JP2012005029A - Magnetic body for filter and communication connector - Google Patents

Magnetic body for filter and communication connector Download PDF

Info

Publication number
JP2012005029A
JP2012005029A JP2010140539A JP2010140539A JP2012005029A JP 2012005029 A JP2012005029 A JP 2012005029A JP 2010140539 A JP2010140539 A JP 2010140539A JP 2010140539 A JP2010140539 A JP 2010140539A JP 2012005029 A JP2012005029 A JP 2012005029A
Authority
JP
Japan
Prior art keywords
magnetic
stress
filter
magnetic body
magnetic member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010140539A
Other languages
Japanese (ja)
Other versions
JP5530826B2 (en
Inventor
Naoki Matsushita
直樹 松下
Makoto Uda
誠 宇田
Katsuya Fujihira
勝也 藤平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Yazaki Corp
Original Assignee
Toyota Motor Corp
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Yazaki Corp filed Critical Toyota Motor Corp
Priority to JP2010140539A priority Critical patent/JP5530826B2/en
Publication of JP2012005029A publication Critical patent/JP2012005029A/en
Application granted granted Critical
Publication of JP5530826B2 publication Critical patent/JP5530826B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Details Of Connecting Devices For Male And Female Coupling (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a magnetic body for a filter which can suppress a variation in a high frequency component removal effect due to temperature change.SOLUTION: A magnetic body for a filter is provided with a magnetic member and a stress generating member which is integrally installed with the magnetic member and whose coefficient of thermal expansion is different from the coefficient of thermal expansion of the magnetic member. At a temperature change, the stress generating member generates a stress in the magnetic member and suppresses a variation in a permeability so that a variation in a high frequency component removal may be suppressed.

Description

本発明は、フィルタ用磁性体及び通信コネクタに関する。   The present invention relates to a filter magnetic body and a communication connector.

従来、車載LAN等の通信ネットワークの機器をつなぐコネクタにおいては、伝送信号の高周波成分のノイズを除去するため、バスバー(バス端子)周辺にフィルタとしてフェライトを収容したコネクタが使用されている。   2. Description of the Related Art Conventionally, in a connector that connects devices of a communication network such as an in-vehicle LAN, a connector containing ferrite as a filter around a bus bar (bus terminal) is used in order to remove high-frequency component noise of a transmission signal.

特開2008−159311号公報JP 2008-159111 A

しかし、フィルタとして用いられるフェライトは、透磁率が温度によって変化する性質がある。そのため、フェライトによる高周波成分の除去効果も温度によって変化し、ノイズ除去を良好にできない場合があった。   However, the ferrite used as a filter has the property that the magnetic permeability changes with temperature. For this reason, the effect of removing high-frequency components by ferrite also varies depending on temperature, and noise removal may not be performed satisfactorily.

そこで、本発明は上記事情を鑑みてなされたものであり、温度変化に対して高周波成分除去効果の変化を抑制することができるフィルタ用磁性体及び通信コネクタを提供することを目的とする。   Therefore, the present invention has been made in view of the above circumstances, and an object thereof is to provide a magnetic body for a filter and a communication connector that can suppress a change in the effect of removing a high-frequency component with respect to a change in temperature.

上記課題を解決するため、本発明は、磁性部材と、磁性部材と一体的に取り付けられ、熱膨張率が磁性部材の熱膨張率と異なる応力発生部材と、を備えたフィルタ用磁性体を提供する。   In order to solve the above problems, the present invention provides a magnetic member for a filter comprising a magnetic member and a stress generating member attached integrally with the magnetic member and having a coefficient of thermal expansion different from that of the magnetic member. To do.

フィルタ用磁性体として用いられるフェライトコアは、周囲温度が低い時は透磁率が小さく、周囲温度が高い時は透磁率が大きいという特性を示す。このため、フェライトコアのインピーダンス特性は、低温時には低く(高周波成分の減衰が小)、高温時には高く(高周波成分の減衰が大)なり、温度変化により高周波成分の減衰効果のばらつきが生じてしまう。これに対し、本発明のフィルタ用磁性体は、磁性部材と、磁性部材と一体的に取り付けられ、磁性部材の熱膨張率と異なる熱膨張率を有する応力発生部材を備える。フィルタ用磁性体として用いられるフェライトコアの透磁率及びインピーダンスが温度上昇に伴って上昇すると、高周波成分が過度に減衰して波形鈍りが発生する場合があるが、本発明のフィルタ用磁性体においては応力発生部材が熱膨張し、磁性部材の内部に応力を発生させることによって、透磁率及びインピーダンスの上昇を抑制することができ、温度変化による高周波成分の減衰効果のばらつき幅を低減させ、高周波成分除去効果の変化を抑制することが可能となる。   A ferrite core used as a magnetic body for a filter exhibits characteristics that the magnetic permeability is small when the ambient temperature is low, and the magnetic permeability is large when the ambient temperature is high. For this reason, the impedance characteristics of the ferrite core are low at low temperatures (low attenuation of high frequency components) and high (high attenuation of high frequency components) at high temperatures, and variations in attenuation effects of high frequency components occur due to temperature changes. On the other hand, the magnetic body for a filter of the present invention includes a magnetic member and a stress generating member attached integrally with the magnetic member and having a thermal expansion coefficient different from the thermal expansion coefficient of the magnetic member. When the permeability and impedance of a ferrite core used as a filter magnetic body increase as the temperature rises, the high frequency component may be excessively attenuated and waveform dullness may occur, but in the filter magnetic body of the present invention, The stress generating member is thermally expanded to generate stress inside the magnetic member, thereby suppressing an increase in magnetic permeability and impedance, reducing the variation width of the attenuation effect of the high frequency component due to the temperature change, and reducing the high frequency component. It becomes possible to suppress a change in the removal effect.

本発明のフィルタ用磁性体においては、応力発生部材の熱膨張率が磁性部材の熱膨張率よりも大きいことが好ましい。応力発生部材の熱膨張率が磁性部材の熱膨張率よりも大きいと、温度上昇時に応力発生部材が熱膨張し、磁性部材の内部に応力を発生させる。これにより、磁性体としての透磁率及びインピーダンスの上昇を抑制することができ、温度変化に対する高周波成分除去効果の変化を抑制することが可能となる。   In the filter magnetic body of the present invention, the thermal expansion coefficient of the stress generating member is preferably larger than the thermal expansion coefficient of the magnetic member. If the coefficient of thermal expansion of the stress generating member is larger than the coefficient of thermal expansion of the magnetic member, the stress generating member thermally expands when the temperature rises, generating stress inside the magnetic member. Thereby, the raise of the magnetic permeability and impedance as a magnetic body can be suppressed, and it becomes possible to suppress the change of the high frequency component removal effect with respect to a temperature change.

また、本発明のフィルタ用磁性体においては、応力発生部材が磁性部材内に取り付けられていることが好ましい。磁性部材内に応力発生部材が取り付けられると、例えば磁性部材と応力発生部材を面同士で接合するよりもフィルタ用磁性体として一体化することが容易であり、より少量の応力発生部材で磁性部材の内部に応力を発生させることも可能となる。   Moreover, in the magnetic body for filters of this invention, it is preferable that the stress generation member is attached in the magnetic member. When the stress generating member is attached in the magnetic member, for example, it is easier to integrate the magnetic member and the stress generating member as a magnetic body for the filter than to join the surfaces with each other, and the magnetic member can be formed with a smaller amount of the stress generating member. It is also possible to generate stress in the interior of the.

さらに、本発明は上記フィルタ用磁性体をバス端子部に備える通信コネクタを提供する。上記フィルタ用磁性体をバス端子部に備える通信コネクタは、温度変化に対して高周波成分除去効果の変化を抑制することができることから、データ通信の信頼性が向上する。   Furthermore, this invention provides the communication connector provided with the said magnetic body for a filter in a bus terminal part. Since the communication connector including the filter magnetic body in the bus terminal portion can suppress the change in the high-frequency component removal effect with respect to the temperature change, the reliability of the data communication is improved.

本発明によれば、温度変化に対して高周波成分除去効果の変化を抑制することができるフィルタ用磁性体及び通信コネクタを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the magnetic body for filters and communication connector which can suppress the change of the high frequency component removal effect with respect to a temperature change can be provided.

本発明の第一実施形態に係るフィルタ用磁性体の構成を示す概略構成図である。It is a schematic block diagram which shows the structure of the magnetic body for filters which concerns on 1st embodiment of this invention. 本発明の第一実施形態に係るフィルタ用磁性体がバス端子部に装着された構成を示す概略構成図である。It is a schematic block diagram which shows the structure by which the magnetic body for filters which concerns on 1st embodiment of this invention was mounted | worn with the bus terminal part. 本発明の第一実施形態に係るフィルタ用磁性体の低温時の断面図である。It is sectional drawing at the time of the low temperature of the magnetic body for filters which concerns on 1st embodiment of this invention. 本発明の第一実施形態に係るフィルタ用磁性体の高温時の断面図である。It is sectional drawing at the time of the high temperature of the magnetic body for filters which concerns on 1st embodiment of this invention. フェライトコアの温度と透磁率の関係を示す図である。It is a figure which shows the relationship between the temperature of a ferrite core, and a magnetic permeability. フェライトコアの温度とインピーダンスの関係を示す図である。It is a figure which shows the relationship between the temperature of a ferrite core, and an impedance. フェライトコアに加わる応力とインピーダンスの関係を示す図である。It is a figure which shows the relationship between the stress added to a ferrite core, and an impedance. フェライトコアに加わる応力に対する透磁率の低下率を示す図である。It is a figure which shows the fall rate of the magnetic permeability with respect to the stress added to a ferrite core. フェライトコアの温度とインピーダンス低下率の関係を示す図である。It is a figure which shows the relationship between the temperature of a ferrite core, and an impedance fall rate. 本発明の第一実施形態のフィルタ用磁性体と従来例(フェライトコアのみ)の温度とインピーダンスの関係を比較して示す図である。It is a figure which compares and shows the relationship of the temperature and impedance of the magnetic body for filters of 1st embodiment of this invention, and a prior art example (only a ferrite core). フィルタ用磁性体(バス端子部へ装着)とインピーダンスZを示す模式図である。It is a schematic diagram which shows the magnetic body for filter (attached to a bus terminal part) and the impedance Z. 本発明の第一実施形態に係るフィルタ用磁性体をハウジングに収容する第一工程を示す図である。It is a figure which shows the 1st process of accommodating the magnetic body for filters which concerns on 1st embodiment of this invention in a housing. 本発明の第一実施形態に係るフィルタ用磁性体をハウジングに収容する第二工程を示す図である。It is a figure which shows the 2nd process of accommodating the magnetic body for filters which concerns on 1st embodiment of this invention in a housing. 本発明の第一実施形態に係るフィルタ用磁性体をハウジングに収容する第三工程を示す図である。It is a figure which shows the 3rd process of accommodating the magnetic body for filters which concerns on 1st embodiment of this invention in a housing. 磁性部材と応力発生部材を焼成し、接合する例を示す図である。It is a figure which shows the example which bakes and joins a magnetic member and a stress generation member. 本発明の第二実施形態に係るフィルタ用磁性体における製法の第一工程を示す図である。It is a figure which shows the 1st process of the manufacturing method in the magnetic body for filters which concerns on 2nd embodiment of this invention. 本発明の第二実施形態に係るフィルタ用磁性体における製法の第二工程を示す図である。It is a figure which shows the 2nd process of the manufacturing method in the magnetic body for filters which concerns on 2nd embodiment of this invention. (a)及び(b)は本発明の第二実施形態に係るフィルタ用磁性体における応力発生を示す図である。(A) And (b) is a figure which shows the stress generation | occurrence | production in the magnetic body for filters which concerns on 2nd embodiment of this invention.

以下、本発明の実施の形態について説明する。なお、図面の説明において同一要素には同一符号を用い、重複する説明は省略する。   Embodiments of the present invention will be described below. In the description of the drawings, the same reference numerals are used for the same elements, and duplicate descriptions are omitted.

(第1実施形態)
図1は、本発明の第一実施形態に係るフィルタ用磁性体1の構成を示す概略構成図である。フィルタ用磁性体1(以下、磁性体という場合がある)は、磁性部材2と、応力発生部材3を備え、磁性部材2と応力発生部材3の面同士が接合され一体的に形成されている。
(First embodiment)
FIG. 1 is a schematic configuration diagram showing a configuration of a filter magnetic body 1 according to the first embodiment of the present invention. The filter magnetic body 1 (hereinafter sometimes referred to as a magnetic body) includes a magnetic member 2 and a stress generating member 3, and the surfaces of the magnetic member 2 and the stress generating member 3 are joined to each other and formed integrally. .

磁性部材2は、高周波におけるノイズ成分を除去できる性質を有する。例えば、透磁率が高いことによって、信号電流などにおいて発生する磁界による磁束を収束させ、熱エネルギーなどとして消費するものであればよい。これにより、電流エネルギーの一部が磁界から電波として放出されることによって発生するノイズを除去することが可能となる。   The magnetic member 2 has the property of removing noise components at high frequencies. For example, any material may be used as long as it has a high magnetic permeability so that magnetic flux generated by a magnetic field generated in a signal current or the like is converged and consumed as heat energy. As a result, it is possible to remove noise generated when a part of the current energy is emitted from the magnetic field as radio waves.

磁性部材2としては、透磁率が高く、高周波領域で高インピーダンス特性を示すフェライトコアを用いることが好ましい。フェライトコアは、その透磁率によって、信号電流等において発生する磁界による磁束を収束させ、熱エネルギーとして消費することによりノイズを除去することができる。フェライトコアは、例えば、信号として使われている周波数に応じて、ニッケル・亜鉛系や、マンガン・亜鉛系などのフェライトコアを用いることができる。   As the magnetic member 2, it is preferable to use a ferrite core that has high magnetic permeability and exhibits high impedance characteristics in a high frequency region. The ferrite core can remove noise by converging a magnetic flux generated by a magnetic field generated in a signal current or the like and consuming it as thermal energy by its magnetic permeability. As the ferrite core, for example, a nickel / zinc-based or manganese / zinc-based ferrite core can be used according to a frequency used as a signal.

応力発生部材3は、磁性部材2に一体的に取り付けられており、磁性部材2の熱膨張率と異なる熱膨張率を有する。このため、温度変化時に応力発生部材3が磁性部材2と異なる割合で熱膨張するため、一体化されている磁性部材2の内部に応力を発生させることができ、透磁率及びインピーダンスの上昇を抑制することができ、温度変化による高周波成分の減衰効果のばらつき幅を低減させ、高周波成分除去効果の変化を抑制することが可能となる。なお、応力発生部材3と磁性部材2の2つの熱膨張率の差が大きすぎると、例えば磁性部材2にクラックが入ってしまうなどフィルタ用磁性体1としての一体性や機能などが損なわれてしまう恐れもあるため、2つの熱膨張率の差はフィルタ用磁性体1としての一体性や機能などが損なわれない程度のものである。   The stress generating member 3 is integrally attached to the magnetic member 2 and has a thermal expansion coefficient different from the thermal expansion coefficient of the magnetic member 2. For this reason, since the stress generating member 3 thermally expands at a rate different from that of the magnetic member 2 when the temperature changes, it is possible to generate stress inside the integrated magnetic member 2 and suppress increase in magnetic permeability and impedance. It is possible to reduce the variation width of the high-frequency component attenuation effect due to the temperature change and suppress the change in the high-frequency component removal effect. If the difference between the two thermal expansion coefficients of the stress generating member 3 and the magnetic member 2 is too large, for example, the magnetic member 2 is cracked, and the integrity and function of the filter magnetic body 1 are impaired. Therefore, the difference between the two coefficients of thermal expansion is such that the integrity and function of the filter magnetic body 1 are not impaired.

応力発生部材3の熱膨張率は、磁性部材2の熱膨張率よりも大きいことが好ましい。応力発生部材3の熱膨張率が大きい場合には、例えば温度上昇時に応力発生部材3が磁性部材2よりも熱膨張するため、一体化されている磁性部材2の内部に応力(例えば引張応力)を発生させることができる。   The thermal expansion coefficient of the stress generating member 3 is preferably larger than the thermal expansion coefficient of the magnetic member 2. When the coefficient of thermal expansion of the stress generating member 3 is large, for example, the stress generating member 3 expands more thermally than the magnetic member 2 when the temperature rises, so that stress (for example, tensile stress) is generated inside the integrated magnetic member 2. Can be generated.

また、応力発生部材3の熱膨張率は、磁性部材2の熱膨張率よりも小さくてもよい。応力発生部材3の熱膨張率が磁性部材2よりも小さい場合には、例えば温度上昇時に応力発生部材3が磁性部材2よりも熱膨張しないため、一体化されている磁性部材2は自ら熱膨張する範囲まで膨張することができなくなる。このため、磁性部材2の内部に応力(例えば圧縮応力)を発生させることができる。   Further, the thermal expansion coefficient of the stress generating member 3 may be smaller than the thermal expansion coefficient of the magnetic member 2. When the coefficient of thermal expansion of the stress generating member 3 is smaller than that of the magnetic member 2, for example, the stress generating member 3 does not thermally expand more than the magnetic member 2 when the temperature rises. It will not be possible to expand to the range. For this reason, stress (for example, compressive stress) can be generated inside the magnetic member 2.

応力発生部材3は、磁性部材2がフェライトコアである場合、磁性部材2の熱膨張率と異なる熱膨張率を有するフェライトコアであることが好ましく、より好ましくは、磁性部材2の熱膨張率より大きい膨張率を有するフェライトコアである。また、応力発生部材3は、磁性部材2の熱膨張率より小さい膨張率を有するフェライトコアであってもよい。   When the magnetic member 2 is a ferrite core, the stress generating member 3 is preferably a ferrite core having a thermal expansion coefficient different from the thermal expansion coefficient of the magnetic member 2, more preferably from the thermal expansion coefficient of the magnetic member 2. It is a ferrite core having a large expansion coefficient. Further, the stress generating member 3 may be a ferrite core having an expansion coefficient smaller than that of the magnetic member 2.

図2は、フィルタ用磁性体1がバス端子部5に装着された構成を示す概略構成図である。本実施形態においては、フィルタ用磁性体1は2つの貫通孔4を備えていることが好ましい。また、この2つの貫通孔4に2つのバス端子部5が挿入され、フィルタ用磁性体1が通信コネクタのフィルタとして保持されることが好ましい。フィルタ用磁性体1は2つのバス端子部5における信号電流の高周波成分を除去することができる。また、コネクタが差動伝送方式の場合、2つのバス端子部5は+及び−の端子となる。   FIG. 2 is a schematic configuration diagram showing a configuration in which the filter magnetic body 1 is mounted on the bus terminal portion 5. In the present embodiment, it is preferable that the filter magnetic body 1 includes two through holes 4. Moreover, it is preferable that the two bus terminal parts 5 are inserted in these two through-holes 4, and the magnetic body 1 for a filter is hold | maintained as a filter of a communication connector. The filter magnetic body 1 can remove high-frequency components of the signal current in the two bus terminal portions 5. When the connector is a differential transmission system, the two bus terminal portions 5 are + and − terminals.

図3は、低温時のフィルタ用磁性体の断面図である。低温時には磁性部材2及び応力発生部材3は大きく熱膨張せず、応力もほぼ発生しない。一方、図4に示すように、高温時には磁性部材2及び応力発生部材3は熱により膨張するが、応力発生部材3の熱膨張率が磁性部材2よりも大きい場合には、磁性部材2よりも大きく膨張する。よって、応力発生部材3と一体的に接合されている磁性部材2は、熱膨張率が応力発生部材3よりも小さいにもかかわらず応力発生部材3とともに膨張し、内部に応力(例えば、引張応力)が発生することになる。このように磁性部材2に応力が発生すると、フィルタ用磁性体1の透磁率及びインピーダンスの上昇を抑制することができ、高周波成分が過度に減衰して波形鈍りが発生することを抑制し、温度変化による高周波成分の減衰効果のばらつき幅を低減させ、高周波成分除去効果の変化を抑制することが可能となる。   FIG. 3 is a cross-sectional view of the filter magnetic body at a low temperature. At a low temperature, the magnetic member 2 and the stress generating member 3 do not thermally expand and generate almost no stress. On the other hand, as shown in FIG. 4, the magnetic member 2 and the stress generating member 3 are expanded by heat at a high temperature. However, when the thermal expansion coefficient of the stress generating member 3 is larger than that of the magnetic member 2, It expands greatly. Therefore, the magnetic member 2 joined integrally with the stress generating member 3 expands together with the stress generating member 3 even though the coefficient of thermal expansion is smaller than that of the stress generating member 3, and stress (for example, tensile stress) is contained therein. ) Will occur. When stress is generated in the magnetic member 2 as described above, it is possible to suppress an increase in the magnetic permeability and impedance of the filter magnetic body 1, and to suppress a high-frequency component from being excessively attenuated to cause waveform dullness, It is possible to reduce the variation width of the high-frequency component attenuation effect due to the change and suppress the change in the high-frequency component removal effect.

図5は、フェライトコアの温度と透磁率の関係を示す。図5に示すように、フェライトコアの透磁率(μ)は、温度が低いときには低く、温度が高くなると透磁率は高くなるという特性を示す。   FIG. 5 shows the relationship between the temperature of the ferrite core and the magnetic permeability. As shown in FIG. 5, the permeability (μ) of the ferrite core is low when the temperature is low, and the magnetic permeability increases as the temperature increases.

また、インピーダンスは下記式(1)から、図6に示すように、透磁率と同様に温度が低いときにはインピーダンスが低くなり、一方、温度が高くなるとインピーダンスは高くなる。
Z=k・μ・μ”・ω+jk・μ・μ’・ω ・・・(1)
(Z:インピーダンス、μ:真空の透磁率(=4・10−7)、ω:2πf(f:周波数)、k:フェライト形状による係数、j:虚数単位)
Further, as shown in FIG. 6, the impedance is low when the temperature is low, as shown in FIG. 6, while the impedance is high when the temperature is high.
Z = k · μ 0 · μ ”· ω + jk · μ 0 · μ '· ω (1)
(Z: impedance, μ 0 : vacuum permeability (= 4 · 10 −7 ), ω: 2πf (f: frequency), k: coefficient depending on ferrite shape, j: imaginary unit)

図7は、フェライトコアに加わる応力とインピーダンスZの関係を示す。図6及び図7は、温度が低いときには応力を加えず、温度が高いほど強い応力を加えることにより、温度によるインピーダンスの変動を抑制できることを示す。   FIG. 7 shows the relationship between the stress applied to the ferrite core and the impedance Z. 6 and 7 show that the stress is not applied when the temperature is low, and the higher the temperature, the stronger the stress, so that the fluctuation of impedance due to temperature can be suppressed.

フィルタ用磁性体1において、磁性部材2(フェライトコア)の内部に発生する応力は下記式(2)で表され、基準温度との温度差に比例する。
σ=(α2−α1)(T−T)・E/2 ・・・(2)
(σ:応力、α1:フェライトコア線膨張係数、α2:応力発生部材線膨張係数、E:縦弾性係数、T:温度、T:基準温度(応力=0となる温度))
In the filter magnetic body 1, the stress generated in the magnetic member 2 (ferrite core) is expressed by the following formula (2), and is proportional to the temperature difference from the reference temperature.
σ = (α2−α1) (T−T 0 ) · E / 2 (2)
(Σ: stress, α1: ferrite core linear expansion coefficient, α2: stress generating member linear expansion coefficient, E: longitudinal elastic modulus, T: temperature, T 0 : reference temperature (temperature at which stress = 0))

図8は、フェライトコアに加わる応力に対する透磁率の低下率を示す図である。図8に示すように、応力がフェライトコアである磁性部材2に加わるほど、透磁率は低下する。また、上述のとおり透磁率と比例するインピーダンスZと応力の関係も図8と同様になる。   FIG. 8 is a diagram showing a decrease rate of magnetic permeability with respect to stress applied to the ferrite core. As shown in FIG. 8, the magnetic permeability decreases as the stress is applied to the magnetic member 2 that is a ferrite core. Further, as described above, the relationship between the impedance Z proportional to the magnetic permeability and the stress is the same as in FIG.

図9は、フェライトコアの温度とインピーダンス低下率の関係を示す図であり、図7に示す応力とインピーダンスZの関係と上記式(2)に示す応力と温度の関係から得られる特性を示す。また、図10は第一実施形態に係るフィルタ用磁性体と従来例(フェライトコアのみ)の、温度とインピーダンスの関係を比較して示す図であり、図6に示す温度とインピーダンスの関係と、図9に示す温度とインピーダンス低下率の関係の積から得られるものである。図10に示すように、第一実施形態に係るフィルタ用磁性体(a)は、応力発生部材が熱膨張するため、一体化されている磁性部材の内部に応力を発生させることができ、透磁率及びインピーダンスの上昇を抑制することから、温度変化による高周波成分の減衰効果のばらつき幅を従来例(b)よりも低減させることができる。このため、温度変化による高周波成分の減衰効果のばらつきを考慮しなくてもよくなり、フィルタ用磁性体及び通信コネクタの設計自由度が大きくなる。図11は、バス端子部5に装着したフィルタ用磁性体1とインピーダンスZを示す。   FIG. 9 is a diagram showing the relationship between the temperature of the ferrite core and the impedance reduction rate, and shows the characteristics obtained from the relationship between the stress and impedance Z shown in FIG. 7 and the relationship between the stress and temperature shown in the above equation (2). FIG. 10 is a diagram comparing the relationship between temperature and impedance of the filter magnetic body according to the first embodiment and the conventional example (only the ferrite core), and the relationship between the temperature and impedance shown in FIG. This is obtained from the product of the relationship between temperature and impedance reduction rate shown in FIG. As shown in FIG. 10, the filter magnetic body (a) according to the first embodiment can generate stress inside the integrated magnetic member because the stress generating member thermally expands. Since the increase in magnetic susceptibility and impedance is suppressed, the variation width of the high-frequency component attenuation effect due to temperature change can be reduced as compared with the conventional example (b). For this reason, it is not necessary to consider the variation in the attenuation effect of the high frequency component due to the temperature change, and the degree of freedom in designing the filter magnetic body and the communication connector is increased. FIG. 11 shows the filter magnetic body 1 mounted on the bus terminal portion 5 and the impedance Z.

図12は本発明の第一実施形態に係るフィルタ用磁性体をハウジングに収容する第一工程を示す図である。図12のように、磁性部材2及び応力発生部材3からなるフィルタ用磁性体1は、2つの貫通孔4に2つのバス端子部5を挿入するように準備される。次に図13に示す第二工程のように、フィルタ用磁性体1はバス端子部5の付け根部に装着される。さらに図14に示す第三工程のように、バス端子部5に装着されたフィルタ用磁性体1を収容するハウジング15が被せられ、通信コネクタ20が形成される。   FIG. 12 is a view showing a first step of housing the filter magnetic body according to the first embodiment of the present invention in the housing. As shown in FIG. 12, the filter magnetic body 1 including the magnetic member 2 and the stress generating member 3 is prepared so that the two bus terminal portions 5 are inserted into the two through holes 4. Next, as in the second step shown in FIG. 13, the filter magnetic body 1 is attached to the base portion of the bus terminal portion 5. Further, as in the third step shown in FIG. 14, the housing 15 for housing the filter magnetic body 1 attached to the bus terminal portion 5 is covered, and the communication connector 20 is formed.

図15は、磁性部材2と応力発生部材3を焼成して接合する例を示す図である。図15のように、磁性部材2と応力発生部材3を焼成して接合し、一体的に形成する場合には、例えば、磁性部材2と応力発生部材3が熱膨張率の異なる2種類のフェライトであれば、同系の材料のため焼成により強固に接合しやすく、同系の材料同士のため他の材料を使うよりも体積効率もよいことから好ましい。   FIG. 15 is a diagram illustrating an example in which the magnetic member 2 and the stress generating member 3 are baked and joined. As shown in FIG. 15, when the magnetic member 2 and the stress generating member 3 are baked and joined and integrally formed, for example, the magnetic member 2 and the stress generating member 3 have two types of ferrite having different thermal expansion coefficients. If it is, it is preferable because it is a similar material, and it is easy to firmly bond by firing, and because it is a similar material, volume efficiency is better than using other materials.

(第2実施形態)
図16は、本発明の第二実施形態に係るフィルタ用磁性体における製法の第一工程を示す図である。第二実施形態に係るフィルタ用磁性体1は、図16のように、磁性部材2は、あらかじめ設けられている2つの貫通孔4の周辺に、応力発生部材3を充填又は圧入させるための貫通孔6が設けている点で、第一実施形態に係るフィルタ用磁性体と相違する。貫通孔6に充填又は圧入される応力発生部材3は貫通孔6の形状に合うように調製される。次に、図17に示す第二工程のように、応力発生部材3は磁性部材2の貫通孔6に充填又は圧入される。これにより、応力発生部材3は磁性部材内に一体的に形成され、フィルタ用磁性体1となる。このように、磁性部材2の内部に応力発生部材3を充填又は圧入することは、磁性部材2と応力発生部材3を第一実施形態のフィルタ用磁性体のように面同士で接合して一体化するよりも容易に一体的に形成させることができる点や、より少量の応力発生部材3で磁性部材2の内部に応力を発生させることができる点で好ましい。
(Second Embodiment)
FIG. 16 is a diagram illustrating a first step of a manufacturing method for a filter magnetic body according to the second embodiment of the present invention. In the filter magnetic body 1 according to the second embodiment, as shown in FIG. 16, the magnetic member 2 is penetrated to fill or press-fit the stress generating member 3 around the two through holes 4 provided in advance. It differs from the filter magnetic body according to the first embodiment in that the hole 6 is provided. The stress generating member 3 filled or press-fitted into the through hole 6 is prepared so as to match the shape of the through hole 6. Next, as in the second step shown in FIG. 17, the stress generating member 3 is filled or press-fitted into the through hole 6 of the magnetic member 2. Thereby, the stress generating member 3 is integrally formed in the magnetic member and becomes the filter magnetic body 1. As described above, filling or press-fitting the stress generating member 3 into the magnetic member 2 is performed by joining the magnetic member 2 and the stress generating member 3 together by surfaces like the filter magnetic body of the first embodiment. It is preferable in that it can be integrally formed more easily than in the case of forming the magnetic member 2 and stress can be generated inside the magnetic member 2 with a smaller amount of the stress generating member 3.

図18(a)及び(b)は本発明の第二実施形態に係るフィルタ用磁性体における応力発生を示す図である。図18(a)及び(b)のように、磁性部材2の内部に充填又は圧入された応力発生部材3は、周囲の温度が上昇すると熱膨張するが、熱膨張率が磁性部材2の熱膨張率よりも大きい場合には、応力発生部材3の周囲の磁性部材2に応力(例えば、圧縮応力)が発生する。   FIGS. 18A and 18B are views showing stress generation in the filter magnetic body according to the second embodiment of the present invention. As shown in FIGS. 18A and 18B, the stress generating member 3 filled or press-fitted inside the magnetic member 2 is thermally expanded when the ambient temperature is increased, but the coefficient of thermal expansion is the heat of the magnetic member 2. When it is larger than the expansion coefficient, stress (for example, compressive stress) is generated in the magnetic member 2 around the stress generating member 3.

なお、以上の説明は、本発明の実施の形態についての説明であって、この発明を限定するものではなく、様々な変形例を容易に実施することができる。例えば、図1等においてフィルタ用磁性体1は、応力発生部材3が磁性部材2の上面側に設けられた構成を示しているが、磁性部材2の下面側に応力発生部材3を設けてもよい。   The above description is an explanation of the embodiment of the present invention, and does not limit the present invention, and various modifications can be easily implemented. For example, in FIG. 1 and the like, the filter magnetic body 1 has a configuration in which the stress generating member 3 is provided on the upper surface side of the magnetic member 2, but the stress generating member 3 may be provided on the lower surface side of the magnetic member 2. Good.

また、図15においては、磁性部材2と応力発生部材3が焼成により接合されているが、フィルタ用磁性体1としての機能を損なわない範囲で磁性部材2と応力発生部材3が接着剤により接合されて一体的に形成されてもよい。   In FIG. 15, the magnetic member 2 and the stress generating member 3 are bonded by baking, but the magnetic member 2 and the stress generating member 3 are bonded by an adhesive so long as the function as the filter magnetic body 1 is not impaired. And may be integrally formed.

1・・・フィルタ用磁性体、2・・・磁性部材、3・・・応力発生部材、4・・・2つの貫通孔、5・・・バス端子部、6・・・充填又は圧入用貫通孔、10・・ハウジング、20・・・通信コネクタ。   DESCRIPTION OF SYMBOLS 1 ... Magnetic body for filters, 2 ... Magnetic member, 3 ... Stress generating member, 4 ... Two through-holes, 5 ... Bus terminal part, 6 ... Through for filling or press fit Hole, 10 .. housing, 20... Communication connector.

Claims (4)

磁性部材と、
前記磁性部材と一体的に取り付けられ、熱膨張率が前記磁性部材の熱膨張率と異なる応力発生部材と、
を備えたフィルタ用磁性体。
A magnetic member;
A stress generating member attached integrally with the magnetic member and having a coefficient of thermal expansion different from that of the magnetic member;
A magnetic body for a filter comprising:
前記応力発生部材の熱膨張率が前記磁性部材の熱膨張率よりも大きい請求項1記載のフィルタ用磁性体。   The filter magnetic body according to claim 1, wherein a thermal expansion coefficient of the stress generating member is larger than a thermal expansion coefficient of the magnetic member. 前記応力発生部材が前記磁性部材内に取り付けられた請求項1又は2記載のフィルタ用磁性体。   The filter magnetic body according to claim 1, wherein the stress generating member is attached in the magnetic member. 請求項1〜3のいずれか一項記載のフィルタ用磁性体をバス端子部に備える通信コネクタ。   A communication connector comprising the filter magnetic body according to claim 1 in a bus terminal portion.
JP2010140539A 2010-06-21 2010-06-21 Magnetic material for filter and communication connector. Expired - Fee Related JP5530826B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010140539A JP5530826B2 (en) 2010-06-21 2010-06-21 Magnetic material for filter and communication connector.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010140539A JP5530826B2 (en) 2010-06-21 2010-06-21 Magnetic material for filter and communication connector.

Publications (2)

Publication Number Publication Date
JP2012005029A true JP2012005029A (en) 2012-01-05
JP5530826B2 JP5530826B2 (en) 2014-06-25

Family

ID=45536451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010140539A Expired - Fee Related JP5530826B2 (en) 2010-06-21 2010-06-21 Magnetic material for filter and communication connector.

Country Status (1)

Country Link
JP (1) JP5530826B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014015644A1 (en) * 2012-07-23 2014-01-30 Cheng Liang-Ho High-frequency signal double-layer flat cable adapter card
JP2019207908A (en) * 2018-05-28 2019-12-05 北川工業株式会社 Noise reduction device and manufacturing method of noise reduction device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5464947U (en) * 1977-10-17 1979-05-08
JPS54113066A (en) * 1978-02-23 1979-09-04 Tdk Electronics Co Ltd Inductor
JPS58123707A (en) * 1982-01-19 1983-07-23 Hitachi Metals Ltd Heat-sensitive inductor
JPS6384913U (en) * 1986-11-25 1988-06-03
JPS6454717A (en) * 1987-08-26 1989-03-02 Takamatsu Kikai Mfg Differential transformer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5464947U (en) * 1977-10-17 1979-05-08
JPS54113066A (en) * 1978-02-23 1979-09-04 Tdk Electronics Co Ltd Inductor
JPS58123707A (en) * 1982-01-19 1983-07-23 Hitachi Metals Ltd Heat-sensitive inductor
JPS6384913U (en) * 1986-11-25 1988-06-03
JPS6454717A (en) * 1987-08-26 1989-03-02 Takamatsu Kikai Mfg Differential transformer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014015644A1 (en) * 2012-07-23 2014-01-30 Cheng Liang-Ho High-frequency signal double-layer flat cable adapter card
CN103579857A (en) * 2012-07-23 2014-02-12 陳亮合 High-frequency signal double-layer flat cable adapter card
JP2019207908A (en) * 2018-05-28 2019-12-05 北川工業株式会社 Noise reduction device and manufacturing method of noise reduction device

Also Published As

Publication number Publication date
JP5530826B2 (en) 2014-06-25

Similar Documents

Publication Publication Date Title
JP6392784B2 (en) Multilayer electronic component and its mounting structure
JP2006345518A (en) Piezoelectric resonator and assembly comprising the piezoelectric resonator enclosed in case
JP5630982B2 (en) Multiple communication joint connector
US20090174291A1 (en) Package for electronic component and piezoelectric resonator
US20160336114A1 (en) Laminated electronic component and laminated electronic component mounting structure
JP5530826B2 (en) Magnetic material for filter and communication connector.
KR101973422B1 (en) Bluk acoustic wave resonator
JP6354874B1 (en) Light modulator
JP2012156592A (en) Piezoelectric vibration piece, piezoelectric vibrator and electronic device
JP5660257B1 (en) Ultrasonic sensor and manufacturing method thereof
JP2011041040A (en) Piezoelectric substrate, piezoelectric vibrating element, and piezoelectric device
CN108028640A (en) Crystal wafer and quartz crystal unit
JP6239764B2 (en) Multilayer electronic component and its mounting structure
JP2013042425A (en) Piezoelectric vibration piece and piezoelectric module
JP5228948B2 (en) Piezoelectric vibration device
JP2015173366A (en) Piezoelectric vibration piece and piezoelectric device
JP2022087063A (en) Clock oscillator and clock oscillator production method
JPWO2017085936A1 (en) Dielectric filter unit and communication device
CN104021258B (en) A kind of PCB design method for suppressing planar resonant
JP2017070449A (en) Ultrasonic probe
JP6400924B2 (en) Electronic component mounting structure
JP2012156591A (en) Piezoelectric vibration piece, piezoelectric vibrator and electronic device
JP2004228278A (en) High frequency circuit component
JP5051369B2 (en) Quartz crystal resonator and manufacturing method thereof
CN113131895B (en) Film bulk acoustic resonator with high quality factor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140421

R151 Written notification of patent or utility model registration

Ref document number: 5530826

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees