JP2012001758A - Method of charging sintering raw material - Google Patents

Method of charging sintering raw material Download PDF

Info

Publication number
JP2012001758A
JP2012001758A JP2010137262A JP2010137262A JP2012001758A JP 2012001758 A JP2012001758 A JP 2012001758A JP 2010137262 A JP2010137262 A JP 2010137262A JP 2010137262 A JP2010137262 A JP 2010137262A JP 2012001758 A JP2012001758 A JP 2012001758A
Authority
JP
Japan
Prior art keywords
raw material
particle size
sintered
charging
sintered raw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010137262A
Other languages
Japanese (ja)
Inventor
Koichi Morioka
耕一 森岡
Koji Ano
浩二 阿野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2010137262A priority Critical patent/JP2012001758A/en
Publication of JP2012001758A publication Critical patent/JP2012001758A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of charging a sintering raw material, capable of improving the productivity of sintered ore manufacturing further.SOLUTION: The method of charging a sintering raw material is characterized as follows. When charging the sintering raw material onto a pallet of a sintering machine to form a sintering raw material packed bed, when bisecting the formed sintering raw material packed bed into the upper half to be an upper layer part and the remaining lower half to be a lower layer part, while particle size segregation and charging of the sintering raw material are performed so as to increase the average particle diameter of the sintering raw material as approaching the lower part in the upper layer part, the sintering raw material is charged without performing the particle size segregation in a height direction in the lower layer part.

Description

本発明は、ドワイトロイド(DL)型焼結機のパレット上に焼結原料を装入する方法に関する。   The present invention relates to a method of charging a sintering raw material onto a pallet of a Dwightroid (DL) type sintering machine.

焼結鉱は、通常、複数銘柄の粉状鉱石に、スケール、返鉱等の雑原料と、石灰石、生石灰、珪石、蛇紋岩等の副原料と、コークス粉等の炭材を適量配合した焼結配合原料に、水分を添加してドラムミキサやディスクペレタイザで混合造粒して擬似粒子化した後、この擬似粒子化した焼結原料をDL型焼結機(以下、単に「焼結機」ということあり。)のパレット上に充填し、この焼結原料充填層(以下、単に「充填層」ともいう。)の表層部の炭材に着火し、大気を下向き吸引することにより焼成して得られる。   Sintered ores are usually baked with a mixture of multiple grades of powdered ore, mixed raw materials such as scales and reverse minerals, auxiliary raw materials such as limestone, quicklime, silica and serpentine, and carbon materials such as coke powder. After adding moisture to the blended raw material and mixing and granulating it with a drum mixer or a disk pelletizer to form pseudo particles, the pseudo raw particles are converted into a DL type sintering machine (hereinafter simply referred to as “sintering machine”). ), Ignited the carbon material of the surface layer portion of this sintered raw material packed layer (hereinafter also simply referred to as “packed layer”), and fired by sucking the air downward. can get.

ここで、DL型焼結機の生産性は、焼成速度と焼成後のシンターケーキから成品焼結鉱が採取できる割合である成品歩留により大きな影響を受ける。
焼成速度は焼結原料充填層の通気性が高くなるほど大きくなるので、通気性を改善するために焼結原料を充填層の高さ方向に粒度偏析させて装入することが志向されている。
Here, the productivity of the DL type sintering machine is greatly influenced by the product yield, which is the rate at which the product sintered ore can be collected from the firing rate and the sintered cake after firing.
Since the firing rate increases as the air permeability of the sintered material packed layer increases, it is intended to charge the sintered material by segregating the particle size in the height direction of the packed layer in order to improve the air permeability.

焼結原料を充填層の高さ方向に粒度偏析させて装入する具体的な手段として、ドラムフィーダで切り出した焼結原料をスローピングシュートやローラーフィーダ、リングスリットワイヤ(rsw)等を用いて分級し、充填層の上層部側には細粒を、下層部側には粗粒を配置させることが行われている(例えば、特許文献1〜4参照)。図1は、粒度偏析装入を志向した際における、充填層高さ方向の平均粒径分布の典型例である。   As a concrete means for charging the sintered raw material by segregating the particle size in the height direction of the packed bed, the sintered raw material cut out by the drum feeder is classified using a sloping chute, roller feeder, ring slit wire (rsw), etc. In addition, fine particles are arranged on the upper layer side of the packed bed and coarse particles are arranged on the lower layer side (see, for example, Patent Documents 1 to 4). FIG. 1 is a typical example of the average particle size distribution in the packed bed height direction when the particle size segregation is intended.

ここで、焼成時には、充填層の上層部側は炭材の燃焼と同時に常温の空気を吸引するため熱レベルが低く熱不足を生じやすいのに対し、下層部側は炭材の燃焼熱に加えて上層部側からの高温燃焼ガスが吸引されるため熱レベルが高く熱余剰を生じやすい。一方、粗粒の焼結原料は内部まで熱が伝わりにくいため、十分に焼成するためには細粒の焼結原料より高い熱レベルを必要とする。   Here, at the time of firing, the upper layer side of the packed bed sucks air at room temperature simultaneously with the combustion of the carbonaceous material, so that the heat level is low and heat shortage easily occurs, whereas the lower layer side adds to the combustion heat of the carbonaceous material. Since the high-temperature combustion gas from the upper layer side is sucked, the heat level is high and heat surplus is likely to occur. On the other hand, since the coarse-grained sintered raw material is difficult to transfer heat to the inside, a higher heat level is required than the fine-grained sintered raw material for sufficient firing.

したがって、上記のような装入手段により、熱レベルの低い充填層の上層部側には細粒の焼結原料を、熱レベルの高い下層部側には粗粒の焼結原料を配置させることで、均一な焼成が図れ、成品歩留が向上すると考えられていた。   Therefore, by the above charging means, a fine-grained sintering raw material is placed on the upper layer side of the packed bed with a low heat level, and a coarse-grained sintering raw material is placed on the lower layer side with a high heat level. Thus, it was thought that uniform firing could be achieved and the product yield was improved.

しかしながら、上記図1に示すように、充填層の最上面から下方に向かうにしたがって焼結原料の平均粒径が漸次大きくなり、最下層で平均粒径が最大になるような偏析装入を行うと、焼成後の成品歩留が悪化する傾向が認められた。   However, as shown in FIG. 1 above, the segregation charging is performed so that the average particle diameter of the sintering raw material gradually increases from the uppermost surface of the packed bed toward the lower side and the average particle diameter is maximized in the lowermost layer. And the tendency for the product yield after baking to deteriorate was recognized.

上記のような偏析装入により焼成後の成品歩留が悪化する原因について以下のように考察を行った。   The reason why the product yield after firing deteriorates due to the segregation charging as described above was examined as follows.

図2は、一定粒径範囲の擬似粒子(焼結原料)を焼成した後の成品歩留を、擬似粒子の粒径との関係で示したものである。ここに、成品歩留は、粒径10mm以上のシンターケーキ10kgを2mの高さから4回鉄板上に落下させた後における、粒径10mm以上の粒子の質量割合で評価した。同図に示すように、擬似粒子の粒径が大きくなると成品歩留は低下する傾向にある。この理由としては、粒径の大きい擬似粒子で形成された原料充填層は、空隙も大きくなるためと考えられる。すなわち、焼結反応では、高温で微粉鉄鉱石と副原料が反応して融液が生成し、未溶融の粗粒鉱石等を結合した焼結組織が形成される。このとき、原料充填層の空隙が大きいと、一つの空隙を充填する融液の必要量が多くなる。また、擬似粒子の粒径が大きいと、その比表面積が小さいため、伝熱速度が低下し、融液生成速度も低下する。したがって、融液が一つの空隙を充填するのに要する時間も長くなる。このため、焼成時間がほぼ同じなら、空隙が残りやすくなり、このような残存空隙が破壊の起点として作用して焼成後のシンターケーキの強度が低下し成品歩留が悪化するものと考えられる。   FIG. 2 shows the product yield after firing pseudo particles (sintering raw material) in a certain particle size range in relation to the particle size of the pseudo particles. Here, the product yield was evaluated based on the mass ratio of particles having a particle size of 10 mm or more after dropping 10 kg of a sinter cake having a particle size of 10 mm or more onto the iron plate 4 times from a height of 2 m. As shown in the figure, the product yield tends to decrease as the particle size of the pseudo particles increases. The reason for this is considered to be that the raw material packed layer formed of pseudo particles having a large particle size has a large gap. That is, in the sintering reaction, fine iron ore and auxiliary materials react at a high temperature to form a melt, and a sintered structure is formed in which unmelted coarse ore and the like are combined. At this time, if the gap of the raw material packed layer is large, the required amount of the melt filling one gap increases. Moreover, since the specific surface area is small when the particle size of the pseudo particles is large, the heat transfer rate is lowered, and the melt generation rate is also lowered. Therefore, the time required for the melt to fill one gap is also increased. For this reason, it is considered that if the firing time is substantially the same, voids are likely to remain, and such residual voids act as a starting point of breakage, and the strength of the sintered cake after firing is reduced and the product yield deteriorates.

また、図3は、擬似粒子の平均粒径と擬似粒子中の炭素濃度との関係を示す一例である。本例は、粒径15mm以下の原料鉱石と、粒径6mm以下の炭材を用いて造粒し、得られた造粒物(擬似粒子)を、湿状態のままで10mm、5mm、3mmの篩で篩い分けし、−3mmの擬似粒子については、湿状態のままでは篩目に付着してうまく篩えないので乾燥機で十分乾燥した後、さらに、0.25mmの篩で篩い分け、各粒径範囲ごとに化学分析を行い、炭素濃度(乾量基準)を測定して求めたものである。なお、擬似粒子の平均粒径として、篩目の上下限値の算術平均径を採用した。ただし、10mm超のものは篩目の上限を16mmと仮定して平均粒径を13mmとした。同図に示すように、擬似粒子の平均粒径が大きくなるにしたがって、炭素濃度が低下することが認められる。本例のように、原料鉱石と炭材との間に粒度差(原料鉱石粒度>炭材粒度)があることが多く、したがって、粗粒の擬似粒子が集まる領域では、炭材が不足して焼成に必要な熱量が不足する。このため、充填層に極端な粒度偏析を設けることにより、粗粒の擬似粒子が集まる下層部において熱量が不足して焼成不足が生じ、焼成後の焼結鉱の歩留が低下する。   FIG. 3 is an example showing the relationship between the average particle size of the pseudo particles and the carbon concentration in the pseudo particles. In this example, the raw material ore having a particle size of 15 mm or less and the carbon material having a particle size of 6 mm or less are granulated, and the resulting granulated product (pseudo particles) is 10 mm, 5 mm, 3 mm in a wet state. Sieving with a sieve, -3mm pseudo particles are attached to the sieve mesh in a wet state and do not screen well, so after drying sufficiently with a dryer, further sieve with a 0.25mm sieve, The chemical analysis was performed for each particle size range, and the carbon concentration (based on the dry weight) was measured and obtained. In addition, the arithmetic average diameter of the upper and lower limit values of the mesh was adopted as the average particle diameter of the pseudo particles. However, the average particle diameter of 13 mm or more was assumed to be 16 mm assuming that the upper limit of the sieve mesh was 16 mm. As shown in the figure, it is recognized that the carbon concentration decreases as the average particle size of the pseudo particles increases. As in this example, there is often a particle size difference (raw material ore particle size> carbon material particle size) between the raw material ore and the carbon material, and therefore, in the region where the coarse pseudo particles gather, the carbon material is insufficient. The amount of heat necessary for firing is insufficient. For this reason, by providing an extreme particle size segregation in the packed bed, the calorific value is insufficient in the lower layer where the coarse pseudo particles gather, resulting in insufficient firing, and the yield of sintered ore after firing is reduced.

このように、原料充填層の高さ方向に焼結原料の粒度偏析を設けることで、充填層の通気性が改善され焼成速度を上昇させることが可能となるものの、焼成後の焼結鉱の成品歩留が低下するため、トータルとして十分に生産性の向上に結びつかないのが現状であった。   In this way, by providing particle size segregation of the sintered raw material in the height direction of the raw material packed layer, the air permeability of the packed layer is improved and the firing rate can be increased, but the sintered ore after firing is increased. Since the product yield declines, it is not possible to improve productivity as a whole.

特開平11−257872号公報Japanese Patent Laid-Open No. 11-257872 特開2000−63961号公報JP 2000-63961 A 特開2005−226113号公報JP 2005-226113 A 特開2005−320560号公報JP 2005-320560 A

そこで、本発明は、焼結鉱製造の生産性をさらに向上しうる焼結原料の装入方法を提供することを目的とする。   Then, an object of this invention is to provide the charging method of the sintering raw material which can further improve the productivity of sintered ore manufacture.

請求項1に記載の発明は、焼結機のパレット上に焼結原料を装入して焼結原料充填層を形成するに際し、前記形成された焼結原料充填層をその上半分を上層部、残り下半分を下層部に二分したとき、その上層部では下方に向かうにしたがって前記焼結原料の平均粒径が増大するように前記焼結原料を粒度偏析装入する一方、その下層部では前記焼結原料を高さ方向に粒度偏析させずに装入することを特徴とする焼結原料の装入方法である。   According to the first aspect of the present invention, when forming a sintered raw material packed layer by charging a sintered raw material onto a pallet of a sintering machine, the upper half of the formed sintered raw material packed layer is an upper layer portion. In addition, when the remaining lower half is divided into the lower layer portion, the upper layer portion is charged with particle size segregation so that the average particle size of the sintered material increases as it goes downward, while in the lower layer portion, A method for charging a sintered material, wherein the sintered material is charged without causing segregation in the height direction.

請求項2に記載の発明は、焼結機のパレット上に焼結原料を装入して焼結原料充填層を形成するに際し、前記形成された焼結原料充填層をその上半分を上層部、残り下半分を下層部に二分したとき、その上層部では下方に向かうにしたがって前記焼結原料の平均粒径が増大し、かつ該平均粒径の最大値と最小値の比が1.5〜3.0となるように前記焼結原料を粒度偏析装入する一方、その下層部では前記焼結原料の平均粒径の最大値と該下層部全体における前記焼結原料の平均粒径との比が1.2以下となるように前記焼結原料をできるだけ粒度偏析させずに装入することを特徴とする焼結原料の装入方法である。   According to the second aspect of the present invention, when forming a sintered raw material packed layer by charging a sintered raw material onto a pallet of a sintering machine, the upper half of the formed sintered raw material packed layer is an upper layer portion. When the remaining lower half is divided into the lower layer part, the average particle diameter of the sintered raw material increases in the upper layer part as it goes downward, and the ratio between the maximum value and the minimum value of the average particle diameter is 1.5. While the particle size segregation of the sintered raw material so as to be ~ 3.0, the maximum value of the average particle size of the sintered raw material in the lower layer portion and the average particle size of the sintered raw material in the entire lower layer portion In this method, the sintered raw material is charged with as little segregation as possible so that the ratio becomes 1.2 or less.

本発明によれば、原料充填層の上層部では高さ方向に粒度偏析を設け、下層部では粒度偏析させないように焼結原料を均一装入することで、充填層全体の通気性を改善して焼成速度を上昇させつつ、過度の粒度偏析による下層部の焼成不足を防止して焼成後の焼結鉱の成品歩留を上昇させることが可能となり、その結果として、従来の最上部から最下部まで粒度偏析させる装入方法よりもさらに焼結鉱製造の生産性を向上することが可能となった。   According to the present invention, by providing particle size segregation in the height direction in the upper layer portion of the raw material packed layer and uniformly charging the sintered raw material so as not to cause particle size segregation in the lower layer portion, the air permeability of the entire packed layer is improved. As a result, it is possible to increase the product yield of sintered ore after firing by increasing the firing rate and preventing insufficient firing of the lower layer due to excessive particle size segregation. It has become possible to further improve the productivity of sinter production compared to the charging method in which the particle size is segregated to the lower part.

従来の焼結原料装入方法により形成された原料充填層の高さ方向における焼結原料の粒径分布を示すグラフ図である。It is a graph which shows the particle size distribution of the sintering raw material in the height direction of the raw material filling layer formed by the conventional sintering raw material charging method. 擬似粒子の平均粒径と焼成後の焼結鉱の成品歩留との関係を示すグラフ図である。It is a graph which shows the relationship between the average particle diameter of a pseudo particle, and the product yield of the sintered ore after baking. 擬似粒子の平均粒径と擬似粒子中の炭素濃度との関係を示すグラフ図である。It is a graph which shows the relationship between the average particle diameter of a pseudo particle, and the carbon concentration in a pseudo particle. 本発明例と比較例の、原料充填層の高さ方向における、焼結原料の平均粒径分布および炭素濃度の分布を示すグラフ図である。It is a graph which shows the distribution of the average particle diameter and carbon concentration of a sintering raw material in the height direction of a raw material filling layer of the present invention example and a comparative example. 本発明例と比較例の、焼成後の焼結鉱の成品歩留を比較して示すグラフ図である。It is a graph which compares and shows the product yield of the sintered ore after baking of the example of this invention and a comparative example. 本発明例と比較例の、原料充填層内各部における温度履歴を示すグラフ図である。It is a graph which shows the temperature history in each part in a raw material packed bed of the example of this invention and a comparative example. 本発明に係る焼結原料の装入装置の構成を示す概略図である。It is the schematic which shows the structure of the charging apparatus of the sintering raw material which concerns on this invention. 本発明に係る焼結原料の装入装置の別の構成を示す概略図である。It is the schematic which shows another structure of the charging apparatus of the sintering raw material which concerns on this invention.

以下、本発明をさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail.

本発明に係る焼結原料の装入方法は、例えば、複数銘柄の粉状鉱石に、スケール、返鉱等の雑原料と、石灰石、生石灰、珪石、蛇紋岩等の副原料と、粉コークス、粉状無煙炭等の炭材とを適量配合し、これに水分を添加してドラムミキサやディスクペレタイザで混合造粒して擬似粒子化し焼結原料とした後、この焼結原料を焼結機のパレット上に装入して焼結原料充填層を形成するに際し、前記形成された焼結原料充填層をその上半分を上層部、残り下半分を下層部に二分したとき、その上層部では下方に向かうにしたがって前記焼結原料の平均粒径が増大するように前記焼結原料を粒度偏析装入する一方、その下層部では前記焼結原料を高さ方向に粒度偏析させずに装入(すなわち、均一装入)することを特徴とするものである。   The method of charging the sintered raw material according to the present invention includes, for example, a plurality of brands of powdered ores, miscellaneous raw materials such as scales and return minerals, auxiliary raw materials such as limestone, quicklime, silica and serpentine, and powder coke, Mix an appropriate amount of carbonaceous material such as powdered anthracite, add moisture to this, mix and granulate with a drum mixer or disk pelletizer to make pseudo particles into a sintering raw material, and then use this sintering raw material for the sintering machine When forming the sintered raw material packed layer by charging on the pallet, the upper half of the formed sintered raw material packed layer is divided into the upper layer portion and the remaining lower half is divided into the lower layer portion. While the particle size segregation of the sintering material is increased so that the average particle size of the sintering material increases as it goes to the lower portion, the sintering material is charged without particle size segregation in the height direction ( That is, it is characterized by uniform charging).

「その上層部では下方に向かうにしたがって前記焼結原料の平均粒径が増大するように前記焼結原料を粒度偏析装入する」ことで、図3に示すように、擬似粒子(焼結原料)の平均粒径が大きくなるほど該擬似粒子中の炭素濃度が低くなることから、充填層の上層部における高さ方向の炭素濃度分布は、充填層の最上面で最も高く(すなわち、炭材量が最も多く)、下方に向かうにしたがって低下する(すなわち、炭材量が減少する)。   As shown in FIG. 3, pseudo particles (sintered raw materials are introduced by particle size segregation charging so that the average particle diameter of the sintered raw materials increases toward the lower layer in the upper layer portion). ), The carbon concentration in the pseudo-particles decreases, so that the carbon concentration distribution in the height direction in the upper layer portion of the packed bed is the highest on the top surface of the packed bed (that is, the amount of carbon material) Is the most), and decreases toward the bottom (that is, the amount of carbon material decreases).

このような充填層の上層部における高さ方向の、擬似粒子の平均粒径分布および炭素濃度分布により、充填層最上面近傍では、炭材の燃焼発熱量が最大になり、高い熱レベルが実現されるとともに、擬似粒子への伝熱速度も最高になり、熱不足がより確実に解消される。そして、充填層最上面から下方に行くにしたがって、擬似粒子の平均粒径が大きくなるとともに炭素濃度が低下し、炭材の燃焼発熱量が減少するとともに、擬似粒子への伝熱速度も低下するが、充填層最上面側からの高温燃焼ガスが吸引されるため高い熱レベルが維持される。その結果、上層部の高さ方向全体にわたって高い焼結鉱強度が確保される。   Due to the average particle size distribution and carbon concentration distribution of the pseudo particles in the height direction in the upper layer of such a packed bed, the combustion calorific value of the carbonaceous material is maximized near the top surface of the packed bed, and a high heat level is realized. At the same time, the heat transfer rate to the pseudo particles is maximized, and the lack of heat is more reliably resolved. And as it goes downward from the uppermost surface of the packed bed, the average particle size of the pseudo particles increases and the carbon concentration decreases, the calorific value of combustion of the carbon material decreases, and the heat transfer rate to the pseudo particles also decreases. However, since the high-temperature combustion gas from the uppermost surface side of the packed bed is sucked, a high heat level is maintained. As a result, high sinter strength is ensured over the entire height direction of the upper layer portion.

一方、「その下層部では前記焼結原料を高さ方向に粒度偏析させずに装入する」ことで、充填層の下層部では、擬似粒子(焼結原料)の平均粒径をできるだけ一定に近づけることで、充填層の最下層部への粗大な擬似粒子の集中が防止されるとともに、同最下層部における炭素濃度の過度の低下が防止され、該最下層部の焼結鉱強度も確保される。その結果、下層部の高さ方向全体にわたっても高い焼結鉱強度が確保される。   On the other hand, the average particle diameter of the pseudo particles (sintering raw material) is made as constant as possible in the lower layer portion of the packed bed by “loading the sintering raw material in the lower layer portion without causing segregation in the height direction”. By approaching, coarse pseudo particles are prevented from concentrating on the lowermost layer of the packed bed, and an excessive decrease in the carbon concentration in the lowermost layer is prevented, and the sinter strength of the lowermost layer is also secured. Is done. As a result, high sinter strength is ensured over the entire height direction of the lower layer.

したがって、上記のようにして、充填層の高さ方向全体にわたって高い焼結鉱強度が確保されるので、焼成後の焼結鉱の歩留が確実に向上する。   Therefore, as described above, high sinter strength is ensured throughout the height direction of the packed bed, so that the yield of sintered ore after firing is reliably improved.

上記上層部における粒度偏析装入の程度としては、該上層部での焼結原料の平均粒径の最大値と最小値の比が1.5〜3.0(さらには、1.7〜2.7、特に1.9〜2.4)となるようにする一方、上記下層部における非粒度偏析装入(均一装入)の程度としては、その下層部での前記焼結原料の平均粒径の最大値と該下層部全体における前記焼結原料の平均粒径との比が1.2以下(さらには、1.15以下、特に1.1以下)となるようにすることが好ましい。   As the degree of particle size segregation charging in the upper layer portion, the ratio of the maximum value and the minimum value of the average particle size of the sintered raw material in the upper layer portion is 1.5 to 3.0 (more preferably 1.7 to 2). 7, particularly 1.9 to 2.4), while the degree of non-particle size segregation charging (uniform charging) in the lower layer portion is the average grain size of the sintered raw material in the lower layer portion. It is preferable that the ratio between the maximum value of the diameter and the average particle diameter of the sintered raw material in the entire lower layer portion is 1.2 or less (more preferably 1.15 or less, particularly 1.1 or less).

上記上層部での焼結原料の平均粒径の最大値と最小値の比を1.5〜3.0(さらには、1.7〜2.7、特に1.9〜2.4)としたのは、この比が小さすぎると、粒度偏析が不十分となり、充填層最上部において熱不足を招くおそれが生じるためであり、一方、上記比が大きくなりすぎると、粒度偏析が過度となり、充填層最上部に細粒が集まりすぎて通気性が悪化するおそれが生じるためである。   The ratio of the maximum value and the minimum value of the average particle size of the sintered raw material in the upper layer portion is 1.5 to 3.0 (more preferably 1.7 to 2.7, and particularly 1.9 to 2.4). The reason is that if this ratio is too small, the particle size segregation becomes insufficient, which may lead to insufficient heat at the top of the packed bed, while if the ratio is too large, the particle size segregation becomes excessive, This is because the fine particles gather at the uppermost part of the packed bed and the air permeability may deteriorate.

また、上記下層部での焼結原料の平均粒径の最大値と該下層部全体における前記焼結原料の平均粒径との比を1.2以下(さらには、1.15以下、特に1.1以下)としたのは、この比が大きくなりすぎると、最下層部に粗粒が集まり、炭素濃度も低下して熱不足を招くおそれが生じるためである。   Further, the ratio of the maximum value of the average particle diameter of the sintered raw material in the lower layer part to the average particle diameter of the sintered raw material in the entire lower layer part is 1.2 or less (further 1.15 or less, particularly 1 .1 or less), if this ratio is too large, coarse particles are collected in the lowermost layer, and the carbon concentration is also lowered, which may cause heat shortage.

上記のような、上層部は粒度偏析あり、下層部はできるだけ粒度偏析させないという、充填層高さ方向の粒径分布を実現するためには、例えば、図7に示すように、パレット1の進行方向に沿って前後に2台の給鉱装置5,6を設け、上流側の給鉱装置5からそのドラムフィーダ5aで切り出した原料を直接パレット1上に装入して下層部3を形成し、その上に、下流側の給鉱装置6からそのドラムフィーダ6aで切り出した原料をスローピングシュート2を介して装入し、上層部4を形成するようにすればよい。あるいは、図8に示すように、1台の給鉱装置5だけを用い、そのドラムフィーダ5aで切り出した原料を分岐シュート7でパレット1の進行方向の上流側と下流側に分配し、上流側に分配された原料は直接パレット1上に装入して下層部3を形成し、その上に、下流側に分岐された原料をスローピングシュート2を介して装入し、上層部4を形成するようにしてもよい。   In order to realize a particle size distribution in the height direction of the packed bed in which the upper layer portion has particle size segregation and the lower layer portion has as little particle size segregation as described above, for example, as shown in FIG. The two feeders 5 and 6 are provided in the front and rear along the direction, and the raw material cut out by the drum feeder 5a from the upstream feeder 5 is directly charged onto the pallet 1 to form the lower layer 3. Then, the raw material cut out from the downstream feeder 6 by the drum feeder 6a is charged through the sloping chute 2 to form the upper layer portion 4. Alternatively, as shown in FIG. 8, only one mining device 5 is used, and the raw material cut out by the drum feeder 5 a is distributed to the upstream side and the downstream side in the traveling direction of the pallet 1 by the branch chute 7. The raw material distributed to is directly charged onto the pallet 1 to form the lower layer portion 3, and then the raw material branched downstream is charged through the sloping chute 2 to form the upper layer portion 4. You may do it.

本発明の効果を確認するため、以下の焼結鍋試験を実施した。   In order to confirm the effect of the present invention, the following sintering pot test was conducted.

加古川製鉄所の実機焼結工場で採取した同一ロットの焼結原料を用いて、内径100mmの焼結鍋の原料充填層高さ方向に種々の平均粒径分布を形成し、負圧3.5kPa(一定)で大気吸引の条件にて焼結鍋試験を実施した。   Using the same lot of sintering raw material collected at the actual sintering plant of Kakogawa Works, various average particle size distributions are formed in the raw material packed bed height direction of the sintering pot with an inner diameter of 100 mm, and the negative pressure is 3.5 kPa. (Constant) A sintering pot test was conducted under atmospheric suction conditions.

図4(a)に、原料充填層高さ方向の平均粒径分布を示す。ここに、比較例1は、スリットバー給鉱装置を用いて装入することにより、充填層高さ方向全体にわたって粒度偏析を設けたものである。また、比較例2は、充填層高さ方向全体に均一装入し、粒度偏析を設けなかったものである。そして、発明例は、充填層の下層部には均一装入して粒度偏析を設けず、その上層部にはスリットバー給鉱装置を用いて装入することにより粒度偏析を設けたものである。   FIG. 4A shows an average particle size distribution in the height direction of the raw material packed bed. Here, Comparative Example 1 is provided with particle size segregation throughout the packed bed height direction by charging using a slit bar feeding apparatus. Moreover, the comparative example 2 is uniformly charged in the whole packed bed height direction, and does not provide particle size segregation. In the invention example, the lower layer portion of the packed bed is uniformly charged and no particle size segregation is provided, and the upper layer portion is provided with a particle size segregation by charging using a slit bar feeder. .

なお、充填層高さ方向の平均粒径分布は、充填層の最上面から、充填層高さの1/10の高さ分ずつ焼結原料を採取し、これを10mm、5mm、3mm、0.25mmの篩で篩分けし、各篩間の上下限値の算術平均径を代表径とし、これに各篩間に存在する焼結原料の質量割合で加重平均して平均粒径を算出することにより測定したものである。ただし、10mm超のものは篩目の上限を16mmと仮定して代表径を13mmとし、0.25mm以下のものは篩目の下限を0mmとして代表径を0.125mmとした。   The average particle size distribution in the height direction of the packed bed is as follows. From the uppermost surface of the packed bed, the sintering raw material is sampled by the height of 1/10 of the packed bed height, and this is 10 mm, 5 mm, 3 mm, 0 Sieving with a 25 mm sieve, the arithmetic average diameter of the upper and lower limits between each sieve is taken as the representative diameter, and the average particle diameter is calculated by weighted average with the mass ratio of the sintering raw material present between each sieve It is measured by. However, for those over 10 mm, assuming that the upper limit of the sieve mesh is 16 mm, the representative diameter was 13 mm, and for those of 0.25 mm or less, the lower limit of the sieve mesh was 0 mm and the representative diameter was 0.125 mm.

図4(b)は、既述の図3における擬似粒子の平均粒径と擬似粒子中の炭素濃度との関係を参考にして、比較例1、2および発明例のそれぞれについて充填層高さ方向の炭素濃度分布を推定し、これらを模式的に示したものである。   FIG. 4B shows the height direction of the packed bed for each of Comparative Examples 1 and 2 and the inventive example with reference to the relationship between the average particle diameter of the pseudo particles and the carbon concentration in the pseudo particles in FIG. 3 described above. The carbon concentration distribution is estimated and these are schematically shown.

図5は、比較例1、2および発明例のそれぞれについて焼成後の成品歩留を測定し、それらを比較して示したものである。同図に示すように、充填層高さ方向全体に粒度偏析を設けた比較例1では約47%と低い成品歩留であったのに対し、充填層上層部は粒度偏析を設け、下層部は粒度偏析を設けずに均一装入した発明例では、充填層高さ方向全体に粒度偏析を設けずに均一装入した比較例2とほぼ同等の約50%の高い成品歩留が得られた。したがって、本発明によれば、従来の、充填層高さ方向全体に粒度偏析を設けた場合よりも、成品歩留が明らかに向上することがわかった。   FIG. 5 shows comparison of the product yields after firing for each of Comparative Examples 1 and 2 and Invention Examples. As shown in the figure, in Comparative Example 1 in which particle size segregation was provided in the whole packed bed height direction, the product yield was as low as about 47%, whereas the upper layer portion of the packed bed was provided with particle size segregation, and the lower layer portion. In the invention example in which uniform charging was performed without providing particle size segregation, a high product yield of about 50% was obtained, which was almost the same as Comparative Example 2 in which uniform charging was performed without providing particle size segregation throughout the packed bed height direction. It was. Therefore, according to this invention, it turned out that a product yield improves clearly rather than the case where the particle size segregation is provided in the whole packed bed height direction.

また、図6は、比較例1、2および発明例のそれぞれについて充填層各高さ位置における温度履歴を示すものである。同図に示すように、比較例1に比べ、発明例ではほぼ同等の高い焼成速度が得られるものの、比較例2では焼成速度が低くなることがわかった。したがって、本発明によれば、従来の、充填層高さ方向全体に粒度偏析を設けた場合とほぼ同等の高い焼成速度を維持できることがわかった。   FIG. 6 shows the temperature history at each height of the packed bed for each of Comparative Examples 1 and 2 and Invention Example. As shown in the figure, it was found that, compared with Comparative Example 1, the inventive example can obtain a nearly equal high firing rate, but Comparative Example 2 has a lower firing rate. Therefore, according to this invention, it turned out that the high baking rate substantially equivalent to the case where the particle size segregation is provided in the whole packed bed height direction can be maintained.

そして、焼結鉱製造の生産性は成品歩留と焼成速度の積に比例することから、上記図5および図6の結果より、発明例は比較例1、2のいずれよりも高い生産性が得られることが明らかであり、このことから、本発明の生産性向上効果が確認された。   And since the productivity of sinter ore production is proportional to the product of the product yield and the firing rate, the results of FIGS. 5 and 6 show that the inventive example has higher productivity than any of Comparative Examples 1 and 2. It is clear that it is obtained, and from this, the productivity improvement effect of the present invention was confirmed.

Claims (2)

焼結機のパレット上に焼結原料を装入して焼結原料充填層を形成するに際し、前記形成された焼結原料充填層をその上半分を上層部、残り下半分を下層部に二分したとき、その上層部では下方に向かうにしたがって前記焼結原料の平均粒径が増大するように前記焼結原料を粒度偏析装入する一方、その下層部では前記焼結原料を高さ方向に粒度偏析させずに装入することを特徴とする焼結原料の装入方法。   When forming the sintered raw material packed layer by charging the sintered raw material on the pallet of the sintering machine, the upper half of the formed sintered raw material packed layer is divided into the upper layer part and the remaining lower half is divided into the lower layer part. In the upper layer portion, the sintered raw material is subjected to segregation and particle size segregation so that the average particle size of the sintered raw material increases as it goes downward. A method of charging a sintered material, which is performed without causing particle size segregation. 焼結機のパレット上に焼結原料を装入して焼結原料充填層を形成するに際し、前記形成された焼結原料充填層をその上半分を上層部、残り下半分を下層部に二分したとき、その上層部では下方に向かうにしたがって前記焼結原料の平均粒径が増大し、かつ該平均粒径の最大値と最小値の比が1.5〜3.0となるように前記焼結原料を粒度偏析装入する一方、その下層部では前記焼結原料の平均粒径の最大値と該下層部全体における前記焼結原料の平均粒径との比が1.2以下となるように前記焼結原料をできるだけ粒度偏析させずに装入することを特徴とする焼結原料の装入方法。   When forming the sintered raw material packed layer by charging the sintered raw material on the pallet of the sintering machine, the upper half of the formed sintered raw material packed layer is divided into the upper layer part and the remaining lower half is divided into the lower layer part. Then, in the upper layer portion, the average particle diameter of the sintered raw material increases as it goes downward, and the ratio of the maximum value and the minimum value of the average particle diameter is 1.5 to 3.0. While the sintered raw material is charged with particle size segregation, the ratio of the maximum value of the average particle size of the sintered raw material to the average particle size of the sintered raw material in the entire lower layer portion is 1.2 or less in the lower layer portion. Thus, the method for charging a sintered material is characterized in that the sintered material is charged as much as possible without causing segregation of particle size.
JP2010137262A 2010-06-16 2010-06-16 Method of charging sintering raw material Pending JP2012001758A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010137262A JP2012001758A (en) 2010-06-16 2010-06-16 Method of charging sintering raw material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010137262A JP2012001758A (en) 2010-06-16 2010-06-16 Method of charging sintering raw material

Publications (1)

Publication Number Publication Date
JP2012001758A true JP2012001758A (en) 2012-01-05

Family

ID=45534079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010137262A Pending JP2012001758A (en) 2010-06-16 2010-06-16 Method of charging sintering raw material

Country Status (1)

Country Link
JP (1) JP2012001758A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014098176A (en) * 2012-11-13 2014-05-29 Nippon Steel & Sumitomo Metal Method of manufacturing sintered ore
JP2020012185A (en) * 2018-07-20 2020-01-23 日本製鉄株式会社 Height direction raw material distribution estimation device, height direction raw material distribution estimation program, and method therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014098176A (en) * 2012-11-13 2014-05-29 Nippon Steel & Sumitomo Metal Method of manufacturing sintered ore
JP2020012185A (en) * 2018-07-20 2020-01-23 日本製鉄株式会社 Height direction raw material distribution estimation device, height direction raw material distribution estimation program, and method therefor
JP7070191B2 (en) 2018-07-20 2022-05-18 日本製鉄株式会社 Height direction raw material distribution estimation device, height direction raw material distribution estimation program, and its method

Similar Documents

Publication Publication Date Title
CN104561531B (en) Charging apparatus for raw material, apparatus for manufacturing sintered ore and method for manufacturing sintered ore using the same
JP2009185356A (en) Method for producing sintered ore
JP6421666B2 (en) Method for producing sintered ore
JP5168802B2 (en) Method for producing sintered ore
JP6870439B2 (en) Sintered ore manufacturing method
JP2012001758A (en) Method of charging sintering raw material
JP2014214334A (en) Method for manufacturing sintered ore
JP5703715B2 (en) Method for producing sintered ore
CN107164631A (en) A kind of method and system for improving iron ore sintering mixture ventilation
CN106414778A (en) Production method of granular metallic iron
JP4830728B2 (en) Method for producing sintered ore
JP6489092B2 (en) Sinter ore manufacturing method and sintered ore manufacturing equipment line
KR101492783B1 (en) Process for the manufacture of ferrochrome
JP5751037B2 (en) Blast furnace operation method
KR101541669B1 (en) Metallurgical composition for the manufacture of ferrochrome
CN206902200U (en) A kind of system for improving iron ore sintering mixture ventilation
JP2012046828A (en) Method for producing sintered ore
JPWO2014013775A1 (en) Method for producing sintered ore
TWI632241B (en) Method for manufacturing sinter ore in carbon material
JP3688591B2 (en) Method for producing sintered ore
JP7147505B2 (en) Method for producing sintered ore
JP2013256694A (en) Method for granulating sintering raw material
CN109608076A (en) A kind of method of comprehensive utilization of smelting laterite-nickel ores slag
JP7095446B2 (en) Sintered ore manufacturing method
JP7180406B2 (en) Method for producing sintered ore