JP2012004558A - 照明光学系、露光装置、およびデバイス製造方法 - Google Patents

照明光学系、露光装置、およびデバイス製造方法 Download PDF

Info

Publication number
JP2012004558A
JP2012004558A JP2011125658A JP2011125658A JP2012004558A JP 2012004558 A JP2012004558 A JP 2012004558A JP 2011125658 A JP2011125658 A JP 2011125658A JP 2011125658 A JP2011125658 A JP 2011125658A JP 2012004558 A JP2012004558 A JP 2012004558A
Authority
JP
Japan
Prior art keywords
optical system
illumination
light beam
spatial light
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011125658A
Other languages
English (en)
Inventor
Hisanori Kita
尚憲 北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Publication of JP2012004558A publication Critical patent/JP2012004558A/ja
Withdrawn legal-status Critical Current

Links

Images

Abstract

【課題】 各ミラー要素の微小な反射面に起因する回折ぼけの影響を小さく抑えて、所望の瞳強度分布を精度良く形成することのできる照明光学系。
【解決手段】 本発明の照明光学系は、所定の配列面に沿って配列されて個別に制御される複数のミラー要素(3a)を有し、照明光学系の照明瞳に瞳強度分布を形成する空間光変調器(3)と、入射光束(F1)を互いに向きの異なる複数の光束(F11〜F14)に分割し、該複数の光束のうちの第1光束を配列面に対して第1の向きで複数のミラー要素の集合体の第1領域へ入射させ、且つ複数の光束のうちの第2光束を配列面に対して第1の向きとは異なる第2の向きで集合体において第1領域とは異なる第2領域へ入射させる光束分割部材(2)とを備えている。
【選択図】 図4

Description

本発明は、照明光学系、露光装置、およびデバイス製造方法に関する。さらに詳細には、本発明は、半導体素子、撮像素子、液晶表示素子、薄膜磁気ヘッド等のデバイスをリソグラフィー工程で製造するための露光装置に好適な照明光学系に関するものである。
この種の典型的な露光装置においては、光源から射出された光が、オプティカルインテグレータとしてのフライアイレンズを介して、多数の光源からなる実質的な面光源としての二次光源(一般には照明瞳における所定の光強度分布)を形成する。以下、照明瞳での光強度分布を、「瞳強度分布」という。また、照明瞳とは、照明瞳と被照射面(露光装置の場合にはマスクまたはウェハ)との間の光学系の作用によって、被照射面が照明瞳のフーリエ変換面となるような位置として定義される。
二次光源からの光は、コンデンサー光学系により集光された後、所定のパターンが形成されたマスクを重畳的に照明する。マスクを透過した光は投影光学系を介してウェハ上に結像し、ウェハ上にはマスクパターンが投影露光(転写)される。マスクに形成されたパターンは高度に微細化されており、この微細パターンをウェハ上に正確に転写するにはウェハ上において均一な照度分布を得ることが不可欠である。
従来、ズーム光学系を用いることなく瞳強度分布(ひいては照明条件)を連続的に変更することのできる照明光学系が提案されている(特許文献1を参照)。特許文献1に開示された照明光学系では、アレイ状に配列され且つ傾斜角および傾斜方向が個別に駆動制御される多数の微小なミラー要素により構成された可動マルチミラーを用いて、入射光束を反射面毎の微小単位に分割して偏向させることにより、光束の断面を所望の形状または所望の大きさに変換し、ひいては所望の瞳強度分布を実現している。
米国特許出願公開第2009/0116093号明細書
特許文献1に記載された照明光学系では、姿勢が個別に制御される多数のミラー要素を有する空間光変調器を用いているので、瞳強度分布の形状および大きさの変更に関する自由度は高い。しかしながら、各ミラー要素の微小な反射面での回折により、1つの反射面を経た光束が照明瞳に形成するスポット状の光束の断面が大きくなる現象(以下、「回折ぼけ」という)が発生する。その結果、各ミラー要素の微小な反射面に起因する回折ぼけの影響により、所望の瞳強度分布を精度良く形成することが困難である。
本発明は、前述の課題に鑑みてなされたものであり、各ミラー要素の微小な反射面に起因する回折ぼけの影響を小さく抑えて、所望の瞳強度分布を精度良く形成することのできる照明光学系を提供することを目的とする。また、本発明は、所望の瞳強度分布を精度良く形成する照明光学系を用いて、適切な照明条件のもとで良好な露光を行うことのできる露光装置を提供することを目的とする。
前記課題を解決するために、本発明の第1形態では、光源からの光により被照射面を照明する照明光学系において、
所定の配列面に沿って配列されて個別に制御される複数のミラー要素を有し、前記照明光学系の照明瞳に瞳強度分布を形成する空間光変調器と、
入射光束を互いに向きの異なる複数の光束に分割し、該複数の光束のうちの第1光束を前記配列面に対して第1の向きで前記複数のミラー要素の集合体の第1領域へ入射させ、且つ前記複数の光束のうちの第2光束を前記配列面に対して前記第1の向きとは異なる第2の向きで前記集合体において前記第1領域とは異なる第2領域へ入射させる光束分割部材とを備えていることを特徴とする照明光学系を提供する。
本発明の第2形態では、光源からの光により被照射面を照明する照明光学系において、
第1配列面に沿って配列されて個別に制御される複数のミラー要素を有し、前記照明光学系の照明瞳に瞳強度分布を形成する第1の空間光変調器と、
第2配列面に沿って配列されて個別に制御される複数のミラー要素を有し、前記照明瞳に瞳強度分布を形成する第2の空間光変調器と、
前記第1の空間光変調器および前記第2の空間光変調器と前記照明瞳との間の光路中に配置された集光光学系と、
入射光束を互いに向きの異なる複数の光束に分割し、前記複数のミラー要素が前記第1配列面に揃った状態で前記第1の空間光変調器および前記集光光学系を経た光束が前記照明瞳の第5領域に達するような所要の向きで前記複数の光束のうちの第1光束を前記第1の空間光変調器へ入射させ、且つ前記複数のミラー要素が前記第2配列面に揃った状態で前記第2の空間光変調器および前記集光光学系を経た光束が前記照明瞳において前記第5領域とは異なる第6領域に達するような所要の向きで前記複数の光束のうちの第2光束を前記第2の空間光変調器へ入射させる光束分割部材とを備えていることを特徴とする照明光学系を提供する。
本発明の第3形態では、所定のパターンを照明するための第1形態または第2形態の照明光学系を備え、前記所定のパターンを感光性基板に露光することを特徴とする露光装置を提供する。
本発明の第4形態では、第3形態の露光装置を用いて、前記所定のパターンを前記感光性基板に露光することと、
前記所定のパターンが転写された前記感光性基板を現像し、前記所定のパターンに対応する形状のマスク層を前記感光性基板の表面に形成することと、
前記マスク層を介して前記感光性基板の表面を加工することと、を含むことを特徴とするデバイス製造方法を提供する。
本発明の一態様にしたがう照明光学系では、光束分割部材により分割された複数の光束を、複数のミラー要素の配列面に対して互いに異なる向きで複数のミラー要素の集合体の複数の領域へそれぞれ入射させる。その結果、各ミラー要素の反射面のサイズおよび最大傾斜角度を変更することなく、空間光変調器に後続するフーリエレンズとしての集光光学系の焦点距離を従来技術よりも小さくすることが可能になり、ひいては瞳強度分布の形状および大きさに関する精度を低下させることなく回折ぼけの影響を小さく抑えることが可能になる。
すなわち、本発明の照明光学系では、各ミラー要素の微小な反射面に起因する回折ぼけの影響を小さく抑えて、所望の瞳強度分布を精度良く形成することができる。また、本発明の露光装置では、所望の瞳強度分布を精度良く形成する照明光学系を用いて、適切な照明条件のもとで良好な露光を行うことができ、ひいては良好なデバイスを製造することができる。
本発明の実施形態にかかる露光装置の構成を概略的に示す図である。 空間光変調器の構成および作用を概略的に示す図である。 空間光変調器の部分斜視図である。 本実施形態における光束分割部材と空間光変調器との協働作用を説明する図である。 光束分割部材により分割された各光束が複数のミラー要素の集合体の各反射領域に入射する様子を示す図である。 ミラー要素が整列状態にある各反射領域を経た光束が照明瞳における各分割領域内に集光する様子を示す図である。 変形例における光束分割部材と複数の空間光変調器との協働作用を説明する図である。 変形例において複数の空間光変調器が互いに間隔を隔てて配置されている様子を示す図である。 光束分割部材により分割された16個の光束が整列状態にある空間光変調器を経て照明瞳における16個の分割領域内に集光する様子を示す図である。 第1変形例にかかる光束分割部材の要部構成を概略的に示す図である。 第2変形例にかかる光束分割部材の要部構成を概略的に示す図である。 半導体デバイスの製造工程を示すフローチャートである。 液晶表示素子等の液晶デバイスの製造工程を示すフローチャートである。
本発明の実施形態を、添付図面に基づいて説明する。図1は、本発明の実施形態にかかる露光装置の構成を概略的に示す図である。図1において、感光性基板であるウェハWの転写面(露光面)の法線方向に沿ってZ軸を、ウェハWの転写面内において図1の紙面に平行な方向に沿ってX軸を、ウェハWの転写面内において図1の紙面に垂直な方向に沿ってY軸をそれぞれ設定している。
図1を参照すると、本実施形態の露光装置には、光源LSから露光光(照明光)が供給される。光源LSとして、たとえば193nmの波長の光を供給するArFエキシマレーザ光源や、248nmの波長の光を供給するKrFエキシマレーザ光源などを用いることができる。本実施形態の露光装置は、装置の光軸AXに沿って、空間光変調器3を含む照明光学系ILと、マスクMを支持するマスクステージMSと、投影光学系PLと、ウェハWを支持するウェハステージWSとを備えている。
光源LSからの光は、照明光学系ILを介してマスクMを照明する。マスクMを透過した光は、投影光学系PLを介して、マスクMのパターンの像をウェハW上に形成する。光源LSからの光に基づいてマスクMのパターン面(被照射面)を照明する照明光学系ILは、空間光変調器3の作用により、複数極照明(2極照明、4極照明など)、輪帯照明等の変形照明、または通常の円形照明を行う。
照明光学系ILは、光軸AXに沿って光源LS側から順に、ビーム送光部1と、回折光学素子2と、空間光変調器3と、リレー光学系4と、マイクロフライアイレンズ(またはフライアイレンズ)5と、コンデンサー光学系6と、照明視野絞り(マスクブラインド)7と、結像光学系8とを備えている。ビーム送光部1は、光源LSからの入射光束を適切な大きさおよび形状の断面を有する光束に変換しつつ回折光学素子2へ導くとともに、回折光学素子2に入射する光束の位置変動および角度変動をアクティブに補正する。
回折光学素子2は、入射光束を互いに向きの異なる複数の光束に分割し、各光束を空間光変調器3へ導く光束分割部材として機能する。回折光学素子2は、基板に露光光(照明光)の波長程度のピッチを有する段差を形成することによって構成され、入射ビームを所望の角度に回折する作用を有する。空間光変調器3は、ビーム送光部1および回折光学素子2を介した光源LSからの光に基づいて、その遠視野領域(フラウンホーファー回折領域)に所望の光強度分布(瞳強度分布)を形成する。回折光学素子2および空間光変調器3の具体的な構成および作用については後述する。
以下、理解を容易にするために、回折光学素子2の作用を無視して、露光装置の基本的な動作を説明する。リレー光学系(集光光学系)4は、空間光変調器3からの光を集光して、マイクロフライアイレンズ5へ導く。マイクロフライアイレンズ5は、たとえば縦横に且つ稠密に配列された多数の正屈折力を有する微小レンズからなる光学素子であり、平行平面板にエッチング処理を施して微小レンズ群を形成することによって構成されている。
マイクロフライアイレンズでは、互いに隔絶されたレンズエレメントからなるフライアイレンズとは異なり、多数の微小レンズ(微小屈折面)が互いに隔絶されることなく一体的に形成されている。しかしながら、レンズ要素が縦横に配置されている点でマイクロフライアイレンズはフライアイレンズと同じ波面分割型のオプティカルインテグレータである。マイクロフライアイレンズ5における単位波面分割面としての矩形状の微小屈折面は、マスクM上において形成すべき照野の形状(ひいてはウェハW上において形成すべき露光領域の形状)と相似な矩形状である。
マイクロフライアイレンズ5は、入射した光束を波面分割して、その後側焦点位置またはその近傍の照明瞳に多数の小光源からなる二次光源(実質的な面光源;瞳強度分布)を形成する。マイクロフライアイレンズ5の入射面は、リレー光学系4の後側焦点位置またはその近傍に配置されている。マイクロフライアイレンズ5として、例えばシリンドリカルマイクロフライアイレンズを用いることもできる。シリンドリカルマイクロフライアイレンズの構成および作用は、例えば米国特許第6913373号明細書に開示されている。
本実施形態では、マイクロフライアイレンズ5により形成される二次光源を光源として、照明光学系ILの被照射面に配置されるマスクMをケーラー照明する。このため、二次光源が形成される位置は投影光学系PLの開口絞りASの位置と光学的に共役であり、二次光源の形成面を照明光学系ILの照明瞳面と呼ぶことができる。典型的には、照明瞳面に対して被照射面(マスクMが配置される面、または投影光学系PLを含めて照明光学系と考える場合にはウェハWが配置される面)が光学的なフーリエ変換面となる。
なお、瞳強度分布とは、照明光学系ILの照明瞳面または当該照明瞳面と光学的に共役な面における光強度分布(輝度分布)である。マイクロフライアイレンズ5による波面分割数が比較的大きい場合、マイクロフライアイレンズ5の入射面に形成される大局的な光強度分布と、二次光源全体の大局的な光強度分布(瞳強度分布)とが高い相関を示す。このため、マイクロフライアイレンズ5の入射面および当該入射面と光学的に共役な面における光強度分布についても瞳強度分布と称することができる。
コンデンサー光学系6は、マイクロフライアイレンズ5から射出された光を集光して、照明視野絞り7を重畳的に照明する。照明視野絞り7を通過した光は、結像光学系8を介して、マスクMのパターン形成領域の少なくとも一部に照明視野絞り7の開口部の像である照明領域を形成する。なお、図1では、空間光変調器3と投影光学系PLとの間の光路において光軸(ひいては光路)を折り曲げるための光路折曲げミラーの設置を省略しているが、必要に応じて光路折曲げミラーを照明光路中に適宜配置することが可能である。また、図1では、空間光変調器3に対する入射光軸と射出光軸とが直交した配置を示しているが、入射光軸と射出光軸とが所要の鋭角をなすように適宜配置することが可能である。
マスクステージMSにはXY平面(例えば水平面)に沿ってマスクMが載置され、ウェハステージWSにはXY平面に沿ってウェハWが載置される。投影光学系PLは、照明光学系ILによってマスクMのパターン面上に形成される照明領域からの光に基づいて、ウェハWの転写面(露光面)上にマスクMのパターンの像を形成する。こうして、投影光学系PLの光軸AXと直交する平面(XY平面)内においてウェハステージWSを二次元的に駆動制御しながら、ひいてはウェハWを二次元的に駆動制御しながら一括露光またはスキャン露光を行うことにより、ウェハWの各露光領域にはマスクMのパターンが順次露光される。
図2および図3を参照して、空間光変調器3の構成および作用を説明する。空間光変調器3は、図2に示すように、例えばXZ平面と直交し且つXY平面およびYZ平面と45度をなす平面(配列面)に沿って二次元的に配列された複数のミラー要素3aと、複数のミラー要素3aを保持する基盤3bと、基盤3bに接続されたケーブル(不図示)を介して複数のミラー要素3aの姿勢を個別に制御駆動する駆動部3cとを備えている。空間光変調器3では、制御部CRからの制御信号に基づいて作動する駆動部3cの作用により、複数のミラー要素3aの姿勢がそれぞれ変化し、各ミラー要素3aがそれぞれ所定の向きに設定される。
空間光変調器3は、入射した光に対して、その入射位置に応じた空間的な変調を付与して射出する。空間光変調器3は、図3に示すように、所定面内で二次元的に配列された複数の微小なミラー要素(光学要素)3aを備えている。説明および図示を簡単にするために、図2および図3では空間光変調器3が4×4=16個のミラー要素3aを備える構成例を示しているが、実際には16個よりもはるかに多数のミラー要素3aを備えている。
以下、回折光学素子2の作用を無視して、空間光変調器3の基本的な作用を説明する。図2を参照すると、空間光変調器3に入射した光線群のうち、光線L1は複数のミラー要素3aのうちのミラー要素SEaに、光線L2はミラー要素SEaとは異なるミラー要素SEbにそれぞれ入射する。同様に、光線L3はミラー要素SEa,SEbとは異なるミラー要素SEcに、光線L4はミラー要素SEa〜SEcとは異なるミラー要素SEdにそれぞれ入射する。ミラー要素SEa〜SEdは、その位置に応じて設定された空間的な変調を光L1〜L4に与える。
空間光変調器3の複数のミラー要素3aの配列面は、リレー光学系4の前側焦点位置またはその近傍に配置されている。空間光変調器3の複数のミラー要素3aによって反射されて所定の角度分布が与えられた光は、リレー光学系4の後側焦点面4aに所定の光強度分布SP1〜SP4を形成する。すなわち、リレー光学系4は、空間光変調器3の複数のミラー要素3aが射出光に与える角度を、空間光変調器3の遠視野領域(フラウンホーファー回折領域)である面4a上での位置に変換する。
再び図1を参照すると、リレー光学系4の後側焦点面4aの位置にマイクロフライアイレンズ5の入射面が位置決めされている。したがって、マイクロフライアイレンズ5の直後の照明瞳に形成される瞳強度分布は、空間光変調器3およびリレー光学系4がマイクロフライアイレンズ5の入射面に形成する光強度分布SP1〜SP4に対応した分布となる。空間光変調器3は、図3に示すように、例えば平面状の反射面を上面にした状態で1つの平面に沿って規則的に且つ二次元的に配列された多数の微小なミラー要素3aを含む可動マルチミラーである。
各ミラー要素3aは可動であり、その反射面の傾き(すなわち反射面の傾斜角および傾斜方向)は、制御部CRからの指令にしたがって作動する駆動部3cの作用により独立に制御される。各ミラー要素3aは、その配列面に平行で且つ互いに直交する二方向(Y方向およびY方向と直交する方向)を回転軸として、所望の回転角度だけ連続的或いは離散的に回転することができる。すなわち、各ミラー要素3aの反射面の傾斜を二次元的に制御することが可能である。
各ミラー要素3aの反射面を離散的に回転させる場合、回転角を複数の状態(例えば、・・・、−2.5度、−2.0度、・・・0度、+0.5度・・・+2.5度、・・・)で切り換え制御するのが良い。図3には外形が正方形状のミラー要素3aを示しているが、ミラー要素3aの外形形状は正方形に限定されない。ただし、光利用効率の観点から、ミラー要素3aの隙間が少なくなるように配列可能な形状(最密充填可能な形状)が好ましい。また、光利用効率の観点から、隣り合う2つのミラー要素3aの間隔を必要最小限に抑えることが好ましい。
空間光変調器3では、制御部CRからの制御信号に応じて作動する駆動部3cの作用により、複数のミラー要素3aの姿勢がそれぞれ変化し、各ミラー要素3aがそれぞれ所定の向きに設定される。空間光変調器3の複数のミラー要素3aによりそれぞれ所定の角度で反射された光は、リレー光学系4を介して、マイクロフライアイレンズ5の直後の照明瞳に、複数極状(2極状、4極状など)、輪帯状、円形状等の光強度分布(瞳強度分布)を形成する。
すなわち、リレー光学系4およびマイクロフライアイレンズ5は、空間光変調器3を介した光に基づいて、照明光学系ILの照明瞳に所定の光強度分布を形成する分布形成光学系を構成している。マイクロフライアイレンズ5の後側焦点位置またはその近傍の照明瞳と光学的に共役な別の照明瞳位置、すなわち結像光学系8の瞳位置および投影光学系PLの瞳位置(開口絞りASの位置)にも、マイクロフライアイレンズ5の直後の照明瞳における光強度分布に対応する瞳強度分布が形成される。
露光装置では、マスクMのパターンをウェハWに高精度に且つ忠実に転写するために、例えばマスクMのパターン特性に応じた適切な照明条件のもとで露光を行うことが重要である。本実施形態では、複数のミラー要素3aの姿勢がそれぞれ個別に変化する空間光変調器3を用いて、マイクロフライアイレンズ5の直後の照明瞳に形成される瞳強度分布を自在に且つ迅速に変化させ、ひいては多様な照明条件を実現することができる。
所望の瞳強度分布を高精度に形成するためには、空間光変調器3における単位反射領域の細分化を高めること、すなわち空間光変調器3を構成するミラー要素3aの数を多くすることが求められる。ただし、ミラー要素3aの数を多くすると、各ミラー要素3aの反射面のサイズが小さくなる。その結果、各ミラー要素3aの微小な反射面に起因する回折ぼけの影響が大きくなり、所望の瞳強度分布を精度良く形成することが困難になる。
回折ぼけの影響は、各ミラー要素3aの反射面のサイズが小さくなるほど大きくなり、フーリエレンズとしてのリレー光学系4の焦点距離が大きくなるほど大きくなる。したがって、回折ぼけの影響を小さくするには、各ミラー要素3aの反射面のサイズを大きくしたり、リレー光学系4の焦点距離を小さくしたりすることが求められる。しかしながら、各ミラー要素3aの反射面のサイズを大きくすると、空間光変調器3を構成するミラー要素3aの数が少なくなるため、瞳強度分布の形状および大きさに関する精度は低下する。
一方、リレー光学系4の焦点距離を小さくすると、後述するように、各ミラー要素3aに求められる最大傾斜角度が許容の角度範囲を超えて増大してしまう。本実施形態では、瞳強度分布の形状および大きさに関する精度を低下させることなく回折ぼけの影響を小さく抑えるために、各ミラー要素3aの反射面のサイズおよび許容される傾斜角度範囲を変更することなくリレー光学系4の焦点距離を小さくすることが可能な光学的構成を採用している。
図4は、本実施形態における光束分割部材と空間光変調器との協働作用を説明する図である。図4では、光束分割部材としての回折光学素子2と空間光変調器3との協働作用の理解を容易するために、空間光変調器3への入射光軸に対して複数のミラー要素3aの配列面が直交するように空間光変調器3を配置した状態を示している。また、説明を単純化するために、回折光学素子2への入射光束F1は、一辺の長さがDの正方形状の断面を有する平行光束であるものとする。
本実施形態では、回折光学素子2は、入射光束F1を4つの光束F11,F12,F13,F14に分割し、各光束F11〜F14を空間光変調器3へ導く。図4では、回折光学素子2の一次回折角の図4の紙面に沿った回折角成分θと、回折光学素子2と空間光変調器3の複数のミラー要素3aとの光軸AXに沿った間隔K1との間に、D/2=K1×tanθの関係が成り立つように空間光変調器3を配置している。このとき、4つの光束F11〜F14は、図5に示すように、複数のミラー要素3aの集合体を4分割した反射領域R11,R12,R13,R14にそれぞれ入射する。
図5において、光軸AXを中心として最も外側の四角形20は空間光変調器3の基盤3bの外形を表しており、四角形20よりも内側の四角形21は複数のミラー要素3aの集合体の外形を表している。実際には、回折光学素子2への入射光束F1は僅かな発散角を有するほぼ平行光束であり、空間光変調器3への入射光軸に対して複数のミラー要素3aの配列面が傾斜しているが、光束F11〜F14が入射する反射領域R11〜R14を互いにほぼ隣接するように設計することは可能である。ただし、各反射領域R11〜R14は互いにほぼ隣接している必要はなく、隣り合う2つの反射領域の間に光が入射しない領域があっても良い。
このように、光束分割部材としての回折光学素子2は、入射光束F1を互いに向きの異なる4つの光束F11〜F14に分割し、光束F11〜F14を複数のミラー要素3aの配列面に対して互いに異なる向きで複数のミラー要素3aの集合体の反射領域R11〜R14へそれぞれ入射させる。具体的に、回折光学素子2は、入射する平行光束F1を4つの平行光束F11〜F14に分割する。すなわち、回折光学素子2は、光束F11〜F14が入射光束F1の発散角と等しい発散角を持つように入射光束F1を分割する。また、回折光学素子2から空間光変調器3へ向かう光束F11〜F14の発散度は変更されない。換言すれば、回折光学素子2から空間光変調器3へ向かう光路中に、光束F11〜F14の発散度を変更する光学部材が配置されていない。
複数のミラー要素3aの集合体の反射領域R11〜R14で反射された光束F11〜F14は、リレー光学系4およびマイクロフライアイレンズ5を介して、その直後の照明瞳に瞳強度分布を形成する。複数のミラー要素3aが配列面に揃った状態、すなわち各ミラー要素3aの反射面が配列面と平行に整列した整列状態では、反射領域R11〜R14を経た光束F11〜F14は、図6に示すように、マイクロフライアイレンズ5の直後の照明瞳を4分割した領域内の微小領域C11,C12,C13,C14にそれぞれ集光する。
図6において、光軸AXを中心とした円22は照明瞳の有効領域を表している。以下、説明を簡単にするために、微小領域C11〜C14は、円22に外接する正方形23を4等分して得られる4つの正方形状の分割領域R21,R22,R23,R24の中心に位置するものとする。換言すれば、整列状態において反射領域R11〜R14を経た光束F11〜F14が分割領域R21〜R24の中心微小領域C11〜C14に集光するように、複数のミラー要素3aの配列面に対する光束F11〜F14の入射の向きが設定されている。
従来技術では、複数のミラー要素3aの集合体に対して1本の平行光束が同じ向きで入射するため、整列状態にある各ミラー要素3aを経た光束は照明瞳において光軸AX上の微小領域に集光する。その結果、整列状態から配列面に対して任意のミラー要素3aの反射面が傾斜した傾斜状態への変化に応じて、当該ミラー要素3aを経た光束が、照明瞳において光軸AXの位置から少なくとも円形状の有効領域22内の任意の位置へ移動するように(不要光に対しては有効領域22の外側の位置へ移動するように)構成する必要があった。
本実施形態では、整列状態において反射領域R11〜R14を経た光束F11〜F14が、照明瞳における分割領域R21〜R24の中心微小領域C11〜C14にそれぞれ集光するように構成されている。したがって、反射領域R11〜R14内の任意のミラー要素3aを経た光束が、整列状態から傾斜状態への変化に応じて、照明瞳において中心微小領域C11〜C14の位置から少なくとも分割領域R21〜R24により規定される四半円状の瞳領域内の任意の位置へ移動するように(不要光に対しては四半円状の瞳領域の外側の位置へ移動するように)構成すれば良い。
このように、傾斜可能な各ミラー要素3aを経た光束が照明瞳において移動すべき距離は、従来技術では円形状の有効領域22の半径の長さにほぼ一致し、本実施形態では分割領域R21〜R24の対角線の1/2の長さにほぼ一致する。換言すれば、本実施形態において各ミラー要素3aを経た光束が照明瞳において移動すべき距離は、従来技術において要求される所要距離の約1/√2程度に小さくなる。
前述したように、リレー光学系4は、複数のミラー要素3aが射出光に与える角度を、リレー光学系4の後側焦点面4a上での位置(ひいては照明瞳上での位置)に変換する。したがって、リレー光学系4の焦点距離が一定である場合、本実施形態において各ミラー要素3aの反射面が整列状態から傾斜すべき最大角度は、従来技術において要求される最大傾斜角度の約1/√2程度に小さくなる。
このことは、各ミラー要素3aの最大傾斜角度(すなわち許容される傾斜角度範囲)が一定である場合、本実施形態において要求されるリレー光学系4の焦点距離が、従来技術において要求されるリレー光学系4の焦点距離の約1/√2程度に小さくなることを意味している。さらに、リレー光学系4の焦点距離の約1/√2程度に小さくなることは、回折ぼけ幅(回折ぼけの影響を受けて照明瞳に形成されるスポット状光束の断面サイズ)が約1/√2程度に小さくなることを意味している。
以上のように、本実施形態では、光束分割部材としての回折光学素子2により分割された4つの光束F11〜F14を、複数のミラー要素3aの配列面に対して互いに異なる向きで複数のミラー要素3aの集合体の反射領域R11〜R14へそれぞれ入射させている。その結果、各ミラー要素3aの反射面のサイズおよび最大傾斜角度を変更することなくリレー光学系4の焦点距離を従来技術よりも小さくすることが可能になり、ひいては瞳強度分布の形状および大きさに関する精度を低下させることなく回折ぼけの影響を小さく抑えることができる。
すなわち、本実施形態の照明光学系ILでは、各ミラー要素3aの微小な反射面に起因する回折ぼけの影響を小さく抑えて、所望の瞳強度分布を精度良く形成することができる。したがって、本実施形態の露光装置(IL,MS,PL,WS)では、所望の瞳強度分布を精度良く形成する照明光学系ILを用いて、転写すべきパターンの特性に応じて実現された適切な照明条件のもとで良好な露光を行うことができる。
上述の実施形態では、回折光学素子2により発生した0次光が、空間光変調器3を経て照明瞳の有効領域22内に達する恐れがある。有害光としての0次光が照明瞳の有効領域22内に達することを確実に回避するための構成例として、図7に示す変形例が考えられる。図7では、回折光学素子2と4つの空間光変調器31,32,33,34との協働作用の理解を容易するために、空間光変調器31〜34の配列面が回折光学素子2からの入射光軸に対して直交する同一平面にあるように、空間光変調器31〜34を配置した状態を示している。
また、説明を単純化するために、回折光学素子2への入射光束F1は一辺の長さがDの正方形状の断面を有する平行光束であり、空間光変調器31〜34は上述の実施形態における空間光変調器3と同様の構成を有するものとする。図7の変形例において、回折光学素子2は、入射光束F1を4つの光束F11〜F14に分割し、光束F11〜F14を空間光変調器31〜34へそれぞれ導く。図7では、回折光学素子2の一次回折角の図7の紙面に沿った回折角成分θと、回折光学素子2と空間光変調ユニット30との光軸AXに沿った間隔K2との間に、D<K2×tanθの関係が成り立つように、空間光変調器31〜34を配置している。
このとき、4つの光束F11〜F14は、図8に示すように、同一平面に沿って互いに間隔を隔てて配置された4つの空間光変調器31〜34、さらに詳細にはその中心が光軸AXを中心とする正方形の各頂点に位置するように配置された4つの空間光変調器31〜34にそれぞれ入射する。回折光学素子2により発生した0次光F10は、光軸AXを中心とした矩形状の領域であって4つの空間光変調器31〜34よりも内側(光軸AX側)の領域35に入射する。すなわち、4つの空間光変調器31〜34は、回折光学素子2を経て発生した0次光F10の入射を回避するように互いに間隔を隔てて配置されている。4つの空間光変調器31〜34は、単一部材である空間光変調ユニット30を構成している。
変形例では、光束分割部材としての回折光学素子2が、入射した平行光束F1を互いに向きの異なる4つの平行光束F11〜F14に分割し、光束F11〜F14を互いに異なる向きで4つの空間光変調器31〜34へそれぞれ入射させる。すなわち、変形例においても、回折光学素子2は光束F11〜F14が入射光束F1の発散角と等しい発散角を持つように入射光束F1を分割する。また、回折光学素子2から4つの空間光変調器31〜34へ向かう光束F11〜F14の発散度は変更されない。
空間光変調器31〜34で反射された光束F11〜F14は、リレー光学系4およびマイクロフライアイレンズ5を介して、その直後の照明瞳に瞳強度分布を形成する。一方、領域35に入射した有害光である0次光F10は、照明光路に向かって反射されることなく(あるいは照明光路の外へ反射されることにより)、照明瞳での瞳強度分布の形成に寄与しない。
複数のミラー要素3aの整列状態では、空間光変調器31〜34を経た光束F11〜F14は、図6に示すように、マイクロフライアイレンズ5の直後の照明瞳における4つの分割領域R21〜R24の中心微小領域C11〜C14にそれぞれ集光する。換言すれば、整列状態において空間光変調器31〜34を経た光束F11〜F14が分割領域R21〜R24の中心微小領域C11〜C14に集光するように、空間光変調器31〜34の配列面に対する光束F11〜F14の入射の向きが設定されている。
以上のように、変形例では、光束分割部材としての回折光学素子2により分割された4つの光束F11〜F14を互いに異なる向きで空間光変調器31〜34へそれぞれ入射させている。また、回折光学素子2の作用により、空間光変調器31〜34を経た光束F11〜F14が、リレー光学系4を介して、照明瞳において互いに異なる分割領域R21〜R24の中心微小領域C11〜C14にそれぞれ集光する。
その結果、変形例においても、各ミラー要素3aの反射面のサイズおよび最大傾斜角度を変更することなくリレー光学系4の焦点距離を従来技術よりも小さくすることが可能になり、ひいては瞳強度分布の形状および大きさに関する精度を低下させることなく回折ぼけの影響を小さく抑えることができる。また、変形例では、上述の実施形態とは異なり、回折光学素子2により発生した有害光としての0次光が照明瞳の有効領域22内に達することを確実に回避することができ、ひいては所望の瞳強度分布をさらに高精度に形成することができる。
なお、上述の変形例では、空間光変調器31〜34の配列面が同一平面にあるように空間光変調器31〜34を配置しているが、これに限定されることなく、空間光変調器31〜34の配置については様々な形態が可能である。また、上述の変形例では、4つの空間光変調器31〜34が単一部材として構成されているが、これに限定されることなく、空間光変調器31〜34を互いに隔絶させて配置しても良い。この場合、有害光である0次光F10が空間光変調器31〜34の内側(光軸AX側)の空間を通過して照明光路の外へ導かれるように構成することができる。
また、上述の実施形態および変形例では、空間光変調器3(31〜34)を経た光束F11〜F14が照明瞳において分割領域R21〜R24の中心微小領域C11〜C14にそれぞれ集光するように構成している。しかしながら、これに限定されることなく、光束F11〜F14が照明瞳に集光する位置については、分割領域R21〜R24の中心微小領域C11〜C14に限定されることなく様々な形態が可能である。
また、上述の実施形態および変形例では、光束分割部材としての回折光学素子2が入射光束F1を4つの光束F11〜F14に分割しているが、これに限定されることなく、光束分割部材による光束の分割数については様々な形態が可能である。一例として、入射光束を互いに向きの異なる16個の光束に分割し、整列状態にある空間光変調器を経た16個の光束が、図9に示すように、照明瞳の円形状の有効領域22に外接する正方形23を16等分して得られる各分割領域の中心またはその近傍へ集光するように構成することもできる。
また、上述の実施形態および変形例では、光束分割部材として回折光学素子2を用いているが、これに限定されることなく、光束分割部材の具体的な構成については様々な形態が可能である。例えば、光束分割部材として、所定面に沿って配列された複数のプリズム要素からなるプリズムアレイを用いることもできる。
具体的に、図10に示すように、入射面51aが平面状で且つ射出面51bが四角錐の側面に対応する凹面形状のプリズム要素51が二次元的に配列されたプリズムアレイを用いることができる。また、図11に示すように入射面52aが平面状で且つ射出面52bが四角錐の側面に対応する凸面形状のプリズム要素52が二次元的に配列されたプリズムアレイを用いることもできる。
上述の実施形態では、空間光変調器3(31〜34)として、たとえば二次元的に配列された複数のミラー要素3aの向きを連続的にそれぞれ変化させる空間光変調器を用いている。このような空間光変調器として、たとえば特表平10−503300号公報およびこれに対応する欧州特許公開第779530号公報、特開2004−78136号公報およびこれに対応する米国特許第6,900,915号公報、特表2006−524349号公報およびこれに対応する米国特許第7,095,546号公報、並びに特開2006−113437号公報に開示される空間光変調器を用いることができる。なお、二次元的に配列された複数のミラー要素の向きを離散的に複数の段階を持つように制御してもよい。
また、上述の実施形態では、二次元的に配列されて個別に制御される複数のミラー要素を有する空間光変調器として、二次元的に配列された複数の反射面の向き(角度:傾き)を個別に制御可能な空間光変調器を用いている。しかしながら、これに限定されることなく、たとえば二次元的に配列された複数の反射面の高さ(位置)を個別に制御可能な空間光変調器を用いることもできる。このような空間光変調器としては、たとえば特開平6−281869号公報及びこれに対応する米国特許第5,312,513号公報、並びに特表2004−520618号公報およびこれに対応する米国特許第6,885,493号公報の図1dに開示される空間光変調器を用いることができる。これらの空間光変調器では、二次元的な高さ分布を形成することで回折面と同様の作用を入射光に与えることができる。なお、上述した二次元的に配列された複数の反射面を持つ空間光変調器を、たとえば特表2006−513442号公報およびこれに対応する米国特許第6,891,655号公報や、特表2005−524112号公報およびこれに対応する米国特許公開第2005/0095749号公報の開示に従って変形しても良い。
上述の実施形態では、マスクの代わりに、所定の電子データに基づいて所定パターンを形成する可変パターン形成装置を用いることができる。このような可変パターン形成装置を用いれば、パターン面が縦置きでも同期精度に及ぼす影響を最低限にできる。なお、可変パターン形成装置としては、たとえば所定の電子データに基づいて駆動される複数の反射素子を含むDMD(デジタル・マイクロミラー・デバイス)を用いることができる。DMDを用いた露光装置は、例えば特開2004−304135号公報、国際特許公開第2006/080285号パンフレットおよびこれに対応する米国特許公開第2007/0296936号公報に開示されている。また、DMDのような非発光型の反射型空間光変調器以外に、透過型空間光変調器を用いても良く、自発光型の画像表示素子を用いても良い。ここでは、米国特許公開第2007/0296936号公報の教示を参照として援用する。
上述の実施形態の露光装置は、本願特許請求の範囲に挙げられた各構成要素を含む各種サブシステムを、所定の機械的精度、電気的精度、光学的精度を保つように、組み立てることで製造される。これら各種精度を確保するために、この組み立ての前後には、各種光学系については光学的精度を達成するための調整、各種機械系については機械的精度を達成するための調整、各種電気系については電気的精度を達成するための調整が行われる。各種サブシステムから露光装置への組み立て工程は、各種サブシステム相互の、機械的接続、電気回路の配線接続、気圧回路の配管接続等が含まれる。この各種サブシステムから露光装置への組み立て工程の前に、各サブシステム個々の組み立て工程があることはいうまでもない。各種サブシステムの露光装置への組み立て工程が終了したら、総合調整が行われ、露光装置全体としての各種精度が確保される。なお、露光装置の製造は温度およびクリーン度等が管理されたクリーンルームで行っても良い。
次に、上述の実施形態にかかる露光装置を用いたデバイス製造方法について説明する。図12は、半導体デバイスの製造工程を示すフローチャートである。図12に示すように、半導体デバイスの製造工程では、半導体デバイスの基板となるウェハWに金属膜を蒸着し(ステップS40)、この蒸着した金属膜上に感光性材料であるフォトレジストを塗布する(ステップS42)。つづいて、上述の実施形態の投影露光装置を用い、マスク(レチクル)Mに形成されたパターンをウェハW上の各ショット領域に転写し(ステップS44:露光工程)、この転写が終了したウェハWの現像、つまりパターンが転写されたフォトレジストの現像を行う(ステップS46:現像工程)。
その後、ステップS46によってウェハWの表面に生成されたレジストパターンをマスクとし、ウェハWの表面に対してエッチング等の加工を行う(ステップS48:加工工程)。ここで、レジストパターンとは、上述の実施形態の投影露光装置によって転写されたパターンに対応する形状の凹凸が生成されたフォトレジスト層であって、その凹部がフォトレジスト層を貫通しているものである。ステップS48では、このレジストパターンを介してウェハWの表面の加工を行う。ステップS48で行われる加工には、例えばウェハWの表面のエッチングまたは金属膜等の成膜の少なくとも一方が含まれる。なお、ステップS44では、上述の実施形態の投影露光装置は、フォトレジストが塗布されたウェハWを、感光性基板つまりプレートPとしてパターンの転写を行う。
図13は、液晶表示素子等の液晶デバイスの製造工程を示すフローチャートである。図13に示すように、液晶デバイスの製造工程では、パターン形成工程(ステップS50)、カラーフィルタ形成工程(ステップS52)、セル組立工程(ステップS54)およびモジュール組立工程(ステップS56)を順次行う。ステップS50のパターン形成工程では、プレートPとしてフォトレジストが塗布されたガラス基板上に、上述の実施形態の投影露光装置を用いて回路パターンおよび電極パターン等の所定のパターンを形成する。このパターン形成工程には、上述の実施形態の投影露光装置を用いてフォトレジスト層にパターンを転写する露光工程と、パターンが転写されたプレートPの現像、つまりガラス基板上のフォトレジスト層の現像を行い、パターンに対応する形状のフォトレジスト層を生成する現像工程と、この現像されたフォトレジスト層を介してガラス基板の表面を加工する加工工程とが含まれている。
ステップS52のカラーフィルタ形成工程では、R(Red)、G(Green)、B(Blue)に対応する3つのドットの組をマトリックス状に多数配列するか、またはR、G、Bの3本のストライプのフィルタの組を水平走査方向に複数配列したカラーフィルタを形成する。ステップS54のセル組立工程では、ステップS50によって所定パターンが形成されたガラス基板と、ステップS52によって形成されたカラーフィルタとを用いて液晶パネル(液晶セル)を組み立てる。具体的には、例えばガラス基板とカラーフィルタとの間に液晶を注入することで液晶パネルを形成する。ステップS56のモジュール組立工程では、ステップS54によって組み立てられた液晶パネルに対し、この液晶パネルの表示動作を行わせる電気回路およびバックライト等の各種部品を取り付ける。
また、本発明は、半導体デバイス製造用の露光装置への適用に限定されることなく、例えば、角型のガラスプレートに形成される液晶表示素子、若しくはプラズマディスプレイ等のディスプレイ装置用の露光装置や、撮像素子(CCD等)、マイクロマシーン、薄膜磁気ヘッド、及びDNAチップ等の各種デバイスを製造するための露光装置にも広く適用できる。更に、本発明は、各種デバイスのマスクパターンが形成されたマスク(フォトマスク、レチクル等)をフォトリソグラフィ工程を用いて製造する際の、露光工程(露光装置)にも適用することができる。
なお、上述の実施形態では、露光光としてArFエキシマレーザ光(波長:193nm)やKrFエキシマレーザ光(波長:248nm)を用いているが、これに限定されることなく、他の適当なレーザ光源、たとえば波長157nmのレーザ光を供給するF2レーザ光源などに対して本発明を適用することもできる。
また、上述の実施形態において、投影光学系と感光性基板との間の光路中を1.1よりも大きな屈折率を有する媒体(典型的には液体)で満たす手法、所謂液浸法を適用しても良い。この場合、投影光学系と感光性基板との間の光路中に液体を満たす手法としては、国際公開第WO99/49504号パンプレットに開示されているような局所的に液体を満たす手法や、特開平6−124873号公報に開示されているような露光対象の基板を保持したステージを液槽の中で移動させる手法や、特開平10−303114号公報に開示されているようなステージ上に所定深さの液体槽を形成し、その中に基板を保持する手法などを採用することができる。ここでは、国際公開第WO99/49504号パンフレット、特開平6−124873号公報および特開平10−303114号公報の教示を参照として援用する。
また、上述の実施形態では、露光装置においてマスクを照明する照明光学系に対して本発明を適用しているが、これに限定されることなく、マスク以外の被照射面を照明する一般的な照明光学系に対して本発明を適用することもできる。
1 ビーム送光部
2 回折光学素子(光束分割部材)
3,31〜34 空間光変調器
3a ミラー要素
4 リレー光学系
5 マイクロフライアイレンズ
6 コンデンサー光学系
7 照明視野絞り(マスクブラインド)
8 結像光学系
LS 光源
IL 照明光学系
CR 制御部
M マスク
PL 投影光学系
W ウェハ

Claims (19)

  1. 光源からの光により被照射面を照明する照明光学系において、
    所定の配列面に沿って配列されて個別に制御される複数のミラー要素を有し、前記照明光学系の照明瞳に瞳強度分布を形成する空間光変調器と、
    入射光束を互いに向きの異なる複数の光束に分割し、該複数の光束のうちの第1光束を前記配列面に対して第1の向きで前記複数のミラー要素の集合体の第1領域へ入射させ、且つ前記複数の光束のうちの第2光束を前記配列面に対して前記第1の向きとは異なる第2の向きで前記集合体において前記第1領域とは異なる第2領域へ入射させる光束分割部材とを備えていることを特徴とする照明光学系。
  2. 前記空間光変調器と前記照明瞳との間の光路中に配置された集光光学系を備え、
    前記複数のミラー要素が前記配列面に揃った状態で、前記第1領域および前記集光光学系を経た光束は前記照明瞳の第3領域に達し、前記第2領域および前記集光光学系を経た光束は前記照明瞳において前記第3領域とは異なる第4領域に達することを特徴とする請求項1に記載の照明光学系。
  3. 前記光束分割部材から前記空間光変調器へ向かう光束の発散度は変更されないことを特徴とする請求項1または2に記載の照明光学系。
  4. 前記光束分割部材から前記空間光変調器へ向かう光路中に、光束の発散度を変更する光学部材が配置されないことを特徴とする請求項1または2に記載の照明光学系。
  5. 光源からの光により被照射面を照明する照明光学系において、
    第1配列面に沿って配列されて個別に制御される複数のミラー要素を有し、前記照明光学系の照明瞳に瞳強度分布を形成する第1の空間光変調器と、
    第2配列面に沿って配列されて個別に制御される複数のミラー要素を有し、前記照明瞳に瞳強度分布を形成する第2の空間光変調器と、
    前記第1の空間光変調器および前記第2の空間光変調器と前記照明瞳との間の光路中に配置された集光光学系と、
    入射光束を互いに向きの異なる複数の光束に分割し、前記複数のミラー要素が前記第1配列面に揃った状態で前記第1の空間光変調器および前記集光光学系を経た光束が前記照明瞳の第5領域に達するような所要の向きで前記複数の光束のうちの第1光束を前記第1の空間光変調器へ入射させ、且つ前記複数のミラー要素が前記第2配列面に揃った状態で前記第2の空間光変調器および前記集光光学系を経た光束が前記照明瞳において前記第5領域とは異なる第6領域に達するような所要の向きで前記複数の光束のうちの第2光束を前記第2の空間光変調器へ入射させる光束分割部材とを備えていることを特徴とする照明光学系。
  6. 前記光束分割部材は、回折光学素子を有し、
    前記第1の空間光変調器と前記第2の空間光変調器とは、前記回折光学素子を経て発生した0次光の入射を回避するように互いに間隔を隔てて配置されていることを特徴とする請求項5に記載の照明光学系。
  7. 前記第1配列面と前記第2配列面とは同一平面にあることを特徴とする請求項5または6に記載の照明光学系。
  8. 前記第1の空間光変調器と前記第2の空間光変調器とは、単一部材として構成されていることを特徴とする請求項7に記載の照明光学系。
  9. 前記光束分割部材から前記第1の空間光変調器へ向かう第1光束の発散度と前記光束分割部材から前記第2の空間光変調器へ向かう第2光束の発散度とは変更されないことを特徴とする請求項5乃至8のいずれか1項に記載の照明光学系。
  10. 前記光束分割部材から前記第1の空間光変調器へ向かう光路中と、前記光束分割部材から前記第2の空間光変調器へ光路中とに、光束の発散度を変更する光学部材が配置されないことを特徴とする請求項5乃至8のいずれか1項に記載の照明光学系。
  11. 前記光束分割部材は、前記複数の光束が入射光束の発散角と等しい発散角を持つように、前記入射光束を分割することを特徴とする請求項1乃至10のいずれか1項に記載の照明光学系。
  12. 前記光束分割部材は、回折光学素子を有することを特徴とする請求項1乃至11のいずれか1項に記載の照明光学系。
  13. 前記光束分割部材は、所定面に沿って配列された複数のプリズム要素を有することを特徴とする請求項1乃至11のいずれか1項に記載の照明光学系。
  14. 前記空間光変調器は、前記複数のミラー要素の姿勢を個別に制御駆動する駆動部を有することを特徴とする請求項1乃至13のいずれか1項に記載の照明光学系。
  15. 前記駆動部は、前記複数のミラー要素の向きを連続的または離散的に変化させることを特徴とする請求項14に記載の照明光学系。
  16. 前記被照射面と光学的に共役な面を形成する投影光学系と組み合わせて用いられ、前記照明瞳は前記投影光学系の開口絞りと光学的に共役な位置であることを特徴とする請求項1乃至15のいずれか1項に記載の照明光学系。
  17. 所定のパターンを照明するための請求項1乃至16のいずれか1項に記載の照明光学系を備え、前記所定のパターンを感光性基板に露光することを特徴とする露光装置。
  18. 前記所定のパターンの像を前記感光性基板上に形成する投影光学系を備え、前記照明瞳は前記投影光学系の開口絞りと光学的に共役な位置であることを特徴とする請求項17に記載の露光装置。
  19. 請求項17または18に記載の露光装置を用いて、前記所定のパターンを前記感光性基板に露光することと、
    前記所定のパターンが転写された前記感光性基板を現像し、前記所定のパターンに対応する形状のマスク層を前記感光性基板の表面に形成することと、
    前記マスク層を介して前記感光性基板の表面を加工することと、を含むことを特徴とするデバイス製造方法。
JP2011125658A 2010-06-17 2011-06-03 照明光学系、露光装置、およびデバイス製造方法 Withdrawn JP2012004558A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US35571810A 2010-06-17 2010-06-17
US61/355,718 2010-06-17

Publications (1)

Publication Number Publication Date
JP2012004558A true JP2012004558A (ja) 2012-01-05

Family

ID=45536127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011125658A Withdrawn JP2012004558A (ja) 2010-06-17 2011-06-03 照明光学系、露光装置、およびデバイス製造方法

Country Status (1)

Country Link
JP (1) JP2012004558A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014010552A1 (ja) * 2012-07-10 2014-01-16 株式会社ニコン 照明光学系、露光装置、およびデバイス製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014010552A1 (ja) * 2012-07-10 2014-01-16 株式会社ニコン 照明光学系、露光装置、およびデバイス製造方法

Similar Documents

Publication Publication Date Title
KR101662330B1 (ko) 조명광학계, 조명 광학 장치, 노광 장치, 및 디바이스 제조 방법
KR101895825B1 (ko) 조명 장치, 조명 방법, 노광 장치, 노광 방법 및 디바이스 제조 방법
WO2009125511A1 (ja) 空間光変調ユニット、照明光学系、露光装置、およびデバイス製造方法
JP2013502703A (ja) 偏光変換ユニット、照明光学系、露光装置、およびデバイス製造方法
WO2009087805A1 (ja) 空間光変調器、照明光学系、露光装置、およびデバイス製造方法
JP2018112755A (ja) 照明光学装置、照明方法、露光装置、露光方法、およびデバイス製造方法
JP5700272B2 (ja) 照明光学系、露光装置、およびデバイス製造方法
JPWO2009078224A1 (ja) 照明光学系、露光装置、およびデバイス製造方法
JP5403244B2 (ja) 空間光変調ユニット、照明光学系、露光装置、およびデバイス製造方法
JP2011114041A (ja) 光束分割装置、空間光変調ユニット、照明光学系、露光装置、およびデバイス製造方法
JP5353408B2 (ja) 照明光学系、露光装置、およびデバイス製造方法
JP5532213B2 (ja) 照明光学系、露光装置、およびデバイス製造方法
JP2011222841A (ja) 空間光変調ユニット、照明光学系、露光装置、およびデバイス製造方法
JP2012004558A (ja) 照明光学系、露光装置、およびデバイス製造方法
WO2009128293A1 (ja) 空間光変調ユニット、照明光学系、露光装置、およびデバイス製造方法
JP5327715B2 (ja) 照明光学系、露光装置、およびデバイス製造方法
JP2012033787A (ja) 伝送光学系、照明光学系、露光装置、およびデバイス製造方法
WO2010016288A1 (ja) 照明光学系、露光装置、およびデバイス製造方法
JP2011029596A (ja) 照明光学系、露光装置、およびデバイス製造方法
JP2012028543A (ja) 照明光学系、露光装置、およびデバイス製造方法
JP5682799B2 (ja) 照明光学系、露光装置、およびデバイス製造方法
JP2014086627A (ja) 監視装置、照明光学系、露光装置、およびデバイス製造方法
WO2014073548A1 (ja) 空間光変調光学系、照明光学系、露光装置、およびデバイス製造方法
JP2012080098A (ja) 照明光学系、露光装置、照明方法、露光方法、およびデバイス製造方法
JP2010141151A (ja) 光束分割素子、照明光学系、露光装置、およびデバイス製造方法

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140805