JP2012007384A - Junction structure - Google Patents

Junction structure Download PDF

Info

Publication number
JP2012007384A
JP2012007384A JP2010144239A JP2010144239A JP2012007384A JP 2012007384 A JP2012007384 A JP 2012007384A JP 2010144239 A JP2010144239 A JP 2010144239A JP 2010144239 A JP2010144239 A JP 2010144239A JP 2012007384 A JP2012007384 A JP 2012007384A
Authority
JP
Japan
Prior art keywords
column
recess
column member
joint
support housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010144239A
Other languages
Japanese (ja)
Other versions
JP5582885B2 (en
Inventor
Naoko Okada
直子 岡田
Atsushi Hattori
敦志 服部
Kazumasa Imai
和正 今井
Koji Muramatsu
晃次 村松
Yumi Sakaguchi
裕美 坂口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2010144239A priority Critical patent/JP5582885B2/en
Publication of JP2012007384A publication Critical patent/JP2012007384A/en
Application granted granted Critical
Publication of JP5582885B2 publication Critical patent/JP5582885B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a junction structure of a reinforced concrete column capable of effectively preventing bearing failure and shear slip failure.SOLUTION: A junction structure 1 is a junction structure of a column member 10 of reinforced concrete construction and a support skeleton 20 of reinforced concrete construction for supporting the column member 10. A recess 21 is formed at a top face of the support skeleton 20, and a column base part of the column member 10 is fitted into the recess 21 to form a joint part 40. On a surface side of the support skeleton 20 in the joint part 40, a groove 41 is provided to block force transmitted between an inner wall surface 23 of the recess 21 and a lateral face on a column base part side of the column member 10.

Description

本発明は、鉄筋コンクリート柱とこの柱を支持する支持躯体との接合構造に関する。   The present invention relates to a joint structure between a reinforced concrete column and a support frame that supports the column.

従来より、プレキャスト鉄筋コンクリート造の構造物では、例えば、柱、梁、スラブを工場で柱部材、梁部材、スラブ部材として製造し、各部材を現場に運搬して、互いに接合する。
このうち、柱部材110は、図8に示すように、柱梁接合部、スラブ、あるいは基礎である支持躯体120に接合される。
Conventionally, in a precast reinforced concrete structure, for example, a column, a beam, and a slab are manufactured as a column member, a beam member, and a slab member at a factory, and each member is transported to the site and joined together.
Among them, the column member 110 is bonded to a column-beam joint, a slab, or a support housing 120 as a foundation, as shown in FIG.

柱部材110の下端には、筒状の継手金物111が打ち込まれており、この継手金物111の下端縁は、柱部材110の下端面から露出している。この継手金物111の内部では、下方に向かって、柱部材の主筋112が延びている。
一方、支持躯体120の上面から上方に向かって主筋124が延びている。また、支持躯体120の上面には、スペーサ127が設けられている。
A cylindrical joint hardware 111 is driven into the lower end of the column member 110, and the lower end edge of the joint hardware 111 is exposed from the lower end surface of the column member 110. Inside the joint hardware 111, the main bar 112 of the column member extends downward.
On the other hand, the main reinforcement 124 extends upward from the upper surface of the support housing 120. A spacer 127 is provided on the upper surface of the support housing 120.

このような構造物では、まず、柱部材110を上から支持躯体120に接近させて、支持躯体120の主筋124が継手金物111の内部に挿入されるようにして、柱部材110をスペーサの上に載せる。これにより、柱部材110と支持躯体120との間には隙間が形成される。   In such a structure, first, the column member 110 is moved close to the support housing 120 from above, and the main bar 124 of the support housing 120 is inserted into the joint hardware 111 so that the column member 110 is placed above the spacer. Put it on. Thereby, a gap is formed between the column member 110 and the support housing 120.

次に、柱部材110と支持躯体120との隙間および継手金物111の内部空間に流動性の高いグラウトモルタルを充填する。硬化したグラウトモルタルは、目地部126となる。この目地部126は、支持躯体120の上面に沿って形成されることになる。   Next, the grout mortar with high fluidity is filled in the gap between the column member 110 and the support housing 120 and the internal space of the joint hardware 111. The hardened grout mortar becomes the joint portion 126. The joint 126 is formed along the upper surface of the support housing 120.

ところで、近年、コンクリートとして高強度コンクリートを用いる場合がある。この場合、充填するグラウトモルタルの強度はコンクリートの強度より低いため、柱部材110の最も大きい曲げモーメントが作用する部分である目地部126が圧壊し、結果的に、柱部材の曲げ耐力が高強度コンクリートの強度ではなく、グラウトモルタルの強度で決定されてしまう。   By the way, in recent years, high-strength concrete may be used as concrete. In this case, since the strength of the grout mortar to be filled is lower than the strength of the concrete, the joint portion 126 where the largest bending moment acts on the column member 110 is crushed, and as a result, the bending strength of the column member is high. It is determined not by the strength of concrete but by the strength of grout mortar.

そこで、充填するグラウトモルタルの強度を柱部材のコンクリート強度よりも高強度とすることが考えられるが、グラウトモルタルを高強度化すると、流動性が低下してしまう。また、建物の挙動によっては、コンクリート強度によって決定される曲げ耐力以上の耐力が柱部材110に要求される場合もある。   Therefore, it is conceivable that the strength of the grout mortar to be filled is higher than the concrete strength of the column member, but if the strength of the grout mortar is increased, the fluidity is lowered. Further, depending on the behavior of the building, the column member 110 may be required to have a yield strength that is greater than the flexural strength determined by the concrete strength.

以上の問題を解決するため、以下のような手法が提案されている。
すなわち、図9に示すように、支持躯体120Aの上面に凹部121を設け、この凹部121に沿って目地部126を形成する方法が提案されている。(特許文献1参照)。この目地部126の上面の高さは、支持躯体120Aの上面と面一となっている。
この手法によれば、目地部126を支持躯体120Aのコンクリートで拘束できるため、柱部材110の曲げ耐力を向上できる。
In order to solve the above problems, the following methods have been proposed.
That is, as shown in FIG. 9, a method has been proposed in which a recess 121 is provided on the upper surface of the support housing 120 </ b> A, and a joint portion 126 is formed along the recess 121. (See Patent Document 1). The height of the upper surface of the joint portion 126 is flush with the upper surface of the support housing 120A.
According to this method, the joint portion 126 can be constrained by the concrete of the support housing 120A, so that the bending strength of the column member 110 can be improved.

しかしながら、目地部126の上端面の高さを支持躯体の上面と面一とすると,柱部材の下端部が回転することにより、目地部の上端面の近傍が局所的に損傷する支圧破壊や、この目地部の上端面の近傍の支持躯体が破壊するせん断すべり破壊が生じる。   However, if the height of the upper end surface of the joint part 126 is flush with the upper surface of the support housing, the lower end part of the column member rotates, so that the bearing near the upper end surface of the joint part is damaged locally. Then, shear slip failure occurs in which the support frame near the upper end surface of the joint portion is broken.

また、プレキャスト鉄筋コンクリート柱を簡易に基礎に接合する方法として、基礎部に設けた凹部にプレキャスト鉄筋コンクリート柱を建て込み、凹部とプレキャスト鉄筋コンクリート柱により囲まれる空間をモルタルにより埋める方法が提案されている(特許文献2参照)。しかしながら、この場合も、モルタルの上面高さが基礎部の上面と面一であるため、上記と同様の理由で、モルタルや基礎部に支圧破壊やせん断すべり破壊が生じてしまう。   In addition, as a method for easily joining a precast reinforced concrete column to a foundation, a method has been proposed in which a precast reinforced concrete column is built in a recess provided in the foundation and the space surrounded by the recess and the precast reinforced concrete column is filled with mortar (patent) Reference 2). However, also in this case, since the height of the top surface of the mortar is flush with the top surface of the base portion, a bearing failure or shear slip failure occurs in the mortar and the base portion for the same reason as described above.

そこで、このせん断すべり破壊を防ぐために、支持躯体の凹部の周囲の部分に補強筋を配筋する手法が提案されている(特許文献3参照)。   Therefore, in order to prevent the shear sliding failure, a method of arranging reinforcing bars in the peripheral portion of the concave portion of the support housing has been proposed (see Patent Document 3).

特開2009−114738号公報JP 2009-114738 A 特開平6−33470号公報JP-A-6-33470 特公平7−65318号公報Japanese Examined Patent Publication No. 7-65318

しかしながら、特許文献3に示された手法でも、目地部126の表面の高さが支持躯体120の上面と面一であるため、せん断すべり破壊面が支持躯体の表面付近に生じてしまう。そのため、補強筋の量および位置が限定されるうえに、せん断すべり破壊に抵抗するコンクリート体積が小さくなるため、せん断すべり破壊を十分に防ぐことができない。   However, even in the technique disclosed in Patent Document 3, since the height of the surface of the joint portion 126 is flush with the upper surface of the support housing 120, a shear slip fracture surface occurs in the vicinity of the surface of the support housing. For this reason, the amount and position of the reinforcing bars are limited, and the concrete volume that resists shear slip failure is reduced, so that shear slip failure cannot be sufficiently prevented.

本発明は、支圧破壊およびせん断すべり破壊を有効に防止できる接合構造を提供することを目的とする。   An object of the present invention is to provide a joint structure that can effectively prevent bearing failure and shear sliding failure.

請求項1に記載の接合構造は、柱と当該柱を支持する支持躯体との接合構造であって、前記支持躯体の表面には、凹部が形成され、前記柱の一端が前記凹部に嵌合されて接合部が形成されるとともに、前記接合部のうち支持躯体の表面側には、前記凹部の内壁面と前記柱の一端側の側面との間で伝達される力を遮断または緩衝する遮断緩衝部が設けられていることを特徴とする。   The joint structure according to claim 1 is a joint structure between a column and a support housing that supports the column, and a recess is formed on a surface of the support housing, and one end of the column is fitted into the recess. And a joint is formed, and on the surface side of the support housing of the joint, a block that blocks or buffers the force transmitted between the inner wall surface of the recess and the side surface on the one end side of the column. A buffer portion is provided.

ここで、柱の一端側とは、柱の上端または下端の一端側のみに限定するものではなく、本発明が柱の上下端の両方に適用される場合を排除しない。
この発明によれば、柱の一端側を凹部に嵌合して接合部を形成し、この接合部のうち支持躯体の表面側に、凹部の内壁面と柱の一端側の側面との間で伝達される力を遮断または緩衝する遮断緩衝部を設けた。柱の一端側と凹部との接合部には大きな曲げモーメントが作用するが、接合部を介して柱の一端側を支持躯体で拘束できるので、柱の曲げ耐力を向上できる。
Here, the one end side of the column is not limited to only one end side of the upper end or the lower end of the column, and the case where the present invention is applied to both the upper and lower ends of the column is not excluded.
According to the present invention, one end side of the column is fitted into the recess to form a joint, and the surface of the support housing in the joint is between the inner wall surface of the recess and the side on the one end side of the column. A shut-off buffer portion for shutting off or buffering the transmitted force was provided. Although a large bending moment acts on the joint portion between the one end side of the column and the concave portion, the one end side of the column can be restrained by the support housing via the joint portion, so that the bending strength of the column can be improved.

また、遮断緩衝部の底面が支持躯体の表面よりも底面側に位置するので、せん断すべり破壊を有効に防止できる。これは、支持躯体のせん断すべり破壊面の発生位置が底面側に移動するので、せん断すべり破壊に対して抵抗するコンクリート面積が大きくなるうえに、十分な補強筋で抵抗でき、また、同一変形時の作用偏心支圧力が小さくなるからである。   In addition, since the bottom surface of the blocking buffer portion is located on the bottom surface side with respect to the surface of the support housing, shear sliding failure can be effectively prevented. This is because the shear slip failure surface of the support frame moves to the bottom side, so that the concrete area that resists shear slip failure increases, and it can be resisted by a sufficient reinforcing bar. This is because the acting eccentric support pressure of the is reduced.

また、遮断緩衝部を設けることにより、柱の内法高さが大きくなるため、水平剛性が小さくなり、柱に地震時水平抵抗を設計上積極的に期待しない場合には、水平変位に対する追従性を向上できる。
また、凹部の内壁面が接合部の表面近傍を拘束するため、接合部の表面近傍の支圧破壊を有効に抑えることができる。
また、接合部により柱のコンクリート躯体が拘束されるので、柱のクリープ変形を抑制できる。
In addition, by providing a blocking buffer, the inner height of the column is increased, so that the horizontal rigidity is reduced. Can be improved.
Further, since the inner wall surface of the concave portion restrains the vicinity of the surface of the joint portion, it is possible to effectively suppress the bearing failure near the surface of the joint portion.
In addition, since the concrete frame of the column is restrained by the joint portion, the creep deformation of the column can be suppressed.

請求項2に記載の接合構造は、前記遮断緩衝部は、前記凹部の内壁面と前記柱の一端側の側面との隙間である、あるいは、当該隙間に接着材または粘弾性体が充填されて形成されることを特徴とする。   In the joining structure according to claim 2, the blocking buffer part is a gap between the inner wall surface of the recess and the side surface on one end side of the pillar, or the gap is filled with an adhesive or a viscoelastic body. It is formed.

この発明によれば、遮断緩衝部を、凹部の内壁面と柱の一端側の側面との隙間とする。あるいは、遮断緩衝部を、この隙間に接着材または粘弾性体を充填して形成する。
この場合、接合部を、例えば、凹部と柱との隙間にグラウトモルタルを充填することで形成する。これにより、柱の側面と凹部の内壁面との隙間を確実に埋めることができる。
また、硬化したグラウトモルタル、接着材、および粘弾性体のヤング係数はコンクリートよりも小さいことが多いため、材端固定度を低くでき、柱に地震時水平抵抗を設計上積極的に期待しない場合には、これにより、水平変位に対する追従性をさらに向上できる。
According to the present invention, the blocking buffer portion is a gap between the inner wall surface of the recess and the side surface on one end side of the column. Alternatively, the blocking buffer portion is formed by filling the gap with an adhesive or a viscoelastic body.
In this case, the joining portion is formed, for example, by filling the gap between the recess and the column with grout mortar. Thereby, the clearance gap between the side surface of a pillar and the inner wall face of a recessed part can be filled reliably.
In addition, the Young's modulus of hardened grout mortar, adhesive, and viscoelastic body is often smaller than that of concrete, so the material edge fixing degree can be lowered, and the horizontal resistance at the time of earthquake is not expected positively in the design of the column Thus, the followability to horizontal displacement can be further improved.

また、特に接着系材料および粘弾性体は、グラウトモルタルよりヤング係数が低いため、柱端部をそれほど拘束せず、材端固定度が低下する。よって、柱に地震時水平抵抗を設計上積極的に期待しない場合には、接着系材料や粘弾性体を用いることで、水平変位追従性をさらに向上できる。さらに、粘弾性体を用いた場合には、地震時に粘弾性体が変形して振動エネルギーを吸収するため、柱に減衰を付与することができる。   In particular, adhesive materials and viscoelastic bodies have a lower Young's modulus than grout mortar, so the column end portions are not constrained so much and the material end fixing degree is lowered. Therefore, when the horizontal resistance at the time of earthquake is not positively expected in the design, the horizontal displacement followability can be further improved by using an adhesive material or a viscoelastic body. Further, when a viscoelastic body is used, the viscoelastic body is deformed and absorbs vibration energy at the time of an earthquake, so that the column can be attenuated.

請求項3に記載の接合構造は、前記柱は、プレキャスト鉄筋コンクリート造であり、前記柱の一端面には、穴が形成され、前記支持躯体に定着されて前記柱に向かって延びる鋼材は、前記穴の内部に挿入され、前記穴の内部には、充填材が充填されることを特徴とする。   The joining structure according to claim 3, wherein the pillar is made of precast reinforced concrete, and a hole is formed in one end surface of the pillar, and the steel material that is fixed to the support housing and extends toward the pillar is The hole is inserted into the hole, and the hole is filled with a filler.

ここで、鋼材としては、柱主筋やダボ筋が挙げられる。
この発明によれば、柱をプレキャストコンクリート造としたので、柱を迅速に構築できる。
また、凹部と柱の一端側との間にグラウトモルタルを充填する際、穴の内部にも充填材を充填して、支持躯体から延びる鋼材を柱に定着することができるから、施工手間を軽減できる。
Here, examples of the steel material include column main bars and dowel bars.
According to this invention, since the column is made of precast concrete, the column can be quickly constructed.
Also, when grout mortar is filled between the recess and one end of the column, the inside of the hole can also be filled with the filler, and the steel material extending from the support housing can be fixed to the column, thus reducing the construction labor. it can.

請求項4に記載の接合構造は、前記柱は、プレキャスト鉄筋コンクリート造であり、前記凹部の底面には、穴が形成され、前記柱に定着されて前記凹部に向かって延びる鋼材は、前記穴の内部に挿入され、前記穴の内部には、充填材が充填されることを特徴とする。   The joint structure according to claim 4, wherein the pillar is made of precast reinforced concrete, and a hole is formed on a bottom surface of the recess, and the steel material fixed to the pillar and extending toward the recess is formed of the hole. The hole is inserted, and the inside of the hole is filled with a filler.

ここで、鋼材としては、柱主筋やダボ筋が挙げられる。
この発明によれば、柱をプレキャストコンクリート造としたので、柱を迅速に構築できる。
また、凹部と柱の一端側との間にグラウトモルタルを充填する際、穴の内部にも充填材を充填して、柱から延びる鋼材を支持躯体に定着することができるから、施工手間を軽減できる。
Here, examples of the steel material include column main bars and dowel bars.
According to this invention, since the column is made of precast concrete, the column can be quickly constructed.
Also, when grout mortar is filled between the recess and one end of the column, the inside of the hole can also be filled with the filler, and the steel material extending from the column can be fixed to the support housing, reducing the labor for construction. it can.

請求項5に記載の接合構造は、前記遮断緩衝部の深さは、せん断すべり破壊耐力および柱部材の曲げ耐力に基づいて決定されることを特徴とする。   The junction structure according to claim 5 is characterized in that the depth of the blocking buffer portion is determined based on a shear sliding fracture proof strength and a bending strength of a column member.

遮断緩衝部の深さが浅くなるほど、危険断面が高い位置となるので、柱部材の曲げ耐力は大きくなる。一方、遮断緩衝部の深さが深くなるほど、せん断すべり破壊面が大きくなるため、せん断すべり破壊耐力は大きくなる。したがって、遮断緩衝部の深さを調整するだけで、せん断すべり破壊耐力および柱の曲げ耐力を調整できる。   As the depth of the blocking buffer portion becomes shallower, the danger section becomes higher, so that the bending strength of the column member increases. On the other hand, since the shear slip fracture surface increases as the depth of the blocking buffer increases, the shear slip fracture resistance increases. Therefore, only by adjusting the depth of the blocking buffer portion, it is possible to adjust the shear sliding fracture resistance and the column bending resistance.

本発明によれば、遮断緩衝部の底面が支持躯体の表面よりも底面側に位置するので、せん断すべり破壊を有効に防止できる。これは、支持躯体のせん断すべり破壊面の発生位置が底面側に移動するので、せん断すべり破壊に対して抵抗するコンクリート面積が大きくなるうえに、十分な補強筋で抵抗でき、また、同一変形時の作用偏心支圧力が小さくなるからである。また、凹部の内壁面が接合部の表面近傍を拘束するため、接合部の表面近傍の支圧破壊を有効に抑えることができる。   According to the present invention, since the bottom surface of the blocking buffer portion is located on the bottom surface side with respect to the surface of the support housing, it is possible to effectively prevent shear slip failure. This is because the shear slip failure surface of the support frame moves to the bottom side, so that the concrete area that resists shear slip failure increases, and it can be resisted by a sufficient reinforcing bar. This is because the acting eccentric support pressure of the is reduced. Further, since the inner wall surface of the concave portion restrains the vicinity of the surface of the joint portion, it is possible to effectively suppress the bearing failure near the surface of the joint portion.

本発明の第1実施形態に係る接合構造の断面図である。It is sectional drawing of the junction structure which concerns on 1st Embodiment of this invention. 図1のA−A断面図である。It is AA sectional drawing of FIG. 溝の深さと、柱の曲げ耐力およびせん断すべり破壊耐力と、の関係を示す図である。It is a figure which shows the relationship between the depth of a groove | channel, the bending proof strength of a pillar, and a shear sliding fracture proof strength. 本発明の第2実施形態に係る接合構造の断面図である。It is sectional drawing of the junction structure which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る接合構造の断面図である。It is sectional drawing of the junction structure which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る接合構造の断面図である。It is sectional drawing of the junction structure which concerns on 4th Embodiment of this invention. 本発明の第5実施形態に係る接合構造の断面図である。It is sectional drawing of the junction structure which concerns on 5th Embodiment of this invention. 本発明の第1の従来例に係る接合構造の断面図である。It is sectional drawing of the junction structure which concerns on the 1st prior art example of this invention. 本発明の第2の従来例に係る接合構造の断面図である。It is sectional drawing of the junction structure which concerns on the 2nd prior art example of this invention.

以下、本発明の実施形態を図面に基づいて説明する。なお、以下の実施形態の説明にあたって、同一構成要件については同一符号を付し、その説明を省略もしくは簡略化する。
〔第1実施形態〕
図1は、本発明の第1実施形態に係る接合構造1の断面図である。図2は、図1のA−A断面図である。
鉄筋コンクリート造柱の接合構造1は、柱としての柱部材10とこの柱部材10を支持する支持躯体20との接合構造である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description of the embodiments, the same constituent elements are denoted by the same reference numerals, and the description thereof is omitted or simplified.
[First Embodiment]
FIG. 1 is a cross-sectional view of a bonding structure 1 according to the first embodiment of the present invention. FIG. 2 is a cross-sectional view taken along the line AA of FIG.
The joint structure 1 of reinforced concrete columns is a joint structure between a pillar member 10 as a pillar and a support housing 20 that supports the pillar member 10.

柱部材10は、工場で製造されたプレキャスト鉄筋コンクリート造である。柱部材10の下端には、筒状の継手金物11が打ち込まれており、この継手金物11の下端縁は、柱部材10の下端面から露出している。この継手金物11により、柱部材10の下端には、穴が形成されることになる。
継手金物11の内部では、柱部材10に定着された主筋12が下方に向かって延びている。
また、柱部材10には、継手金物11の下端側の内部空間と外部とを連通する注入口13と、継手金物11の上端側の内部空間と外部とを連通する充填確認口14と、が形成されている。
The column member 10 is a precast reinforced concrete structure manufactured in a factory. A cylindrical joint metal 11 is driven into the lower end of the column member 10, and the lower end edge of the joint metal 11 is exposed from the lower end surface of the column member 10. With the joint hardware 11, a hole is formed at the lower end of the column member 10.
Inside the joint hardware 11, the main reinforcement 12 fixed to the column member 10 extends downward.
Further, the column member 10 has an injection port 13 that communicates the internal space on the lower end side of the joint hardware 11 and the outside, and a filling confirmation port 14 that communicates the internal space on the upper end side of the joint hardware 11 and the outside. Is formed.

支持躯体20の上面には、凹部21が形成されている。この凹部21は、底面22と、この底面22を囲む内壁面23と、で構成される。この凹部21の底面22から上方に向かって、支持躯体20に定着された鋼材としての主筋24が延びている。   A recess 21 is formed on the upper surface of the support housing 20. The recess 21 includes a bottom surface 22 and an inner wall surface 23 that surrounds the bottom surface 22. A main bar 24 as a steel material fixed to the support housing 20 extends upward from the bottom surface 22 of the recess 21.

柱部材10の柱脚部は、凹部21に嵌合されている。すなわち、支持躯体20の凹部21の底面22には、モルタルからなるスペーサ25が形成されており、柱部材10の下端面は、スペーサ25の上に載置されている。これにより、柱部材10と支持躯体20の凹部21との間には、隙間が形成される。また、支持躯体20の主筋24は、継手金物11の内部に挿入されて、柱部材10の主筋12に対向している。   The column base portion of the column member 10 is fitted in the recess 21. That is, a spacer 25 made of mortar is formed on the bottom surface 22 of the recess 21 of the support housing 20, and the lower end surface of the column member 10 is placed on the spacer 25. As a result, a gap is formed between the column member 10 and the recess 21 of the support housing 20. Further, the main bar 24 of the support housing 20 is inserted into the joint hardware 11 and faces the main bar 12 of the column member 10.

柱部材10と凹部21との隙間および継手金物11の内部空間には、流動性の高い充填材としてのグラウトモルタルが充填されている。このうち、柱部材10と凹部21との隙間に充填されたグラウトモルタルが硬化することにより、接合部としての目地部40が形成される。この目地部40は、凹部21に沿って形成される。
目地部40の表面は、支持躯体20の上面よりも低い所定位置であり、これにより、凹部21の内壁面23と柱部材10の柱脚部側の側面との間には、遮断緩衝部としての溝41が形成される。この溝41は、凹部21の内壁面23と柱部材10の柱脚部側の側面との間で伝達される力を遮断するものである。
The gap between the column member 10 and the recess 21 and the internal space of the fitting 11 are filled with grout mortar as a highly fluid filler. Among these, the grout mortar filled in the gap between the column member 10 and the concave portion 21 is cured, whereby the joint portion 40 as a joint portion is formed. The joint portion 40 is formed along the recess 21.
The surface of the joint portion 40 is at a predetermined position lower than the upper surface of the support housing 20, so that a blocking buffer portion is provided between the inner wall surface 23 of the recess 21 and the side surface of the column member 10 on the column base portion side. The groove 41 is formed. The groove 41 blocks the force transmitted between the inner wall surface 23 of the recess 21 and the side surface of the column member 10 on the column leg portion side.

以上の接合構造1では、以下の手順で、柱部材10を支持躯体20に接合する。
まず、支持躯体20の凹部21に、スペーサ25を設ける。
次に、柱部材10を上方から支持躯体20に接近させて、柱部材10の柱脚部を凹部21に嵌合させる。これにより、柱部材10と凹部21との間には、隙間が形成される。
次に、柱部材10と凹部21との隙間の上部を塞ぐように、型枠27を取付ける。この型枠27の下端面の高さを、支持躯体20の上面から所定寸法だけ低い位置とする。
In the joining structure 1 described above, the column member 10 is joined to the support housing 20 in the following procedure.
First, the spacer 25 is provided in the recess 21 of the support housing 20.
Next, the column member 10 is brought close to the support housing 20 from above, and the column base portion of the column member 10 is fitted into the recess 21. Thereby, a gap is formed between the column member 10 and the recess 21.
Next, the mold 27 is attached so as to close the upper part of the gap between the column member 10 and the recess 21. The height of the lower end surface of the mold frame 27 is set to a position lower than the upper surface of the support housing 20 by a predetermined dimension.

次に、充填確認口14からグラウトモルタルが溢れるのを確認できるまで、注入口13にグラウトモルタルを注入して、継手金物11の内部空間にグラウトモルタルを充填するとともに、柱部材10と凹部21との隙間に目地部40を形成する。
このようにして、柱部材10は支持躯体20に一体的に接合される。
Next, until it is confirmed that the grout mortar overflows from the filling confirmation port 14, the grout mortar is injected into the injection port 13 to fill the inner space of the joint hardware 11 with the grout mortar, and the column member 10 and the recess 21. The joint portion 40 is formed in the gap.
In this way, the column member 10 is integrally joined to the support housing 20.

グラウトモルタルが硬化した後、柱部材10の周囲の型枠27を脱型する。   After the grout mortar is cured, the mold 27 around the column member 10 is removed.

ここで、目地部40の表面の高さつまり溝41の深さを、柱部材10の充填高さ断面の曲げ耐力がこの柱部材10の充填高さ断面に作用する曲げモーメント以上となり、かつ、支持躯体20のせん断すべり破壊耐力が作用偏心支圧力以上となるように、決定する。   Here, the height of the surface of the joint portion 40, that is, the depth of the groove 41, the bending strength of the filling height section of the column member 10 is equal to or greater than the bending moment acting on the filling height section of the column member 10, and The shear sliding fracture resistance of the support housing 20 is determined to be equal to or greater than the acting eccentric support pressure.

図3は、溝の深さと、柱部材の曲げ耐力およびせん断すべり破壊耐力と、の関係を示す図である。
凹部底面から溝の底面まで範囲の柱部材の曲げ耐力は、支持躯体のコンクリートや周囲の目地部により拘束されることで十分に向上する。また、柱部材に作用する曲げモーメントは、柱の下端側に向かうに従って大きくなる。
よって、溝の深さにかかわらず、溝の底面位置での断面が危険断面となり、溝の深さが浅くなるほど、この危険断面が高い位置となるので、柱部材の曲げ耐力時せん断力は大きくなる。
FIG. 3 is a diagram showing the relationship between the depth of the groove and the bending strength and shear sliding fracture strength of the column member.
The bending strength of the column member in the range from the bottom surface of the recess to the bottom surface of the groove is sufficiently improved by being restrained by the concrete of the support frame or the surrounding joints. Also, the bending moment acting on the column member increases as it goes toward the lower end side of the column.
Therefore, regardless of the depth of the groove, the cross section at the bottom surface position of the groove becomes a dangerous cross section, and as the depth of the groove becomes shallower, this dangerous cross section becomes a higher position. Become.

一方、溝の深さが深くなるほど、せん断すべり破壊面が大きくなるため、せん断すべり破壊耐力は大きくなり、同一変形時での作用偏心支圧力も小さくなる。   On the other hand, as the depth of the groove increases, the shear slip fracture surface increases, so the shear slip fracture resistance increases, and the acting eccentric support pressure at the same deformation also decreases.

したがって、溝の深さは、柱部材の曲げ耐力およびせん断すべり破壊耐力の両方を考慮して適切に設定する必要がある。   Therefore, it is necessary to set the depth of the groove appropriately in consideration of both the bending strength and the shear sliding fracture strength of the column member.

なお、せん断すべり破壊耐力は、支圧強度Fに柱部材のコンクリートとモルタルの接触面積を乗じて求められる。
支圧強度Fは、以下の式(1)により求められる。
Incidentally, the shear slip destruction strength is calculated by multiplying the contact area of the concrete and mortar pillar member bearing capacity F b.
Bearing capacity F b is determined by the following equation (1).

Figure 2012007384
Figure 2012007384

ここで、Fはコンクリートの圧縮強度、a、bは支承面の各辺の長さ、a’、b’は支圧面の各辺の長さであり、β、K’は以下の式(2)、(3)により求められる。 Here, Fc is the compressive strength of the concrete, a and b are the length of each side of the bearing surface, a ′ and b ′ are the length of each side of the bearing surface, and β and K ′ are the following formulas ( 2) and (3).

Figure 2012007384
Figure 2012007384

ここで、Kは実験によって定義する定数で、実用的には50(lb/m)である。また、Fはコンクリートの引張強度である。 Here, K 0 is a constant defined by experiment and is practically 50 (lb / m 2 ). F t is the tensile strength of concrete.

本実施形態によれば、以下のような効果がある。
(1)柱部材10の柱脚部を凹部21に嵌合して目地部40を形成し、この目地部40のうち支持躯体20の表面側に、凹部21の内壁面23と柱部材10の柱脚部の側面との間で伝達される力を遮断する溝41を設けた。柱部材10の柱脚部と凹部21との接合部である目地部40には大きな曲げモーメントが作用するが、目地部40を介して柱部材10の柱脚部を支持躯体20で拘束できるので、柱部材10の曲げ耐力を向上できる。
According to this embodiment, there are the following effects.
(1) The column base portion of the column member 10 is fitted into the recess 21 to form the joint portion 40, and the inner wall surface 23 of the recess 21 and the column member 10 are formed on the surface side of the support housing 20 in the joint portion 40. A groove 41 for blocking the force transmitted to the side surface of the column base is provided. A large bending moment acts on the joint portion 40, which is a joint portion between the column base portion of the column member 10 and the concave portion 21, but the column base portion of the column member 10 can be restrained by the support housing 20 via the joint portion 40. The bending strength of the column member 10 can be improved.

また、溝41の底面が支持躯体20の上面よりも低い位置となるので、せん断すべり破壊を有効に防止できる。これは、図3に示すように、支持躯体20のせん断すべり破壊面の発生位置が低くなるので、せん断すべり破壊に対して抵抗するコンクリート面積が大きくなるうえに、十分な補強筋で抵抗でき、また、同一変形時の作用偏心支圧力が小さくなるからである。   In addition, since the bottom surface of the groove 41 is lower than the top surface of the support housing 20, shear sliding failure can be effectively prevented. As shown in FIG. 3, since the occurrence position of the shear slip fracture surface of the support housing 20 becomes low, the concrete area that resists shear slip fracture increases, and it can resist with sufficient reinforcing bars, Moreover, it is because the action eccentric support pressure at the same deformation becomes small.

また、溝41を設けることにより、柱部材10の内法高さが大きくなるため、水平剛性が小さくなり、柱部材10に地震時水平抵抗を設計上積極的に期待しない場合には、水平変位に対する追従性を向上できる。
また、凹部21の内壁面23が目地部40の表面近傍を拘束するため、目地部40の表面近傍の支圧破壊を有効に抑えることができる。
また、目地部40により柱部材10のコンクリート躯体が拘束されるので、柱部材10のクリープ変形を抑制できる。
In addition, since the inner height of the column member 10 is increased by providing the groove 41, the horizontal rigidity is reduced, and when the horizontal resistance at the time of earthquake is not expected in the design of the column member 10, the horizontal displacement is reduced. The followability to can be improved.
In addition, since the inner wall surface 23 of the recess 21 restrains the vicinity of the surface of the joint portion 40, the bearing failure near the surface of the joint portion 40 can be effectively suppressed.
Moreover, since the concrete frame of the column member 10 is restrained by the joint portion 40, creep deformation of the column member 10 can be suppressed.

(2)目地部40を、凹部21と柱部材10との隙間にグラウトモルタルを充填することで形成したので、柱部材10の側面と凹部21の内壁面23との隙間を確実に埋めることができる。
また、硬化したグラウトモルタルのヤング係数はコンクリートよりも低いことが多いため、材端固定度を低くでき、柱部材10に地震時水平抵抗を設計上積極的に期待しない場合には、これにより、水平変位に対する追従性をさらに向上できる。
(2) Since the joint portion 40 is formed by filling the gap between the recess 21 and the column member 10 with grout mortar, the gap between the side surface of the column member 10 and the inner wall surface 23 of the recess 21 can be reliably filled. it can.
In addition, since the Young's modulus of the hardened grout mortar is often lower than that of concrete, the material end fixing degree can be lowered. The followability to horizontal displacement can be further improved.

(3)溝41の深さを調整するだけで、せん断すべり破壊耐力および柱部材10の曲げ耐力を調整できる。   (3) By simply adjusting the depth of the groove 41, the shear sliding fracture resistance and the bending resistance of the column member 10 can be adjusted.

(4)柱部材10を、工場で製造されたプレキャストコンクリート造としたので、柱を迅速に構築できる。
また、凹部21と柱部材10の柱脚部との間に充填材を充填して溝41を形成する際、継手金物11の内部空間にも充填材を充填して、支持躯体20から延びる主筋24を柱部材10に定着することができるから、施工手間を軽減できる。
(4) Since the column member 10 is made of precast concrete manufactured in a factory, the column can be quickly constructed.
Further, when the groove 41 is formed by filling a filler between the concave portion 21 and the column base portion of the column member 10, the main bar extending from the support housing 20 is also filled with the filler in the inner space of the joint hardware 11. Since 24 can be fixed to the pillar member 10, the construction labor can be reduced.

〔第2実施形態〕
図4は、本発明の第2実施形態に係る接合構造1Aの断面図である。
本実施形態では、目地部40Aの構造が、第1実施形態と異なる。
すなわち、第1実施形態における目地部40Aのうち凹部21の内壁面23に沿った部分を、グラウトモルタルの代わりに、グラウトモルタルよりもヤング係数が小さい粘弾性体からなる遮断緩衝部としての弾性変形部42とした。
この弾性変形部42は、凹部21の内壁面23と柱部材10の柱脚部側の側面との隙間に粘弾性体が充填されて形成され、凹部21の内壁面23と柱部材10の柱脚部側の側面との間で伝達される力を緩衝するものである。
[Second Embodiment]
FIG. 4 is a cross-sectional view of a bonding structure 1A according to the second embodiment of the present invention.
In the present embodiment, the structure of the joint portion 40A is different from that of the first embodiment.
That is, in the joint portion 40A in the first embodiment, the portion along the inner wall surface 23 of the recess 21 is elastically deformed as a blocking buffer portion made of a viscoelastic body having a Young's modulus smaller than that of the grout mortar instead of the grout mortar. Part 42 was designated.
The elastic deformation portion 42 is formed by filling a gap between the inner wall surface 23 of the recess 21 and the side surface of the column member 10 on the side of the column base with the viscoelastic body, and the inner wall surface 23 of the recess 21 and the column of the column member 10. The force transmitted between the side surface on the leg side is buffered.

本実施形態によれば、上述の(1)〜(4)の効果に加えて、以下のような効果がある。
(5)目地部40の一部に粘弾性体からなる弾性変形部42を設けた。粘弾性体は、グラウトモルタルよりヤング係数が低いため、柱の柱脚部をそれほど拘束せず、材端固定度が低下する。よって、柱部材10に地震時水平抵抗を設計上積極的に期待しない場合には、充填材としてグラウトモルタルのみを用いた場合に比べて、水平変位追従性をさらに向上できる。
さらに、地震時に粘弾性体が変形し、振動エネルギーを吸収するため,柱部材10に減衰を付与することができる。
According to this embodiment, in addition to the effects (1) to (4) described above, the following effects can be obtained.
(5) An elastic deformation portion 42 made of a viscoelastic body is provided in a part of the joint portion 40. Since the viscoelastic body has a Young's modulus lower than that of grout mortar, the column base portion of the column is not constrained so much and the material end fixing degree is lowered. Therefore, when the horizontal resistance at the time of earthquake is not positively expected in the design of the column member 10, the horizontal displacement followability can be further improved as compared with the case where only the grout mortar is used as the filler.
Furthermore, since the viscoelastic body is deformed during an earthquake and absorbs vibration energy, the column member 10 can be attenuated.

〔第3実施形態〕
図5は、本発明の第3実施形態に係る接合構造1Bの断面図である。
本実施形態では、支持躯体20は柱梁接合部であり、この柱梁接合部の梁の主筋30の一部、ここでは主筋30Aは、凹部21の側方で、かつ、凹部21の底面22から柱梁接合部の上面までの範囲の高さに配置される。
[Third Embodiment]
FIG. 5 is a cross-sectional view of the joint structure 1B according to the third embodiment of the present invention.
In the present embodiment, the support housing 20 is a beam-column joint, and a part of the main bar 30 of the beam of the beam-column joint, here the main bar 30A is on the side of the recess 21 and the bottom surface 22 of the recess 21. To the upper surface of the beam-column joint.

本実施形態によれば、上述の(1)〜(4)の効果に加えて、以下のような効果がある。
(6)柱梁接合部の梁の主筋30の一部を、凹部21の側方でかつ凹部21の底面22から柱梁接合部20の上面までの範囲の高さに配置した。よって、せん断すべり破壊に対して、梁の主筋30で抵抗できるから、せん断すべり破壊をさらに有効に抑制できる。
According to this embodiment, in addition to the effects (1) to (4) described above, the following effects can be obtained.
(6) A part of the main bar 30 of the beam at the beam-column joint is disposed on the side of the recess 21 and at a height in a range from the bottom surface 22 of the recess 21 to the upper surface of the beam-column joint 20. Therefore, since the main reinforcement 30 of the beam can resist the shear slip failure, the shear slip failure can be further effectively suppressed.

〔第4実施形態〕
図6は、本発明の第4実施形態に係る接合構造1Cの断面図である。
本実施形態では、支持躯体20に鋼材としてのダボ筋29を設け、このダボ筋29で柱部材10Cと支持躯体20とを接合する点が、第1実施形態と異なる。
すなわち、柱部材10Cの主筋12は、柱部材10Cの下端面まで延びていない。また、柱部材10Cの下端には、筒状のシース管11Cが打ち込まれている。このシース管11Cの下端縁は、柱部材10Cの下端面から露出しており、このシース管11Cにより、柱部材10Cの下端には、穴が形成される。
支持躯体20の凹部21には、ダボ筋29が設けられ、このダボ筋29は、シース管11Cに挿入される。
[Fourth Embodiment]
FIG. 6 is a cross-sectional view of a joint structure 1C according to the fourth embodiment of the present invention.
The present embodiment is different from the first embodiment in that a dowel bar 29 as a steel material is provided on the support casing 20 and the column member 10C and the support casing 20 are joined by the dowel bar 29.
That is, the main reinforcement 12 of the column member 10C does not extend to the lower end surface of the column member 10C. A cylindrical sheath tube 11C is driven into the lower end of the column member 10C. The lower end edge of the sheath tube 11C is exposed from the lower end surface of the column member 10C, and a hole is formed in the lower end of the column member 10C by the sheath tube 11C.
The recess 21 of the support housing 20 is provided with a dowel bar 29, and the dowel bar 29 is inserted into the sheath tube 11C.

本実施形態によれば、上述の(1)〜(4)の効果に加えて、以下のような効果がある。
(7)支持躯体20内に柱部材10Cの主筋12を定着させず、ダボ筋29で柱部材10Cと支持躯体20とを接合する。よって、材端固定度が低下するため、柱部材10Cに地震時水平抵抗を設計上積極的に期待しない場合には、水平変位追従性を向上できる。
According to this embodiment, in addition to the effects (1) to (4) described above, the following effects can be obtained.
(7) The main member 12 of the column member 10 </ b> C is not fixed in the support case 20, and the column member 10 </ b> C and the support case 20 are joined by the dowel bar 29. Accordingly, since the material end fixing degree is lowered, the horizontal displacement followability can be improved when the horizontal resistance at the time of earthquake is not expected positively in the design of the column member 10C.

〔第5実施形態〕
図7は、本発明の第5実施形態に係る接合構造1Dの断面図である。
本実施形態では、柱部材10Dのコンクリートを現場打設する点が、第1実施形態と異なる。この場合でも、凹部21の内壁面23と柱部材10Dとの間に隙間にグラウトモルタルを所定高さまで充填して目地部40Dを形成することで、溝41を形成する。
[Fifth Embodiment]
FIG. 7 is a cross-sectional view of a joint structure 1D according to the fifth embodiment of the present invention.
This embodiment is different from the first embodiment in that the concrete of the column member 10D is cast on site. Even in this case, the groove 41 is formed by filling the gap between the inner wall surface 23 of the recess 21 and the column member 10D to a predetermined height and forming the joint portion 40D.

本実施形態によれば、上述の(1)〜(3)の効果に加えて、以下のような効果がある。
(8)現場で配筋してコンクリートを打設することにより柱部材10Dを構築したので、施工コストを削減できる。
According to this embodiment, in addition to the effects (1) to (3) described above, the following effects can be obtained.
(8) Since the column member 10D is constructed by placing the concrete on site and placing concrete, the construction cost can be reduced.

なお、本発明は前記実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。   It should be noted that the present invention is not limited to the above-described embodiment, and modifications, improvements, etc. within a scope that can achieve the object of the present invention are included in the present invention.

例えば、上述の各実施形態では、本発明を柱部材10、10C、10Dの柱脚部と支持躯体20との接合に適用したが、これに限らず、本発明を柱部材の柱頭部と支持躯体との接合に適用してもよい。また、本発明を、柱部材の柱頭部と支持躯体との接合、および、柱部材の柱脚部と支持躯体との接合、の両方に適用してもよい。   For example, in each of the above-described embodiments, the present invention is applied to the joining of the column bases of the column members 10, 10 </ b> C, and 10 </ b> D and the support housing 20, but the present invention is not limited thereto, and the present invention is not limited to this. You may apply to joining with a housing. Moreover, you may apply this invention to both joining of the column head of a column member, and a support housing, and joining of the column base part of a column member, and a support housing.

また、上述の第4実施形態では、支持躯体20にダボ筋29を設け、このダボ筋29で柱部材10Cと支持躯体20とを接合したが、これに限らず、柱部材10にダボ筋を設けて、このダボ筋で柱部材と支持躯体とを接合してもよい。   Further, in the above-described fourth embodiment, the dowel bar 29 is provided in the support casing 20 and the column member 10C and the support casing 20 are joined by the dowel bar 29, but not limited to this, the dowel bar is provided in the column member 10. It may be provided and the column member and the support housing may be joined by this dowel bar.

また、凹部21の深さは適宜設定されてよい。例えば、柱部材10に地震時の水平力を積極的に負担させる場合には、材端固定度を高めるために凹部の深さを深くする。一方、架構中の耐震壁等が水平力の大部分を負担するため、柱部材10に水平力の負担を期待しない場合には、水平変位追従性を向上させるため、凹部の深さを浅くする。   Moreover, the depth of the recessed part 21 may be set suitably. For example, when the column member 10 is actively burdened with a horizontal force during an earthquake, the depth of the recess is increased in order to increase the material end fixing degree. On the other hand, since the seismic wall in the frame bears most of the horizontal force, if the horizontal force is not expected to be applied to the column member 10, the depth of the concave portion is decreased in order to improve the horizontal displacement followability. .

また、支持躯体20の凹部21の形状や形成方法は特に限定されない。
また、前記第5実施形態では、柱部材10Dのコンクリートを現場打設し、この柱部材10Dと凹部21と隙間にグラウトモルタルを充填して目地部40Dを形成することで溝41を形成したが、これに限らない。例えば、目地部40Dを柱部材10Dと一体に形成してもよいし、目地部40Dを支持躯体20と一体に形成してもよい。また、シート状の粘弾性体を凹部に設置しておき、この状態で柱部材のコンクリートを現場打設することで、柱部材と凹部との間に粘弾性体を設けてもよい。
Moreover, the shape and formation method of the recessed part 21 of the support housing 20 are not specifically limited.
In the fifth embodiment, the concrete of the column member 10D is cast in the field, and the groove 41 is formed by filling the grout mortar in the gap between the column member 10D and the recess 21 to form the joint portion 40D. Not limited to this. For example, the joint portion 40D may be formed integrally with the column member 10D, or the joint portion 40D may be formed integrally with the support housing 20. Alternatively, a viscoelastic body may be provided between the column member and the recess by placing a sheet-like viscoelastic body in the recess and placing the concrete of the column member in-situ in this state.

1、1A、1B、1C、1D 接合構造
10、10C、10D 柱部材(柱)
11 継手金物
11C シース管
12 主筋
13 注入口
14 充填確認口
20 支持躯体(柱梁接合部)
21 凹部
22 底面
23 内壁面
24 主筋(鋼材)
25 スペーサ
27 型枠
29 ダボ筋(鋼材)
30、30A 主筋
40、40A、40D 目地部(接合部)
41 溝(遮断緩衝部)
42 弾性変形部(遮断緩衝部)
1, 1A, 1B, 1C, 1D Joining structure 10, 10C, 10D Column member (column)
DESCRIPTION OF SYMBOLS 11 Joint metal fitting 11C Sheath pipe 12 Main reinforcement 13 Inlet 14 Filling confirmation port 20 Supporting frame (column beam junction)
21 Concave portion 22 Bottom surface 23 Inner wall surface 24 Main reinforcement (steel material)
25 Spacer 27 Formwork 29 Dowel Reinforcement (Steel)
30, 30A Main muscle 40, 40A, 40D Joint part (joint part)
41 groove (blocking buffer)
42 Elastic deformation part (blocking buffer part)

Claims (5)

柱と当該柱を支持する支持躯体との接合構造であって、
前記支持躯体の表面には、凹部が形成され、
前記柱の一端が前記凹部に嵌合されて接合部が形成されるとともに、
前記接合部のうち支持躯体の表面側には、前記凹部の内壁面と前記柱の一端側の側面との間で伝達される力を遮断または緩衝する遮断緩衝部が設けられていることを特徴とする接合構造。
It is a joining structure of a pillar and a supporting housing that supports the pillar,
A recess is formed on the surface of the support housing,
While one end of the pillar is fitted into the recess to form a joint,
A blocking buffer portion that blocks or buffers the force transmitted between the inner wall surface of the recess and the side surface on the one end side of the column is provided on the surface side of the support housing of the joint portion. Joining structure.
前記遮断緩衝部は、前記凹部の内壁面と前記柱の一端側の側面との隙間とする、あるいは、当該隙間に接着材または粘弾性体を充填して形成されることを特徴とする請求項1に記載の接合構造。   The blocking buffer portion is formed as a gap between an inner wall surface of the recess and a side surface on one end side of the column, or is formed by filling the gap with an adhesive or a viscoelastic body. The joining structure according to 1. 前記柱は、プレキャスト鉄筋コンクリート造であり、
前記柱の一端面には、穴が形成され、
前記支持躯体に定着されて前記柱に向かって延びる鋼材は、前記穴の内部に挿入され、
前記穴の内部には、充填材が充填されることを特徴とする請求項1または2に記載の接合構造。
The pillar is precast reinforced concrete,
A hole is formed in one end surface of the pillar,
The steel material fixed to the support housing and extending toward the pillar is inserted into the hole,
The joint structure according to claim 1, wherein the hole is filled with a filler.
前記柱は、プレキャスト鉄筋コンクリート造であり、
前記凹部の底面には、穴が形成され、
前記柱に定着されて前記凹部に向かって延びる鋼材は、前記穴の内部に挿入され、
前記穴の内部には、充填材が充填されることを特徴とする請求項1または2に記載の接合構造。
The pillar is precast reinforced concrete,
A hole is formed in the bottom surface of the recess,
The steel material fixed to the pillar and extending toward the recess is inserted into the hole,
The joint structure according to claim 1, wherein the hole is filled with a filler.
前記遮断緩衝部の深さは、せん断すべり破壊耐力および柱部材の曲げ耐力に基づいて決定されることを特徴とする請求項1から4のいずれかに記載の接合構造。   The junction structure according to any one of claims 1 to 4, wherein the depth of the blocking buffer portion is determined based on a shear sliding fracture strength and a bending strength of a column member.
JP2010144239A 2010-06-24 2010-06-24 Junction structure Active JP5582885B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010144239A JP5582885B2 (en) 2010-06-24 2010-06-24 Junction structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010144239A JP5582885B2 (en) 2010-06-24 2010-06-24 Junction structure

Publications (2)

Publication Number Publication Date
JP2012007384A true JP2012007384A (en) 2012-01-12
JP5582885B2 JP5582885B2 (en) 2014-09-03

Family

ID=45538224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010144239A Active JP5582885B2 (en) 2010-06-24 2010-06-24 Junction structure

Country Status (1)

Country Link
JP (1) JP5582885B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108755969A (en) * 2018-07-02 2018-11-06 吉首大学 A kind of assembled architecture component
CN109695296A (en) * 2017-10-23 2019-04-30 建屋发展局 Prefabricated volume building block and connector for engaging prefabricated volume building block

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108999287B (en) * 2018-07-17 2019-09-13 太原理工大学 A kind of assembled square steel tube concrete beam Column border node connection type

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63268834A (en) * 1987-04-24 1988-11-07 中岡 栄三 Method for constructing body of multi-storied building and reinforcing bar connected cylinder used therein
JP2009114738A (en) * 2007-11-07 2009-05-28 Taisei Corp Joint structure of precast concrete column
JP2010024659A (en) * 2008-07-16 2010-02-04 Hisahiro Hiraishi Structure for joining structural material and fixing end together

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63268834A (en) * 1987-04-24 1988-11-07 中岡 栄三 Method for constructing body of multi-storied building and reinforcing bar connected cylinder used therein
JP2009114738A (en) * 2007-11-07 2009-05-28 Taisei Corp Joint structure of precast concrete column
JP2010024659A (en) * 2008-07-16 2010-02-04 Hisahiro Hiraishi Structure for joining structural material and fixing end together

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109695296A (en) * 2017-10-23 2019-04-30 建屋发展局 Prefabricated volume building block and connector for engaging prefabricated volume building block
CN108755969A (en) * 2018-07-02 2018-11-06 吉首大学 A kind of assembled architecture component
CN108755969B (en) * 2018-07-02 2023-09-08 吉首大学 Assembled building element

Also Published As

Publication number Publication date
JP5582885B2 (en) 2014-09-03

Similar Documents

Publication Publication Date Title
TWI617724B (en) Seismic-free chemical method for existing steel-braced support structures
JP5337276B1 (en) Seismic isolation device support unit for reverse driving method and construction method of seismic isolation structure using the same
JP5582885B2 (en) Junction structure
JP6199201B2 (en) Frame reinforcement structure and frame reinforcement method
JP6172501B2 (en) Seismic reinforcement structure and seismic reinforcement method
JP7028728B2 (en) Joint structure of foundation pile and foundation slab
KR101652621B1 (en) Aseismic structure for existing building
JP2008291601A (en) Pile head joining structure
JP6478832B2 (en) Seismic reinforcement structure
JP4980782B2 (en) Seismic isolation mechanism for intermediate floors of buildings
JP2015021229A (en) Seismic strengthening structure and seismic strengthening method for existing building
JP6422803B2 (en) Column base joint structure
JP2011021379A (en) Reinforcing method for existing building and reinforcing structure
JP5852475B2 (en) Pile foundation reconstruction method
JP2017095915A (en) Junction structure between column-beam joint part and column, rigid-frame viaduct, construction method for junction structure between column-beam joint part and column, and precast concrete member
JP2021130936A (en) Bridge bearing structure
JP2009068295A (en) Elevated structure
JP6000414B2 (en) Pile foundation reconstruction method and pile foundation structure
JP5718196B2 (en) Underground structure construction method
JP2007040049A (en) Antiseismic reinforcing structure for existing building
JP2006194036A (en) Fixation structure of steel stud to reinforced concrete beam
JP2001182053A (en) Underground aseismatic reinforcing pile and foundation aseismatic structure
JP5778062B2 (en) Seismic and damping material installation structure
JP7178162B2 (en) Reinforcing mechanism in RC/SRC construction
JP2017186760A (en) Pile foundation structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140714

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140715

R150 Certificate of patent or registration of utility model

Ref document number: 5582885

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250