JP2012001828A - Polyester fiber - Google Patents

Polyester fiber Download PDF

Info

Publication number
JP2012001828A
JP2012001828A JP2010135095A JP2010135095A JP2012001828A JP 2012001828 A JP2012001828 A JP 2012001828A JP 2010135095 A JP2010135095 A JP 2010135095A JP 2010135095 A JP2010135095 A JP 2010135095A JP 2012001828 A JP2012001828 A JP 2012001828A
Authority
JP
Japan
Prior art keywords
ester
polyester fiber
forming
polyester
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010135095A
Other languages
Japanese (ja)
Inventor
Tomoko Fukushima
智子 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Frontier Co Ltd
Original Assignee
Teijin Fibers Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Fibers Ltd filed Critical Teijin Fibers Ltd
Priority to JP2010135095A priority Critical patent/JP2012001828A/en
Publication of JP2012001828A publication Critical patent/JP2012001828A/en
Pending legal-status Critical Current

Links

Landscapes

  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Artificial Filaments (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide polyester fiber which is excellent in durability and has antibacterial properties and deodorizing properties.SOLUTION: The polyester fiber has a total acidic end group content in the range of 40 to 500 eq/T and intrinsic viscosity in the range of 0.15 to 1.5. All the acid components constituting the polyester are copolymerized with a specific ester-forming metal sulfonate compound and/or an ester-forming phosphonium sulfonate compound.

Description

本発明は、優れた抗菌消臭性を有するポリエステル繊維に関する。   The present invention relates to a polyester fiber having excellent antibacterial and deodorant properties.

近年、快適生活を指向する生活環境の多様化に伴い、家庭だけでなく、オフィスや病院などにおいても種々の抗菌性や消臭性に対する関心が高くなってきている。このような状況において、消臭性能を有する繊維構造物を試用して悪臭を取り除く試みが種々に提案されており、吸着機能や分解機能を持つものが提案されている。   In recent years, with the diversification of living environments that are oriented toward comfortable living, interest in various antibacterial and deodorizing properties is increasing not only at home but also in offices and hospitals. Under such circumstances, various attempts have been proposed to remove bad odor by using a fiber structure having deodorizing performance, and those having an adsorption function and a decomposition function have been proposed.

従来、繊維構造物への抗菌消臭性能の付与としては、無機系抗菌消臭剤を繊維中に練りこんだり、また後加工により、無機系抗菌消臭剤を繊維構造物に付与したものなど種々なものが提案されている(例えば、特許文献1、特許文献2、特許文献3)。   Conventionally, as for imparting antibacterial deodorant performance to fiber structures, an inorganic antibacterial deodorant is kneaded into the fiber, or an inorganic antibacterial deodorant is added to the fiber structure by post-processing, etc. Various things have been proposed (for example, Patent Document 1, Patent Document 2, and Patent Document 3).

しかしながら、無機系抗菌消臭剤を繊維中に練りこんだものでは、抗菌消臭剤が繊維内部に埋没してしまい、性能が発揮され難いという問題があった。また、また、製糸性が非常に悪くなるという問題もあった。さらには、銀イオンや亜鉛イオンなどを含む無機系消臭剤を後加工により繊維構造物に付与してものでは、洗濯耐久性や風合いが硬くなるという問題があった。また、銀イオンや亜鉛イオンなどを含む無機系剤を使用する場合には、環境上の問題もあった。   However, when the inorganic antibacterial deodorant is kneaded into the fiber, the antibacterial deodorant is buried in the fiber, and there is a problem that the performance is hardly exhibited. In addition, there is also a problem that the yarn forming property is extremely deteriorated. Furthermore, when an inorganic deodorant containing silver ions, zinc ions, and the like is applied to the fiber structure by post-processing, there is a problem that washing durability and texture become hard. Moreover, when using the inorganic type agent containing silver ion, zinc ion, etc., there also existed an environmental problem.

特開2005−97820号公報JP-A-2005-97820 特開平11−302975号公報JP-A-11-302975 特開2001−40574号公報JP 2001-40574 A

本発明は、上記従来技術を背景になされたもので、本発明は耐久性に優れた抗菌消臭性を有するポリエステル繊維を提供することにある。   The present invention has been made against the background of the above-described prior art, and the present invention provides a polyester fiber having antibacterial and deodorant properties excellent in durability.

本発明者は、上記課題を解決するため、鋭意検討した結果、驚くべきことに抗菌消臭剤を用いなくとも、耐久性に優れた抗菌消臭性を有するポリエステル繊維が得られることを見出した。   As a result of intensive studies to solve the above problems, the present inventors have surprisingly found that a polyester fiber having antibacterial and deodorant properties with excellent durability can be obtained without using an antibacterial deodorant. .

即ち本発明によれば、
ポリエステル繊維が、繊維を構成するポリエステルの全酸性末端量が40〜500eq/T、固有粘度が0.15〜1.5であり、ポリエステルを構成する全酸性分に対して、下記一般式(1)で表されるエステル形成性スルホン酸金属塩化合物及び/又は下記一般式(2)で表されるエステル形成性スルホン酸ホスホニウム塩化合物が共重合されていることを特徴とするポリエステル繊維により、上記の課題が解決できる。
That is, according to the present invention,
The polyester fiber has a total acid terminal amount of 40 to 500 eq / T and an intrinsic viscosity of 0.15 to 1.5 of the polyester constituting the fiber, and the following general formula (1) The polyester fiber characterized in that the ester-forming sulfonic acid metal salt compound represented by) and / or the ester-forming sulfonic acid phosphonium salt compound represented by the following general formula (2) is copolymerized, Can solve the problem.

Figure 2012001828
(式中、Aは芳香族基、または脂肪族基、Xはエステル形成性官能基、XとXと同一もしくは異なるエステル形成性官能基または、水素原子、Mは金属、mは正の整数を示す。)
Figure 2012001828
(Wherein A 1 is an aromatic group or an aliphatic group, X 1 is an ester-forming functional group, X 2 and X 1 are the same or different ester-forming functional groups, or a hydrogen atom, M is a metal, m is Indicates a positive integer.)

Figure 2012001828
(式中、Aは芳香族基、または脂肪族基、Xはエステル形成性官能基、XとXと同一もしくは異なるエステル形成性官能基または、水素原子R、R、R及びRはアルキル基及びアリール基よりなる群から選ばれた同一又は異なる基、nは正の整数を示す。)
Figure 2012001828
(In the formula, A 2 is an aromatic group or an aliphatic group, X 3 is an ester-forming functional group, an ester-forming functional group that is the same as or different from X 4 and X 3 , or hydrogen atoms R 1 , R 2 , R 3 and R 4 are the same or different groups selected from the group consisting of alkyl groups and aryl groups, and n represents a positive integer.)

好ましくは、エステル形成性スルホン酸金属塩及び/又はエステル形成性スルホン酸ホスホニウム塩が0.1〜10モル%共重合されたポリエステル繊維であり、総繊度が10〜200dtex、単糸繊度が5.0dtex以下のマルチフィラメントであるポリエステル繊維である。
別の発明の形態として上記ポリエステル繊維を含む布帛及び繊維製品が提供される。
Preferably, it is a polyester fiber copolymerized with 0.1 to 10 mol% of ester-forming sulfonic acid metal salt and / or ester-forming sulfonic acid phosphonium salt, the total fineness is 10 to 200 dtex, and the single yarn fineness is 5. It is a polyester fiber that is a multifilament of 0 dtex or less.
As another aspect of the present invention, there are provided a fabric and a textile product containing the polyester fiber.

無機系抗菌消臭剤を用いなくとも耐久性に優れた抗菌消臭性ポリエステル繊維を提供することができる。   An antibacterial deodorant polyester fiber excellent in durability can be provided without using an inorganic antibacterial deodorant.

以下、本発明について詳細に説明する。
本発明でいうポリエステルは、テレフタル酸またはそのエステル形成性誘導体と、エチレングリコール成分とを重宿合反応せしめて得られるエチレンテレフタレートを主たる繰り返し単位とするポリエステルであり、ポリエステル繊維を構成するポリエステルの全酸性末端量が40〜500eq/Tであり、固有粘度が0.15〜1.5である。ポリエステル繊維の全酸性末端量が40eq/T未満では、目的とする抗菌消臭性能を得ることが不可能であり、500eq/Tを超える場合は、糸としての強度が劣化し、衣料用途の繊維として使用不可である。また、固有粘度が0.15未満では、得られるポリエステル繊維の強度不足により繊維として使用できず、一方、1.5を超える場合、生産性が低下し好ましくない。
Hereinafter, the present invention will be described in detail.
The polyester referred to in the present invention is a polyester having ethylene terephthalate as a main repeating unit obtained by subjecting terephthalic acid or an ester-forming derivative thereof to an ethylene glycol component as a main repeating unit. The acidic terminal amount is 40 to 500 eq / T, and the intrinsic viscosity is 0.15 to 1.5. If the total acidic terminal amount of the polyester fiber is less than 40 eq / T, it is impossible to obtain the desired antibacterial deodorizing performance. If the polyester fiber exceeds 500 eq / T, the strength of the yarn deteriorates and the fiber for clothing is used. Cannot be used. On the other hand, if the intrinsic viscosity is less than 0.15, the resulting polyester fiber cannot be used as a fiber due to insufficient strength. On the other hand, if it exceeds 1.5, the productivity is unfavorably lowered.

共重合成分としてポリエステルを構成する全酸性分に対して、下記一般式(1)で表されるエステル形成性スルホン酸金属塩化合物及び/又は下記一般式(2)で表されるエステル形成性スルホン酸ホスホニウム塩化合物が共重合されており、好ましくは0.1〜10mol%の割合で共重合されていることを特徴とするポリエステルである。共重合成分が0.1mol%未満では、全酸性末端量を40eq/T以上にすることが困難である。一方、10mol%を超える場合は強度が低下するため、繊維として使用できない。目的とする抗菌消臭性能と強度の点から好ましくは0.5〜5mol%である。   An ester-forming sulfone represented by the following general formula (1) and / or an ester-forming sulfone represented by the following general formula (2) with respect to the total acidic components constituting the polyester as a copolymerization component: The polyester is characterized in that an acid phosphonium salt compound is copolymerized, and is preferably copolymerized at a ratio of 0.1 to 10 mol%. If the copolymerization component is less than 0.1 mol%, it is difficult to make the total acidic terminal amount 40 eq / T or more. On the other hand, when it exceeds 10 mol%, the strength decreases, so it cannot be used as a fiber. From the point of the objective antibacterial deodorizing performance and intensity | strength, Preferably it is 0.5-5 mol%.

Figure 2012001828
(式中、Aは芳香族基、または脂肪族基、Xはエステル形成性官能基、XとXと同一もしくは異なるエステル形成性官能基または、水素原子、Mは金属、mは正の整数を示す。)
Figure 2012001828
(Wherein A 1 is an aromatic group or an aliphatic group, X 1 is an ester-forming functional group, X 2 and X 1 are the same or different ester-forming functional groups, or a hydrogen atom, M is a metal, m is Indicates a positive integer.)

本発明で使用されるエステル形成性スルホン酸の金属塩化合物としては、5−スルホイソフタル酸の金属塩(ナトリウム塩、リチウム塩、カリウム塩)、5−スルホイソフタル酸の4級ホスホニウム塩、または5−スルホイソフタル酸の4級アンモニウム塩が例示される。また、これらのエステル形成誘導体も好ましく例示される。これらの群の中では、熱安定性、コストなどの面から、5−スルホイソフタル酸の金属塩が好ましく例示され、特に5−スルホイソフタル酸ナトリウム塩およびそのジメチルエステルである5−スルホイソフタル酸ジメチルのナトリウム塩が特に好ましく例示される。   Examples of the metal salt compound of ester-forming sulfonic acid used in the present invention include 5-sulfoisophthalic acid metal salt (sodium salt, lithium salt, potassium salt), 5-sulfoisophthalic acid quaternary phosphonium salt, or 5 -Quaternary ammonium salts of sulfoisophthalic acid are exemplified. These ester-forming derivatives are also preferably exemplified. Among these groups, metal salts of 5-sulfoisophthalic acid are preferably exemplified from the viewpoint of thermal stability, cost, etc., and in particular, 5-sulfoisophthalic acid sodium salt and dimethyl ester thereof, dimethyl 5-sulfoisophthalate. The sodium salt is particularly preferably exemplified.

Figure 2012001828
(式中、Aは芳香族基、または脂肪族基、Xはエステル形成性官能基、XとXと同一もしくは異なるエステル形成性官能基または、水素原子R、R、R及びRはアルキル基及びアリール基よりなる群から選ばれた同一又は異なる基、nは正の整数を示す。)
Figure 2012001828
(In the formula, A 2 is an aromatic group or an aliphatic group, X 3 is an ester-forming functional group, an ester-forming functional group that is the same as or different from X 4 and X 3 , or hydrogen atoms R 1 , R 2 , R 3 and R 4 are the same or different groups selected from the group consisting of alkyl groups and aryl groups, and n represents a positive integer.)

本発明で使用される、エステル形成性スルホン酸ホスホニウム塩化合物としては、5スルホイソフタル酸あるいはその低級アルキルエステルの4級ホスホニウム塩である。4級ホスホニウム塩としては、アルキル基、ベンジル基、フェニル基が設置された4級ホスホニウム塩が好ましい。また、4つある置換基は同一であっても異なっていても良い。上記一般式(2)で表される化合物の具体例としては、5−スルホイソフタル酸テトラブチルホスホニウム塩、5−スルホイソフタル酸エチルトリブチルホスホニウム塩、5−スルホイソフタル酸ベンジルトリブチルホスホニウム塩、5−スルホイソフタル酸フェニルトリブチルホスホニウム塩、5−スルホイソフタル酸テトラフェニルホスホニウム塩、5−スルホイソフタル酸ブチルトリフェニルホスホニウム塩、5−スルホイソフタル酸ベンジルトリフェニルホスホニウム塩、あるいはこれらイソフタル酸誘導体のジメチルエステル、ジエチルエステルが好ましく例示される。   The ester-forming sulfonic acid phosphonium salt compound used in the present invention is 5-sulfoisophthalic acid or a quaternary phosphonium salt of a lower alkyl ester thereof. The quaternary phosphonium salt is preferably a quaternary phosphonium salt in which an alkyl group, a benzyl group, or a phenyl group is installed. The four substituents may be the same or different. Specific examples of the compound represented by the general formula (2) include 5-sulfoisophthalic acid tetrabutylphosphonium salt, 5-sulfoisophthalic acid ethyltributylphosphonium salt, 5-sulfoisophthalic acid benzyltributylphosphonium salt, 5-sulfoisophthalate. Isophthalic acid phenyltributylphosphonium salt, 5-sulfoisophthalic acid tetraphenylphosphonium salt, 5-sulfoisophthalic acid butyltriphenylphosphonium salt, 5-sulfoisophthalic acid benzyltriphenylphosphonium salt, or dimethyl ester or diethyl ester of these isophthalic acid derivatives Is preferably exemplified.

上記一般式(1)で表されるエステル形成性スルホン酸金属塩化合物及び/又は、上記一般式(2)で表されるエステル形成性スルホン酸ホスホニウム塩化合物をポリエステルの主鎖中に共重合するには、下記に示すようなポリエステルの合成が完了する以前の任意の段階で、好ましくは第1段の反応が終了する以前の任意の段階で上記化合物を添加すればよい。   The ester-forming sulfonic acid metal salt compound represented by the general formula (1) and / or the ester-forming sulfonic acid phosphonium salt compound represented by the general formula (2) is copolymerized in the main chain of the polyester. The above compound may be added at any stage before completion of the synthesis of the polyester as shown below, preferably at any stage before the completion of the first stage reaction.

即ち、テレフタル酸とエチレングリコールの直接重縮合反応をさせる、あるいはテレフタル酸ジメチルに代表されるテレフタル酸のエステル形成性誘導体とエチレングリコールとをエステル交換反応させて低重合体を製造し(第一段反応)、次いで、この反応性生物を重縮合触媒の存在下で減圧過熱して所定の重合度になるまで重縮合反応させることにより製造される(第二段反応)が、第1段の反応が終了する以前の任意の段階で式(1)、式(2)の化合物を添加すればよい。   That is, a low polymer is produced by a direct polycondensation reaction between terephthalic acid and ethylene glycol, or by ester exchange reaction between an ester-forming derivative of terephthalic acid represented by dimethyl terephthalate and ethylene glycol (first stage). Reaction), and then the reaction product is produced by subjecting the reactive organism to a polycondensation reaction under reduced pressure in the presence of a polycondensation catalyst until a predetermined polymerization degree is reached (second stage reaction). What is necessary is just to add the compound of Formula (1) and Formula (2) in the arbitrary steps before ending.

本発明のポリエステル繊維の製糸方法は、特に制限はなく、従来公知の方法が採用される。すなわち、乾燥した共重合ポリエステルを270℃〜300℃の範囲で溶融紡糸して製造することが好ましく、溶融紡糸の引取り速度は400〜5000m/分で紡糸することが好ましい。紡糸速度がこの範囲にあると、得られる繊維の強度も充分なものであると共に、安定して捲取りを行うこともできる。さらに、上述の方法で得られた未延伸糸もしくは部分延伸糸を、延伸工程もしくは仮撚加工工程にて1.2倍〜6.0倍程度の範囲で延伸することが好ましい。また、紡糸時に使用する口金の形状についても特に制限は無い。   There is no restriction | limiting in particular in the yarn manufacturing method of the polyester fiber of this invention, A conventionally well-known method is employ | adopted. That is, it is preferable to produce the dried copolyester by melt spinning at a temperature in the range of 270 ° C. to 300 ° C., and the spinning speed of the melt spinning is preferably 400 to 5000 m / min. When the spinning speed is within this range, the strength of the obtained fiber is sufficient, and it is possible to stably perform the weeding. Furthermore, it is preferable that the undrawn yarn or the partially drawn yarn obtained by the above-described method is drawn in a range of about 1.2 times to 6.0 times in the drawing step or false twisting step. Moreover, there is no restriction | limiting in particular also about the shape of the nozzle | cap | die used at the time of spinning.

仮撚加工方法としては、公知の方法で行うことが出来るが、接触式のヒーターを備えた仮撚加工機を用い、第1仮撚ヒーターの温度が200〜500℃で延伸仮撚加工することが好ましい。   As the false twisting method, a known method can be used, but using a false twisting machine equipped with a contact type heater, the first false twisting heater is stretched false twisting at a temperature of 200 to 500 ° C. Is preferred.

本発明のポリエステル繊維について、上記で得られたポリエステル繊維を酸性処理することが好ましい。繊維構造体例えば織物や編物また不織布等の布帛状にしたものに酸性処理を施すことにより、繊維中の全酸性末端量が増加し、ポリエステル繊維が酸性化する。
ここで、ポリエステル繊維に酸性処理を施す方法としては、酸であれば使用することができるが、好ましくは例えば、酢酸などの有機酸によりpHが5.0以下(好ましくは2.0〜5.0)に調整された浴中に温度70℃以上(好ましくは80〜130℃、特に好ましくは90〜130℃)、時間20〜30分間で浸漬することにより行われる。その際に使用する設備としては、公知の液流染色機を用いるとよい。無機酸の場合は繊維の強度が低下しやすい。
About the polyester fiber of this invention, it is preferable to acid-treat the polyester fiber obtained above. By subjecting a fibrous structure such as a woven fabric, a knitted fabric, or a nonwoven fabric to an acidic treatment, the total acidic terminal amount in the fiber increases and the polyester fiber is acidified.
Here, as a method of subjecting the polyester fiber to an acid treatment, any acid can be used, but preferably, the pH is 5.0 or less (preferably 2.0 to 5.5) with an organic acid such as acetic acid. It is performed by dipping in a bath adjusted to 0) at a temperature of 70 ° C. or higher (preferably 80 to 130 ° C., particularly preferably 90 to 130 ° C.) for 20 to 30 minutes. As the equipment used at that time, a known liquid dyeing machine may be used. In the case of an inorganic acid, the strength of the fiber tends to decrease.

また、かかるポリエステル繊維の繊維構造体には、前記酸性処理の前及び/又は後の工程において、常法の染色加工、精錬、リラックス、プレセット、ファイナルセットなどの各種加工を施してもよい。さらには、起毛加工、撥水加工、カレンダー加工、紫外線遮蔽あるいは制電剤、抗菌剤、消臭剤、防虫剤、蓄光剤、再帰反射材、マイナスイオン発生剤等の機能を付与する各種加工を不可適用してもよい。かくして得られたポリエステル繊維は、耐久性よく優れた抗菌消臭性を有する。   In addition, the polyester fiber fiber structure may be subjected to various processes such as dyeing, refining, relaxing, pre-setting, and final setting in the usual manner before and / or after the acid treatment. In addition, various processing that provides functions such as brushed processing, water repellent processing, calendar processing, ultraviolet shielding or antistatic agent, antibacterial agent, deodorant agent, insect repellent agent, phosphorescent agent, retroreflective material, negative ion generator, etc. It may not be applied. The polyester fiber thus obtained has excellent antibacterial and deodorant properties with excellent durability.

本発明のポリエステル繊維は、繊維中の全酸性末端量が40eq/T以上であれば耐久性よく優れた抗菌性、消臭性を有する。その際、ポリエステル繊維の抗菌性としては、JIS L0217法に規定された洗濯を10回行った後において、JIS L1902 菌液吸収法(供試菌:黄色ブドウ球菌)で測定した静菌活性値で2.2以上であることが好ましい。また、JIS L0217法に規定された洗濯を10回行った後において、JIS L1902菌液吸収法(供試菌:黄色ブドウ球菌)で測定した殺菌活性値で0以上であることが好ましい。また、ポリエステル繊維の消臭性としては65%以上であることが好ましい。   The polyester fiber of the present invention has excellent antibacterial and deodorant properties with good durability if the total acidic terminal amount in the fiber is 40 eq / T or more. At that time, the antibacterial property of the polyester fiber is the bacteriostatic activity value measured by the JIS L1902 bacterial liquid absorption method (test bacteria: Staphylococcus aureus) after 10 times of washing specified in JIS L0217 method. It is preferable that it is 2.2 or more. Moreover, it is preferable that it is 0 or more in the bactericidal activity value measured by the JIS L1902 bacterial solution absorption method (test bacteria: Staphylococcus aureus) after 10 times of washing specified by JIS L0217 method. Further, the deodorizing property of the polyester fiber is preferably 65% or more.

ただし、消臭性は、初期濃度100ppmのアンモニアを含む空気3Lが入ったテドラーバックに1gの試料をいれ、2時間後のテドラーバック内の悪臭成分濃度をガステックス社製検知管にて測定し、減少量から臭気吸着率を求める。
本発明のポリエステル繊維を含む布帛及び繊維製品は風合いが柔らかく衣料用とともに病院、医療施設等の衛生用品としても有用である。
However, deodorization is reduced by placing a 1g sample in a Tedlar bag containing 3L of air containing ammonia with an initial concentration of 100ppm, and measuring the concentration of malodorous components in the Tedlar bag after 2 hours with a detector tube manufactured by Gastex. The odor adsorption rate is obtained from the amount.
The fabrics and fiber products containing the polyester fibers of the present invention have a soft texture and are useful for clothing as well as sanitary products for hospitals, medical facilities and the like.

以下、実施例により、本発明を更に具体的に説明する。なお、本発明はこれらの実施例に限られるものではない。実施例における各項目を次の方法で測定した。
(1)酸性末端量(eq/T)
ベンジルアルコールを用いてポリエステル布帛を分解し、この分解物を0.02Nの水酸化ナトリウム水溶液でフェノールレッドを指示薬として滴定し、1ton当たりの等量を求めた。
(2)固有粘度
ポリエステル組成物を100℃、60分間、オルトクロロフェノールに溶解した希薄溶液を35℃でウデローデ粘度計を用いて測定した値から求めた。
(3)繊維の引張強度、伸度、繊度
JIS L1013記載の方法に準拠して測定を行った。
(4)抗菌性
ポリエステル組成物について、JIS L0217法に記載された洗濯を10回行った後(L10)において、JIS L1902菌液吸収法(供試菌:黄色ブドウ球菌)で静菌活性値および殺菌活性値を測定した。静菌活性値は2.2以上が合格(○)、2.2未満が不合格(×)、殺菌活性値で0以上が合格(○)、0未満が不合格(×)とした。
(5)消臭性
初期濃度100ppmのアンモニアを含む空気3Lが入ったテドラーバックに、1.0gの試料をいれ、20分後のテドラーバック内の悪臭成分をガステックス社製検知管にて測定し、減少量から悪臭吸着率を求めた。
臭気吸着率(%)=(当初の悪臭成分濃度−20分後の悪臭成分濃度)/(当初の悪臭成分濃度)×100
Hereinafter, the present invention will be described more specifically with reference to examples. The present invention is not limited to these examples. Each item in the examples was measured by the following method.
(1) Acid end amount (eq / T)
Polyester fabric was decomposed using benzyl alcohol, and this decomposition product was titrated with 0.02N aqueous sodium hydroxide solution using phenol red as an indicator to obtain an equivalent amount per ton.
(2) Intrinsic Viscosity A dilute solution obtained by dissolving the polyester composition in orthochlorophenol at 100 ° C. for 60 minutes was determined from a value measured at 35 ° C. using a Uderohde viscometer.
(3) Tensile strength, elongation, and fineness of fiber Measurement was performed according to the method described in JIS L1013.
(4) Antibacterial activity About the polyester composition, after washing 10 times described in JIS L0217 method (L10), the bacteriostatic activity value and the JIS L1902 bacterial liquid absorption method (test bacteria: Staphylococcus aureus) The bactericidal activity value was measured. The bacteriostatic activity value of 2.2 or more was accepted (◯), less than 2.2 was rejected (x), the bactericidal activity value was 0 or more was accepted (◯), and less than 0 was rejected (x).
(5) Deodorizing property A 1.0 g sample is placed in a Tedlar bag containing 3 L of air containing ammonia with an initial concentration of 100 ppm, and the malodorous component in the Tedlar bag after 20 minutes is measured with a detector tube manufactured by GASTEX. The malodor adsorption rate was determined from the decrease.
Odor adsorption rate (%) = (initial malodor component concentration−malodor component concentration after 20 minutes) / (original malodor component concentration) × 100

[実施例1]
テレフタル酸ジメチル100重量部、5−ナトリウムスルホイソフタル酸ジメチル1.7重量部とエチレングリコール60重量部の混合物に、酢酸マンガン0.03重量部、酢酸ナトリウム三水和物0.12重量部を添加し、140℃〜240℃まで徐所に昇温しつつ、反応の結果生成するメタノールを系外に留出させながらエステル交換反応を行った。その後、正リン酸0.03重量部を添加し、エステル交換反応を終了させた。
その後、反応生成物に三酸化アンチモン0.05重量部と水酸化テトラエチルアンモニウム0.3重量部とトリエチルアミン0.003重量部を添加して重合容器に移し、285℃まで昇温し、30Pa以下の高真空にて重縮合反応を行い、重合槽の攪拌機電力が所定電力に到達した段階で反応を終了させ、常法に従いチップ化した。
ここで得られた共重合ポリエチレンテレフタレートチップを吐出孔72ホールを有する紡糸口金から、ポリマー吐出温度290℃、吐出量40g/分で吐出し、紡糸口金直下に設けた280℃雰囲気温度に保持した長さ4cmの保温領域を通過させて、20℃、平均風速0.4m/秒の冷却風により溶融マルチフィラメントを冷却した後、オイリングノズルによるオイリングを行うと同時にマルチフィラメントの糸条を集束させて3000m/分の速度で紡糸捲き取り、中実ポリエステルマルチフィラメントを得た。
得られた中実ポリエステル繊維を熱セット温度180℃で1.55倍の仮撚加工処理を行い、繊度85dtex、伸度25%の中実ポリエステルマルチフィラメントを得た。得られたポリエステルマルチフィラメントを目付100g/mの筒編み加工し、りんご酸によりpHが5.0に調製された浴中に温度120℃、時間30分間で浸漬し、酸性処理を施すことにより、ポリエステルマルチフィラメントを酸性化させた。酸性処理には、公知の液流染色機を用いた。酸性処理を施したポリエステルマルチフィラメントについて、上記の各方法で評価を行った。結果を表1に示す。
[Example 1]
To a mixture of 100 parts by weight of dimethyl terephthalate, 1.7 parts by weight of dimethyl 5-sodium sulfoisophthalate and 60 parts by weight of ethylene glycol, 0.03 parts by weight of manganese acetate and 0.12 parts by weight of sodium acetate trihydrate were added. Then, the temperature was gradually raised from 140 ° C. to 240 ° C., and transesterification was performed while distilling out the methanol produced as a result of the reaction out of the system. Thereafter, 0.03 part by weight of normal phosphoric acid was added to complete the transesterification reaction.
Thereafter, 0.05 parts by weight of antimony trioxide, 0.3 parts by weight of tetraethylammonium hydroxide and 0.003 parts by weight of triethylamine were added to the reaction product, transferred to a polymerization vessel, heated to 285 ° C., and 30 Pa or less. The polycondensation reaction was performed in a high vacuum, and the reaction was terminated when the agitator power of the polymerization tank reached a predetermined power, and chips were formed according to a conventional method.
The copolymer polyethylene terephthalate chip obtained here was discharged from a spinneret having 72 discharge holes at a polymer discharge temperature of 290 ° C. and a discharge rate of 40 g / min, and was maintained at the 280 ° C. ambient temperature provided directly below the spinneret. The molten multifilament is cooled by cooling air with a temperature of 20 cm and an average wind speed of 0.4 m / sec after passing through a 4 cm heat insulation region, and then oiling is performed by an oiling nozzle and simultaneously the filaments of the multifilament are converged to 3000 m. Spinning off at a speed of / min to obtain a solid polyester multifilament.
The obtained solid polyester fiber was subjected to a false twisting treatment of 1.55 times at a heat setting temperature of 180 ° C. to obtain a solid polyester multifilament having a fineness of 85 dtex and an elongation of 25%. The obtained polyester multifilament is knitted into a tube having a basis weight of 100 g / m 2 , immersed in a bath adjusted to pH 5.0 with malic acid at a temperature of 120 ° C. for 30 minutes, and subjected to an acid treatment. The polyester multifilament was acidified. A known liquid dyeing machine was used for the acid treatment. The polyester multifilament subjected to the acid treatment was evaluated by the above methods. The results are shown in Table 1.

[実施例2、実施例4、比較例1、比較例2]
実施例1において、5−スルホイソフタル酸ナトリウムの添加量を表1になるように変更した事以外は実施例1と同様に実施した。結果を表1に示す。
[Example 2, Example 4, Comparative Example 1, Comparative Example 2]
The same procedure as in Example 1 was performed except that the amount of sodium 5-sulfoisophthalate added in Example 1 was changed as shown in Table 1. The results are shown in Table 1.

[実施例3]
テレフタル酸ジメチル100重量部、5−ナトリウムスルホイソフタル酸ジメチル4.5重量部とエチレングリコール60重量部の混合物に、酢酸マンガン0.03重量部、酢酸ナトリウム三水和物0.12重量部を添加し、140℃〜240℃まで徐所に昇温しつつ、反応の結果生成するメタノールを系外に留出させながらエステル交換反応を行った。その後、正リン酸0.03重量部を添加し、エステル交換反応を終了させた。
その後、反応生成物に三酸化アンチモン0.05重量部と5−スルホイソフタル酸テトラブチルホスホネート3.4重量部と水酸化テトラエチルアンモニウム0.3重量部とトリエチルアミン0.003重量部を添加して重合容器に移し、285℃まで昇温し、30Pa以下の高真空にて重縮合反応を行い、重合槽の攪拌機電力が所定電力に到達した段階で反応を終了させ、常法に従いチップ化した。それ以外は実施例1と同様に実施した。結果を表1に示す。
[Example 3]
To a mixture of 100 parts by weight of dimethyl terephthalate, 4.5 parts by weight of dimethyl 5-sodium sulfoisophthalate and 60 parts by weight of ethylene glycol, 0.03 parts by weight of manganese acetate and 0.12 parts by weight of sodium acetate trihydrate were added. Then, the temperature was gradually raised from 140 ° C. to 240 ° C., and transesterification was performed while distilling out the methanol produced as a result of the reaction out of the system. Thereafter, 0.03 part by weight of normal phosphoric acid was added to complete the transesterification reaction.
Thereafter, 0.05 parts by weight of antimony trioxide, 3.4 parts by weight of tetrabutylphosphonate 5-sulfoisophthalate, 0.3 parts by weight of tetraethylammonium hydroxide, and 0.003 parts by weight of triethylamine were added to the reaction product for polymerization. The mixture was transferred to a container, heated to 285 ° C., and subjected to a polycondensation reaction at a high vacuum of 30 Pa or less. The reaction was terminated when the agitator power of the polymerization tank reached a predetermined power, and chips were formed according to a conventional method. Other than that was carried out in the same manner as in Example 1. The results are shown in Table 1.

[比較例3]
テレフタル酸ジメチル100重量部とエチレングリコール60重量部の混合物に、酢酸マンガン0.03重量部、酢酸ナトリウム三水和物0.12重量部を添加し、140℃〜240℃まで徐所に昇温しつつ、反応の結果生成するメタノールを系外に留出させながらエステル交換反応を行った。その後、正リン酸0.03重量部を添加し、エステル交換反応を終了させた。
その後、反応生成物に三酸化アンチモン0.05重量部と水酸化テトラエチルアンモニウム0.3重量部とトリエチルアミン0.003重量部を添加して重合容器に移し、285℃まで昇温し、30Pa以下の高真空にて重縮合反応を行い、重合槽の攪拌機電力が所定電力に到達した段階で反応を終了させ、常法に従いチップ化した。それ以外は実施例1と同様に実施した。結果を表1に示す。
[Comparative Example 3]
To a mixture of 100 parts by weight of dimethyl terephthalate and 60 parts by weight of ethylene glycol, 0.03 part by weight of manganese acetate and 0.12 part by weight of sodium acetate trihydrate are added, and the temperature is gradually raised to 140 ° C to 240 ° C. However, the ester exchange reaction was carried out while distilling out the methanol produced as a result of the reaction out of the system. Thereafter, 0.03 part by weight of normal phosphoric acid was added to complete the transesterification reaction.
Thereafter, 0.05 parts by weight of antimony trioxide, 0.3 parts by weight of tetraethylammonium hydroxide and 0.003 parts by weight of triethylamine were added to the reaction product, transferred to a polymerization vessel, heated to 285 ° C., and 30 Pa or less. The polycondensation reaction was performed in a high vacuum, and the reaction was terminated when the agitator power of the polymerization tank reached a predetermined power, and chips were formed according to a conventional method. Other than that was carried out in the same manner as in Example 1. The results are shown in Table 1.

実施例1〜実施例4では、繊維中の全酸性末端量、固有粘度IV、エステル形成性スルホン酸の金属塩化合物及び/又はエステル形成性スルホン酸ホスホニウム塩化合物の共重合量が請求項の範囲内であり、目的とする抗菌消臭性能が得られた。
比較例1は、繊維中の全酸性末端量および固有粘度IVが発明外であり、強度が低下したため、抗菌消臭性能について測定不可能であった。
比較例2、3は、繊維中の全酸性末端量が発明外であり、そのため目的とする抗菌消臭性能が得られなかった。
In Examples 1 to 4, the total amount of acidic terminals in the fiber, the intrinsic viscosity IV, the amount of copolymerization of the ester-forming sulfonic acid metal salt compound and / or the ester-forming sulfonic acid phosphonium salt compound are within the scope of the claims. The intended antibacterial deodorizing performance was obtained.
In Comparative Example 1, the total acidic terminal amount in the fiber and the intrinsic viscosity IV were out of the invention, and the strength was lowered, so that the antibacterial deodorizing performance could not be measured.
In Comparative Examples 2 and 3, the total acidic terminal amount in the fiber was outside the invention, and thus the intended antibacterial deodorizing performance was not obtained.

Figure 2012001828
Figure 2012001828

無機系抗菌消臭剤を用いなくとも、耐久性に優れた消臭性を有するポリエステル繊維が得られるので病院等の衛生衣料分野に有用である。 Even if an inorganic antibacterial deodorant is not used, polyester fibers having deodorizing properties with excellent durability can be obtained, which is useful in the field of sanitary clothing such as hospitals.

Claims (4)

繊維を構成するポリエステルの全酸性末端量が40〜500eq/T、固有粘度が0.15〜1.5であり、ポリエステルを構成する全酸性分に対して、下記一般式(1)で表されるエステル形成性スルホン酸の金属塩化合物及び/又は下記一般式(2)で表されるエステル形成性スルホン酸ホスホニウム塩化合物が共重合されていることを特徴とするポリエステル繊維。
Figure 2012001828
(式中、Aは芳香族基、または脂肪族基、Xはエステル形成性官能基、XとXと同一もしくは異なるエステル形成性官能基または、水素原子、Mは金属、mは正の整数を示す。)
Figure 2012001828
(式中、Aは芳香族基、または脂肪族基、Xはエステル形成性官能基、XとXと同一もしくは異なるエステル形成性官能基または、水素原子R、R、R及びRはアルキル基及びアリール基よりなる群から選ばれた同一又は異なる基、nは正の整数を示す。)
The total acid terminal amount of the polyester constituting the fiber is 40 to 500 eq / T, the intrinsic viscosity is 0.15 to 1.5, and the total acid content constituting the polyester is represented by the following general formula (1). A polyester fiber, wherein the ester-forming sulfonic acid metal salt compound and / or the ester-forming phosphonium salt compound represented by the following general formula (2) is copolymerized.
Figure 2012001828
(Wherein A 1 is an aromatic group or an aliphatic group, X 1 is an ester-forming functional group, X 2 and X 1 are the same or different ester-forming functional groups, or a hydrogen atom, M is a metal, m is Indicates a positive integer.)
Figure 2012001828
(In the formula, A 2 is an aromatic group or an aliphatic group, X 3 is an ester-forming functional group, an ester-forming functional group that is the same as or different from X 4 and X 3 , or hydrogen atoms R 1 , R 2 , R 3 and R 4 are the same or different groups selected from the group consisting of alkyl groups and aryl groups, and n represents a positive integer.)
エステル形成性スルホン酸の金属塩化合物及び/又はエステル形成性スルホン酸ホスホニウム塩化合物が0.1〜10mol%共重合されている請求項1記載のポリエステル繊維。   The polyester fiber according to claim 1, wherein 0.1 to 10 mol% of a metal salt compound of ester-forming sulfonic acid and / or a phosphonium salt compound of ester-forming sulfonic acid is copolymerized. 総繊度が10〜200dtex、単糸繊度が5.0dtex以下のマルチフィラメントである請求項1〜2いずれかに記載のポリエステル繊維。   The polyester fiber according to claim 1, wherein the polyester fiber is a multifilament having a total fineness of 10 to 200 dtex and a single yarn fineness of 5.0 dtex or less. 請求項1〜3いずれかに記載のポリエステル繊維を含む布帛及び繊維製品。   The fabric and textiles containing the polyester fiber in any one of Claims 1-3.
JP2010135095A 2010-06-14 2010-06-14 Polyester fiber Pending JP2012001828A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010135095A JP2012001828A (en) 2010-06-14 2010-06-14 Polyester fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010135095A JP2012001828A (en) 2010-06-14 2010-06-14 Polyester fiber

Publications (1)

Publication Number Publication Date
JP2012001828A true JP2012001828A (en) 2012-01-05

Family

ID=45534131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010135095A Pending JP2012001828A (en) 2010-06-14 2010-06-14 Polyester fiber

Country Status (1)

Country Link
JP (1) JP2012001828A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012012749A (en) * 2010-07-05 2012-01-19 Teijin Fibers Ltd Core-sheath type polyester conjugate fiber
JP2012112055A (en) * 2010-11-22 2012-06-14 Teijin Fibers Ltd Core-sheath type polyester conjugate fiber
JP2018071007A (en) * 2016-10-24 2018-05-10 東洋紡Stc株式会社 Antibacterial and antivirus processed fiber product
CN115806569A (en) * 2022-10-18 2023-03-17 浙江恒逸石化研究院有限公司 High-temperature-resistant quaternary phosphonium sulfonate organic antibacterial flame-retardant monomer for polyester polymerization, and preparation method and application thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01192887A (en) * 1988-01-28 1989-08-02 Teijin Ltd Method for dyeing modified polyester fiber
JPH0361766B2 (en) * 1987-03-20 1991-09-20 Teijin Ltd
JPH11172529A (en) * 1997-12-05 1999-06-29 Toyobo Co Ltd Antimicrobial fiber
JPH11222723A (en) * 1997-12-05 1999-08-17 Toyobo Co Ltd Antibacterial fiber
JP2000290834A (en) * 1999-04-07 2000-10-17 Toyobo Co Ltd Polyester-based fiber excellent in flame retardancy and antibacterial activity
JP2006233390A (en) * 2005-02-28 2006-09-07 Toray Ind Inc Polyester fiber and fabric
WO2011048888A1 (en) * 2009-10-20 2011-04-28 帝人ファイバー株式会社 Polyester fibers, process for production of the polyester fibers, cloth, fiber product, and polyester molded article

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0361766B2 (en) * 1987-03-20 1991-09-20 Teijin Ltd
JPH01192887A (en) * 1988-01-28 1989-08-02 Teijin Ltd Method for dyeing modified polyester fiber
JPH11172529A (en) * 1997-12-05 1999-06-29 Toyobo Co Ltd Antimicrobial fiber
JPH11222723A (en) * 1997-12-05 1999-08-17 Toyobo Co Ltd Antibacterial fiber
JP2000290834A (en) * 1999-04-07 2000-10-17 Toyobo Co Ltd Polyester-based fiber excellent in flame retardancy and antibacterial activity
JP2006233390A (en) * 2005-02-28 2006-09-07 Toray Ind Inc Polyester fiber and fabric
WO2011048888A1 (en) * 2009-10-20 2011-04-28 帝人ファイバー株式会社 Polyester fibers, process for production of the polyester fibers, cloth, fiber product, and polyester molded article

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012012749A (en) * 2010-07-05 2012-01-19 Teijin Fibers Ltd Core-sheath type polyester conjugate fiber
JP2012112055A (en) * 2010-11-22 2012-06-14 Teijin Fibers Ltd Core-sheath type polyester conjugate fiber
JP2018071007A (en) * 2016-10-24 2018-05-10 東洋紡Stc株式会社 Antibacterial and antivirus processed fiber product
CN115806569A (en) * 2022-10-18 2023-03-17 浙江恒逸石化研究院有限公司 High-temperature-resistant quaternary phosphonium sulfonate organic antibacterial flame-retardant monomer for polyester polymerization, and preparation method and application thereof

Similar Documents

Publication Publication Date Title
US9334608B2 (en) Polyester fiber, method for producing the same, cloth, textile product, and polyester formed article
KR101573250B1 (en) Low-melting point polyester fiber having excellent bio-degradable and yarn for interior comprising the same
JP2012001828A (en) Polyester fiber
JP2022501526A (en) Polyester composition for heat-adhesive fibers, heat-adhesive composite fibers and non-woven fabrics embodied through it
KR101038466B1 (en) Flame Retardant Polyester Having Good Durability, High Sweat Absorption Property and Fast Drying Property
JP2012112055A (en) Core-sheath type polyester conjugate fiber
JP5865647B2 (en) Antifouling antibacterial fabric and method for producing the same
JP4324820B2 (en) Polyester fiber with excellent flame resistance and antibacterial properties
JP2012017530A (en) Core-sheath type polyester conjugate fiber
JP2012001827A (en) Polyester fiber
JP6686304B2 (en) Method for producing polyester composition for hygroscopic fiber
JP2012112050A (en) Polyester fiber
JP2012012749A (en) Core-sheath type polyester conjugate fiber
JP2011017091A (en) Deodorant fiber structure and fiber product
JP2018168512A (en) Polyester fiber having flat multi-lobe cross section
JPH11222723A (en) Antibacterial fiber
JP4155903B2 (en) Water repellent and hygroscopic composite fiber
JP2010255128A (en) Circular knitted fabric and fiber product
JP2010196208A (en) Method for producing copolyester fiber fabric and copolyester fiber fabric and fiber product
JP2010138507A (en) Water-repelling polyester fiber
JP3724622B2 (en) Antibacterial fiber and method for producing the same
JP2007051384A (en) Flame-retardant polyester-based fiber structure and method for producing the same
JP2014125693A (en) Hygroscopic polyester fiber and its manufacturing method
JP2011162892A (en) Hollow polyester multifilament
JPH11172525A (en) Polyester resin composition and fiber composed of the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130213

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131022

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140107