JP2012004326A - Converter module and method for manufacturing the same - Google Patents

Converter module and method for manufacturing the same Download PDF

Info

Publication number
JP2012004326A
JP2012004326A JP2010137770A JP2010137770A JP2012004326A JP 2012004326 A JP2012004326 A JP 2012004326A JP 2010137770 A JP2010137770 A JP 2010137770A JP 2010137770 A JP2010137770 A JP 2010137770A JP 2012004326 A JP2012004326 A JP 2012004326A
Authority
JP
Japan
Prior art keywords
substrate
converter
semiconductor substrate
converter module
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010137770A
Other languages
Japanese (ja)
Inventor
Daisuke Inoue
大輔 井上
Kyoko Fujii
恭子 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2010137770A priority Critical patent/JP2012004326A/en
Priority to PCT/JP2011/002726 priority patent/WO2011158429A1/en
Publication of JP2012004326A publication Critical patent/JP2012004326A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00222Integrating an electronic processing unit with a micromechanical structure
    • B81C1/00238Joining a substrate with an electronic processing unit and a substrate with a micromechanical structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/552Protection against radiation, e.g. light or electromagnetic waves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0257Microphones or microspeakers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2207/00Microstructural systems or auxiliary parts thereof
    • B81B2207/01Microstructural systems or auxiliary parts thereof comprising a micromechanical device connected to control or processing electronics, i.e. Smart-MEMS
    • B81B2207/012Microstructural systems or auxiliary parts thereof comprising a micromechanical device connected to control or processing electronics, i.e. Smart-MEMS the micromechanical device and the control or processing electronics being separate parts in the same package
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05554Shape in top view being square
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48153Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being arranged next to each other, e.g. on a common substrate
    • H01L2224/48155Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being arranged next to each other, e.g. on a common substrate the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48157Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being arranged next to each other, e.g. on a common substrate the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • H01L2224/7825Means for applying energy, e.g. heating means
    • H01L2224/783Means for applying energy, e.g. heating means by means of pressure
    • H01L2224/78313Wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01028Nickel [Ni]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/146Mixed devices
    • H01L2924/1461MEMS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/04Microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R31/00Apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor

Abstract

PROBLEM TO BE SOLVED: To provide a converter module which has a converter and a rectangle semiconductor substrate on a rectangle substrate, and can achieve miniaturization and cost reduction.SOLUTION: The converter module comprises a substrate 2 having a rectangular shape; a converter 3 having a polygonal shape containing at least one of acute-angle apex; and a semiconductor substrate 4 having a rectangular shape. The converter 3 is arranged on the substrate 2 so that a first side of the substrate 2 is substantively parallel to one side of the converter 3, and the semiconductor substrate 4 is arranged on the substrate 2 so that the first side of the substrate 2 is substantively parallel to one side of the semiconductor substrate 4.

Description

本発明は音圧センサや圧力センサなどの変換体を備える変換体モジュールとその製造方法に関する。   The present invention relates to a converter module including a converter such as a sound pressure sensor and a pressure sensor, and a manufacturing method thereof.

近年、微細加工技術を用いて製作されたMEMS(Micro Electro Mechanical Systems)デバイスは電子機器の小型化・高精度化・低コスト化に寄与するため大きな注目を浴びている。その一例として、音圧センサや圧力センサは同一基板上に物理量を電気信号に変換する変換体と、変換した電気信号を増幅する半導体基板とを備える、音圧センサ、圧力センサは活発に小型化の開発が進められている。   2. Description of the Related Art In recent years, MEMS (Micro Electro Mechanical Systems) devices manufactured using microfabrication technology have attracted a great deal of attention because they contribute to downsizing, high accuracy, and low cost of electronic equipment. As an example, a sound pressure sensor and a pressure sensor are equipped with a converter that converts a physical quantity into an electrical signal and a semiconductor substrate that amplifies the converted electrical signal on the same substrate. Development is underway.

従来、音圧センサや圧力センサなどの変換体を備える変換体モジュールでは、音響などの圧力変動を、音圧センサチップや圧力センサチップなどが有するダイヤフラムの振動を検知することで検出する。   Conventionally, in a converter module including a converter such as a sound pressure sensor or a pressure sensor, pressure fluctuation such as sound is detected by detecting vibration of a diaphragm included in the sound pressure sensor chip or the pressure sensor chip.

例えば、特許文献1には、MEMS技術を用いた変換体モジュールが開示されている。図13は特許文献1に開示された変換体モジュールの構成を示す図である。特許文献1によれば、中央開口部が形成されたシリコン基板22上にダイヤフラム(振動膜)24と電極パッド(固定電極)26とが対向配置された矩形の変換体(マイクロホンエレメント)20と信号増幅用の半導体基板(ICチップ)70とを基板(絶縁基板)42上に設け、基板(絶縁基板)42の、変換体(マイクロホンエレメント)20の中央開口部が位置する部分に音を導くための音孔42Aを設けることで、変換体モジュールを構成している。このように変換体(マイクロホンエレメント)40と半導体基板(ICチップ)とを同一の基板(絶縁基板)42に配置することで、変換体モジュールの小型化を図っている。   For example, Patent Document 1 discloses a converter module using MEMS technology. FIG. 13 is a diagram showing a configuration of the converter module disclosed in Patent Document 1. In FIG. According to Patent Document 1, a rectangular converter (microphone element) 20 in which a diaphragm (vibrating membrane) 24 and an electrode pad (fixed electrode) 26 are arranged to face each other on a silicon substrate 22 in which a central opening is formed, and a signal. An amplifying semiconductor substrate (IC chip) 70 is provided on a substrate (insulating substrate) 42 to guide sound to a portion of the substrate (insulating substrate) 42 where the central opening of the converter (microphone element) 20 is located. The converter module is configured by providing the sound hole 42A. Thus, the converter module (microphone element) 40 and the semiconductor substrate (IC chip) are arranged on the same substrate (insulating substrate) 42, thereby reducing the size of the converter module.

特開2007−81614号公報JP 2007-81614 A

しかしながら、特許文献1に記載される構成の変換体モジュールでは、ほぼ正方形の変換体(マイクロホンエレメント)と、変換体より小さいほぼ正方形の半導体基板(ICチップ)とを、矩形の樹脂基板(絶縁基板)上に辺をそろえて設けている。すなわち、変換体、半導体基板および樹脂基板の互いに隣接する辺どうしが平行となる配置となっており、これらのチップの大きさの差によって、変換体、半導体基板および電極ランド(導電層)のいずれも配置されず、ワイヤボンディング処理上必要な領域でもない遊休スペースが存在している。例えば、図13では、ボンディングワイヤ32に接続された電極ランドはこれらのチップを取り巻く形で配置され、樹脂基板のサイズが大きくなっている。このように、特許文献1が開示する変換体モジュールはサイズの無駄が生じており、小型化が十分に図られていない。   However, in the converter module having the configuration described in Patent Document 1, a substantially square converter (microphone element) and a substantially square semiconductor substrate (IC chip) smaller than the converter are formed by using a rectangular resin substrate (insulating substrate). ) It is provided with all sides on top. That is, the adjacent sides of the converter, the semiconductor substrate, and the resin substrate are parallel to each other, and any of the converter, the semiconductor substrate, and the electrode land (conductive layer) depends on the size difference of these chips. Are not arranged, and there is an idle space that is not an area necessary for the wire bonding process. For example, in FIG. 13, the electrode lands connected to the bonding wires 32 are arranged so as to surround these chips, and the size of the resin substrate is increased. As described above, the converter module disclosed in Patent Document 1 is wasteful in size and is not sufficiently reduced in size.

また、図13では、ワイヤの接続方向がそれぞれ異なることにより、ワイヤボンディングの処理時間が増加する問題が生じる。ワイヤボンディングの処理時間が増加することで、単位時間当たりに完成する変換体モジュールが少なくなるため、変換体モジュールが高コストになる。また、製造工程において、複数の樹脂基板上に複数の変換体と、複数の半導体基板とを実装した集合体にワイヤボンディングをする場合、各々のワイヤの接続方向が異なるため、ワイヤボンディング処理上必要な領域である基板周辺領域が大きくなり、結果、変換体モジュールの数が減少してしまう問題が生じる。   Further, in FIG. 13, there is a problem in that the wire bonding processing time increases due to different wire connection directions. By increasing the wire bonding processing time, the number of converter modules completed per unit time is reduced, and the converter module becomes expensive. Also, in the manufacturing process, when wire bonding is performed on an assembly in which a plurality of conversion bodies and a plurality of semiconductor substrates are mounted on a plurality of resin substrates, the connection direction of each wire is different. As a result, there is a problem that the substrate peripheral area, which is a large area, becomes large, and the number of converter modules decreases.

それ故に、本発明の目的は、矩形の基板上に、変換体および半導体基板を配置した変換体モジュールを小型化および低コスト可能な変換体モジュールおよびその製造方法を提供することである。   SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a converter module capable of reducing the size and cost of a converter module in which a converter and a semiconductor substrate are arranged on a rectangular substrate, and a method for manufacturing the same.

上記の目的を達成するために、本発明の一態様における変換体モジュールは、矩形の形状を有する基板と、鋭角の頂点を1つ以上含む多角形の形状を有する変換体と、矩形の形状を有する半導体基板とを備え、前記変換体は、前記基板の第1側辺と前記変換体の1つの側辺とが実質的に平行となるように前記基板上に配置され、前記半導体基板は、前記基板の第1側辺と前記半導体基板の1つの側辺とが実質的に平行となるように、前記基板上に配置される。   In order to achieve the above object, a converter module according to one aspect of the present invention includes a substrate having a rectangular shape, a converter having a polygonal shape including one or more acute vertices, and a rectangular shape. And the converter is disposed on the substrate such that a first side of the substrate and one side of the converter are substantially parallel to each other. The first side of the substrate and one side of the semiconductor substrate are arranged on the substrate so as to be substantially parallel.

これにより、前記第1側辺と前記変換体の1つの側辺とが実質的に平行となるように前記変換体が前記基板上に配置され、かつ、前記基板の第1側辺と前記半導体基板の1つの側辺とが実質的に平行となるように前記半導体基板が配置されるので、遊休スペースを極力小さくすることができる。加えて、変換体が鋭角の頂点を1つ以上含む形状なので、当該鋭角をなす変換体の2辺の近傍に、電極パッドの配置用にほど良い(つまり、大きすぎない、小さすぎない)スペースを確保することができ、遊休スペースを小さくすることができる。   Thereby, the converter is disposed on the substrate such that the first side and one side of the converter are substantially parallel, and the first side of the substrate and the semiconductor Since the semiconductor substrate is arranged so that one side of the substrate is substantially parallel, the idle space can be made as small as possible. In addition, since the conversion body has a shape including one or more acute vertices, a space (that is not too large or not too small) is suitable for the arrangement of the electrode pads in the vicinity of the two sides of the conversion body forming the acute angle. Can be secured, and the idle space can be reduced.

ここで、前記変換体は平行な2辺を有し、前記変換体の前記1つの側辺は当該2辺の一方であってもよい。   Here, the converter may have two parallel sides, and the one side of the converter may be one of the two sides.

これにより、前記基板の第1側辺と前記変換体とは実質的に平行な辺同士が対向し、かつ前記半導体基板と前記変換体とは実質的に平行な辺同士が対向するので、遊休スペースを小さくすることができる。   As a result, the first side of the substrate and the converter are substantially parallel to each other, and the semiconductor substrate and the converter are substantially parallel to each other. Space can be reduced.

また、前記変換体は第1電極パッドを有し、前記半導体基板は複数の第2電極パッドを有し、前記基板は電極ランドを有し、前記変換体モジュールは、さらに、前記第1電極パッドと前記複数の第2電極パッドの1つとを電気的に接続する第1金属ワイヤーと、前記複数の第2電極パッドの1つと前記電極ランドとを電気的に接続する第2金属ワイヤーとを備えていてもよい。   The converter includes a first electrode pad, the semiconductor substrate includes a plurality of second electrode pads, the substrate includes an electrode land, and the converter module further includes the first electrode pad. And a first metal wire that electrically connects one of the plurality of second electrode pads, and a second metal wire that electrically connects one of the plurality of second electrode pads and the electrode land. It may be.

これにより、ワイヤボンディングするために必要な領域および電極ランド用の領域としても利用されていない遊休スペースの面積の割合を低減できるため、樹脂基板を小型化でき、シリコンマイクロホンモジュール全体の小型化も実現できる。   As a result, the ratio of the area of idle space that is not used as the area required for wire bonding and the area for the electrode land can be reduced, so that the resin substrate can be downsized and the entire silicon microphone module can be downsized. it can.

また、前記第1金属ワイヤー及び前記第2金属ワイヤーと、前記基板の前記第1側辺と直交する第2側辺とが前記基板と平行な面内でなす角は30度以下であってもよい。   The angle formed by the first metal wire and the second metal wire and the second side perpendicular to the first side of the substrate in a plane parallel to the substrate may be 30 degrees or less. Good.

これにより、ワイヤボンディングの処理時間が短縮し、単位時間当たりに完成する変換体モジュールが多くなるため変換体モジュールの低コスト化が実現できる。また、複数の基板上に複数の変換体と、複数の半導体基板とを実装した際、ワイヤボンディング処理上必要な領域である基板周辺領域を小さくすることができるため、複数の基板からより多くの変換体モジュールを形成することができる。そのため、変換体モジュールの低コスト化を実現できる。   Thereby, the processing time of wire bonding is shortened, and the number of converter modules completed per unit time is increased, so that the cost of the converter module can be reduced. In addition, when a plurality of converters and a plurality of semiconductor substrates are mounted on a plurality of substrates, the substrate peripheral region, which is a region necessary for wire bonding processing, can be reduced, so that more than a plurality of substrates can be used. A converter module can be formed. Therefore, cost reduction of the converter module can be realized.

また、前記第1電極パッドは前記変換体の鋭角の頂点に最も近くなる位置に形成されていてもよい。   Further, the first electrode pad may be formed at a position closest to an acute vertex of the converter.

これにより、変換体の鋭角部のスペースを効率的に使用でき、変換体を小型化することができる。これにより、変換体を備える変換体モジュールを小型化することができる。   Thereby, the space of the acute angle part of a converter can be used efficiently, and a converter can be reduced in size. Thereby, a converter module provided with a converter can be reduced in size.

ここで、前記多角形は、菱形、平行四辺形および台形の何れかであってもよい。
これにより、前記多角形の形状が四角形なので、容易に製造することができる。
Here, the polygon may be any one of a rhombus, a parallelogram, and a trapezoid.
Thereby, since the polygonal shape is a quadrangle, it can be manufactured easily.

また、本発明の他の態様における変換体モジュールは、矩形の形状を有する基板と、菱形、平行四辺形および矩形の何れかの形状を有する変換体と、矩形の形状を有する半導体基板とを備え、前記変換体は、前記基板の第1側辺と前記変換体の一つの側辺とが実質的に平行となるように前記基板上に配置され、前記半導体基板は、前記基板の第1側辺と前記半導体基板の1つの側辺とが実質的に平行となるように、前記基板上に配置され、前記第1側辺と平行な方向に対応する変換体の幅と、前記第1側辺と平行な方向に対応する半導体基板の幅とは同じ長さである。   A converter module according to another aspect of the present invention includes a substrate having a rectangular shape, a converter having any one of a rhombus, a parallelogram, and a rectangle, and a semiconductor substrate having a rectangular shape. The converter is disposed on the substrate such that a first side of the substrate and one side of the converter are substantially parallel, and the semiconductor substrate is disposed on the first side of the substrate. A width of a conversion body disposed on the substrate such that a side and one side of the semiconductor substrate are substantially parallel and corresponding to a direction parallel to the first side; and the first side The width of the semiconductor substrate corresponding to the direction parallel to the side is the same length.

これにより、変換体の幅Aと半導体基板の幅Bを揃えることで、基板上の遊休スペースを削減でき、変換体モジュールの小型化が可能になる。   Thereby, by arranging the width A of the converter and the width B of the semiconductor substrate, the idle space on the substrate can be reduced, and the converter module can be downsized.

また、前記変換体モジュールは、さらに、前記変換体および前記半導体基板上に空隙を設けるように覆うシールドを備えてもよい。 これにより、電磁ノイズを遮断し、かつ外部からの応力を防ぐことができ、変換体モジュールを高精度化することがきる。   The converter module may further include a shield that covers the converter and the semiconductor substrate so as to provide a gap. Thereby, electromagnetic noise can be cut off and stress from the outside can be prevented, and the converter module can be made highly accurate.

また、前記シールドは、前記基板の表面の周辺に沿って前記変換体および前記半導体基板を囲むリブと、前記リブ上に配置され、前記基板と同じ材質のシールド板とを備えてもよい。   The shield may include a rib surrounding the converter and the semiconductor substrate along the periphery of the surface of the substrate, and a shield plate disposed on the rib and made of the same material as the substrate.

これにより、請求項6の効果に加え、シールド材質を基板と同じにすることで、材料数を削減でき変換体モジュールの低コスト化が可能になる。   Thus, in addition to the effect of the sixth aspect, by making the shield material the same as that of the substrate, the number of materials can be reduced and the cost of the converter module can be reduced.

また、前記変換体は、枠体と、前記枠体の開口部を覆うダイヤフラムとを有し、前記基板は、前記枠体の開口部直下に貫通孔を有してもよい。   The converter may include a frame and a diaphragm that covers the opening of the frame, and the substrate may have a through hole immediately below the opening of the frame.

これにより、外部からの音波を効率よく変換体に伝播することができるため、音波検出の精度を高めることができる。   Thereby, since the sound wave from the outside can be efficiently propagated to the converter, the accuracy of sound wave detection can be improved.

また、本発明の一態様における変換体モジュールの製造方法は、矩形の形状を有する基板を準備する工程と、鋭角の頂点を1つ以上含む多角形の形状を有する変換体を準備する工程と、矩形の形状を有する半導体基板を準備する工程と、前記変換体を、前記基板の第1側辺と前記変換体の一つの側辺とが実質的に平行となるように前記基板上に配置する工程と、前記半導体基板を、前記基板の第1側辺と前記半導体基板の1つの側辺とが実質的に平行となるように前記基板上に配置する工程とを有する。   Further, the method for manufacturing a converter module in one aspect of the present invention includes a step of preparing a substrate having a rectangular shape, a step of preparing a converter having a polygonal shape including one or more acute vertices, Preparing a semiconductor substrate having a rectangular shape, and arranging the converter on the substrate such that a first side of the substrate and one side of the converter are substantially parallel to each other. And a step of disposing the semiconductor substrate on the substrate such that a first side of the substrate and one side of the semiconductor substrate are substantially parallel to each other.

これにより、ワイヤボンディングするために必要な領域および電極ランド用の領域としても利用されていない遊休スペースの面積の割合を低減できるため、基板を小型化でき、シリコンマイクロホンモジュール全体の小型化も実現できる。   As a result, the ratio of the area of idle space that is not used as an area required for wire bonding and an electrode land area can be reduced, so that the substrate can be downsized and the entire silicon microphone module can be downsized. .

また、前記変換体は第1電極パッドを有し、前記半導体基板は複数の第2電極パッドを有し、前記基板は電極ランドを有し、前記変換体モジュールの製造方法は、さらに、前記第1電極パッドと前記複数の第2電極パッドの1つとの間に第1金属ワイヤーをボンディングする工程と、前記複数の第2電極パッドの1つと前記電極ランドとの間に第2金属ワイヤーをボンディングする工程とを有し、前記第1金属ワイヤー及び前記第2金属ワイヤーと、前記基板の前記第1側辺と直交する第2側辺とが前記基板と平行な面内でなす角は30度以下であってもよい。これにより、ワイヤボンディングの処理時間が短縮し、単位時間当たりに完成する変換体モジュールが多くなるため低コストで変換体モジュールを製造することができる。また、複数の基板上に複数の変換体と、複数の半導体基板とを実装した際、ワイヤボンディング処理上必要な領域である基板周辺領域を小さくすることができるため、複数の基板からより多くの変換体モジュールを形成することができる。そのため、低コストで変換体モジュールを製造することができる。   The converter has a first electrode pad, the semiconductor substrate has a plurality of second electrode pads, the substrate has an electrode land, and the method of manufacturing the converter module further includes the first Bonding a first metal wire between one electrode pad and one of the plurality of second electrode pads; and bonding a second metal wire between one of the plurality of second electrode pads and the electrode land An angle formed by the first metal wire and the second metal wire and a second side perpendicular to the first side of the substrate in a plane parallel to the substrate is 30 degrees. It may be the following. Thereby, since the processing time of wire bonding is shortened and the converter module completed per unit time increases, a converter module can be manufactured at low cost. In addition, when a plurality of converters and a plurality of semiconductor substrates are mounted on a plurality of substrates, the substrate peripheral region, which is a region necessary for wire bonding processing, can be reduced, so that more than a plurality of substrates can be used. A converter module can be formed. Therefore, a converter module can be manufactured at low cost.

また、前記変換体モジュールの製造方法は、さらに、前記基板上に、前記変換体および前記半導体基板上に空隙を設けるように覆うシールドを形成する工程を備えていてもよい。   Moreover, the manufacturing method of the said converter module may further comprise the process of forming the shield which covers so that a space | gap may be provided on the said converter and the said semiconductor substrate on the said board | substrate.

これにより、電磁ノイズを遮断し、かつ外部からの応力を防ぐことができ、高精度な変換体モジュールを製造することができる。   Thereby, electromagnetic noise can be cut off and stress from the outside can be prevented, and a highly accurate converter module can be manufactured.

また、前記シールドを形成する工程は、前記基板表面の周辺に沿って前記変換体および前記半導体基板を囲むリブ設ける工程と、前記リブ上に、前記基板と同じ材質のシールド板を接合する工程とを有していてもよい。   The step of forming the shield includes a step of providing a rib surrounding the converter and the semiconductor substrate along the periphery of the substrate surface, and a step of bonding a shield plate made of the same material as the substrate on the rib. You may have.

これにより、シールド材質を基板と同じにすることで、材料数を削減でき、低コストで変換体モジュールを製造することができる。   Accordingly, by making the shield material the same as that of the substrate, the number of materials can be reduced, and the converter module can be manufactured at low cost.

本発明の変換体モジュールは従来の変換体モジュールに比べ、容易に小型化および低コスト化ができる。   The converter module of the present invention can be easily reduced in size and cost as compared with the conventional converter module.

実施の形態1の変換体モジュールの平面図である。FIG. 3 is a plan view of the converter module according to the first embodiment. 実施の形態1の変換体モジュールのA−A断面での断面図である。It is sectional drawing in the AA cross section of the converter module of Embodiment 1. FIG. 実施の形態1の変換体モジュールのシールド実装前の変換体モジュールの平面図である。FIG. 3 is a plan view of the converter module before shield mounting of the converter module of the first embodiment. 実施の形態1の変換体モジュールのワイヤボンディングの工程を示す斜視図である。FIG. 6 is a perspective view showing a wire bonding process of the converter module according to the first embodiment. 実施の形態1のワイヤボンディングの工程における変換体モジュールの集合体を示す平面図である。FIG. 3 is a plan view showing an assembly of converter modules in the wire bonding step of the first embodiment. 実施の形態1のワイヤボンディング時の変換体モジュールの断面図である。FIG. 3 is a cross-sectional view of a converter module during wire bonding according to the first embodiment. 実施の形態1の変形例1の変換体モジュールの平面図である。FIG. 6 is a plan view of a converter module of a first modification of the first embodiment. 実施の形態1の変形例1の変換体モジュールの製造工程を示す断面図である。FIG. 10 is a cross-sectional view showing a manufacturing process of the converter module of the first modification of the first embodiment. 実施の形態2の変換体モジュールの平面図である。6 is a plan view of a converter module according to Embodiment 2. FIG. 実施の形態1の変形例の変換体モジュールの平面図である。FIG. 6 is a plan view of a converter module according to a modification of the first embodiment. 実施の形態1の変形例2の変換体モジュールの平面図である。FIG. 10 is a plan view of a converter module of a second modification of the first embodiment. 実施の形態1の変形例3の変換体モジュールの平面図である。FIG. 10 is a plan view of a converter module of a third modification of the first embodiment. 従来の変換体モジュールの構成を示す平面図である。It is a top view which shows the structure of the conventional converter module.

以下、本発明の実施の形態について、図面を用いて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(実施の形態1)
実施の形態1の例示的な変換体モジュール100について説明する。図1は、実施の形態1の変換体モジュール100の平面図である。図2は、実施の形態1の変換体モジュール100の断面A−A‘での断面図である。
(Embodiment 1)
An exemplary converter module 100 of the first embodiment will be described. FIG. 1 is a plan view of converter module 100 of the first embodiment. FIG. 2 is a cross-sectional view taken along section AA ′ of converter module 100 of the first embodiment.

図1に示すように、本実施の形態における変換体モジュールは、主として、矩形の形状を有する基板2と、鋭角の頂点を1つ以上含む多角形の形状を有する変換体3と、矩形の形状を有する半導体基板4とを備える。変換体3は、基板2の第1側辺2sと前記変換体の1つの側辺3sとが実質的に平行となるように前記基板上に配置される。半導体基板4は、基板の第1側辺2sと半導体基板2の1つの側辺4sとが実質的に平行となるように前記基板上に配置される。ここで、実質的に平行とは、2辺が完全に平行である場合と、例えば製造工程ばらつきや、実装誤差等により生じる数度程度の角度を有する場合を含む。   As shown in FIG. 1, the converter module in the present embodiment mainly includes a substrate 2 having a rectangular shape, a converter 3 having a polygonal shape including one or more acute vertices, and a rectangular shape. And a semiconductor substrate 4 having The converter 3 is disposed on the substrate such that the first side 2s of the substrate 2 and one side 3s of the converter are substantially parallel. The semiconductor substrate 4 is disposed on the substrate such that the first side 2s of the substrate and one side 4s of the semiconductor substrate 2 are substantially parallel. Here, “substantially parallel” includes a case where the two sides are completely parallel and a case where the angle is about several degrees caused by, for example, manufacturing process variation, mounting error, and the like.

鋭角の頂点を1つ以上含む多角形は、平行な2辺を有していてもよい。この場合、変換体の前記1つの側辺3sは当該2辺の一方である。また、この多角形は、四角形でもよく、菱形、平行四辺形および台形の何れかであってもよい。図1では、鋭角の頂点を1つ以上含む多角形として菱形の例を示している。   A polygon including one or more acute vertices may have two parallel sides. In this case, the one side 3s of the converter is one of the two sides. The polygon may be a quadrangle, and may be any one of a rhombus, a parallelogram, and a trapezoid. FIG. 1 shows an example of a rhombus as a polygon including one or more acute vertices.

より詳しく説明すると、実施の形態1の変換体モジュール100は、音波を導くための音孔(貫通孔)1を有する基板2と、菱形の変換体3と、矩形の半導体基板4と、基板2の周辺端部と接続し変換体3と半導体基板4と空隙を設けるように覆うシールド5を備えている。本実施例において、基板2は素材に樹脂を含浸させて形成した樹脂基板である。また、変換体3は音孔1の上方位置に六角形の開口部6を有する枠体3aと、開口部6を覆うダイヤフラム7を備え、ダイヤフラム7の振動を電気信号に変換する。加えて、半導体基板4は変換体3からの電気信号を増幅する機能を備えている。   More specifically, the converter module 100 according to the first embodiment includes a substrate 2 having a sound hole (through hole) 1 for guiding sound waves, a rhomboid converter 3, a rectangular semiconductor substrate 4, and a substrate 2. The shield 5 is provided so as to be connected to the peripheral end of the converter 3 and the semiconductor substrate 4 so as to provide a gap. In this embodiment, the substrate 2 is a resin substrate formed by impregnating a resin with a material. The converter 3 includes a frame 3a having a hexagonal opening 6 at a position above the sound hole 1 and a diaphragm 7 covering the opening 6, and converts the vibration of the diaphragm 7 into an electric signal. In addition, the semiconductor substrate 4 has a function of amplifying an electric signal from the converter 3.

図3は、シールド5実装前の変換体モジュールの平面図である。図3に示すように、変換体3は、2組の互いに平行な側辺101(3s)、103と側辺102、104とから構成される菱形を有し、側辺101、102によって構成される鋭角の先端部分である鋭角エリア及び、側辺103、104とによって構成される鋭角の先端部分である鋭角エリアの上面にそれぞれ1つずつ電極パッド8A及び電極パッド8Bを備える。半導体基板4は、矩形の形状を有し、2組の互いに平行な側辺105、107と測辺107、108とを備える。また基板2は、矩形の形状を有し、2組の互いに平行な側辺109、111と側辺110、112とを備える。   FIG. 3 is a plan view of the converter module before the shield 5 is mounted. As shown in FIG. 3, the converter 3 has a rhombus composed of two sets of parallel sides 101 (3 s) and 103 and sides 102 and 104, and is constituted by the sides 101 and 102. One electrode pad 8A and one electrode pad 8B are provided on the upper surface of each of the acute angle area that is the acute angle tip portion and the acute angle area that is the acute angle tip portion constituted by the sides 103 and 104. The semiconductor substrate 4 has a rectangular shape and includes two sets of parallel sides 105 and 107 and sides 107 and 108. The substrate 2 has a rectangular shape and includes two pairs of side sides 109 and 111 and side sides 110 and 112 which are parallel to each other.

変換体3は、1つの側辺が基板2の1つの側辺に平行になるように配置されている。ここで変換体の側辺101(3s)が基板2の側辺109(2s)に平行である。また、半導体基板4は、側辺109が変換体の側辺103と平行になるように設置されている。   The converter 3 is arranged so that one side is parallel to one side of the substrate 2. Here, the side 101 (3 s) of the converter is parallel to the side 109 (2 s) of the substrate 2. Moreover, the semiconductor substrate 4 is installed so that the side 109 is parallel to the side 103 of the converter.

変換体3の電気信号を半導体基板4が差動方式で増幅する場合、図3に示すように半導体基板4は5つの電極パッド9A〜9Eを備えており、変換体3上の電極パッド8A、8Bと半導体基板4の電極パッド9A、9Bとがワイヤ(第1の金属ワイヤ)11で接続されている。またこのため、変換体3と半導体基板4とはワイヤボンディング処理上必要な距離を設けて設置されている。   When the semiconductor substrate 4 amplifies the electrical signal of the converter 3 in a differential manner, the semiconductor substrate 4 includes five electrode pads 9A to 9E as shown in FIG. 8B and electrode pads 9A and 9B of the semiconductor substrate 4 are connected by a wire (first metal wire) 11. For this reason, the converter 3 and the semiconductor substrate 4 are installed at a distance necessary for the wire bonding process.

基板2は、基板2の側辺101と半導体基板の側辺107との間に電極ランド10A、10B、10Cを備えており、半導体基板4の電極パッド9C、9D、9Eとそれぞれ電極ランド10A、10B、10Cはワイヤ(第2の金属ワイヤ)で接続されている。このとき、電極ランド10A、10B、10Cはワイヤボンディング処理上必要な最低ワイヤ長を確保できる程度のスペースが設けられている。第1の金属ワイヤと第2の金属ワイヤは同じ材質でよい。   The substrate 2 includes electrode lands 10A, 10B, and 10C between the side edge 101 of the substrate 2 and the side edge 107 of the semiconductor substrate, and the electrode pads 9C, 9D, and 9E of the semiconductor substrate 4 and the electrode land 10A, respectively. 10B and 10C are connected by a wire (second metal wire). At this time, the electrode lands 10A, 10B, and 10C are provided with a space that can secure the minimum wire length necessary for the wire bonding process. The first metal wire and the second metal wire may be the same material.

このような配置にすることで、従来の特許文献1に記載される構成に比べて、ワイヤボンディングするために必要な領域および電極ランド用の領域としても利用されていない遊休スペースの面積の割合を低減できるため、基板2を小型化でき、変換体モジュール100全体の小型化も実現できる。   By adopting such an arrangement, the ratio of the area of idle space that is not used as a region necessary for wire bonding and a region for electrode land, compared to the configuration described in the conventional Patent Document 1, can be obtained. Since it can reduce, the board | substrate 2 can be reduced in size and the conversion body module 100 whole can also be reduced in size.

また、各々のワイヤ11は基板2の側辺110となす角が30°以下になるように変換体3の電極パッド8A、8Bと、半導体基板4の電極パッド9A〜9Eと、基板2の電極ランド10A、10B、10Cとを配置する。ここでのワイヤ11と側辺110とがなす角は、基板2と平行な面内でなす角である。   In addition, each wire 11 has electrode pads 8A and 8B of the converter 3, electrode pads 9A to 9E of the semiconductor substrate 4, and electrodes of the substrate 2 so that the angle formed with the side 110 of the substrate 2 is 30 ° or less. Lands 10A, 10B, and 10C are arranged. Here, the angle formed by the wire 11 and the side 110 is an angle formed in a plane parallel to the substrate 2.

これにより、ワイヤボンディングの処理時間が短縮し、単位時間当たりに完成する変換体モジュール100が多くなるため変換体モジュール100の低コスト化が実現できる。これは、特にワイヤ11接続方法にウエッジボンディングを用いた際に、顕著な効果が表れる。この効果について図4、図5、図6を用いて説明する。   As a result, the wire bonding process time is shortened, and the number of converter modules 100 completed per unit time is increased, so that the cost of the converter module 100 can be reduced. This is particularly effective when wedge bonding is used in the wire 11 connection method. This effect will be described with reference to FIGS. 4, 5, and 6.

図4は、ワイヤボンディングの工程を示す図である。図4に示すようにウエッジボンディングはワイヤ接続時、ボンディングツール12をワイヤ接続方向と針先穴とを平行にするよう移動しなければならない。ワイヤ11接続方向が側辺110となす角が30°より大きい場合には、ボンディングツール12を大きく回転する必要あった。そのため、ワイヤボンディングの処理時間が増加する問題が生じる。しかし、本実施の形態ではボンディングツール12を大きく回転することなく、ワイヤボンディングが可能なためワイヤボンディングの処理時間が短縮できる。よって、単位時間当たりに完成する変換体モジュール100が多くなるため変換体モジュール100の低コスト化が実現できる。   FIG. 4 is a diagram showing a wire bonding process. As shown in FIG. 4, in wedge bonding, the bonding tool 12 must be moved so that the wire connection direction and the needle tip hole are parallel to each other during wire connection. When the angle between the connecting direction of the wire 11 and the side 110 is larger than 30 °, the bonding tool 12 needs to be rotated greatly. Therefore, the problem that the processing time of wire bonding increases arises. However, in this embodiment, since the wire bonding can be performed without greatly rotating the bonding tool 12, the processing time of the wire bonding can be shortened. Therefore, since the number of converter modules 100 completed per unit time increases, the cost of the converter module 100 can be reduced.

更に各々のワイヤ11は基板2の側辺110となす角が30°以下になるように変換体3の電極パッド8A、8Bと半導体基板4の電極パッド9A、9Bとを配置し、かつ、半導体基板4の電極パッド9C、9D、9Eと基板2の電極ランド10A、B、Cを配置することで、複数の変換体3を配置した複数の基板2から、より多くの変換体モジュール100を形成することができる。   Furthermore, the electrode pads 8A and 8B of the converter 3 and the electrode pads 9A and 9B of the semiconductor substrate 4 are arranged so that each wire 11 has an angle formed with the side 110 of the substrate 2 of 30 ° or less. By arranging the electrode pads 9C, 9D, 9E of the substrate 4 and the electrode lands 10A, B, C of the substrate 2, more converter modules 100 are formed from the plurality of substrates 2 on which the plurality of converters 3 are arranged. can do.

これは、先ほど同様にワイヤ接続方法にウエッジボンディングを用いた際に、顕著な効果が表れる。図5は、実施の形態1のワイヤボンディングの工程における変換体モジュールの集合体の平面図である。この複数の変換体モジュールは、1枚の大きな樹脂基板上に形成されている。1枚の大きな樹脂基板が裁断されることにより、複数の変換体モジュールが得られる。   This is a remarkable effect when wedge bonding is used as the wire connection method. FIG. 5 is a plan view of the assembly of converter modules in the wire bonding step of the first embodiment. The plurality of converter modules are formed on one large resin substrate. A plurality of converter modules can be obtained by cutting one large resin substrate.

図6は、ワイヤボンディングの工程における変換体モジュールの断面図である。図6に示すように、ワイヤボンディング工程において、複数の基板2の周辺は治具15で固定しなければならない。このとき、図7に示すように、ワイヤの弛み角16と、治具の厚さ17と電極ランド10から治具15までの距離18を以下の(式1)を満たすように、ワイヤ接続方向の延長方向に対して無駄スペースを設けなければならない。   FIG. 6 is a cross-sectional view of the converter module in the wire bonding process. As shown in FIG. 6, the periphery of the plurality of substrates 2 must be fixed with a jig 15 in the wire bonding step. At this time, as shown in FIG. 7, the wire slack angle 16, the jig thickness 17, and the distance 18 from the electrode land 10 to the jig 15 satisfy the following (formula 1): A wasteful space must be provided in the extending direction.

Figure 2012004326
Figure 2012004326

ここで、Wは電極ランドから治具までの距離、θはワイヤの弛み角、Hは治具の厚さである。   Here, W is the distance from the electrode land to the jig, θ is the slack angle of the wire, and H is the thickness of the jig.

もし、ワイヤ接続方向が一方向でなく二方向であれば、二方向に無駄スペースを設けなければならない。そのため、複数の変換体3を配置した複数の基板2から得られる、変換体モジュール100の形成数が減少してしまう。しかし、本実施の形態において無駄スペースを一方向のみにできるので、複数の変換体3を配置した複数の基板2から、より多くの変換体モジュール100を形成することができる。そのため、変換体モジュール100の低コスト化を実現できる。   If the wire connection direction is not one direction but two directions, a waste space must be provided in two directions. Therefore, the number of converter modules 100 formed from a plurality of substrates 2 on which a plurality of converters 3 are arranged is reduced. However, since the wasted space can be made only in one direction in the present embodiment, more converter modules 100 can be formed from the plurality of substrates 2 on which the plurality of converters 3 are arranged. Therefore, cost reduction of the converter module 100 is realizable.

(変形例1)
図7は、実施の形態1の変形例の変換体モジュールの平面図である。図8は、実施の形態1の変形例の変換体モジュールの製造工程を示す断面図である。図7、図8は、図1〜図3と比べて、基板2がさらに電極ランド10Dを有する点と、変換体3の電極パッド8Aが電極ランド10Dにワイヤボンディングされている点とが異なる。
(Modification 1)
FIG. 7 is a plan view of a converter module according to a modification of the first embodiment. FIG. 8 is a cross-sectional view showing the manufacturing process of the converter module of the modification of the first embodiment. 7 and 8 differ from FIGS. 1 to 3 in that the substrate 2 further has an electrode land 10D and that the electrode pad 8A of the converter 3 is wire-bonded to the electrode land 10D.

変換体3の電気信号を半導体基板4が直動方式で増幅する場合は、図7、図8に示すように半導体基板4の電極パッド、基板2の電極ランド、及びワイヤ11接続の組み合わせが異なるのみで、半導体基板4が直動方式の場合も、差動方式と同様の効果を得ることができる。   When the electrical signal of the converter 3 is amplified by the linear motion system, the combination of the electrode pad of the semiconductor substrate 4, the electrode land of the substrate 2, and the wire 11 connection is different as shown in FIGS. 7 and 8. Only when the semiconductor substrate 4 is of the direct acting system, the same effect as that of the differential system can be obtained.

具体的には、図8に示すように半導体基板4は4つの電極パッド9A〜9Dを備えており、変換体3上の電極パッド8Aもしくは8Bと半導体基板4の電極パッド9Aとがワイヤ11で接続されている(図8では電極パッド8Bと電極パッド9Aを接続している)。またこのため、変換体3と半導体基板4とはワイヤボンディング処理上必要な距離を設けて設置されている。   Specifically, as shown in FIG. 8, the semiconductor substrate 4 includes four electrode pads 9 </ b> A to 9 </ b> D, and the electrode pad 8 </ b> A or 8 </ b> B on the converter 3 and the electrode pad 9 </ b> A of the semiconductor substrate 4 are connected by the wire 11. They are connected (in FIG. 8, the electrode pad 8B and the electrode pad 9A are connected). For this reason, the converter 3 and the semiconductor substrate 4 are installed at a distance necessary for the wire bonding process.

基板2は、基板2の側辺111と半導体基板の側辺107との間に電極ランド10A、10B、10Cと、基板2の側辺1010と変換体の側辺102との間、もしくは基板2の側辺112と変換体の側辺104との間に電極ランド10Dを備えている(図7では基板2の側辺112と変換体の側辺104との間)。半導体基板4の電極パッド9B、9C、9Dとそれぞれ電極ランド10A、B、Cに、また、変換体3の電極パッド8Aは基板2の電極ランド10Dにワイヤ11で接続されている。このとき、基板2の電極ランド10A、B、C、Dはワイヤボンディング処理上必要な最低ワイヤ長を確保できる程度のスペースが設けられている。   The substrate 2 includes the electrode lands 10A, 10B, and 10C between the side 111 of the substrate 2 and the side 107 of the semiconductor substrate, the side 1010 of the substrate 2 and the side 102 of the converter, or the substrate 2 An electrode land 10D is provided between the side 112 of the substrate and the side 104 of the converter (between the side 112 of the substrate 2 and the side 104 of the converter in FIG. 7). The electrode pads 9B, 9C, 9D of the semiconductor substrate 4 are connected to the electrode lands 10A, B, C, respectively, and the electrode pad 8A of the converter 3 is connected to the electrode lands 10D of the substrate 2 by wires 11. At this time, the electrode lands 10A, B, C, and D of the substrate 2 are provided with a space that can secure the minimum wire length necessary for the wire bonding process.

(変形例2)
図11は、実施の形態1の変形例2の変換体モジュールの平面図である。同図の変換体モジュールは、図1と比べて、変換体3の形状が台形である点が異なっている。つまり、鋭角の頂点を1つ以上含む多角形の形状の具体例として、台形を示している。このように変換体が台形であっても、図1と同様の効果を得ることができる。
(Modification 2)
FIG. 11 is a plan view of the converter module of the second modification of the first embodiment. The converter module of the same figure is different from FIG. 1 in that the shape of the converter 3 is a trapezoid. That is, a trapezoid is shown as a specific example of a polygonal shape including one or more acute vertices. Thus, even if the converter is trapezoidal, the same effect as in FIG. 1 can be obtained.

(変形例3)
図12は、実施の形態1の変形例3の変換体モジュールの平面図である。同図の変換体モジュールは、図1と比べて、変換体3が、2辺が平行な四角形である点が異なっている。つまり、鋭角の頂点を1つ以上含む多角形の形状の具体例として、2辺が平行な四角形を示している。変換体がこのような形状であっても、図1と同様の効果を得ることができる。
(Modification 3)
FIG. 12 is a plan view of the converter module of the third modification of the first embodiment. The converter module of the figure is different from FIG. 1 in that the converter 3 is a quadrangle having two parallel sides. That is, as a specific example of a polygonal shape including one or more acute vertices, a quadrangle having two parallel sides is shown. Even if the converter has such a shape, the same effect as in FIG. 1 can be obtained.

(実施の形態2)
次に実施の形態2の変換体モジュール100を説明する。
(Embodiment 2)
Next, the converter module 100 of Embodiment 2 is demonstrated.

図9は、実施の形態2の変換体モジュールの平面図である。この変換体モジュールは、主として、矩形の形状を有する基板2と、菱形、平行四辺形および矩形の何れかの形状を有する変換体3と、矩形の形状を有する半導体基板4とを備える。図9の変換体モジュールは、図1と比べて、主に、変換体3が、菱形、平行四辺形および矩形の何れかの形状を有する点で異なっている。図9では、変換体3が矩形である例を示している。   FIG. 9 is a plan view of the converter module of the second embodiment. This converter module mainly includes a substrate 2 having a rectangular shape, a converter 3 having any one of a rhombus, a parallelogram, and a rectangle, and a semiconductor substrate 4 having a rectangular shape. The converter module of FIG. 9 differs from FIG. 1 mainly in that the converter 3 has any one of a rhombus, a parallelogram, and a rectangle. FIG. 9 shows an example in which the converter 3 is rectangular.

より詳しく説明すると、実施の形態2の変換体モジュール100は、実施の形態1の変換体モジュール100と比較し、変換体3の形状と、半導体基板4の形状と、変換体3と半導体基板4との寸法の関係のみが異なる。図9に示すように、基板2に矩形の変換体3と矩形の半導体基板4を備える。このとき、基板2の側辺109と平行な方向に対応する変換体の幅113と、基板2の側辺109と平行な方向に対応する半導体基板の幅114の長さを揃えている。ここで、半導体基板4の単位面積当たりの増幅能力(性能)はほぼ同等であると仮定すると、変換体の幅113と半導体基板の幅114を揃えることで、基板2上の遊休スペースを削減でき、変換体モジュール100の小型化が可能になる。   More specifically, the converter module 100 of the second embodiment is different from the converter module 100 of the first embodiment in the shape of the converter 3, the shape of the semiconductor substrate 4, and the converter 3 and the semiconductor substrate 4. Only the dimensional relationship is different. As shown in FIG. 9, the substrate 2 includes a rectangular converter 3 and a rectangular semiconductor substrate 4. At this time, the width of the converter 113 corresponding to the direction parallel to the side 109 of the substrate 2 and the width 114 of the semiconductor substrate corresponding to the direction parallel to the side 109 of the substrate 2 are aligned. Here, assuming that the amplification capability (performance) per unit area of the semiconductor substrate 4 is substantially the same, the idle space on the substrate 2 can be reduced by aligning the width 113 of the converter and the width 114 of the semiconductor substrate. The converter module 100 can be downsized.

また、変換体の幅113と半導体基板の幅114を揃えることで、半導体基板4の電極パッド、基板2の電極ランドを効率よく配置するスペースが生まれ、ワイヤ11を基板2の側辺1010となす角が30°以下になるように各電極パッドと各電極ランドで接続することができる。これにより、実施の形態1と同等の効果を得ることができる。   Further, by aligning the width 113 of the converter and the width 114 of the semiconductor substrate, a space for efficiently arranging the electrode pads of the semiconductor substrate 4 and the electrode lands of the substrate 2 is created, and the wire 11 becomes the side 1010 of the substrate 2. Each electrode pad and each electrode land can be connected so that the angle is 30 ° or less. Thereby, an effect equivalent to that of the first embodiment can be obtained.

尚、本実施形態では便宜上、矩形の変換体3を用いて説明したが、矩形の変換体3の形状に限られるわけでもなく、菱形、平行四辺形の形状の変換体3を用いた場合でも同様の効果を得ることができる。   In the present embodiment, the rectangular converter 3 is used for convenience, but the present invention is not limited to the shape of the rectangular converter 3, and even when the converter 3 having a rhombus or parallelogram shape is used. Similar effects can be obtained.

(変換体モジュール100の製造方法)
以下に、図2、図3、図7及び図8を参照して、上述した変換体モジュール100の製造方法について説明する。実施の形態1及び2共に同様の製造方法なので、実施の形態2の製造方法は省略する。
(Method of manufacturing converter module 100)
Below, with reference to FIG.2, FIG.3, FIG.7 and FIG. 8, the manufacturing method of the converter module 100 mentioned above is demonstrated. Since both the first and second embodiments are the same manufacturing method, the manufacturing method of the second embodiment is omitted.

まず、製造方法の概略について説明する。変換体モジュールの製造方法は、矩形の形状を有する基板2を準備する工程と、鋭角の頂点を1つ以上含む多角形の形状を有する変換体3を準備する工程と、矩形の形状を有する半導体基板4を準備する工程と、変換体3を、基板2の第1側辺と変換体3の一つの側辺とが実質的に平行となるように基板2上に配置する工程と、半導体基板4を、基板2の第1側辺と半導体基板4の1つの側辺とが実質的に平行となるように基板上に配置する工程を含む。   First, an outline of the manufacturing method will be described. The method of manufacturing a converter module includes a step of preparing a substrate 2 having a rectangular shape, a step of preparing a converter 3 having a polygonal shape including one or more acute vertices, and a semiconductor having a rectangular shape. A step of preparing the substrate 4, a step of disposing the conversion body 3 on the substrate 2 so that the first side of the substrate 2 and one side of the conversion body 3 are substantially parallel, and a semiconductor substrate 4 is disposed on the substrate such that the first side of the substrate 2 and one side of the semiconductor substrate 4 are substantially parallel to each other.

また、変換体モジュールの製造方法は、さらに、第1電極パッドと複数の第2電極パッドの1つとの間に第1金属ワイヤーをボンディングする工程と、複数の第2電極パッドの1つと電極ランドとの間に第2金属ワイヤーをボンディングする工程とを含む。   Moreover, the manufacturing method of the converter module further includes a step of bonding a first metal wire between the first electrode pad and one of the plurality of second electrode pads, and one of the plurality of second electrode pads and the electrode land. And bonding a second metal wire between them.

上記のボンディング工程において、第1金属ワイヤー及び第2金属ワイヤーと、基板の第1側辺と直交する第2側辺とが基板と平行な面内でなす角は30度以下である。   In the bonding step, the angle formed by the first metal wire and the second metal wire and the second side perpendicular to the first side of the substrate in a plane parallel to the substrate is 30 degrees or less.

変換体モジュールの製造方法は、さらに、基板上に、変換体および半導体基板上に空隙を設けるように覆うシールドを形成する工程を備える。シールドを形成する工程は、基板表面の周辺に沿って変換体および半導体基板を囲むリブ設ける工程と、リブ上に、基板と同じ材質のシールド板を接合する工程とを有する。   The manufacturing method of the converter module further includes a step of forming a shield on the substrate so as to provide a gap on the converter and the semiconductor substrate. The step of forming the shield includes a step of providing a rib surrounding the converter and the semiconductor substrate along the periphery of the substrate surface, and a step of bonding a shield plate made of the same material as the substrate on the rib.

次に、製造方法の詳細について説明する。   Next, details of the manufacturing method will be described.

(半導体基板4が差動方式の場合の製造方法)
変換体3の電気信号を半導体基板4が差動方式で増幅する場合、まず音孔11および電極ランド10A、B、Cを所定の位置に設けた基板2を準備する。基板2の電極ランド10A、B、及びCは、銅の基層にニッケルメッキを施すか、さらに金メッキを施したもの、あるいは銅の基層にニッケルメッキを施した後、鉛メッキを施し、さらに金メッキを施すことで形成する。
(Manufacturing method when the semiconductor substrate 4 is a differential type)
When the semiconductor substrate 4 amplifies the electrical signal of the converter 3 by a differential method, first, the substrate 2 provided with the sound holes 11 and the electrode lands 10A, B, C at predetermined positions is prepared. The electrode lands 10A, B, and C of the substrate 2 are obtained by applying nickel plating to the copper base layer, further applying gold plating, or applying nickel plating to the copper base layer, then applying lead plating, and further applying gold plating Form by applying.

次いで、基板2上の所定のエリアに固着パッド19を貼付した後、接着剤30を塗布し、図2に示すように、半導体基板4の底面のダイボンドエリアを固定して実装し、接着剤30を硬化する目的で、150〜200℃で1時間程度の熱処理を窒素雰囲気中で行い、100℃以下まで降温した後、大気中に取り出す。   Next, after adhering the fixing pad 19 to a predetermined area on the substrate 2, an adhesive 30 is applied, and the die bond area on the bottom surface of the semiconductor substrate 4 is fixed and mounted as shown in FIG. In order to cure the film, heat treatment is performed at 150 to 200 ° C. for about 1 hour in a nitrogen atmosphere, the temperature is lowered to 100 ° C. or less, and then taken out into the air.

次いで、図2に示すように、音孔1を囲む所定のエリアに固着パッド19を貼付した後、接着剤30を塗布し、変換体3の底面の開口部6を除く外周部のダイボンドエリアを、開口部6が音孔1に重なるように実装し、接着剤30を硬化する目的で、150〜200℃で1時間程度の熱処理を窒素雰囲気中で行い、100℃以下まで降温した後、大気中に取り出す。なお半導体基板4および変換体3をともに実装した後に、熱処理を施しても良い。   Next, as shown in FIG. 2, after adhering the fixing pad 19 to a predetermined area surrounding the sound hole 1, the adhesive 30 is applied, and the die bond area on the outer peripheral portion excluding the opening 6 on the bottom surface of the converter 3 is formed. In order to cure the adhesive 30 by mounting it so that the opening 6 overlaps the sound hole 1, heat treatment is performed at 150 to 200 ° C. for about 1 hour in a nitrogen atmosphere, and the temperature is lowered to 100 ° C. or lower. Take out. Note that heat treatment may be performed after the semiconductor substrate 4 and the converter 3 are both mounted.

接着剤30は、導電性ペースト、絶縁性ペーストまたはダイアタッチフィルムなどを用いれば良く、例えば半導体基板4の実装にはダイアタッチフィルムを用い、変換体3の実装には絶縁性ペーストを用いるなど、これらを組み合わせて用いても良い。   The adhesive 30 may be a conductive paste, an insulating paste, a die attach film, or the like. For example, a die attach film is used for mounting the semiconductor substrate 4, and an insulating paste is used for mounting the converter 3. These may be used in combination.

図3に示すように、変換体3上の電極パッド8A、Bと、半導体基板4上の電極パッド8A、Bそれぞれワイヤ11を介して接続する。また、半導体基板4上の電極パッド8C、DおよびEと、基板22の電極ランド10A、B、及びCとをそれぞれワイヤ11を介して接続する。   As shown in FIG. 3, the electrode pads 8 </ b> A and B on the converter 3 are connected to the electrode pads 8 </ b> A and B on the semiconductor substrate 4 through wires 11. In addition, the electrode pads 8C, D, and E on the semiconductor substrate 4 are connected to the electrode lands 10A, B, and C of the substrate 22 through the wires 11, respectively.

このとき、各々のワイヤ11は基板2の側辺110となす角が30°以下になるように接続されている。   At this time, each wire 11 is connected so that the angle formed with the side 110 of the substrate 2 is 30 ° or less.

変換体3上の電極パッド8Aおよび8Bの素材は、例えばPoly−Si(ポリシリコン)が用いられる。   For example, Poly-Si (polysilicon) is used as the material of the electrode pads 8A and 8B on the converter 3.

半導体基板4上の電極パッド9A、9B、9C、9Dの表面は、例えばAl、Al−Si、Al−Si−Cu(以上アルミニウム系)、Au(金)などで形成されている。   The surfaces of the electrode pads 9A, 9B, 9C, 9D on the semiconductor substrate 4 are made of, for example, Al, Al—Si, Al—Si—Cu (above aluminum), Au (gold), or the like.

ワイヤ11の素材はアルミニウム系を用いてもよく金を用いても良い。ワイヤ11の素材が金である場合は、基板2にチップ実装後、温度を130℃〜180℃にしたヒータ上でワイヤボンディングを実施すれば良い。   The material of the wire 11 may be aluminum or gold. When the material of the wire 11 is gold, wire bonding may be performed on a heater having a temperature of 130 ° C. to 180 ° C. after chip mounting on the substrate 2.

基板2の電極ランド10A、10B、10Cのサイズは、ワイヤ11が直径20〜30μm程度のアルミニウム系のワイヤ11である場合は、直径200〜250μm程度とすれば良く、直径15〜25μm程度の金のワイヤである場合は、直径150〜200μm程度とすれば良い。したがって金のワイヤを用いることで、より小型化を図ることができる。   The size of the electrode lands 10A, 10B, and 10C of the substrate 2 may be about 200 to 250 μm when the wire 11 is an aluminum-based wire 11 having a diameter of about 20 to 30 μm, and gold having a diameter of about 15 to 25 μm. In the case of this wire, the diameter may be about 150 to 200 μm. Therefore, the size can be further reduced by using a gold wire.

ワイヤボンディング処理は、電極パッド、電極ランド、およびワイヤ11の、材質、形状および固定状況等に応じて、超音波出力または押圧荷重を変えて行う。例えば、変換体3上の電極パッド8A、8Bがポリシリコンからなり、これらにアルミニウム系のワイヤ11をボンディングする場合は、半導体基板4上の電極パッド9A〜9Eがアルミニウム系または金からなり、アルミニウム系または金のワイヤ11をボンディングする場合に比べて、超音波の出力が大きく、荷重が低い条件で接合する。これにより、ポリシリコンからなる電極へのワイヤボンディング処理が可能となり、アルミニウム系や金によるマスクを形成する工程をなくし、製造コストを低減することができる。   The wire bonding process is performed by changing the ultrasonic output or the pressing load in accordance with the material, shape, fixing state, and the like of the electrode pad, the electrode land, and the wire 11. For example, when the electrode pads 8A and 8B on the converter 3 are made of polysilicon and the aluminum wire 11 is bonded to them, the electrode pads 9A to 9E on the semiconductor substrate 4 are made of aluminum or gold, and aluminum The bonding is performed under the condition that the output of the ultrasonic wave is large and the load is low as compared with the case of bonding the system or gold wire 11. As a result, a wire bonding process to an electrode made of polysilicon can be performed, a process of forming a mask made of aluminum or gold can be eliminated, and the manufacturing cost can be reduced.

また、ワイヤボンディング処理は、ボンディングツール12と変換体3または半導体基板4との干渉を防ぐため、チップの厚み等に応じて好適な順序で行う。例えば、変換体3の厚みが半導体基板4の厚みより大きい場合、変換体3上の電極パッド8Aと半導体基板4上の電極パッド9Aとを接続する際、変換体3の電極パッド8Aにワイヤ11を接続した後、半導体基板4上の電極パッド9Aにワイヤ11を接続することで、ボンディングツール12と変換体3が干渉することなく、ワイヤボンディング処理を行うことが可能となる。   The wire bonding process is performed in a suitable order according to the thickness of the chip and the like in order to prevent interference between the bonding tool 12 and the converter 3 or the semiconductor substrate 4. For example, when the thickness of the converter 3 is larger than the thickness of the semiconductor substrate 4, the wire 11 is connected to the electrode pad 8 A of the converter 3 when the electrode pad 8 A on the converter 3 and the electrode pad 9 A on the semiconductor substrate 4 are connected. After connecting the wire 11 to the electrode pad 9A on the semiconductor substrate 4, the wire bonding process can be performed without the bonding tool 12 and the converter 3 interfering with each other.

なお、基板2の電極ランド10は、変換体モジュール100の外形サイズに影響を及ぼさない範囲であれば、任意の好適な形状であれば良く、複数のワイヤ11が接続されていても良い。   Note that the electrode land 10 of the substrate 2 may have any suitable shape as long as it does not affect the outer size of the converter module 100, and a plurality of wires 11 may be connected thereto.

次いで、図2に示すように、電磁ノイズを遮断し、かつ外部からの応力を防ぐ目的で基板2の外周部に、はんだ31を塗布し、シールド5を実装し、硬化する。シールド5の材質は電磁ノイズを十分に遮断する材料が望ましく、例えば洋白が好ましい。   Next, as shown in FIG. 2, solder 31 is applied to the outer peripheral portion of the substrate 2 for the purpose of blocking electromagnetic noise and preventing external stress, and the shield 5 is mounted and cured. The material of the shield 5 is desirably a material that sufficiently blocks electromagnetic noise, and for example, white is preferable.

また、図10に示すように基板2の外周部に、はんだ31を塗布し、変換体3と半導体基板4を十分に覆うことのできる高さのリブ32を持つ基板2と同じ材質のシールド5を実装し、硬化してよい。このとき、リブ32とシールド5の材質は同じであっても異なっても良い。   Further, as shown in FIG. 10, a shield 5 made of the same material as that of the substrate 2 having a rib 32 having a height capable of sufficiently covering the converter 3 and the semiconductor substrate 4 by applying solder 31 to the outer peripheral portion of the substrate 2. May be mounted and cured. At this time, the material of the rib 32 and the shield 5 may be the same or different.

(半導体基板4が直動方式の場合の製造方法)
変換体3の電気信号を半導体基板4が直動方式で増幅する場合の変換体モジュール100の製造方法を説明する。図7に示すように、半導体基板4が差動方式に比べて、半導体基板4の電極パッド8数、基板2の電極ランド10数、及びワイヤ11接続の組み合わせが異なるためにワイヤボンディング処理の手順が異なるのみで、半導体基板4が直動方式の場合も、差動方式と同様の効果を得ることができる。
(Manufacturing method when the semiconductor substrate 4 is a direct acting system)
A method for manufacturing the converter module 100 in the case where the semiconductor substrate 4 amplifies the electric signal of the converter 3 by the linear motion method will be described. As shown in FIG. 7, since the combination of the number of electrode pads 8 on the semiconductor substrate 4, the number of electrode lands 10 on the substrate 2, and the connection of the wires 11 is different in the semiconductor substrate 4 compared to the differential method, the wire bonding process procedure Even when the semiconductor substrate 4 is a direct acting system, the same effect as that of the differential system can be obtained.

具体的には、図8に示すように、音孔11および電極ランド10A、B、C、Dを所定の位置に設けた基板2を準備する。差動方式と同様の手順で変換体3と、半導体基板4とを基板2に実装する。このとき、半導体基板4は電極パッド8A、B、C、Dを備えている。   Specifically, as shown in FIG. 8, a substrate 2 provided with sound holes 11 and electrode lands 10A, B, C, and D at predetermined positions is prepared. The converter 3 and the semiconductor substrate 4 are mounted on the substrate 2 by the same procedure as that of the differential method. At this time, the semiconductor substrate 4 includes electrode pads 8A, B, C, and D.

次いで、常温で変換体3上面の鋭角エリアの電極パッド8Aと、基板2のコーナ部の電極ランド10Dとをワイヤ11を介して接続し、半導体基板4上の電極パッド8Aを変換体3の電極パッド8Bと、ワイヤ11を介して接続する。また、半導体基板4の電極パッド8B、CおよびDと、基板2の電極ランド10A、BおよびCとをそれぞれワイヤ11を介して接続する。   Next, the electrode pad 8A in the acute angle area on the upper surface of the converter 3 and the electrode land 10D in the corner portion of the substrate 2 are connected via wires 11 at room temperature, and the electrode pad 8A on the semiconductor substrate 4 is connected to the electrode of the converter 3. The pad 8B is connected via the wire 11. In addition, the electrode pads 8B, C, and D of the semiconductor substrate 4 and the electrode lands 10A, B, and C of the substrate 2 are connected via wires 11, respectively.

このようにして、図2、図3、図7及び図8を用いて説明した変換体モジュール100を製造することができる。なお、本実施例においては、基板は、素材に樹脂を含浸させて形成した基板2であるとしたが、他の種類の基板であってもよい。   Thus, the converter module 100 demonstrated using FIG.2, FIG.3, FIG.7 and FIG. 8 can be manufactured. In the present embodiment, the substrate is the substrate 2 formed by impregnating a material with a resin, but other types of substrates may be used.

本発明の好適な実施例として、変換体3は、1辺の長さが0.85〜1.20mm、鋭角が70.6°であり、半導体基板4は、1辺の長さが0.6〜0.8mm、他辺の長さが0.6〜0.8mmであり、基板は、1辺の長さが1.9〜2.4mm、他辺の長さが2.9〜3.4mmであり、電極ランド10を5つ備える場合を挙げることができるが、これらの数値の範囲外であっても、本発明の趣旨を逸脱しない範囲で、本発明を実施し、効果を得ることができる。   As a preferred embodiment of the present invention, the converter 3 has a length of one side of 0.85 to 1.20 mm and an acute angle of 70.6 °, and the semiconductor substrate 4 has a length of one side of 0.00. The length of the other side is 6 to 0.8 mm, the length of the other side is 0.6 to 0.8 mm, and the substrate has a length of one side of 1.9 to 2.4 mm and a length of the other side of 2.9 to 3 4 mm and 5 electrode lands 10 may be provided, but the present invention can be implemented and effects can be obtained without departing from the spirit of the present invention even outside these numerical ranges. be able to.

なお、上記各実施形態における変換体が菱形の形状である場合の菱形は、4辺の長さが等しい場合だけでなく、4辺の長さが多少異なっている場合であってもよい。4辺の長さが多少異なっていても、同様の効果を得ることが出来る。   In addition, the rhombus when the conversion body in each said embodiment is a rhombus shape may be not only when the length of 4 sides is equal, but when the length of 4 sides is a little different. Even if the lengths of the four sides are slightly different, the same effect can be obtained.

本発明は、変換体モジュール100の小型化を図るものであり、音圧センサ、圧力センサ、携帯電話のような携帯機器等のマイクロフォン等に有用である。   The present invention is intended to reduce the size of the converter module 100 and is useful for a microphone of a portable device such as a sound pressure sensor, a pressure sensor, and a mobile phone.

100 変換体モジュール
1、42A 音孔
2、42 基板
3、20 変換体
4 半導体基板
5 シールド
6 開口部
7 ダイヤフラム
8A、8B、26 変換体の電極パッド
9A〜9E 半導体基板の電極パッド
10A〜10D 電極ランド
11 ワイヤ
12 ボンディングツール
13 針先穴
14 進行方向
15 治具
16 ワイヤの撓み角
17 治具の厚さ
18 電極ランドから治具までの距離
19 固着パッド
22 シリコン基板
30 接着剤
31 はんだ
32 リブ
101、102、103、104 変換体の側辺
105、106、107、108 半導体基板の側辺
109、110、111、112 基板の側辺
113 変換体の幅
114 半導体基板の幅
DESCRIPTION OF SYMBOLS 100 Converter module 1, 42A Sound hole 2, 42 Substrate 3, 20 Converter 4 Semiconductor substrate 5 Shield 6 Opening 7 Diaphragm 8A, 8B, 26 Electrode pad of converter 9A-9E Electrode pad of semiconductor substrate 10A-10D Electrode Land 11 Wire 12 Bonding tool 13 Needle tip hole 14 Advancing direction 15 Jig 16 Wire bending angle 17 Jig thickness 18 Distance from electrode land to jig 19 Fixed pad 22 Silicon substrate 30 Adhesive 31 Solder 32 Rib 101 , 102, 103, 104 Sides of converter 105, 106, 107, 108 Sides of semiconductor substrate 109, 110, 111, 112 Sides of substrate 113 Width of converter 114 Width of semiconductor substrate

Claims (14)

矩形の形状を有する基板と、
鋭角の頂点を1つ以上含む多角形の形状を有する変換体と、
矩形の形状を有する半導体基板とを備え、
前記変換体は、前記基板の第1側辺と前記変換体の1つの側辺とが実質的に平行となるように前記基板上に配置され、
前記半導体基板は、前記基板の第1側辺と前記半導体基板の1つの側辺とが実質的に平行となるように、前記基板上に配置される
変換体モジュール。
A substrate having a rectangular shape;
A converter having a polygonal shape including one or more acute vertices;
A semiconductor substrate having a rectangular shape,
The converter is disposed on the substrate such that the first side of the substrate and one side of the converter are substantially parallel,
The semiconductor module is a converter module arranged on the substrate such that a first side of the substrate and one side of the semiconductor substrate are substantially parallel to each other.
前記変換体は平行な2辺を有し、
前記変換体の前記1つの側辺は当該2辺の一方である
請求項1記載の変換体モジュール。
The transducer has two parallel sides;
The converter module according to claim 1, wherein the one side of the converter is one of the two sides.
前記変換体は第1電極パッドを有し、
前記半導体基板は複数の第2電極パッドを有し、
前記基板は電極ランドを有し、
前記変換体モジュールは、さらに、
前記第1電極パッドと前記複数の第2電極パッドの1つとを電気的に接続する第1金属ワイヤーと、
前記複数の第2電極パッドの1つと前記電極ランドとを電気的に接続する第2金属ワイヤーとを備えている
請求項1または2に記載の変換体モジュール。
The converter has a first electrode pad;
The semiconductor substrate has a plurality of second electrode pads;
The substrate has electrode lands;
The converter module further includes:
A first metal wire that electrically connects the first electrode pad and one of the plurality of second electrode pads;
The converter module according to claim 1, further comprising: a second metal wire that electrically connects one of the plurality of second electrode pads to the electrode land.
前記第1金属ワイヤー及び前記第2金属ワイヤーと、前記基板の前記第1側辺と直交する第2側辺とが前記基板と平行な面内でなす角は30度以下である
請求項3に記載の変換体モジュール。
The angle formed by the first metal wire and the second metal wire and a second side perpendicular to the first side of the substrate in a plane parallel to the substrate is 30 degrees or less. The converter module described.
前記第1電極パッドは前記変換体の鋭角の頂点に最も近くなる位置に形成されている
請求項3または4に記載の変換体モジュール。
5. The converter module according to claim 3, wherein the first electrode pad is formed at a position closest to an acute vertex of the converter. 6.
前記多角形は、菱形、平行四辺形および台形の何れかである
請求項1〜5の何れか1項に記載の変換体モジュール。
The converter module according to claim 1, wherein the polygon is any one of a rhombus, a parallelogram, and a trapezoid.
矩形の形状を有する基板と、
菱形、平行四辺形および矩形の何れかの形状を有する変換体と、
矩形の形状を有する半導体基板とを備え、
前記変換体は、前記基板の第1側辺と前記変換体の一つの側辺とが実質的に平行となるように前記基板上に配置され、
前記半導体基板は、前記基板の第1側辺と前記半導体基板の1つの側辺とが実質的に平行となるように、前記基板上に配置され、
前記第1側辺と平行な方向に対応する変換体の幅と、
前記第1側辺と平行な方向に対応する半導体基板の幅とは同じ長さである
変換体モジュール。
A substrate having a rectangular shape;
A converter having any one of a rhombus, a parallelogram, and a rectangle;
A semiconductor substrate having a rectangular shape,
The converter is disposed on the substrate such that the first side of the substrate and one side of the converter are substantially parallel to each other.
The semiconductor substrate is disposed on the substrate such that a first side of the substrate and one side of the semiconductor substrate are substantially parallel;
A width of the converter corresponding to a direction parallel to the first side;
The converter module which is the same length as the width | variety of the semiconductor substrate corresponding to the direction parallel to a said 1st side.
前記変換体モジュールは、さらに、前記変換体および前記半導体基板上に空隙を設けるように覆うシールドを備える
請求項1〜7の何れかに記載の変換体モジュール。
The said conversion body module is a conversion body module in any one of Claims 1-7 further provided with the shield which covers so that a space | gap may be provided on the said conversion body and the said semiconductor substrate.
前記シールドは、
前記基板の表面の周辺に沿って前記変換体および前記半導体基板を囲むリブと、
前記リブ上に配置され、前記基板と同じ材質のシールド板とを備える
請求項8に記載の変換体モジュール。
The shield is
Ribs surrounding the converter and the semiconductor substrate along the periphery of the surface of the substrate;
The converter module according to claim 8, further comprising a shield plate disposed on the rib and made of the same material as the substrate.
前記変換体は、枠体と、前記枠体の開口部を覆うダイヤフラムとを有し、
前記基板は、前記枠体の開口部直下に貫通孔を有する
請求項1〜9の何れかに記載の変換体モジュール。
The converter has a frame and a diaphragm that covers the opening of the frame,
The converter module according to claim 1, wherein the substrate has a through hole immediately below the opening of the frame.
矩形の形状を有する基板を準備する工程と、
鋭角の頂点を1つ以上含む多角形の形状を有する変換体を準備する工程と、
矩形の形状を有する半導体基板を準備する工程と、
前記変換体を、前記基板の第1側辺と前記変換体の一つの側辺とが実質的に平行となるように前記基板上に配置する工程と、
前記半導体基板を、前記基板の第1側辺と前記半導体基板の1つの側辺とが実質的に平行となるように前記基板上に配置する工程とを有する
変換体モジュールの製造方法。
Preparing a substrate having a rectangular shape;
Preparing a converter having a polygonal shape including one or more acute vertices;
Preparing a semiconductor substrate having a rectangular shape;
Arranging the converter on the substrate such that a first side of the substrate and one side of the converter are substantially parallel;
A method of manufacturing a converter module, comprising: placing the semiconductor substrate on the substrate such that a first side of the substrate and one side of the semiconductor substrate are substantially parallel to each other.
前記変換体は第1電極パッドを有し、前記半導体基板は複数の第2電極パッドを有し、前記基板は電極ランドを有し、
前記変換体モジュールの製造方法は、さらに、
前記第1電極パッドと前記複数の第2電極パッドの1つとの間に第1金属ワイヤーをボンディングする工程と、
前記複数の第2電極パッドの1つと前記電極ランドとの間に第2金属ワイヤーをボンディングする工程とを有し、
前記第1金属ワイヤー及び前記第2金属ワイヤーと、前記基板の前記第1側辺と直交する第2側辺とが前記基板と平行な面内でなす角は30度以下である
請求項11に記載の変換体モジュールの製造方法。
The converter has a first electrode pad, the semiconductor substrate has a plurality of second electrode pads, the substrate has an electrode land,
The method of manufacturing the converter module further includes:
Bonding a first metal wire between the first electrode pad and one of the plurality of second electrode pads;
Bonding a second metal wire between one of the plurality of second electrode pads and the electrode land,
The angle formed by the first metal wire and the second metal wire and a second side perpendicular to the first side of the substrate in a plane parallel to the substrate is 30 degrees or less. The manufacturing method of the converter module of description.
前記変換体モジュールの製造方法は、さらに、
前記基板上に、前記変換体および前記半導体基板上に空隙を設けるように覆うシールドを形成する工程を備える
請求項11または12に記載の変換体モジュールの製造方法。
The method of manufacturing the converter module further includes:
The manufacturing method of the converter module of Claim 11 or 12 provided with the process of forming the shield which covers so that a space | gap may be provided on the said converter and the said semiconductor substrate on the said board | substrate.
前記シールドを形成する工程は、
前記基板表面の周辺に沿って前記変換体および前記半導体基板を囲むリブ設ける工程と、
前記リブ上に、前記基板と同じ材質のシールド板を接合する工程とを有する
請求項13に記載の変換体モジュールの製造方法。
The step of forming the shield includes
Providing a rib surrounding the converter and the semiconductor substrate along the periphery of the substrate surface;
The manufacturing method of the converter module of Claim 13 which has the process of joining the shield board of the same material as the said board | substrate on the said rib.
JP2010137770A 2010-06-16 2010-06-16 Converter module and method for manufacturing the same Pending JP2012004326A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010137770A JP2012004326A (en) 2010-06-16 2010-06-16 Converter module and method for manufacturing the same
PCT/JP2011/002726 WO2011158429A1 (en) 2010-06-16 2011-05-17 Converter module and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010137770A JP2012004326A (en) 2010-06-16 2010-06-16 Converter module and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2012004326A true JP2012004326A (en) 2012-01-05

Family

ID=45347847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010137770A Pending JP2012004326A (en) 2010-06-16 2010-06-16 Converter module and method for manufacturing the same

Country Status (2)

Country Link
JP (1) JP2012004326A (en)
WO (1) WO2011158429A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02109344A (en) * 1988-10-18 1990-04-23 Mitsubishi Electric Corp Semiconductor device
EP1722596A4 (en) * 2004-03-09 2009-11-11 Panasonic Corp Electret capacitor microphone
JP2007081614A (en) * 2005-09-13 2007-03-29 Star Micronics Co Ltd Condenser microphone
JP2009260928A (en) * 2008-03-28 2009-11-05 Panasonic Corp Sensor device and method for manufacturing the same
JP2010141870A (en) * 2008-11-17 2010-06-24 Panasonic Corp Silicon microphone module and method for manufacturing the same

Also Published As

Publication number Publication date
WO2011158429A1 (en) 2011-12-22

Similar Documents

Publication Publication Date Title
US7560811B2 (en) Semiconductor device
US8126166B2 (en) Condenser microphone and packaging method for the same
US7557417B2 (en) Module comprising a semiconductor chip comprising a movable element
US20050167855A1 (en) Resin-encapsulation semiconductor device and method for fabricating the same
JP2007180201A (en) Semiconductor device
KR101362398B1 (en) Semiconductor package and manufacturing method thereof
JP2011254267A (en) Microphone
WO2010113384A1 (en) Semiconductor device and manufacturing method therefor
JP2007174622A (en) Acoustic sensor
JP2010141870A (en) Silicon microphone module and method for manufacturing the same
JP2009038053A (en) Semiconductor sensor device
JP6580356B2 (en) Unidirectional MEMS microphone
JP4947238B2 (en) microphone
JP5004840B2 (en) Microphone element mounting substrate and microphone device
KR101953089B1 (en) Lead frame-based chip carrier used in the fabrication of mems transducer packages
JP2008136195A (en) Condenser microphone
JP4642634B2 (en) Manufacturing method of acoustic sensor
JP2007071821A (en) Semiconductor device
WO2011104784A1 (en) Converter module, and method for producing same
JP2009005077A (en) Semiconductor device and method of manufacturing the same
JP2008288327A (en) Semiconductor device, and manufacturing method thereof
JP2012004326A (en) Converter module and method for manufacturing the same
JP2007199049A (en) Semiconductor device
JP2011120097A (en) Microphone unit
JP2008118258A (en) Capacitor microphone