating sphere by the moving mechanism according to a desired angular resolution. The operation of detecting the intensity of the light emitted from the exit-side opening of the integrating sphere is repeated each time the fan-shaped rotation aperture is rotated by the central angle, and using the obtained detection result, the three-dimensional A light distribution characteristic measuring apparatus characterized by obtaining a light distribution characteristic.
前記可変アパチャーの開口径の大きさを、最小径から所望の角度分解能に基づくピッチで徐々に拡大し、配光特性測定範囲内で最大径に達すると、この動作を前記可変アパチャーに繰り返させる可変アパチャー制御手段と、
前記可変アパチャーの開口径の大きさが前記最大径に達する毎に、前記移動機構により前記光源及び前記積分球の少なくとも一方を互いが近づく方向に所望の角度分解能に基づくピッチで移動させ、この動作を前記光源と前記積分球の前記入射側開口とが接するまで繰り返す移動機構制御手段と、
前記光源と前記積分球の前記入射側開口とが接する毎に、前記扇形回転アパチャーを前記中心角の大きさずつ回転させ、この動作を配光特性測定範囲内で端部に達するまで繰り返す扇形回転アパチャー制御手段と、
前記可変アパチャーの開口径の大きさが変化する毎に、前記開口径の大きさを検出する第1の検出器と、
前記扇形回転アパチャーが回転する毎に、前記扇形の開口部の位置を検出する第2の検出器と、
前記光源及び前記積分球の少なくとも一方が移動する毎に、前記光源から前記積分球の前記入射側開口までの距離を検出する第3の検出器と、
前記第1〜第3の検出器のいずれかが検出作動する毎に、前記積分球の前記射出側開口から射出した光の強度を検出する前記光強度検出器と、
前記第1の検出器により検出された前記可変アパチャーの開口径の大きさ、前記第2の検出器により検出された前記扇形回転アパチャーの扇型開口部の位置、前記第3の検出器により検出された前記光源から前記積分球の前記入射側開口までの距離及びこれらが検出されたときに前記光強度検出器により検出された光強度から、前記光源の3次元配光特性を求めるデータ処理装置とを有することを特徴とする請求項1に記載の光源の配光特性測定装置。
The opening diameter of the variable aperture is gradually increased from the minimum diameter at a pitch based on the desired angular resolution, and when the maximum diameter is reached within the light distribution characteristic measurement range, the variable aperture is repeatedly operated. Aperture control means,
Each time the opening diameter of the variable aperture reaches the maximum diameter, the moving mechanism moves at least one of the light source and the integrating sphere at a pitch based on a desired angular resolution in a direction in which the light source and the integrating sphere approach each other. Moving mechanism control means that repeats until the light source and the incident-side opening of the integrating sphere contact each other,
Each time the light source and the incident-side opening of the integrating sphere contact each other, the fan-shaped rotation aperture is rotated by the size of the central angle, and this operation is repeated until the end is reached within the light distribution characteristic measurement range. Aperture control means,
A first detector that detects the size of the aperture diameter each time the aperture size of the variable aperture changes;
A second detector for detecting the position of the fan-shaped opening each time the fan-shaped rotation aperture rotates;
A third detector for detecting a distance from the light source to the incident side opening of the integrating sphere each time at least one of the light source and the integrating sphere moves;
The light intensity detector that detects the intensity of light emitted from the exit side opening of the integrating sphere each time any one of the first to third detectors performs a detection operation;
The size of the aperture of the variable aperture detected by the first detector, the position of the fan-shaped opening of the fan-shaped rotary aperture detected by the second detector, and detected by the third detector A data processing device for obtaining a three-dimensional light distribution characteristic of the light source from the distance from the incident light source to the entrance-side opening of the integrating sphere and the light intensity detected by the light intensity detector when these are detected The light distribution characteristic measurement device for a light source according to claim 1, wherein:
前記移動機構により前記光源及び前記積分球の少なくとも一方が移動する方向は、前記光源から射出される光の光軸方向と平行であることを特徴とする請求項1又は2に記載の光源の配光特性測定装置。   The light source arrangement according to claim 1 or 2, wherein a direction in which at least one of the light source and the integrating sphere moves by the moving mechanism is parallel to an optical axis direction of light emitted from the light source. Optical property measuring device. 前記可変アパチャー及び前記扇形回転アパチャーは、前記積分球の前記入射側開口に、前記移動機構により前記光源及び前記積分球の少なくとも一方が移動する方向に対して垂直になるように設けられていることを特徴とする請求項1〜3のいずれか一項に記載の光源の配光特性測定装置。   The variable aperture and the fan-shaped rotation aperture are provided in the incident side opening of the integrating sphere so as to be perpendicular to a direction in which at least one of the light source and the integrating sphere moves by the moving mechanism. The light distribution characteristic measuring apparatus for a light source according to any one of claims 1 to 3. 前記光源に形成されている光を射出するための発光面の中心、前記可変アパチャーの開口中心及び前記扇形回転アパチャーの回転中心は、前記移動機構により前記光源及び前記積分球の少なくとも一方が移動する方向と平行な直線上にあることを特徴とする請求項1〜4のいずれか一項に記載の光源の配光特性測定装置。   At least one of the light source and the integrating sphere is moved by the moving mechanism at the center of the light emitting surface for emitting light formed on the light source, the opening center of the variable aperture, and the rotation center of the fan-shaped rotating aperture. The light distribution characteristic measuring apparatus for a light source according to any one of claims 1 to 4, wherein the light distribution characteristic measuring apparatus is on a straight line parallel to the direction.
JP2010143028A 2010-06-23 2010-06-23 Measurement device for light distribution characteristics of light source Pending JP2012007951A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010143028A JP2012007951A (en) 2010-06-23 2010-06-23 Measurement device for light distribution characteristics of light source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010143028A JP2012007951A (en) 2010-06-23 2010-06-23 Measurement device for light distribution characteristics of light source

Publications (1)

Publication Number Publication Date
JP2012007951A true JP2012007951A (en) 2012-01-12

Family

ID=45538677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010143028A Pending JP2012007951A (en) 2010-06-23 2010-06-23 Measurement device for light distribution characteristics of light source

Country Status (1)

Country Link
JP (1) JP2012007951A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102680087A (en) * 2012-05-29 2012-09-19 浙江三鑫照明检测设备有限公司 Rotary integrating sphere with fixed light measuring opening
CN103826118A (en) * 2014-03-18 2014-05-28 西安工业大学 Color television imaging system spatial resolution detecting device
WO2015151488A1 (en) * 2014-04-03 2015-10-08 パナソニックIpマネジメント株式会社 Radiant flux distribution measurement method and radiant flux distribution measurement device
KR101812965B1 (en) 2016-11-14 2018-01-30 한국표준과학연구원 An Integrating Sphere Light Source Apparatus
CN113358329A (en) * 2021-04-20 2021-09-07 浙江大华技术股份有限公司 Aperture detection device
KR20220030402A (en) * 2020-08-31 2022-03-11 한국광기술원 Apparatus and method for measuring optical propercies

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102680087A (en) * 2012-05-29 2012-09-19 浙江三鑫照明检测设备有限公司 Rotary integrating sphere with fixed light measuring opening
CN103826118A (en) * 2014-03-18 2014-05-28 西安工业大学 Color television imaging system spatial resolution detecting device
CN103826118B (en) * 2014-03-18 2016-02-03 西安工业大学 A kind of color TV imaging system spatial discrimination force checking device
WO2015151488A1 (en) * 2014-04-03 2015-10-08 パナソニックIpマネジメント株式会社 Radiant flux distribution measurement method and radiant flux distribution measurement device
KR101812965B1 (en) 2016-11-14 2018-01-30 한국표준과학연구원 An Integrating Sphere Light Source Apparatus
KR20220030402A (en) * 2020-08-31 2022-03-11 한국광기술원 Apparatus and method for measuring optical propercies
KR102441896B1 (en) 2020-08-31 2022-09-13 한국광기술원 Apparatus and method for measuring optical propercies
CN113358329A (en) * 2021-04-20 2021-09-07 浙江大华技术股份有限公司 Aperture detection device

Similar Documents

Publication Publication Date Title
JP2012007951A (en) Measurement device for light distribution characteristics of light source
EP1538457B1 (en) Three-dimensional location measurement sensor
US10564265B2 (en) Measurement device and measurement method
JP7155368B2 (en) laser scanner
US20120194820A1 (en) Goniophotometr for measuring 3d light intensity distribution of light source
EP2607845A2 (en) Rotation angle detecting apparatus and surveying instrument
JP2009536358A5 (en)
US10267659B2 (en) Angle detecting device and surveying instrument
CN103162663A (en) Rotation angle detecting apparatus and surveying instrument
JP2007071852A (en) Apparatus and method for measuring deep hole
US9733066B2 (en) Shape measuring method and device
CN111580072A (en) Surveying instrument and method of calibrating a surveying instrument
EP2607846B1 (en) Surveying apparatus
JP2008517283A (en) Improved measurement system
CN106461381A (en) Apparatus for determining the angle between two planar workpiece surfaces
KR20190053747A (en) Measuring Instrument for Sizing Object at Long Distance
EP2982939B1 (en) Absolute encoder and surveying device
JP5823367B2 (en) measuring device
JP5309542B2 (en) Measuring apparatus and method
JP6924953B2 (en) Shape measuring device and shape measuring method
JP2013024754A (en) Object diameter measurement method
JP2013250197A (en) Angle measurement apparatus
JP5120597B2 (en) Color measuring device
JP5929796B2 (en) Optical measuring device
Makai Simultaneous spatial and angular positioning of plane specular samples by a novel double beam triangulation probe with full auto-compensation