JP2012002469A - Heat accumulating device - Google Patents

Heat accumulating device Download PDF

Info

Publication number
JP2012002469A
JP2012002469A JP2010140167A JP2010140167A JP2012002469A JP 2012002469 A JP2012002469 A JP 2012002469A JP 2010140167 A JP2010140167 A JP 2010140167A JP 2010140167 A JP2010140167 A JP 2010140167A JP 2012002469 A JP2012002469 A JP 2012002469A
Authority
JP
Japan
Prior art keywords
heat storage
heat
storage material
light
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010140167A
Other languages
Japanese (ja)
Inventor
Hidenori Hosoi
秀紀 細井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Corp
Original Assignee
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Corp filed Critical Sanden Corp
Priority to JP2010140167A priority Critical patent/JP2012002469A/en
Publication of JP2012002469A publication Critical patent/JP2012002469A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/028Control arrangements therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To accurately determine that a heat accumulating material 1 is in a supercooled sate (latent heat accumulated state).SOLUTION: The heat accumulating material 1 has a supercooling property. When the heat accumulating material 1 is heated to a temperature of its melting point or higher to turn liquefied and is cooled in its liquid state to a temperature below the melting point, latent heat is accumulated in the heat accumulating material 1. A controller 5 determines that the heat accumulating material 1 is in a supercooled state when its temperature is the melting point or lower and light transmittance is equal to or higher than a given value (equivalent to a liquid state), based on a signal from a temperature sensor 6 and a signal from an optical sensor 7 (light projector 7a and light-receiver 7b). Under at least one condition that the heat accumulating material 1 is in the supercooled state, voltage is applied to a thermoelectric element 4 serving as a nucleating unit to cause nucleation, by which latent heat is released.

Description

本発明は、過冷却性を有する蓄熱材を用いた蓄熱装置に関するもので、特にその蓄熱材が過冷却状態にあるか否かを判別する技術に関する。   The present invention relates to a heat storage device using a heat storage material having supercoolability, and more particularly to a technique for determining whether or not the heat storage material is in a supercooled state.

蓄熱装置は、熱を保存し、再び取出すもので、相転移の潜熱を利用するものが知られている。具体的には、特許文献1や特許文献2に記載のように、過冷却性を有する蓄熱材を用い、これを融点以上に加熱して液体状態とした後、液体状態のまま融点以下に冷却(自然放冷)することで、潜熱を蓄熱させる。その後、過冷却状態の蓄熱材に活性化のための刺激を投入して、固相の核を生じさせること(発核)により、潜熱(凝固熱)を発生させる。発核手段としては、一般に熱電素子(ペルチェ素子)が用いられる。   A heat storage device is a device that stores heat and takes it out again, and uses a latent heat of phase transition. Specifically, as described in Patent Document 1 and Patent Document 2, a heat storage material having supercooling properties is used, and after heating this to a melting point or higher to form a liquid state, the liquid state is cooled to the melting point or lower. Latent heat is stored by natural cooling. Thereafter, activation heat is applied to the supercooled heat storage material to generate solid phase nuclei (nucleation), thereby generating latent heat (solidification heat). As the nucleation means, a thermoelectric element (Peltier element) is generally used.

特公平05−048799号公報Japanese Patent Publication No. 05-048799 特開2007−285549号公報JP 2007-285549 A

しかしながら、従来の蓄熱装置においては、過冷却性を有する潜熱蓄熱材が実際に過冷却状態にあるか否かを正確に知ることができなかった。このため、実際に蓄熱されているか否かによらず、発核手段である熱電素子へ電圧を印加することになり、場合によっては無駄に電気エネルギーを消費していた。
尚、特許文献2では、蓄熱材の中に温度センサを設けて、温度分布より蓄熱状態か否かを判定しているが、温度だけでは液相か固相かを判別できず、過冷却状態か否かを正確に判別することは難しい。
However, in the conventional heat storage device, it has not been possible to accurately know whether or not the latent heat storage material having supercoolability is actually in a supercooled state. For this reason, voltage is applied to the thermoelectric element as the nucleating means regardless of whether or not the heat is actually stored, and in some cases, electric energy is wasted.
In Patent Document 2, a temperature sensor is provided in the heat storage material, and it is determined whether or not the heat storage state is based on the temperature distribution. It is difficult to accurately determine whether or not.

本発明は、このような実状に鑑み、蓄熱材が過冷却状態(潜熱蓄熱状態)にあるか否かを確実に判別できるようにすることを課題とする。   This invention makes it a subject to make it possible to discriminate | determine reliably whether a thermal storage material exists in a supercooled state (latent-heat thermal storage state) in view of such an actual condition.

上記の課題を解決するために、本発明は、蓄熱材の温度を検出する温度センサと、蓄熱材の光線透過率を検出する光センサとを設け、温度センサと光センサからの信号に基づいて、過冷却状態を判別する構成とする。   In order to solve the above problems, the present invention provides a temperature sensor for detecting the temperature of the heat storage material and an optical sensor for detecting the light transmittance of the heat storage material, and based on the signals from the temperature sensor and the optical sensor. The supercooling state is determined.

本発明は、蓄熱材の温度と光線透過率とを検出することで、過冷却状態を精度良く判別することができる。すなわち、過冷却状態では、温度が融点より低く、液体状態である。固体状態か液体状態かは、光線透過率から判別できる(光線透過率が所定値以上であれば液体状態と判別できる)。よって、温度センサと光センサとを用い、温度と光線透過率とを検出することで、これらから過冷却状態を的確に判別できるのである。   The present invention can accurately determine the supercooled state by detecting the temperature and light transmittance of the heat storage material. That is, in the supercooled state, the temperature is lower than the melting point and the liquid state. Whether it is a solid state or a liquid state can be determined from the light transmittance (if the light transmittance is a predetermined value or more, it can be determined as a liquid state). Therefore, by using the temperature sensor and the optical sensor and detecting the temperature and the light transmittance, the supercooling state can be accurately determined from these.

従って、本発明によれば、蓄熱材の過冷却状態を精度良く判別して、発核手段の作動を適正化することができる。   Therefore, according to the present invention, it is possible to accurately determine the supercooled state of the heat storage material and to optimize the operation of the nucleation means.

本発明の第1実施形態を示す蓄熱装置のシステム図System diagram of a heat storage device showing the first embodiment of the present invention 過冷却性蓄熱材の特性図Characteristics chart of supercooling heat storage material 過冷却判定ルーチンのフローチャートFlow chart of supercooling determination routine 発核制御ルーチンのフローチャートFlow chart of nucleation control routine 本発明の第2実施形態を示す蓄熱装置のシステム図System diagram of heat storage device showing second embodiment of the present invention 本発明の第3実施形態を示す蓄熱装置のシステム図System diagram of heat storage device showing third embodiment of the present invention 本発明の第4実施形態を示す蓄熱装置のシステム図System diagram of heat storage device showing fourth embodiment of the present invention 本発明の第5実施形態を示す蓄熱装置のシステム図System diagram of heat storage device showing fifth embodiment of the present invention 光センサ(投光部・受光部)の配置例1を示す図The figure which shows the example 1 of arrangement | positioning of an optical sensor (light projection part / light-receiving part) 光センサ(投光部・受光部)の配置例2を示す図The figure which shows the example 2 of arrangement | positioning of an optical sensor (light projection part / light-receiving part) 光センサ(投光部・受光部)の配置例3を示す図The figure which shows the example 3 of arrangement | positioning of an optical sensor (light projection part / light-receiving part) 光センサ(投光部・受光部)の配置例4を示す図The figure which shows the example 4 of arrangement | positioning of an optical sensor (light projection part / light-receiving part) 光センサ(投光部・受光部)の配置例5を示す図The figure which shows the example 5 of arrangement | positioning of an optical sensor (light projection part / light-receiving part) 光センサ(投光部・受光部)の配置例6を示す図The figure which shows the example 6 of arrangement | positioning of an optical sensor (light projection part / light-receiving part)

以下、本発明の実施の形態について、詳細に説明する。
図1は本発明の第1実施形態を示す蓄熱装置のシステム図である。
蓄熱材1は、過冷却性を有する潜熱蓄熱材であり、例えば、酢酸ナトリウム三水和物、硫酸ナトリウム10水和物等の含水塩と、この含水塩の担持体、例えばキサンタンガム、グアルガム、いなご豆ガム等の親水性多糖類、又は澱粉、ポリアクリル酸等の濃化剤よりなり、収納容器内に封入されている。
Hereinafter, embodiments of the present invention will be described in detail.
FIG. 1 is a system diagram of a heat storage device showing a first embodiment of the present invention.
The heat storage material 1 is a latent heat storage material having supercooling properties. For example, a hydrate salt such as sodium acetate trihydrate or sodium sulfate decahydrate, and a carrier of the hydrate salt, such as xanthan gum, guar gum, locust, etc. It consists of hydrophilic polysaccharides such as bean gum, or thickeners such as starch and polyacrylic acid, and is enclosed in a storage container.

この過冷却性蓄熱材1は、融点が例えば50〜60℃であり、融点以上に加熱して液体状態とした後、融点以下に自然冷却すると、液体状態のまま過冷却状態となり、潜熱が蓄熱される。そして、過冷却状態の蓄熱材1に対し、活性化のための刺激(局所的冷却など)を与えて固相の核を生じさせる発核を行うことにより、過冷却状態が解除され、このときに蓄熱されていた潜熱を放出させることができる。   The supercooling heat storage material 1 has a melting point of, for example, 50 to 60 ° C., and is heated to a temperature equal to or higher than the melting point to be in a liquid state. Is done. Then, the supercooled state is released by applying a stimulus for activation (local cooling or the like) to the supercooled heat storage material 1 to generate solid phase nuclei. The latent heat stored in can be released.

蓄熱材1に対しては、熱交換可能に、入熱用の加熱回路(加熱手段)2と、出熱用の放熱回路(放熱手段)3とが設けられる。
加熱回路2は、外部熱源に熱的に接して設けた集熱用熱交換器11と、蓄熱材1の中に設けた入熱用熱交換器12との間で、熱媒体を循環させるもので、循環路には、ポンプ13と、流量制御弁14とが備えられる。
The heat storage material 1 is provided with a heating circuit (heating means) 2 for heat input and a heat radiation circuit (heat radiation means) 3 for heat output so that heat exchange is possible.
The heating circuit 2 circulates a heat medium between a heat collecting heat exchanger 11 provided in thermal contact with an external heat source and a heat input heat exchanger 12 provided in the heat storage material 1. In the circulation path, a pump 13 and a flow control valve 14 are provided.

放熱回路3は、蓄熱材1の中に設けた集熱用熱交換器21と、熱を必要とする部位に設けた放熱用熱交換器22との間で、熱媒体を循環させるもので、循環路には、ポンプ23と、流量制御弁24とが備えられる。
蓄熱材1の中には、発核手段として、1〜複数の熱電素子(ペルチェ素子)4が設けられ、熱電素子4の作動は外部のコントローラ5によりなされる。
The heat radiating circuit 3 circulates a heat medium between a heat collecting heat exchanger 21 provided in the heat storage material 1 and a heat radiating heat exchanger 22 provided in a portion requiring heat. The circulation path is provided with a pump 23 and a flow rate control valve 24.
In the heat storage material 1, one to a plurality of thermoelectric elements (Peltier elements) 4 are provided as nucleation means, and the operation of the thermoelectric elements 4 is performed by an external controller 5.

そして、前記熱電素子4による発核の制御のため、蓄熱材1の中に、温度センサ6と、光センサ7とが設けられ、これらの信号はコントローラ5に入力される。
温度センサ6は、蓄熱材1の温度を検出するもので、少なくとも、蓄熱材1の温度が融点より高いか低いかを検出できるものであればよい。
光センサ7は、蓄熱材1の光線透過率を検出する。具体的には、蓄熱材1を介して相対させた投光部7aと受光部7bとを含んで構成され、投光部7aの投光量(一定)に対する受光部7bの受光量の割合より、光線透過率を検出する。尚、投光量を一定とすれば、受光量のレベルから、光線透過率を検出することができる。
In order to control nucleation by the thermoelectric element 4, a temperature sensor 6 and an optical sensor 7 are provided in the heat storage material 1, and these signals are input to the controller 5.
The temperature sensor 6 detects the temperature of the heat storage material 1 and may be any sensor that can detect at least whether the temperature of the heat storage material 1 is higher or lower than the melting point.
The optical sensor 7 detects the light transmittance of the heat storage material 1. Specifically, it is configured to include a light projecting unit 7a and a light receiving unit 7b that are opposed to each other via the heat storage material 1, and from the ratio of the amount of light received by the light receiving unit 7b to the light projection amount (constant) of the light projecting unit 7a, The light transmittance is detected. If the light projection amount is constant, the light transmittance can be detected from the level of the amount of received light.

図2は、過冷却性蓄熱材と非過冷却性蓄熱材とについて、蓄熱材温度と光線透過率との関係を計測した例を示している。
非過冷却性蓄熱材の場合は、融点以上での液体状態から融点以下の固体状態となることで、光線透過率が低下する。
過冷却性蓄熱材の場合は、融点以下となっても、過冷却性により液体状態が保持されることから、光線透過率は高く維持され、過冷却限界温度以下となって固体状態となることで、光線低下率が低下する。
FIG. 2 shows an example in which the relationship between the heat storage material temperature and the light transmittance is measured for the supercooling heat storage material and the non-supercooling heat storage material.
In the case of a non-supercooling heat storage material, the light transmittance is lowered by changing from a liquid state above the melting point to a solid state below the melting point.
In the case of a supercooling heat storage material, even if it is below the melting point, the liquid state is maintained due to the supercooling property, so the light transmittance is maintained high, and the solid state becomes below the supercooling limit temperature. Thus, the light beam reduction rate is reduced.

従って、光線透過率が所定値以上であれば、液体状態と判定でき、また、温度が融点より低温で光線透過率が所定値以上であれば、過冷却状態(潜熱蓄熱状態)であると判定できる。尚、ここでいう所定値とは、固体状態での光線透過率と液体状態での光線透過率との間に設定したしきい値である。
次に作用を説明する。
Therefore, if the light transmittance is equal to or higher than the predetermined value, it can be determined as a liquid state, and if the temperature is lower than the melting point and the light transmittance is equal to or higher than the predetermined value, it is determined as being in a supercooled state (latent heat storage state). it can. Here, the predetermined value is a threshold value set between the light transmittance in the solid state and the light transmittance in the liquid state.
Next, the operation will be described.

外部熱源の熱発生時に、加熱回路2(ポンプ13)の運転により、すなわち、外部熱源に熱的に接して設けた集熱用熱交換器11により集熱し、入熱用熱交換器12を介して、蓄熱材1を融点以上に加熱する。このとき、蓄熱材1は融点以上に加熱されることで、液体状態となり、再生される。
再生後、加熱回路2の運転を停止して、自然放冷により、蓄熱材1を融点以下に冷却し、その過冷却性を利用して、液体状態のまま過冷却状態とする。これにより、蓄熱材1に潜熱が蓄熱される。
When heat is generated by the external heat source, heat is collected by the operation of the heating circuit 2 (pump 13), that is, by the heat collecting heat exchanger 11 provided in thermal contact with the external heat source, and is passed through the heat input heat exchanger 12. Then, the heat storage material 1 is heated to the melting point or higher. At this time, the heat storage material 1 is heated to the melting point or higher to be in a liquid state and regenerated.
After the regeneration, the operation of the heating circuit 2 is stopped, and the heat storage material 1 is cooled to the melting point or lower by natural cooling, and the supercooling state is maintained in the liquid state by utilizing the supercooling property. Thereby, latent heat is stored in the heat storage material 1.

その後、蓄熱材1に蓄熱された熱を利用しようとする時は、温度センサ6と光センサ7の信号をコントローラ5に読込む。
コントローラ5は、温度センサ6により検出される蓄熱材1の温度が融点よりも低温で、かつ、光センサ7により検出される蓄熱材1の光線透過率が所定値以上であるときに、過冷却状態(潜熱蓄熱状態)と判別して、発核手段としての熱電素子4を作動させる。
Thereafter, when the heat stored in the heat storage material 1 is to be used, the signals of the temperature sensor 6 and the optical sensor 7 are read into the controller 5.
When the temperature of the heat storage material 1 detected by the temperature sensor 6 is lower than the melting point and the light transmittance of the heat storage material 1 detected by the optical sensor 7 is equal to or higher than a predetermined value, the controller 5 It discriminate | determines from a state (latent heat thermal storage state), and the thermoelectric element 4 as a nucleation means is operated.

図3はコントローラ5により実行される過冷却判定ルーチンのフローチャートである。
S1では、温度センサ6の信号(蓄熱材1の温度)を読込む。そして、S2で、蓄熱材1の温度が融点よりも低温か否かを判定する。この判定でYESの場合は、S3へ進む。
S3では、光センサ7の信号(蓄熱材1の光線透過率)を読込む。そして、S4で、光線透過率が所定値より高いか否か、すなわち液体状態であるか否かを判定する。この判定でYESの場合は、S5へ進む。
FIG. 3 is a flowchart of a supercooling determination routine executed by the controller 5.
In S1, the signal of the temperature sensor 6 (the temperature of the heat storage material 1) is read. In S2, it is determined whether or not the temperature of the heat storage material 1 is lower than the melting point. If this determination is YES, the process proceeds to S3.
In S3, the signal of the optical sensor 7 (light transmittance of the heat storage material 1) is read. In S4, it is determined whether or not the light transmittance is higher than a predetermined value, that is, whether or not it is in a liquid state. If this determination is YES, the process proceeds to S5.

すなわち、蓄熱材1の温度が融点よりも低く、光線透過率が所定値以上の場合は、S5へ進み、融点以下の液体状態、すなわち過冷却状態と判定して、フラグFSをセットする(FS=1)。
これに対し、蓄熱材1の温度が融点以上の場合(S2の判定でNOの場合)、又は、蓄熱材1の光線透過率が所定値未満で蓄熱材1が固体状態の場合(S4の判定でNOの場合)は、S6へ進み、過冷却状態ではないと判定して、フラグFSをリセットする(FS=0)。
That is, when the temperature of the heat storage material 1 is lower than the melting point and the light transmittance is equal to or higher than the predetermined value, the process proceeds to S5, and it is determined that the liquid state is lower than the melting point, that is, the supercooled state, and the flag FS is set (FS = 1).
In contrast, when the temperature of the heat storage material 1 is equal to or higher than the melting point (NO in the determination of S2) or when the light transmittance of the heat storage material 1 is less than a predetermined value and the heat storage material 1 is in a solid state (determination of S4) If NO, the process proceeds to S6, where it is determined that the state is not the supercooling state, and the flag FS is reset (FS = 0).

図4はコントローラ5により実行される発核制御ルーチンのフローチャートである。
S11では、放熱要求(蓄熱材1に蓄熱されている熱の利用要求)があるか否かを判定し、放熱要求ありのときは、S12へ進む。
S12では、蓄熱材1が過冷却状態(潜熱蓄熱状態)であるか否かを前記フラグFSの値に基づいて判定し、過冷却状態(FS=1)のときに、S13へ進む。
FIG. 4 is a flowchart of a nucleation control routine executed by the controller 5.
In S11, it is determined whether or not there is a heat release request (a request to use heat stored in the heat storage material 1). If there is a heat release request, the process proceeds to S12.
In S12, it is determined based on the value of the flag FS whether or not the heat storage material 1 is in a supercooled state (latent heat heat storage state). When the heat storage material 1 is in a supercooled state (FS = 1), the process proceeds to S13.

S13では、発核手段としての熱電素子4を作動させる(具体的には熱電素子4に電圧を印加する)。尚、S11又はS12の判定でNOの場合は、発核手段を作動させることなく、本ルーチンを終了する。
発核手段としての熱電素子4を作動させた場合、すなわち熱電素子4に電圧を印加すると、蓄熱材1が局所的に冷却され、局所的に過冷却限界温度に達する結果、発核を生じて凝固が開始される。これにより相変化に伴って潜熱(凝固熱)を発生する。
In S13, the thermoelectric element 4 as a nucleation means is operated (specifically, a voltage is applied to the thermoelectric element 4). If the determination in S11 or S12 is NO, this routine is terminated without operating the nucleation means.
When the thermoelectric element 4 as the nucleation means is operated, that is, when a voltage is applied to the thermoelectric element 4, the heat storage material 1 is locally cooled and reaches the supercooling limit temperature locally, resulting in nucleation. Solidification begins. Thereby, latent heat (heat of solidification) is generated along with the phase change.

発生した潜熱は、放熱回路3(ポンプ23)の運転により、すなわち、集熱用熱交換器21により回収され、放熱用熱交換器22を介して、熱を必要とする部位に供給される。
具体的な熱の回収・利用の態様としては、例えば自動車の例では、通常運転時に、そのエンジン(内燃機関)、モータ、燃料電池などの廃熱を熱源として用い、従来廃棄していた熱を回収して蓄熱する。そして、例えば始動時など、所望の時点で、その熱を取出して利用し、省動力・省エネルギーを図る。熱の利用箇所としては、エンジン、モータ、燃料電池などの暖機、車室の暖房(シートの暖め等を含む)、窓のデフロスト、空調用可変容量圧縮機のクランク室内液冷媒の暖めなどを挙げることができる。
The generated latent heat is recovered by the operation of the heat radiating circuit 3 (pump 23), that is, by the heat collecting heat exchanger 21, and is supplied to the portion requiring heat through the heat radiating heat exchanger 22.
As a specific heat recovery / utilization mode, for example, in the case of an automobile, waste heat from the engine (internal combustion engine), motor, fuel cell, etc. is used as a heat source during normal operation, and heat that has been discarded in the past is used. Collect and store heat. The heat is taken out and used at a desired point in time, for example, at the time of start-up, thereby saving power and energy. Use points of heat include warming up of engines, motors, fuel cells, etc., heating of passenger compartments (including heating of seats), defrosting of windows, warming of refrigerant in the crank chamber of variable capacity compressors for air conditioning, etc. Can be mentioned.

尚、発核手段としては、熱電素子(ペルチェ素子)4を用いることで、搭載性が良く、繰り返し使用できる等の利点があるが、この他、機械的刺激を与える衝撃発生素子などを用いることもできる。
次に本発明の他の実施形態について説明する。
図5は本発明の第2実施形態を示す蓄熱装置のシステム図である。
As a nucleation means, the use of a thermoelectric element (Peltier element) 4 has advantages such as good mountability and repeated use, but in addition, an impact generating element that gives mechanical stimulation is used. You can also.
Next, another embodiment of the present invention will be described.
FIG. 5 is a system diagram of a heat storage device showing a second embodiment of the present invention.

図5の実施形態では、放熱手段として、放熱回路3に代えて、送風機25を設けてあり、発核手段の作動により潜熱を発生させた場合、コントローラ5により、送風機25を作動させて、熱を必要とする部位に温風を送風するようにしたものである。これにより、蓄熱材1の中に放熱手段を設ける必要がなくなり、構成を簡素化できる。また、送風機25の制御のため、蓄熱材1の出熱側に温度センサ8を設けて、放熱可能な温度になっているか否かを判定できるようにしている。   In the embodiment of FIG. 5, a fan 25 is provided as a heat dissipating means instead of the heat dissipating circuit 3, and when the latent heat is generated by the operation of the nucleating means, the fan 25 is operated by the controller 5 to generate heat. The warm air is blown to the part that needs to be used. Thereby, it becomes unnecessary to provide a heat radiating means in the heat storage material 1, and a structure can be simplified. Further, for the control of the blower 25, a temperature sensor 8 is provided on the heat output side of the heat storage material 1 so that it can be determined whether or not the temperature is at a level where heat can be radiated.

図6は本発明の第3実施形態を示す蓄熱装置のシステム図である。
図6の実施形態では、加熱手段としての加熱回路2の入熱用熱交換器12を、蓄熱材1の中ではなく、蓄熱材1の外に、熱的に接して設けている。これにより、蓄熱材1の中に加熱手段を設ける必要がなくなり、構成を簡素化できる。また、放熱手段の送風機25化と併せて実施することで、蓄熱材1の内部構成を大幅に簡素化できる。
FIG. 6 is a system diagram of a heat storage device showing a third embodiment of the present invention.
In the embodiment of FIG. 6, the heat input heat exchanger 12 of the heating circuit 2 as the heating means is provided not in the heat storage material 1 but outside the heat storage material 1 in thermal contact. Thereby, it becomes unnecessary to provide a heating means in the heat storage material 1, and a structure can be simplified. Moreover, the internal structure of the heat storage material 1 can be greatly simplified by implementing together with the fan 25 of a heat radiating means.

図7は本発明の第4実施形態を示す蓄熱装置のシステム図である。
図7の実施形態では、加熱手段としての加熱回路2を既設の熱循環回路2’に付加する形で設けている。
既設の熱循環回路2’は、外部熱源に熱的に接して設けた集熱用熱交換器11と、熱を必要とする部位に設けた出熱用熱交換器15との間で熱媒体を循環させるもので、循環路には、ポンプ13と、流量制御弁14とが備えられる。尚、出熱用熱交換器15は、例えば車両用空調装置、補機加温装置として用いられる。
FIG. 7 is a system diagram of a heat storage device showing a fourth embodiment of the present invention.
In the embodiment of FIG. 7, the heating circuit 2 as a heating means is provided in a form added to the existing heat circulation circuit 2 ′.
The existing heat circulation circuit 2 ′ is a heat medium between a heat collecting heat exchanger 11 provided in thermal contact with an external heat source and a heat output heat exchanger 15 provided in a portion requiring heat. The circulation path is provided with a pump 13 and a flow rate control valve 14. The heat output heat exchanger 15 is used as, for example, a vehicle air conditioner or an auxiliary machine heating device.

この熱循環回路2’に対し、四方弁16を介して、加熱回路2、具体的には、蓄熱材1の中に(あるいは熱的に接して)設けた入熱用熱交換器12を接続することで、蓄熱材1に対する加熱手段を構成している。
四方弁15は、コントローラ5により図示Aの状態と図示Bの状態とに切換えられ、図示Aの状態では、熱循環回路2’と加熱回路2とが直列に接続され、図示Bの状態では、熱循環回路2’と加熱回路2とが切離される。
A heat input heat exchanger 12 provided in (or in thermal contact with) the heating circuit 2, specifically, the heat storage material 1 is connected to the heat circulation circuit 2 ′ via the four-way valve 16. By doing so, a heating means for the heat storage material 1 is configured.
The four-way valve 15 is switched between the state shown in FIG. A and the state shown in FIG. B by the controller 5, and in the state shown in FIG. A, the heat circulation circuit 2 ′ and the heating circuit 2 are connected in series, and in the state shown in FIG. The heat circulation circuit 2 ′ and the heating circuit 2 are disconnected.

従って、蓄熱材1を融点以上に加熱するときに、コントローラ5により四方弁15を図示Aの状態に切換えることで、外部熱源に熱的に接して設けた集熱用熱交換器11にて集熱した熱媒体がポンプ13により四方弁16を介して入熱用熱交換器12へ流れ、その熱を蓄熱材1に与えることができる。これ以外のときは、四方弁15を図示Bの状態に切換えることで、加熱回路2の運転を停止することができる。   Accordingly, when the heat storage material 1 is heated to the melting point or higher, the controller 5 switches the four-way valve 15 to the state shown in FIG. A so that the heat collecting material is collected by the heat collecting heat exchanger 11 provided in thermal contact with the external heat source. The heated heat medium flows to the heat input heat exchanger 12 through the four-way valve 16 by the pump 13, and the heat can be given to the heat storage material 1. In other cases, the operation of the heating circuit 2 can be stopped by switching the four-way valve 15 to the state shown in FIG.

図8は本発明の第5実施形態を示す蓄熱装置のシステム図である。
図8の実施形態では、蓄熱材1の光線透過率の検出のため、複数の光センサを設けている。すなわち、光センサ7(投光部7a及び受光部7b)とは別に、異なる配設位置、異なる対向距離で、別の光センサ7’(投光部7a’及び受光部7b’)を設けることで、蓄熱材1が収納容器内部で過冷却状態と過冷却破壊状態とが混在していても、蓄熱材1の各部の光線透過率をより精度良く検出でき、より的確に蓄熱材1の状態を判別することができる。
FIG. 8 is a system diagram of a heat storage device showing a fifth embodiment of the present invention.
In the embodiment of FIG. 8, a plurality of optical sensors are provided for detecting the light transmittance of the heat storage material 1. That is, apart from the optical sensor 7 (light projecting unit 7a and light receiving unit 7b), another optical sensor 7 ′ (light projecting unit 7a ′ and light receiving unit 7b ′) is provided at a different arrangement position and a different facing distance. Thus, even if the heat storage material 1 is in a supercooled state and a subcooled destruction state inside the storage container, the light transmittance of each part of the heat storage material 1 can be detected with higher accuracy, and the state of the heat storage material 1 can be more accurately detected. Can be determined.

次に光センサ(投光部・受光部)の配置例について説明する。
図9は光センサの配置例1を示している。この例では、光センサ7の投光部7a及び受光部7b(投光面及び受光面)を、蓄熱材1の収納容器30の互いに対向する外壁にそれぞれ固定して、相対させてある。この場合、収納容器30は容器全体が光線透過性材料であってもよいし、光路のみが光線透過性材料で、他の部位は光線不透過材料であってもよい。本構成によれば、光センサは蓄熱材と直接接しないため、光センサは蓄熱材による腐食や溶解作用を受けないため、低廉な材料構成にすることができる。
Next, an arrangement example of the optical sensor (light projecting unit / light receiving unit) will be described.
FIG. 9 shows an arrangement example 1 of the optical sensor. In this example, the light projecting portion 7 a and the light receiving portion 7 b (light projecting surface and light receiving surface) of the optical sensor 7 are fixed to and opposed to the mutually facing outer walls of the storage container 30 of the heat storage material 1. In this case, the entire storage container 30 may be a light transmissive material, or only the light path may be a light transmissive material, and the other part may be a light opaque material. According to this configuration, since the optical sensor is not in direct contact with the heat storage material, the optical sensor is not subjected to corrosion or dissolution action by the heat storage material, so that an inexpensive material configuration can be achieved.

図10は光センサの配置例2を示している。この例では、光センサ7の投光部7a及び受光部7bを、蓄熱材1の収納容器30の互いに対向する外壁に設けた凹部にそれぞれ嵌合固定して、相対させてある。この場合も、収納容器30は容器全体が光線透過性材料であってもよいし、光路のみが光線透過性材料で、他の部位は光線不透過材料であってもよい。本構成によれば、光センサを収納容器に固定するための特別な部品が不要となり、システムとして低廉にすることができる。   FIG. 10 shows an arrangement example 2 of the optical sensor. In this example, the light projecting portion 7 a and the light receiving portion 7 b of the optical sensor 7 are fitted and fixed to the concave portions provided on the opposing outer walls of the storage container 30 of the heat storage material 1, respectively, and are opposed to each other. Also in this case, the entire container 30 may be a light transmissive material, or only the light path may be a light transmissive material, and the other part may be a light opaque material. According to this configuration, a special part for fixing the optical sensor to the storage container is not required, and the system can be made inexpensive.

図11は光センサの配置例3を示している。この例では、光センサ7の投光部7a及び受光部7bを、蓄熱材1の収納容器30の互いに対向する外壁に設けた貫通孔にそれぞれ嵌合固定し、投光部7a及び受光部7b(投光面及び受光面)を収納容器30の内壁面と面一にして相対させてある。この場合、収納容器30は光線不透過材料であってもよい。
図12は光センサの配置例4を示している。この例では、光センサ7の投光部7a及び受光部7bを、蓄熱材1の収納容器30の互いに対向する外壁に設けた貫通孔にそれぞれ嵌合固定し、投光部7a及び受光部7b(投光面及び受光面)を収納容器30の内壁面より内側に突入させて相対させてある。この場合も、収納容器30は光線不透過材料であってもよい。
FIG. 11 shows an arrangement example 3 of the optical sensor. In this example, the light projecting unit 7a and the light receiving unit 7b of the optical sensor 7 are fitted and fixed to through holes provided in the opposing outer walls of the storage container 30 of the heat storage material 1, respectively, and the light projecting unit 7a and the light receiving unit 7b. The (light projecting surface and light receiving surface) are flush with the inner wall surface of the storage container 30 and are made to face each other. In this case, the storage container 30 may be a light opaque material.
FIG. 12 shows an arrangement example 4 of the optical sensor. In this example, the light projecting unit 7a and the light receiving unit 7b of the optical sensor 7 are fitted and fixed to through holes provided in the opposing outer walls of the storage container 30 of the heat storage material 1, respectively, and the light projecting unit 7a and the light receiving unit 7b. The (light projecting surface and light receiving surface) are protruded inward from the inner wall surface of the storage container 30 to be opposed to each other. Also in this case, the storage container 30 may be a light opaque material.

図13は光センサの配置例5を示している。この例では、光センサの投光部7a及び受光部7bを、蓄熱材1の収納容器30の中に配置して相対させてある。この場合も、収納容器30は光線不透過材料であってもよい。配置例3〜5によれば、収納容器を光線不透過材料とすることが可能であるので、蓄熱材が外部の熱により劣化するのを防ぐことができ、蓄熱装置の長期稼働信頼性を向上することができる。   FIG. 13 shows an arrangement example 5 of the optical sensor. In this example, the light projecting unit 7 a and the light receiving unit 7 b of the optical sensor are disposed in the storage container 30 of the heat storage material 1 and are opposed to each other. Also in this case, the storage container 30 may be a light opaque material. According to the arrangement examples 3 to 5, since the storage container can be made of a light opaque material, the heat storage material can be prevented from being deteriorated by external heat, and the long-term operation reliability of the heat storage device is improved. can do.

尚、図9〜図13では投光部7aと受光部7bとは対称に配置したが、対称にする必要はなく、投光部7aを図9〜図13のいずれかの態様とし、受光部7bを図9〜図13のいずれかの態様とするなど、適宜組み合わせてを採用してもよい。
図14は光センサの配置例6を示している。光センサ7の投光部7aから受光部7bへの光路の途中に、入射光の一部を反射し、一部を透過するビームスプリッター(ハーフミラー)40を設け、その反射光路上にもう1つの受光部7b’を配置したものである。このようにすることで、投光部7aは共通にして、受光部7b、7b’のみ複数化し、蓄熱材1の各部の光線透過率を検出することで、判別精度を向上させることができる。尚、投光部7a及び受光部7b、7b’の取付方法は図9〜図13のいずれの態様であってもよい。
9 to 13, the light projecting unit 7 a and the light receiving unit 7 b are arranged symmetrically. However, the light projecting unit 7 a may be any one of the modes shown in FIGS. 9 to 13. 7b may be combined as appropriate, such as any one of FIGS.
FIG. 14 shows an arrangement example 6 of the optical sensor. A beam splitter (half mirror) 40 that reflects part of the incident light and transmits part of it is provided in the middle of the optical path from the light projecting part 7 a to the light receiving part 7 b of the optical sensor 7. Two light receiving portions 7b 'are arranged. By doing in this way, the light projection part 7a is made common, and only light-receiving part 7b, 7b 'is made plural, and the light transmittance of each part of the thermal storage material 1 is detected, and discrimination | determination precision can be improved. Note that the light projecting portion 7a and the light receiving portions 7b and 7b ′ may be attached in any manner shown in FIGS.

以上の実施形態によれば、下記のように、(1)効率的な採熱の実行、(2)効率的な蓄熱の実行、(3)蓄熱材を含む蓄熱装置の寿命向上、という効果が得られる。
(1)効率的な採熱の実行
(1−1)発核のためのエネルギー消費の効率化
過冷却性蓄熱材1が過冷却状態である場合にのみ、発核手段を動作させればよく、蓄熱装置としてのエネルギー効率の向上、すなわち、消費動力や消費電力の低減による効率化が可能となる。
According to the above embodiment, as described below, there are effects of (1) execution of efficient heat collection, (2) execution of efficient heat storage, and (3) improvement of the life of the heat storage device including the heat storage material. can get.
(1) Execution of efficient heat collection (1-1) Efficiency improvement of energy consumption for nucleation It is sufficient to operate the nucleation means only when the supercooling heat storage material 1 is in a supercooled state. As a result, the energy efficiency of the heat storage device can be improved, that is, the efficiency can be improved by reducing the power consumption and power consumption.

(1−2)採熱の信頼性の向上
蓄熱材1が潜熱を保有している過冷却状態であることが明確にできるので、採熱する精度が向上し、採熱の信頼性が向上する。すなわち、採熱したい際に過冷却性蓄熱材1が潜熱を有しているのか否かが判定できるため、採熱可否の判定精度が格段に向上する。つまり、過冷却性蓄熱材1を有する蓄熱装置を用い、例えば自動車において、採熱により窓の除霜や結露面の乾燥や車室内の除湿を行おうとする場合、採熱可否が確実に判定できるため、自動車の乗員の快適性や運転安全性が大幅に改善されるのである。さらに、本実施形態を基本とし、必要熱量に対し、蓄熱材1の潜熱量と同顕熱量と蓄熱材収納容器30の熱容量とから、発核させ採熱させるか否かを判断し制御してもよい。
(1-2) Improvement of reliability of heat collection Since it is possible to clarify that the heat storage material 1 is in a supercooled state in which latent heat is retained, the accuracy of heat collection is improved and the reliability of heat collection is improved. . That is, when it is desired to collect heat, it can be determined whether or not the supercoolable heat storage material 1 has latent heat, so that the accuracy of determining whether heat can be collected is significantly improved. That is, when a heat storage device having the supercooling heat storage material 1 is used and, for example, in an automobile, when defrosting a window, drying a dew condensation surface, or dehumidifying a vehicle interior by heat collection, it is possible to reliably determine whether heat collection is possible. Therefore, the comfort and driving safety of the vehicle occupants are greatly improved. Furthermore, based on the present embodiment, it is determined whether or not to nucleate and collect heat from the latent heat amount and the sensible heat amount of the heat storage material 1 and the heat capacity of the heat storage material storage container 30 with respect to the required heat amount. Also good.

(2)効率的な蓄熱の実行
加熱熱融解した蓄熱材1は、過冷却状態を保持していれば蓄熱のための再加熱は必要ないが、過冷却状態が破壊された場合、すなわち、相変化が生じた場合かつ蓄熱が必要な際は加熱しなくてはならない。蓄熱装置内の蓄熱材1の温度が凝固温度以下であるが、相変化過冷却状態であるか否かが不明の場合は蓄熱材1への蓄熱のために再加熱を行わねばならず、蓄熱材が過冷却状態であった場合、潜熱蓄熱が不能な状態の蓄熱材を加熱するという、蓄熱効率の極めて劣る行為をせねばならなかった。この点、本実施形態によれば、過冷却性蓄熱材1が蓄熱可能な状態か否かが判定できるため、蓄熱是非の判定精度が格段に向上する。
(2) Execution of efficient heat storage The heat storage material 1 that has been heated and melted does not need to be reheated for heat storage as long as the supercooled state is maintained, but when the supercooled state is destroyed, When changes occur and heat storage is required, it must be heated. If the temperature of the heat storage material 1 in the heat storage device is equal to or lower than the solidification temperature, but it is unclear whether or not it is in a phase change supercooled state, reheating must be performed to store heat in the heat storage material 1, and heat storage When the material was in a supercooled state, the heat storage material in a state where latent heat storage was impossible was heated, and an action with extremely inferior heat storage efficiency had to be performed. In this regard, according to the present embodiment, since it can be determined whether or not the supercoolable heat storage material 1 is in a state capable of storing heat, the accuracy of determining whether or not to store heat is remarkably improved.

(3)蓄熱材を含む蓄熱装置の寿命向上
過冷却性蓄熱材1からの採熱時に、発核手段である熱電素子4への通電による近傍の過冷却性蓄熱材1の局所的冷却(あるいは加熱)や、機械的刺激としての衝撃発生素子への電力や動力の入力回数を、必要最低限にすることができる。このことは発核手段の過剰な耐久性保有のための高級材料の使用やメンテナンス頻度の短縮化といった、好ましからざる事態を防ぐことが可能である。加えて、過冷却性蓄熱材1の無駄な加熱時間の排除を行うことで、過冷却性蓄熱材1の熱劣化や酸化劣化を防止することが可能である。蓄熱材1の長期加熱または局所加熱は、熱による蓄熱材組成の不可逆変化や変質、収納容器30内の微量な酸素や水蒸気等との化学反応による劣化反応物として酸性物質の生成や腐食生成物の発生が生ずる可能性がある。従って、本実施形態によれば、過冷却性蓄熱材1を過剰に蓄熱することが防げるため、高い腐食性を有する高級、すなわち、高価な容器材料や伝熱材料を使用しなくてよく、著しいコスト増なしに採熱することが可能になる。
(3) Improving the life of a heat storage device including a heat storage material When collecting heat from the supercooling heat storage material 1, local cooling of the nearby supercooling heat storage material 1 by energizing the thermoelectric element 4 as a nucleation means (or Heating) and the number of times power and power are input to the impact generating element as a mechanical stimulus can be minimized. This can prevent undesired situations such as the use of high-grade materials for maintaining the durability of the nucleation means and the shortening of the maintenance frequency. In addition, by eliminating useless heating time of the supercooling heat storage material 1, it is possible to prevent thermal deterioration and oxidation deterioration of the supercooling heat storage material 1. Long-term heating or local heating of the heat storage material 1 is caused by irreversible changes or alterations in the composition of the heat storage material due to heat, generation of acidic substances or corrosion products as degradation reaction products due to chemical reactions with trace amounts of oxygen, water vapor, etc. in the storage container 30 May occur. Therefore, according to this embodiment, since it is possible to prevent the supercoolable heat storage material 1 from storing excessively, it is not necessary to use a high-corrosive high-grade, that is, expensive container material or heat transfer material. Heat can be collected without increasing the cost.

尚、図示の実施形態はあくまで本発明を例示するものであり、本発明は、説明した実施形態により直接的に示されるものに加え、特許請求の範囲内で当業者によりなされる各種の改良・変更を包含するものであることは言うまでもない。   The illustrated embodiments are merely examples of the present invention, and the present invention is not limited to those directly described by the described embodiments, and various improvements and modifications made by those skilled in the art within the scope of the claims. Needless to say, it encompasses changes.

1 蓄熱材
2 加熱回路
3 放熱回路
4 発核手段(熱電素子)
5 コントローラ
6 温度センサ
7 光センサ
7a 投光部
7b 受光部
8 温度センサ
11 集熱用熱交換器
12 入熱用熱交換器
13 ポンプ
14 流量制御弁
15 出熱用熱交換器
16 四方弁
21 集熱用熱交換器
22 出熱用熱交換器
23 ポンプ
24 流量制御弁
25 送風機
30 収納容器
40 ビームスプリッター
DESCRIPTION OF SYMBOLS 1 Heat storage material 2 Heating circuit 3 Heat dissipation circuit 4 Nucleation means (thermoelectric element)
DESCRIPTION OF SYMBOLS 5 Controller 6 Temperature sensor 7 Optical sensor 7a Light projection part 7b Light-receiving part 8 Temperature sensor 11 Heat collection heat exchanger 12 Heat input heat exchanger 13 Pump 14 Flow control valve 15 Heat output heat exchanger 16 Four-way valve 21 Collection Heat exchanger 22 Heat output heat exchanger 23 Pump 24 Flow control valve 25 Blower 30 Storage container 40 Beam splitter

Claims (6)

融点以上に加熱されて液体状態とされた後、液体状態のまま融点以下に冷却される、過冷却性を有する蓄熱材と、
過冷却状態の蓄熱材に活性化のための刺激を与えて固相の核を生じさせることにより潜熱を発生させる発核手段と、
を含んで構成される蓄熱装置であって、
前記蓄熱材の温度を検出する温度センサと、
前記蓄熱材の光線透過率を検出する光センサと、
前記温度センサと前記光センサからの信号に基づいて前記蓄熱材の過冷却状態を判別する過冷却状態判別手段と、
を備えることを特徴とする蓄熱装置。
After being heated to a melting point or higher and being in a liquid state, it is cooled to a melting point or lower in a liquid state, and a heat storage material having supercooling property,
Nucleation means for generating latent heat by giving a stimulus for activation to a supercooled heat storage material to generate solid phase nuclei,
A heat storage device comprising:
A temperature sensor for detecting the temperature of the heat storage material;
An optical sensor for detecting the light transmittance of the heat storage material;
Supercooling state determining means for determining a supercooling state of the heat storage material based on signals from the temperature sensor and the optical sensor;
A heat storage device comprising:
前記過冷却状態判別手段は、前記蓄熱材の温度が融点より低く、前記蓄熱材の光線透過率が所定値以上のときに、過冷却状態と判定することを特徴とする請求項1記載の蓄熱装置。   2. The heat storage according to claim 1, wherein the supercooling state determination unit determines that the heat storage material is in a supercooling state when a temperature of the heat storage material is lower than a melting point and a light transmittance of the heat storage material is equal to or higher than a predetermined value. apparatus. 前記過冷却状態判別手段により過冷却状態と判別されていることを少なくとも1つの条件として、前記発核手段を作動をさせる発核制御手段を備えることを特徴とする請求項1又は請求項2記載の蓄熱装置。   3. The nucleation control means for operating the nucleation means on at least one condition that the supercooling state is determined by the supercooling state determination means. Heat storage device. 前記光センサは、前記蓄熱材を介して相対させた投光部と受光部とを有してなることを特徴とする請求項1〜請求項3のいずれか1つに記載の蓄熱装置。   The heat storage device according to any one of claims 1 to 3, wherein the optical sensor includes a light projecting unit and a light receiving unit that are opposed to each other via the heat storage material. 前記発核手段は、熱電素子であることを特徴とする請求項1〜請求項4のいずれか1つに記載の蓄熱装置。   The heat storage device according to any one of claims 1 to 4, wherein the nucleation unit is a thermoelectric element. 前記蓄熱材を融点以上に加熱する加熱手段と、前記蓄熱材から潜熱を取出す放熱手段とを更に含んで構成される請求項1〜請求項5のいずれか1つに記載の蓄熱装置。   The heat storage device according to any one of claims 1 to 5, further comprising a heating unit that heats the heat storage material to a melting point or more and a heat radiation unit that extracts latent heat from the heat storage material.
JP2010140167A 2010-06-21 2010-06-21 Heat accumulating device Pending JP2012002469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010140167A JP2012002469A (en) 2010-06-21 2010-06-21 Heat accumulating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010140167A JP2012002469A (en) 2010-06-21 2010-06-21 Heat accumulating device

Publications (1)

Publication Number Publication Date
JP2012002469A true JP2012002469A (en) 2012-01-05

Family

ID=45534661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010140167A Pending JP2012002469A (en) 2010-06-21 2010-06-21 Heat accumulating device

Country Status (1)

Country Link
JP (1) JP2012002469A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014099510A (en) * 2012-11-14 2014-05-29 Toshiba Corp Photovoltaic power generator
GB2603550A (en) * 2021-02-07 2022-08-10 Octopus Energy Group Ltd Energy storage arrangement and installations
WO2022168023A1 (en) * 2021-02-07 2022-08-11 Octopus Energy Group Limited Energy storage arrangement and installations
US11988412B2 (en) 2021-02-07 2024-05-21 Octopus Energy Heating Limited Methods and systems for modulating energy usage

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63123968A (en) * 1986-11-08 1988-05-27 株式会社竹中工務店 Heat-accumulation state detector for ice heat accumulatign facility
JPH06281372A (en) * 1993-03-30 1994-10-07 Mazda Motor Corp Nucleating device for latent heat storage machine
JP2001153405A (en) * 1999-11-30 2001-06-08 Natl Inst Of Advanced Industrial Science & Technology Meti Heat storage tank, heat storage apparatus and heat storage and recovery method
JP2009123457A (en) * 2007-11-14 2009-06-04 Toyota Motor Corp Fuel cell system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63123968A (en) * 1986-11-08 1988-05-27 株式会社竹中工務店 Heat-accumulation state detector for ice heat accumulatign facility
JPH06281372A (en) * 1993-03-30 1994-10-07 Mazda Motor Corp Nucleating device for latent heat storage machine
JP2001153405A (en) * 1999-11-30 2001-06-08 Natl Inst Of Advanced Industrial Science & Technology Meti Heat storage tank, heat storage apparatus and heat storage and recovery method
JP2009123457A (en) * 2007-11-14 2009-06-04 Toyota Motor Corp Fuel cell system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014099510A (en) * 2012-11-14 2014-05-29 Toshiba Corp Photovoltaic power generator
GB2603550A (en) * 2021-02-07 2022-08-10 Octopus Energy Group Ltd Energy storage arrangement and installations
WO2022168023A1 (en) * 2021-02-07 2022-08-11 Octopus Energy Group Limited Energy storage arrangement and installations
GB2603550B (en) * 2021-02-07 2023-02-01 Octopus Energy Heating Ltd Energy storage arrangement and installations
CN117083499A (en) * 2021-02-07 2023-11-17 八达通能源供暖有限公司 Method and system for supporting energy and water conservation and apparatus therefor
US11988412B2 (en) 2021-02-07 2024-05-21 Octopus Energy Heating Limited Methods and systems for modulating energy usage

Similar Documents

Publication Publication Date Title
JP4915969B2 (en) Battery pack temperature optimization control system
US20140311704A1 (en) Cooling Apparatus
JP2010200605A (en) Intelligent temperature control system for extending battery pack life
EP2524829A1 (en) Vehicle air-conditioning system and driving control method therefor
JP6150113B2 (en) Vehicle thermal management system
KR20110134213A (en) Integrated heat management system of clean car
PT2321869E (en) Method and device providing the temperature regulation of a rechargeable electrical energy storage battery
JPWO2012114447A1 (en) Vehicle thermal system
JP2007069733A (en) Heating element cooling system using air conditioner for vehicle
JP2011094886A (en) Air conditioner
JP2009126256A (en) Cooling device for vehicle
JP2012002469A (en) Heat accumulating device
JP2007170690A (en) Heat pump water heater and its control method
CN109585729A (en) A kind of controlling temp type power battery pack
JPH11313406A (en) Cooler for hybrid vehicle
Ayartürk et al. New heating system development working with waste heat for electric vehicles
JP4984441B2 (en) Energy control device for heating and cooling
JP4857932B2 (en) Heat storage device
JP2013062349A (en) Thermoelectric power generation module, thermoelectric power generation system, and hybrid vehicle
JP4310976B2 (en) Air conditioner for vehicles
JP6034043B2 (en) Waste heat utilization system for automobile and automobile
JP5770608B2 (en) Chemical heat storage system for vehicle and air conditioning system for vehicle including the same
US20230211647A1 (en) Heat pump system control method for vehicle
JP2004247096A (en) Cooling for fuel cell vehicle
JP2008525700A (en) Automotive engine thermal energy control system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130402

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130910