JP2012001696A - Method for producing low molecular weight hyaluronic acid - Google Patents

Method for producing low molecular weight hyaluronic acid Download PDF

Info

Publication number
JP2012001696A
JP2012001696A JP2010140837A JP2010140837A JP2012001696A JP 2012001696 A JP2012001696 A JP 2012001696A JP 2010140837 A JP2010140837 A JP 2010140837A JP 2010140837 A JP2010140837 A JP 2010140837A JP 2012001696 A JP2012001696 A JP 2012001696A
Authority
JP
Japan
Prior art keywords
hyaluronic acid
acid
low
molecular weight
low molecular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010140837A
Other languages
Japanese (ja)
Other versions
JP5587049B2 (en
Inventor
Yoji Onuki
洋二 大貫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOSHITSU KAGAKU KENKYUSHO KK
Original Assignee
TOSHITSU KAGAKU KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOSHITSU KAGAKU KENKYUSHO KK filed Critical TOSHITSU KAGAKU KENKYUSHO KK
Priority to JP2010140837A priority Critical patent/JP5587049B2/en
Publication of JP2012001696A publication Critical patent/JP2012001696A/en
Application granted granted Critical
Publication of JP5587049B2 publication Critical patent/JP5587049B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a low molecular weight hyaluronic acid, particularly a tetrasaccharide low molecular weight hyaluronic acid of high purity, efficiently, safely, and at low cost.SOLUTION: This production method for a low molecular weight hyaluronic acid includes: a process of making hyaluronic acid having a low molecular weight by decomposing hyaluronic acid and/or a salt thereof with an aqueous organic sulfonic acid solution, where the organic sulfonic acid is preferably a compound represented by formula (1): RSOH (1), more preferably at least one type selected from the group consisting of methanesulfonic acid, ethanesulfonic acid, benzenesulfonic acid, naphthalenesulfonic acid, and toluenesulfonic acid, particularly preferably methanesulfonic acid.

Description

本発明は、低分子ヒアルロン酸の製造方法に関する。   The present invention relates to a method for producing low molecular weight hyaluronic acid.

ヒアルロン酸(以下「HA」とも記す。)は、基本構成分子であるグルクロン酸およびN-アセチルグルコサミンの2糖を反復構成単位とする多糖類である(下記一般式(a)参照)。   Hyaluronic acid (hereinafter also referred to as “HA”) is a polysaccharide having two or more basic structural molecules, glucuronic acid and N-acetylglucosamine, as repeating structural units (see the following general formula (a)).

このような構造を有するヒアルロン酸は、その高い保湿機能により、医薬品、飲食品および化粧品の分野で広く用いられている。 Hyaluronic acid having such a structure is widely used in the fields of pharmaceuticals, foods and drinks, and cosmetics due to its high moisturizing function.

上記一般式(a)において、nが1の場合、すなわち、ヒアルロン酸の最小構成単位を2糖のヒアルロン酸(以下「HA2」とも記す。)という。そして、nが2の場合、すなわち、HA2が2つ結合した場合を4糖のヒアルロン酸(以下「HA4」とも記す。)という。ヒアルロン酸は、通常、HA2が多数結合した高分子であり、分子量が50万以上である。   In the general formula (a), when n is 1, that is, the minimum structural unit of hyaluronic acid is referred to as disaccharide hyaluronic acid (hereinafter also referred to as “HA2”). The case where n is 2, that is, the case where two HA2 are combined is called tetrasaccharide hyaluronic acid (hereinafter also referred to as “HA4”). Hyaluronic acid is usually a polymer in which a large number of HA2 are bonded, and has a molecular weight of 500,000 or more.

近年、分子量を数万未満に低分子量化したヒアルロン酸(以下「低分子ヒアルロン酸」とも記す。)が、様々な活性を示すことが見出されている。特に、HA2およびHA4のような低分子ヒアルロン酸が、様々な活性を示すことが知られるようになっている。HA4の活性としては、たとえば、細胞を高温に維持することによる細胞死を抑制する(HA4がストレスタンパクの一種であるヒートショックプロテイン産生を増加させ、細胞死を防御する)ことや、HA4を神経由来培養細胞株PC12に添加培養すると、PC12細胞の神経細胞への分化誘導を引き起こし、神経突起伸展作用を示すことなどが挙げられる。   In recent years, it has been found that hyaluronic acid having a molecular weight reduced to less than tens of thousands (hereinafter also referred to as “low molecular hyaluronic acid”) exhibits various activities. In particular, it has been known that low molecular weight hyaluronic acids such as HA2 and HA4 exhibit various activities. Examples of the activity of HA4 include suppression of cell death caused by maintaining cells at a high temperature (HA4 increases production of heat shock protein, which is a kind of stress protein, and protects cell death), When added and cultured in the derived cultured cell line PC12, differentiation induction of PC12 cells into nerve cells is caused and neurite extension action is exhibited.

以上の知見のとおり、HA4が他の低分子ヒアルロン酸と比較して特長的かつ有意な作用を示すことが判明している。   As described above, it has been found that HA4 exhibits a characteristic and significant action as compared with other low-molecular hyaluronic acid.

このような低分子ヒアルロン酸の製造方法としては、ヒアルロン酸をヒアルロニダーゼ等の酵素で分解する方法(例えば、特許文献1参照)、ヒアルロン酸を塩酸等の酸で処理する方法(例えば、特許文献2および3参照)が知られている。   As a method for producing such low-molecular hyaluronic acid, a method of decomposing hyaluronic acid with an enzyme such as hyaluronidase (for example, see Patent Document 1), a method of treating hyaluronic acid with an acid such as hydrochloric acid (for example, Patent Document 2) And 3) are known.

特開2003−339393号公報JP 2003-339393 A 特開2009−256683号公報JP 2009-256683 A 特開2006−265287号公報JP 2006-265287 A

しかしながら、ヒアルロン酸をヒアルロニダーゼ等の酵素で分解する方法では、酵素成分が低分子ヒアルロン酸中に残留するため純度が低下するという問題点がある。純度の高い低分子ヒアルロン酸を得るためには、酵素成分を除去する工程が必要になる等、製造工程が煩雑となる。さらに、酵素の価格が極めて高く、経済上不利である。   However, the method of degrading hyaluronic acid with an enzyme such as hyaluronidase has a problem that the purity is lowered because the enzyme component remains in the low-molecular hyaluronic acid. In order to obtain low-molecular-weight hyaluronic acid with high purity, the production process becomes complicated, for example, a process for removing the enzyme component is required. Furthermore, the price of the enzyme is extremely high, which is economically disadvantageous.

また、ヒアルロン酸を塩酸等の酸で処理する方法では、酵素で分解する方法に比べて反応系が単純であるが、分解反応の制御が難しく、低分子ヒアルロン酸の収率が低いという問題点がある。また、塩酸等の酸による分解反応では、中和により多量の塩が生成するため分解後に脱塩工程が必要になったり、塩酸等揮発性の酸では周辺機器の腐食や人的被害を防ぐ機材が必要となる等、製造工程が煩雑である。   In addition, the method of treating hyaluronic acid with an acid such as hydrochloric acid has a simple reaction system compared with the method of decomposing with an enzyme, but it is difficult to control the decomposition reaction and the yield of low-molecular hyaluronic acid is low. There is. In addition, in the decomposition reaction with acids such as hydrochloric acid, a large amount of salt is generated by neutralization, so a desalting step is required after decomposition, and with volatile acids such as hydrochloric acid, equipment that prevents corrosion and human damage of peripheral equipment The manufacturing process is complicated.

これまで低分子ヒアルロン酸、特にHA2およびHA4の製造方法については、ほとんど検討されていない。しかしながら、上述したとおりHA4等の低分子ヒアルロン酸は、医療等の分野で用いられることが期待されるため、上記問題点を解決し、より純度の高い低分子ヒアルロン酸を効率良く、しかも低価格で安全に製造することが望まれている。   Until now, there have been little studies on methods for producing low molecular weight hyaluronic acid, particularly HA2 and HA4. However, as described above, since low molecular hyaluronic acid such as HA4 is expected to be used in the field of medicine, etc., the above problems are solved, and low molecular hyaluronic acid with higher purity is efficiently produced at a low price. Therefore, it is desired to manufacture it safely.

そこで、本発明は、純度の高い低分子ヒアルロン酸、特にHA4を、効率良く安全かつ低価格で製造する方法を提供することを目的とする。   Accordingly, an object of the present invention is to provide a method for producing a low-molecular hyaluronic acid having a high purity, particularly HA4, efficiently, safely and at a low cost.

本発明者は、上記課題を解決すべく鋭意検討した結果、上述した従来のヒアルロン酸の分解方法を改良し、有機スルホン酸をヒアルロン酸の分解に使用することにより、効率良く安全かつ低コストで、しかも非常に高い収率で純度の高い低分子ヒアルロン酸、特にHA4が得られることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventor has improved the above-described conventional method of decomposing hyaluronic acid, and using organic sulfonic acid for the decomposition of hyaluronic acid, thereby efficiently and safely at low cost. In addition, the present inventors have found that low-molecular-weight hyaluronic acid, particularly HA4, can be obtained with a very high yield and high purity, and the present invention has been completed.

すなわち、本発明は以下のとおりである。   That is, the present invention is as follows.

[1] ヒアルロン酸および/またはその塩を有機スルホン酸水溶液により分解して低分子量化する工程を含むことを特徴とする低分子ヒアルロン酸の製造方法。   [1] A method for producing low molecular weight hyaluronic acid, comprising the step of decomposing hyaluronic acid and / or a salt thereof with an organic sulfonic acid aqueous solution to lower the molecular weight.

[2] 前記有機スルホン酸が下記式(1)で表される化合物であることを特徴とする[1]に記載の低分子ヒアルロン酸の製造方法。   [2] The method for producing low-molecular hyaluronic acid according to [1], wherein the organic sulfonic acid is a compound represented by the following formula (1).

(式(1)中、Rは、炭素原子数1〜10の炭化水素基を表す。)
[3] 前記有機スルホン酸が、メタンスルホン酸、エタンスルホン酸、ベンゼンスルホン酸、ナフタレンスルホン酸およびトルエンスルホン酸からなる群より選択される少なくとも1種であることを特徴とする[1]または[2]に記載の低分子ヒアルロン酸の製造方法。
(In the formula (1), R represents a hydrocarbon group having 1 to 10 carbon atoms.)
[3] The organic sulfonic acid is at least one selected from the group consisting of methanesulfonic acid, ethanesulfonic acid, benzenesulfonic acid, naphthalenesulfonic acid, and toluenesulfonic acid [1] or [1] [2] The method for producing a low molecular weight hyaluronic acid according to [2].

[4] 前記有機スルホン酸がメタンスルホン酸であることを特徴とする[1]〜[3]のいずれかに記載の低分子ヒアルロン酸の製造方法。   [4] The method for producing low-molecular hyaluronic acid according to any one of [1] to [3], wherein the organic sulfonic acid is methanesulfonic acid.

[5] 前記低分子ヒアルロン酸が4糖以下の低分子ヒアルロン酸であることを特徴とする[1]〜[4]のいずれかに記載の低分子ヒアルロン酸の製造方法。   [5] The method for producing low-molecular hyaluronic acid according to any one of [1] to [4], wherein the low-molecular hyaluronic acid is a low-molecular hyaluronic acid having 4 or less sugars.

[6] 前記低分子ヒアルロン酸が4糖および/または2糖の低分子ヒアルロン酸であることを特徴とする[1]〜[5]のいずれかに記載の低分子ヒアルロン酸の製造方法。   [6] The method for producing low molecular hyaluronic acid according to any one of [1] to [5], wherein the low molecular hyaluronic acid is tetrasaccharide and / or disaccharide low molecular hyaluronic acid.

[7] 前記工程が加熱下で行なわれることを特徴とする[1]〜[6]のいずれかに記載の低分子ヒアルロン酸の製造方法。   [7] The method for producing low-molecular hyaluronic acid according to any one of [1] to [6], wherein the step is performed under heating.

[8] 前記加熱温度が60〜80℃の範囲であることを特徴とする[7]に記載の低分子ヒアルロン酸の製造方法。   [8] The method for producing low molecular weight hyaluronic acid according to [7], wherein the heating temperature is in the range of 60 to 80 ° C.

[9] 前記加熱時間が3〜24時間であることを特徴とする[7]に記載の低分子ヒアルロン酸の製造方法。   [9] The method for producing low-molecular hyaluronic acid according to [7], wherein the heating time is 3 to 24 hours.

[10] 前記有機スルホン酸水溶液の濃度が0.1〜0.6Nであることを特徴とする[1]〜[9]のいずれかに記載の低分子ヒアルロン酸の製造方法。   [10] The method for producing low-molecular hyaluronic acid according to any one of [1] to [9], wherein the concentration of the organic sulfonic acid aqueous solution is 0.1 to 0.6 N.

[11] 前記有機スルホン酸水溶液100質量部に対して、前記ヒアルロン酸および/またはその塩を1〜10質量部添加することを特徴とする[1]〜[10]のいずれかに記載の低分子ヒアルロン酸の製造方法。   [11] The low amount according to any one of [1] to [10], wherein 1 to 10 parts by mass of the hyaluronic acid and / or a salt thereof is added to 100 parts by mass of the organic sulfonic acid aqueous solution. A method for producing molecular hyaluronic acid.

本発明の低分子ヒアルロン酸の製造方法によれば、効率良く安全かつ低コストで、しかも非常に高い収率で純度の高い低分子ヒアルロン酸、特にHA4が得られる。   According to the method for producing low-molecular hyaluronic acid of the present invention, low-molecular hyaluronic acid, particularly HA4, having high purity and high yield can be obtained efficiently, safely and at low cost.

実施例13で得られたHA4のHPLC分析結果の一例を示す図である。It is a figure which shows an example of the HPLC analysis result of HA4 obtained in Example 13. メタンスルホン酸水溶液で原料ヒアルロン酸を分解したときに生成する低分子ヒアルロン酸のHPLC分析結果の一例を示す図である。It is a figure which shows an example of the HPLC analysis result of the low molecular weight hyaluronic acid produced | generated when a raw material hyaluronic acid is decomposed | disassembled with methanesulfonic acid aqueous solution. 塩酸で原料ヒアルロン酸を分解したときに生成する低分子ヒアルロン酸のHPLC分析結果の一例を示す図である。It is a figure which shows an example of the HPLC analysis result of the low molecular weight hyaluronic acid produced | generated when a raw material hyaluronic acid is decomposed | disassembled with hydrochloric acid.

以下、本発明を実施するための形態(以下、「本実施形態」と言う。)について、詳細に説明する。本発明は、以下の記載に限定されるものではなく、その要旨の範囲内で種々変形して実施できる。   Hereinafter, a mode for carrying out the present invention (hereinafter referred to as “the present embodiment”) will be described in detail. The present invention is not limited to the following description, and various modifications can be made within the scope of the gist thereof.

本実施形態に係る低分子ヒアルロン酸の製造方法は、ヒアルロン酸および/またはその塩を有機スルホン酸水溶液により分解して低分子量化する工程を含む。   The method for producing low-molecular hyaluronic acid according to this embodiment includes a step of decomposing hyaluronic acid and / or a salt thereof with an organic sulfonic acid aqueous solution to reduce the molecular weight.

本実施形態において、ヒアルロン酸とは、グルクロン酸およびN−アセチルグルコサミンの2糖を反復構成単位とする多糖類を意味する。また、ヒアルロン酸の塩としては、特に限定されないが、例えば、ナトリウム塩、カリウム塩、カルシウム塩、亜鉛塩、マグネシウム塩、アンモニウム塩等が挙げられる。   In the present embodiment, hyaluronic acid means a polysaccharide having glucuronic acid and N-acetylglucosamine disaccharide as repeating structural units. Moreover, it does not specifically limit as a salt of hyaluronic acid, For example, sodium salt, potassium salt, calcium salt, zinc salt, magnesium salt, ammonium salt etc. are mentioned.

本実施形態の製造方法の原料であるヒアルロン酸および/またはその塩(以下「原料ヒアルロン酸」とも記す。)は、分子量が通常50万以上の高分子である。   Hyaluronic acid and / or a salt thereof (hereinafter also referred to as “raw hyaluronic acid”), which is a raw material for the production method of the present embodiment, is a polymer having a molecular weight of usually 500,000 or more.

本実施形態の製造方法に用いる原料ヒアルロン酸は、一般に、鶏冠、臍の緒、眼球、皮膚、軟骨等の生物組織、あるいはストレプトコッカス属の微生物等のヒアルロン酸生産微生物を培養して得られる培養液等を原料として、これらの原料から抽出(さらに必要に応じて精製)して得られるものである。本実施形態に用いる原料ヒアルロン酸としては、当該粗抽出物および精製物のいずれを用いてもよい。   The raw material hyaluronic acid used in the production method of the present embodiment is generally a biological tissue such as chicken crown, umbilical cord, eyeball, skin, cartilage, or a culture solution obtained by culturing a hyaluronic acid-producing microorganism such as a microorganism belonging to the genus Streptococcus. The raw material is obtained by extraction (further purified as necessary) from these raw materials. As the raw material hyaluronic acid used in the present embodiment, either the crude extract or the purified product may be used.

本実施形態において、低分子ヒアルロン酸とは、原料ヒアルロン酸を低分子量化して、分子量を通常数万未満としたものをいう。   In the present embodiment, the low molecular weight hyaluronic acid refers to a raw material hyaluronic acid having a low molecular weight and a molecular weight of usually less than tens of thousands.

本実施形態の製造方法において得られる低分子ヒアルロン酸としては、4糖以下の低分子ヒアルロン酸であることが好ましく、4糖および/または2糖の低分子ヒアルロン酸であることがより好ましい。本実施形態の製造方法において得られる4糖の低分子ヒアルロン酸(以下「HA4」とも記す。)は、純度が高く、医薬品、特に脳等の神経系の治療薬として好適に用いることができる。   The low molecular hyaluronic acid obtained in the production method of the present embodiment is preferably a low molecular hyaluronic acid having 4 or less sugars, and more preferably a tetrasaccharide and / or disaccharide low molecular hyaluronic acid. The tetrasaccharide low-molecular-weight hyaluronic acid (hereinafter also referred to as “HA4”) obtained in the production method of the present embodiment has high purity, and can be suitably used as a pharmaceutical, particularly a therapeutic agent for the nervous system such as the brain.

本実施形態の製造方法に用いる有機スルホン酸は、下記式(1)で表される化合物であることが好ましい。   The organic sulfonic acid used in the production method of the present embodiment is preferably a compound represented by the following formula (1).

上記式(1)中、Rは、炭素原子数1〜10の炭化水素基、好ましくは炭素原子数1〜2の炭化水素基(メチル基、エチル基)、より好ましくは炭素原子数1の炭化水素基(メチル基)を表す。 In the above formula (1), R is a hydrocarbon group having 1 to 10 carbon atoms, preferably a hydrocarbon group having 1 to 2 carbon atoms (methyl group, ethyl group), more preferably a carbon atom having 1 carbon atom. Represents a hydrogen group (methyl group).

前記有機スルホン酸としては、メタンスルホン酸、エタンスルホン酸、ベンゼンスルホン酸、o−トルエンスルホン酸、p−トルエンスルホン酸、m−トルエンスルホン酸、α-ナフタレンスルホン酸、β-ナフタレンスルホン酸からなる群より選択される少なくとも1種であることがより好ましく、メタンスルホン酸であることが特に好ましい。   The organic sulfonic acid is composed of methanesulfonic acid, ethanesulfonic acid, benzenesulfonic acid, o-toluenesulfonic acid, p-toluenesulfonic acid, m-toluenesulfonic acid, α-naphthalenesulfonic acid, β-naphthalenesulfonic acid. More preferred is at least one selected from the group, and particularly preferred is methanesulfonic acid.

本実施形態の製造方法において、上述したような有機スルホン酸を用いると、原料ヒアルロン酸を適度に分解して低分子量化することができ、純度の高い低分子ヒアルロン酸、特に4糖の低分子ヒアルロン酸を非常に高収率で効率良く得ることができる。   In the production method of the present embodiment, when the organic sulfonic acid as described above is used, the raw material hyaluronic acid can be appropriately decomposed to have a low molecular weight, and the high-purity low-molecular hyaluronic acid, particularly a tetrasaccharide low-molecular weight Hyaluronic acid can be obtained efficiently with a very high yield.

このような効果が得られる理由について、本発明者は、以下のように考えている。   The present inventor considers the reason why such an effect is obtained as follows.

本発明者は、まず、ヒアルロン酸を構成する要素の結合関係に着目し、当該結合を適度に切断し、目的の低分子ヒアルロン酸を高い選択率で得ることができる物質を探索した。   The inventor first focused on the binding relationship of the elements constituting hyaluronic acid, and searched for a substance capable of appropriately cutting the bond and obtaining the target low-molecular hyaluronic acid with high selectivity.

グルクロン酸およびN−アセチルグルコサミンの2糖を反復構成単位とするヒアルロン酸を、酸により加水分解して低分子ヒアルロン酸を得るためには、N−アセチルグルコサミンの還元端側のグリコシド結合は切断するけれども、グルクロン酸の還元端側のグリコシド結合は残存させなければならない。   In order to hydrolyze hyaluronic acid having disaccharides of glucuronic acid and N-acetylglucosamine as repeating structural units with acid to obtain low molecular weight hyaluronic acid, the glycosidic bond on the reducing end side of N-acetylglucosamine is cleaved. However, the glycosidic bond on the reducing end side of glucuronic acid must remain.

これら二カ所のグリコシド結合には物理化学的に強弱があって、N−アセチルグルコサミンの還元端側のグリコシド結合の方が切断されやすい性質を有する。この切断容易度の差を利用して、N−アセチルグルコサミンの還元端側は切れるけれどもグルクロン酸の還元端側は切れないで残すという条件での加水分解を行うことにより、目的の低分子ヒアルロン酸を効率良く高い収率で得ることができる。   These two glycosidic bonds are physicochemically strong and weak, and the glycosidic bond on the reducing end side of N-acetylglucosamine is more likely to be cleaved. By utilizing this difference in ease of cleavage, hydrolysis under the condition that the reducing end side of N-acetylglucosamine is cut but the reducing end side of glucuronic acid is left uncut, the target low molecular weight hyaluronic acid is obtained. Can be efficiently obtained in high yield.

したがって、原料ヒアルロン酸を分解する酸としては、グルクロン酸の還元端側のグリコシド結合の切断、さらには糖分子内部の炭素骨格までも破壊するような酸ではなく、N−アセチルグルコサミンの還元端側のグリコシド結合だけを切断する酸が望ましい。さらに、これらの結合が切断される容易度(切断が容易になされるかどうか)は、酸の種類によって異なり、たとえば塩酸による加水分解の場合、ヒアルロン酸の内部結合切断の容易度の差がその切断箇所によって小さく、N−アセチルグルコサミンの還元端側のグリコシド結合にとどまらず他の結合も同時に切断してしまうという過剰な分解反応を起こしやすいと考えられる。   Therefore, the acid that decomposes the raw material hyaluronic acid is not an acid that breaks the glycosidic bond on the reducing end side of glucuronic acid, or even destroys the carbon skeleton inside the sugar molecule, but the reducing end side of N-acetylglucosamine. Acids that cleave only the glycosidic bonds are desirable. Furthermore, the ease with which these bonds are cleaved (whether cleaving is facilitated) depends on the type of acid. For example, in the case of hydrolysis with hydrochloric acid, the difference in the ease of cleaving the internal bond of hyaluronic acid It is small depending on the cleavage site, and it is considered that an excessive decomposition reaction is likely to occur, in which not only the glycosidic bond on the reducing end side of N-acetylglucosamine but also other bonds are simultaneously cleaved.

本発明者は、塩酸のように過剰な分解反応をおこさず、高純度の低分子ヒアルロン酸を効率良く製造可能な酸を鋭意検討した結果、有機スルホン酸を使用した場合には、結合を切断する容易度の差が切断箇所によって大きく、N−アセチルグルコサミンの還元端側のグリコシド結合を、たとえば塩酸と同様に容易に切断するが、他の結合は容易には切断しないことを見出した。   As a result of intensive investigation of an acid capable of efficiently producing a high-purity low-molecular hyaluronic acid without causing an excessive decomposition reaction like hydrochloric acid, the bond is broken when an organic sulfonic acid is used. It has been found that the difference in the degree of easiness to be performed is large depending on the cleavage site, and the glycosidic bond on the reducing end side of N-acetylglucosamine is easily cleaved, for example, similarly to hydrochloric acid, but other bonds are not easily cleaved.

有機スルホン酸は、通常、アミノ酸分解や化学合成反応の触媒として使用され、それ自身では反応性に富み、細胞への染色体変異作用を有する物質である。このような有機スルホン酸を原料ヒアルロン酸の加水分解に用いると、上述したとおり適度に結合が切断されるため、塩酸に比べ過剰な分解が起こりにくく、純度の高い低分子ヒアルロン酸を非常に高収率で効率良く得ることができると考えられる。特に、メタンスルホン酸を使用してヒアルロン酸を加水分解することにより他の強酸、たとえば塩酸を使用した場合よりも過剰な分解をおさえて、純度の高い低分子ヒアルロン酸を非常に高収率で効率良く得ることができると考えられる。   Organic sulfonic acids are usually used as catalysts for amino acid degradation and chemical synthesis reactions, and are themselves highly reactive and have a chromosomal mutation effect on cells. When such an organic sulfonic acid is used for hydrolysis of the raw material hyaluronic acid, the bond is appropriately broken as described above. Therefore, excessive decomposition is unlikely to occur compared with hydrochloric acid, and high-purity low-molecular hyaluronic acid is extremely high. It is thought that it can be efficiently obtained in a yield. In particular, hydrolyzing hyaluronic acid using methanesulfonic acid suppresses excessive decomposition compared to the case of using other strong acids such as hydrochloric acid, thereby producing highly pure low molecular weight hyaluronic acid in a very high yield. It is thought that it can be obtained efficiently.

さらに有機スルホン酸は一般に不揮発性であり加熱しても気化のおそれが少ない。したがって、有機スルホン酸を用いる方法は、従来の塩酸等揮発性の酸を用いる方法に比べ気化した酸による周辺機器の腐食や人的被害の危険性が低減されるため作業環境の安全性が高く、特殊な設備も要されない。   Furthermore, organic sulfonic acids are generally non-volatile and are less likely to vaporize when heated. Therefore, the method using organic sulfonic acid is highly safe in the work environment because the risk of corrosion of peripheral equipment and human damage due to vaporized acid is reduced compared to the conventional method using volatile acid such as hydrochloric acid. No special equipment is required.

本実施形態に係る製造方法おいて、上述した有機スルホン酸は、通常水溶液として分解工程に用いる。当該有機スルホン酸水溶液の濃度は、0.1〜0.6Nであることが好ましく、0.3〜0.6Nであることがより好ましく、0.3Nであることが特に好ましい。有機スルホン酸水溶液の濃度が前記範囲内であると、より高純度の低分子ヒアルロン酸を効率良く得ることができる傾向にある。   In the manufacturing method according to the present embodiment, the organic sulfonic acid described above is usually used in the decomposition step as an aqueous solution. The concentration of the organic sulfonic acid aqueous solution is preferably 0.1 to 0.6N, more preferably 0.3 to 0.6N, and particularly preferably 0.3N. When the concentration of the organic sulfonic acid aqueous solution is within the above range, a high-purity low-molecular hyaluronic acid tends to be efficiently obtained.

原料ヒアルロン酸の添加量は、前記有機スルホン酸水溶液100質量部に対して、1〜10質量部であることが好ましく、1〜5質量部であることがより好ましく、5質量部であることが特に好ましい。原料ヒアルロン酸の添加量が前記範囲内であると、より高純度の低分子ヒアルロン酸を高い収率で得ることができる傾向にある。   The addition amount of the raw material hyaluronic acid is preferably 1 to 10 parts by mass, more preferably 1 to 5 parts by mass, and more preferably 5 parts by mass with respect to 100 parts by mass of the organic sulfonic acid aqueous solution. Particularly preferred. When the addition amount of the raw material hyaluronic acid is within the above range, a high-purity low-molecular hyaluronic acid tends to be obtained in a high yield.

本実施形態に係る製造方法おいて、原料ヒアルロン酸の分解工程は、加熱下で行なわれることが好ましい。また、当該加熱温度は、60〜80℃の範囲であることが好ましく、70〜80℃であることがより好ましく、80℃であることが特に好ましい。さらに、前記加熱時間は、3〜24時間であることが好ましく、13〜22時間であることがより好ましく、18時間であることが特に好ましい。   In the manufacturing method according to the present embodiment, the decomposition process of the raw material hyaluronic acid is preferably performed under heating. The heating temperature is preferably in the range of 60 to 80 ° C, more preferably 70 to 80 ° C, and particularly preferably 80 ° C. Furthermore, the heating time is preferably 3 to 24 hours, more preferably 13 to 22 hours, and particularly preferably 18 hours.

原料ヒアルロン酸の分解工程がこのような加熱下で行なわれると、高純度の低分子ヒアルロン酸をより短時間で効率良く得ることができる傾向にある。   When the decomposition process of the raw material hyaluronic acid is performed under such heating, a high-purity low-molecular hyaluronic acid tends to be efficiently obtained in a shorter time.

本実施形態に係る低分子ヒアルロン酸の製造方法は、さらに分離・精製工程を含んでいてもよい。当該分離・精製工程としては、公知の分離・精製工程を採用することができ、例えば、イオン交換樹脂カラムを用いて分離・精製する工程、ゲル濾過カラムを用いて分離・精製する工程、限外濾過膜を用いて分離・精製する工程、塩化ナトリウム水溶液、塩酸、精製水等の溶媒を用いて分離・精製する工程などが挙げられる。   The method for producing low molecular hyaluronic acid according to this embodiment may further include a separation / purification step. As the separation / purification step, a known separation / purification step can be employed, for example, a step of separation / purification using an ion exchange resin column, a step of separation / purification using a gel filtration column, Examples include a step of separation / purification using a filtration membrane, a step of separation / purification using a solvent such as a sodium chloride aqueous solution, hydrochloric acid, and purified water.

このような分離・精製する工程を行うことにより、目的の低分子ヒアルロン酸をより高純度で得ることができる。   By performing such a separation / purification step, the target low-molecular hyaluronic acid can be obtained with higher purity.

本実施形態に係る低分子ヒアルロン酸の製造方法は、さらにその他の工程、例えば、濃縮工程、乾燥工程等を含んでいてもよい。これらの工程は、特に限定されず、公知の工程を採用することができる。   The method for producing low molecular weight hyaluronic acid according to the present embodiment may further include other steps such as a concentration step and a drying step. These steps are not particularly limited, and known steps can be employed.

以下、本発明を実施例により具体的に説明するが、本発明は、これらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited to these Examples.

[実施例1]
以下に、本発明の製法による、工業スケールでのHA4の製造の例を示す。
[Example 1]
Below, the example of manufacture of HA4 in an industrial scale by the manufacturing method of this invention is shown.

原料ヒアルロン酸として、ヒアルロン酸ナトリウム塩(Baoding Sino-chem Industry製、製品名:Sodium hyaluronate、分子量:1.25×106ダルトン)を用いた。有機スルホン酸として、メタンスルホン酸を用いた。 As a raw material hyaluronic acid, hyaluronic acid sodium salt (manufactured by Baoding Sino-chem Industry, product name: Sodium hyaluronate, molecular weight: 1.25 × 10 6 dalton) was used. Methanesulfonic acid was used as the organic sulfonic acid.

反応容器中に、前記ヒアルロン酸ナトリウム塩(16kg)および0.3Nのメタンスルホン酸水溶液(320リットル)を添加して、80℃で4時間攪拌することにより、前記ヒアルロン酸ナトリウム塩を分解して低分子量ヒアルロン酸を含む反応液を得た。   In a reaction vessel, the sodium hyaluronate (16 kg) and a 0.3 N aqueous methanesulfonic acid solution (320 liters) were added and stirred at 80 ° C. for 4 hours to decompose the sodium hyaluronate. A reaction solution containing low molecular weight hyaluronic acid was obtained.

得られた反応液中のHA4の収率を高速液体クロマトグラフィー(HPLC、Agilent Technologies社製、型番:Agilent 1100)を用いて測定した。   The yield of HA4 in the obtained reaction solution was measured using high performance liquid chromatography (HPLC, manufactured by Agilent Technologies, model number: Agilent 1100).

[実施例2]
実施例1と同様にして、前記ヒアルロン酸ナトリウム塩を分解して低分子量ヒアルロン酸を含む反応液を得て、該反応液中のHA4の収率を測定した。
[Example 2]
In the same manner as in Example 1, the sodium hyaluronate was decomposed to obtain a reaction solution containing low molecular weight hyaluronic acid, and the yield of HA4 in the reaction solution was measured.

実施例1および実施例2で得られたHA4の収率の平均値を下表1に示す。   The average yield of HA4 obtained in Example 1 and Example 2 is shown in Table 1 below.

[実施例3]
加熱分解時間を4時間から5時間に変更した以外は実施例1と同様にして、前記ヒアルロン酸ナトリウム塩を分解して低分子量ヒアルロン酸を含む反応液を得て、該反応液中のHA4の収率を測定した。実施例3で得られたHA4の収率の平均値を下表1に示す。
[Example 3]
Except that the thermal decomposition time was changed from 4 hours to 5 hours, the reaction mixture containing low molecular weight hyaluronic acid was obtained by decomposing the hyaluronic acid sodium salt in the same manner as in Example 1 to obtain HA4 in the reaction solution. The yield was measured. The average yield of HA4 obtained in Example 3 is shown in Table 1 below.

[実施例4]
加熱分解時間を4時間から5.5時間に変更した以外は実施例1と同様にして、前記ヒアルロン酸ナトリウム塩を分解して低分子量ヒアルロン酸を含む反応液を得て、該反応液中のHA4の収率を測定した。
[Example 4]
Except that the thermal decomposition time was changed from 4 hours to 5.5 hours, the reaction mixture containing the low molecular weight hyaluronic acid was obtained by decomposing the hyaluronic acid sodium salt in the same manner as in Example 1. The yield of HA4 was measured.

[実施例5]
実施例4と同様にして、前記ヒアルロン酸ナトリウム塩を分解して低分子量ヒアルロン酸を含む反応液を得て、該反応液中のHA4の収率を測定した。
[Example 5]
In the same manner as in Example 4, the sodium hyaluronate was decomposed to obtain a reaction solution containing low molecular weight hyaluronic acid, and the yield of HA4 in the reaction solution was measured.

実施例4および実施例5で得られたHA4の収率の平均値を下表1に示す。   The average yield of HA4 obtained in Example 4 and Example 5 is shown in Table 1 below.

[実施例6]
加熱分解時間を4時間から6.5時間に変更した以外は実施例1と同様にして、前記ヒアルロン酸ナトリウム塩を分解して低分子量ヒアルロン酸を含む反応液を得て、該反応液中のHA4の収率を測定した。
[Example 6]
Except that the thermal decomposition time was changed from 4 hours to 6.5 hours, in the same manner as in Example 1, the sodium hyaluronate was decomposed to obtain a reaction solution containing low molecular weight hyaluronic acid. The yield of HA4 was measured.

[実施例7〜11]
実施例6と同様にして、前記ヒアルロン酸ナトリウム塩を分解して低分子量ヒアルロン酸を含む反応液を得て、該反応液中のHA4の収率を測定した。
[Examples 7 to 11]
In the same manner as in Example 6, the hyaluronic acid sodium salt was decomposed to obtain a reaction solution containing low molecular weight hyaluronic acid, and the yield of HA4 in the reaction solution was measured.

実施例6〜11で得られたHA4の収率の平均値を下表1に示す。   The average value of the yield of HA4 obtained in Examples 6 to 11 is shown in Table 1 below.

[実施例12]
加熱分解時間を4時間から19.87時間に変更した以外は実施例1と同様にして、前記ヒアルロン酸ナトリウム塩を分解して低分子量ヒアルロン酸を含む反応液を得て、該反応液中のHA4の収率を測定した。実施例12で得られたHA4の収率の平均値を下表1に示す。
[Example 12]
The reaction solution containing low molecular weight hyaluronic acid was obtained by decomposing the hyaluronic acid sodium salt in the same manner as in Example 1 except that the heat decomposition time was changed from 4 hours to 19.87 hours. The yield of HA4 was measured. The average yield of HA4 obtained in Example 12 is shown in Table 1 below.

[実施例13]
実施例3〜6で得られた反応液について、それぞれ独立して以下の工程を行った。
[Example 13]
About the reaction liquid obtained in Examples 3-6, the following processes were performed independently, respectively.

まず、反応液を冷却後、陰イオン交換樹脂(Cl型:Dowex 1x4)カラムに通し、前記メタンスルホン酸を吸着させた。   First, the reaction solution was cooled and then passed through an anion exchange resin (Cl type: Dowex 1 × 4) column to adsorb the methanesulfonic acid.

前記陰イオン交換樹脂カラムを通した低分子量ヒアルロン酸を含む反応液を、精製水で5倍以上に希釈し、水酸化ナトリウム水溶液でpHを6に調整した。pH調整した反応液を、陰イオン交換樹脂(Cl型:Dowex 1x4)カラムに通し、低分子量ヒアルロン酸を吸着させた。   The reaction solution containing low molecular weight hyaluronic acid passed through the anion exchange resin column was diluted 5 times or more with purified water, and the pH was adjusted to 6 with an aqueous sodium hydroxide solution. The pH-adjusted reaction solution was passed through an anion exchange resin (Cl type: Dowex 1 × 4) column to adsorb low molecular weight hyaluronic acid.

次に、前記陰イオン交換樹脂カラムに、該カラムの5倍体積の40mMの塩化ナトリウム水溶液を流して夾雑物を洗浄した。さらに前記陰イオン交換樹脂カラムに、40mM〜100mMへ直線的に濃度を増加させた塩化ナトリウム水溶液を流して、低分子量ヒアルロン酸を順次溶出させた。   Next, a 40 mM sodium chloride aqueous solution having a volume 5 times that of the column was passed through the anion exchange resin column to wash impurities. Further, a sodium chloride aqueous solution whose concentration was linearly increased from 40 mM to 100 mM was passed through the anion exchange resin column to sequentially elute low molecular weight hyaluronic acid.

溶出した低分子量ヒアルロン酸を含む溶液からHA4の画分を集め、塩酸でpHを4.2〜4.7に調整した。pH調整した溶液を、陰イオン交換樹脂(Cl型:BioRad High Q)カラムに通し、HA4を吸着させた。   The fraction of HA4 was collected from the eluted solution containing low molecular weight hyaluronic acid, and the pH was adjusted to 4.2 to 4.7 with hydrochloric acid. The pH-adjusted solution was passed through an anion exchange resin (Cl type: BioRad High Q) column to adsorb HA4.

前記陰イオン交換樹脂(Cl型:BioRad High Q)カラムに、0.1mMの塩酸を流して夾雑物を洗浄した後、0.5Mの塩化ナトリウム水溶液を流して、HA4を溶出させた。得られた溶出液をロータリーエバポレーターで濃縮した。   The impurities were washed by flowing 0.1 mM hydrochloric acid through the anion exchange resin (Cl type: BioRad High Q) column, and then 0.5M sodium chloride aqueous solution was flowed to elute HA4. The obtained eluate was concentrated by a rotary evaporator.

得られた濃縮液を、希薄塩酸でpHを4〜5に調整したゲル濾過カラム(BioGel P2)に通し、精製水で溶出させることで、脱塩されたHA4を得た。   The obtained concentrated solution was passed through a gel filtration column (BioGel P2) whose pH was adjusted to 4 to 5 with dilute hydrochloric acid and eluted with purified water to obtain desalted HA4.

以下の最終精製工程である限外濾過を実施するに先立ち、実施例3〜6で得られた反応液由来の前記脱塩されたHA4を混合し、一つのロットとした。   Prior to performing ultrafiltration, which is the final purification step described below, the desalted HA4 derived from the reaction liquid obtained in Examples 3 to 6 was mixed to form one lot.

当該ロットを、陽イオン交換樹脂 (酸型:Dowex 50W x 4)カラムに通し、夾雑物を吸着させ、さらに、限外濾過膜(排除分子量5,000〜10,000ダルトン)で濾過した。得られた濾液をロータリーエバポレーターで濃縮し、乾燥して、粉末状のHA4を得た。   The lot was passed through a cation exchange resin (acid type: Dowex 50W x 4) column to adsorb impurities, and further filtered through an ultrafiltration membrane (exclusion molecular weight: 5,000 to 10,000 daltons). The obtained filtrate was concentrated with a rotary evaporator and dried to obtain powdered HA4.

得られたHA4について、高速液体クロマトグラフィー(HPLC、Agilent Technologies社製、型番:Agilent 1100)により分析したところ、純度98.89%であった。   The obtained HA4 was analyzed by high performance liquid chromatography (HPLC, manufactured by Agilent Technologies, model number: Agilent 1100), and the purity was 98.89%.

[実施例14]
実施例7〜10で得られた反応液を用いた以外は、実施例13と同様にして粉末状のHA4を得た。得られたHA4について、高速液体クロマトグラフィー(HPLC、Agilent Technologies社製、型番:Agilent 1100)により分析したところ、純度99.14%であった。
[Example 14]
Powdered HA4 was obtained in the same manner as in Example 13 except that the reaction solutions obtained in Examples 7 to 10 were used. The obtained HA4 was analyzed by high performance liquid chromatography (HPLC, manufactured by Agilent Technologies, model number: Agilent 1100), and the purity was 99.14%.

[実施例15]
実施例11で得られた反応液を単独で用いた以外は、実施例13と同様にして粉末状のHA4を得た。得られたHA4について、高速液体クロマトグラフィー(HPLC、Agilent Technologies社製、型番:Agilent 1100)により分析したところ、純度は99.60%であった。
[Example 15]
Powdered HA4 was obtained in the same manner as in Example 13 except that the reaction solution obtained in Example 11 was used alone. The obtained HA4 was analyzed by high performance liquid chromatography (HPLC, manufactured by Agilent Technologies, model number: Agilent 1100), and the purity was 99.60%.

上述したとおり、実施例13〜15得られた3ロットのHA4について、HPLCにより分析したところ、加熱時間を最適な条件にした中間品のみで構成されるロットの純度は99%以上であった。当該HPLC分析結果を図1に示す。   As described above, the three lots of HA4 obtained in Examples 13 to 15 were analyzed by HPLC. As a result, the purity of the lot consisting only of the intermediate product with the heating time set to the optimum condition was 99% or more. The HPLC analysis result is shown in FIG.

[実施例16]
原料ヒアルロン酸として、ヒアルロン酸ナトリウム塩(Baoding Sino-chem Industry製、製品名:Sodium hyaluronate、分子量:1.25×106ダルトン)を用いた。有機スルホン酸として、メタンスルホン酸を用いた。
[Example 16]
As a raw material hyaluronic acid, hyaluronic acid sodium salt (manufactured by Baoding Sino-chem Industry, product name: Sodium hyaluronate, molecular weight: 1.25 × 10 6 dalton) was used. Methanesulfonic acid was used as the organic sulfonic acid.

反応器中に、前記ヒアルロン酸ナトリウム塩および0.1Nのメタンスルホン酸水溶液を添加して、80℃で12〜22時間攪拌することにより、前記ヒアルロン酸ナトリウム塩を分解して低分子量ヒアルロン酸を含む反応液を得た。なお、前記メタンスルホン酸水溶液中の前記ヒアルロン酸ナトリウム塩の濃度は5%とした。   The hyaluronic acid sodium salt and 0.1N methanesulfonic acid aqueous solution were added to the reactor, and the mixture was stirred at 80 ° C. for 12 to 22 hours, whereby the hyaluronic acid sodium salt was decomposed to give low molecular weight hyaluronic acid. A reaction solution containing was obtained. The concentration of the sodium hyaluronate in the methanesulfonic acid aqueous solution was 5%.

得られた反応液中のHA4、HA4部分分解物、HA2および単糖分解物の濃度を高速液体クロマトグラフィー(HPLC、Agilent Technologies社製、型番:Agilent 1100)を用いて測定した。測定結果を下表2に示す。   Concentrations of HA4, HA4 partial degradation products, HA2 and monosaccharide degradation products in the obtained reaction solution were measured using high performance liquid chromatography (HPLC, manufactured by Agilent Technologies, model number: Agilent 1100). The measurement results are shown in Table 2 below.

[実施例17]
メタンスルホン酸水溶液の濃度を0.2Nに変更した以外は、実施例16と同様にして低分子量ヒアルロン酸を含む反応液を得た。
[Example 17]
A reaction solution containing low molecular weight hyaluronic acid was obtained in the same manner as in Example 16 except that the concentration of the methanesulfonic acid aqueous solution was changed to 0.2N.

得られた反応液中のHA4、HA4部分分解物、HA2および単糖分解物の濃度を高速液体クロマトグラフィー(HPLC、Agilent Technologies社製、型番:Agilent 1100)を用いて測定した。測定結果を下表3に示す。   Concentrations of HA4, HA4 partial degradation products, HA2 and monosaccharide degradation products in the obtained reaction solution were measured using high performance liquid chromatography (HPLC, manufactured by Agilent Technologies, model number: Agilent 1100). The measurement results are shown in Table 3 below.

[実施例18]
メタンスルホン酸水溶液の濃度を0.3Nに変更した以外は、実施例16と同様にして低分子量ヒアルロン酸を含む反応液を得た。
[Example 18]
A reaction solution containing low molecular weight hyaluronic acid was obtained in the same manner as in Example 16 except that the concentration of the methanesulfonic acid aqueous solution was changed to 0.3N.

得られた反応液中のHA4、HA4部分分解物、HA2および単糖分解物の濃度を高速液体クロマトグラフィー(HPLC、Agilent Technologies社製、型番:Agilent 1100)を用いて測定した。測定結果を下表4に示す。   Concentrations of HA4, HA4 partial degradation products, HA2 and monosaccharide degradation products in the obtained reaction solution were measured using high performance liquid chromatography (HPLC, manufactured by Agilent Technologies, model number: Agilent 1100). The measurement results are shown in Table 4 below.

[実施例19]
メタンスルホン酸水溶液の濃度を0.4Nに変更した以外は、実施例16と同様にして低分子量ヒアルロン酸を含む反応液を得た。
[Example 19]
A reaction solution containing low molecular weight hyaluronic acid was obtained in the same manner as in Example 16 except that the concentration of the methanesulfonic acid aqueous solution was changed to 0.4N.

得られた反応液中のHA4、HA4部分分解物、HA2および単糖分解物の濃度を高速液体クロマトグラフィー(HPLC、Agilent Technologies社製、型番:Agilent 1100)を用いて測定した。測定結果を下表5に示す。   Concentrations of HA4, HA4 partial degradation products, HA2 and monosaccharide degradation products in the obtained reaction solution were measured using high performance liquid chromatography (HPLC, manufactured by Agilent Technologies, model number: Agilent 1100). The measurement results are shown in Table 5 below.

[実施例20]
メタンスルホン酸水溶液の濃度を0.5Nに変更した以外は、実施例16と同様にして低分子量ヒアルロン酸を含む反応液を得た。
[Example 20]
A reaction solution containing low molecular weight hyaluronic acid was obtained in the same manner as in Example 16 except that the concentration of the methanesulfonic acid aqueous solution was changed to 0.5N.

得られた反応液中のHA4、HA4部分分解物、HA2および単糖分解物の濃度を高速液体クロマトグラフィー(HPLC、Agilent Technologies社製、型番:Agilent 1100)を用いて測定した。測定結果を下表6に示す。   Concentrations of HA4, HA4 partial degradation products, HA2 and monosaccharide degradation products in the obtained reaction solution were measured using high performance liquid chromatography (HPLC, manufactured by Agilent Technologies, model number: Agilent 1100). The measurement results are shown in Table 6 below.

[比較例1]
0.1Nのメタンスルホン酸水溶液を1.0Nの塩酸に変更した以外は、実施例16と同様にして低分子量ヒアルロン酸を含む反応液を得た。
[Comparative Example 1]
A reaction solution containing low molecular weight hyaluronic acid was obtained in the same manner as in Example 16 except that the 0.1 N methanesulfonic acid aqueous solution was changed to 1.0 N hydrochloric acid.

得られた反応液中のHA4、HA4部分分解物、HA2および単糖分解物の濃度を高速液体クロマトグラフィー(HPLC、Agilent Technologies社製、型番:Agilent 1100)を用いて測定した。測定結果を下表7に示す。   Concentrations of HA4, HA4 partial degradation products, HA2 and monosaccharide degradation products in the obtained reaction solution were measured using high performance liquid chromatography (HPLC, manufactured by Agilent Technologies, model number: Agilent 1100). The measurement results are shown in Table 7 below.

[実施例21]
原料ヒアルロン酸として、ヒアルロン酸(株式会社フードケミファ社製、製品名:ヒアルロン酸FCH-SU、化粧品グレード 分子量 10万以下)を用いた。有機スルホン酸として、メタンスルホン酸(和光純薬工業株式会社製)を用いた。
[Example 21]
As the raw material hyaluronic acid, hyaluronic acid (manufactured by Food Chemifa Co., Ltd., product name: hyaluronic acid FCH-SU, cosmetic grade molecular weight of 100,000 or less) was used. Methanesulfonic acid (manufactured by Wako Pure Chemical Industries, Ltd.) was used as the organic sulfonic acid.

反応器中に、前記ヒアルロン酸および0.3Nの前記メタンスルホン酸水溶液(3リットル)を添加して、80℃で22時間攪拌することにより、前記ヒアルロン酸を加熱分解して低分子量ヒアルロン酸を含む反応液を得た。なお、前記メタンスルホン酸水溶液中の前記ヒアルロン酸の濃度は5%とした。   In the reactor, the hyaluronic acid and 0.3N methanesulfonic acid aqueous solution (3 liters) were added and stirred at 80 ° C. for 22 hours, whereby the hyaluronic acid was thermally decomposed to produce low molecular weight hyaluronic acid. A reaction solution containing was obtained. The concentration of the hyaluronic acid in the methanesulfonic acid aqueous solution was 5%.

得られた反応液中のHA4の濃度を高速液体クロマトグラフィー(HPLC、Agilent Technologies社製、型番:Agilent 1100)を用いて測定した。測定結果を下表9に示す。   The concentration of HA4 in the obtained reaction solution was measured using high performance liquid chromatography (HPLC, manufactured by Agilent Technologies, model number: Agilent 1100). The measurement results are shown in Table 9 below.

[比較例2]
下表8に示すとおり添加する酸の条件および加熱条件を変更した以外は、実施例21と同様にして低分子量ヒアルロン酸を含む反応液を得た。得られた反応液中のHA4の濃度を高速液体クロマトグラフィー(HPLC、Agilent Technologies社製、型番:Agilent 1100)を用いて測定した。測定結果を下表8に示す。
[Comparative Example 2]
A reaction solution containing low molecular weight hyaluronic acid was obtained in the same manner as in Example 21 except that the conditions of the acid to be added and the heating conditions were changed as shown in Table 8 below. The concentration of HA4 in the obtained reaction solution was measured using high performance liquid chromatography (HPLC, manufactured by Agilent Technologies, model number: Agilent 1100). The measurement results are shown in Table 8 below.

[比較例3]
下表8に示すとおりメタンスルホン酸水溶液中のヒアルロン酸の濃度を10質量%に変更した以外は、比較例2と同様にして低分子量ヒアルロン酸を含む反応液を得た。得られた反応液中のHA4の濃度を高速液体クロマトグラフィー(HPLC、Agilent Technologies社製、型番:Agilent 1100)を用いて測定した。測定結果を下表8に示す。
[Comparative Example 3]
As shown in Table 8 below, a reaction solution containing low molecular weight hyaluronic acid was obtained in the same manner as in Comparative Example 2 except that the concentration of hyaluronic acid in the methanesulfonic acid aqueous solution was changed to 10% by mass. The concentration of HA4 in the obtained reaction solution was measured using high performance liquid chromatography (HPLC, manufactured by Agilent Technologies, model number: Agilent 1100). The measurement results are shown in Table 8 below.

[比較例4]
比較例3で得られた反応液を用いた以外は、実施例13と同様にして精製工程を行って粉末状のHA4を得た。得られたHA4について、高速液体クロマトグラフィー(HPLC、Agilent Technologies社製、型番:Agilent 1100)により分析したところ、純度は96.1%であった。
[Comparative Example 4]
A purification step was performed in the same manner as in Example 13 except that the reaction solution obtained in Comparative Example 3 was used to obtain powdered HA4. The obtained HA4 was analyzed by high performance liquid chromatography (HPLC, manufactured by Agilent Technologies, model number: Agilent 1100), and the purity was 96.1%.

以上の結果から、原料ヒアルロン酸を塩酸で加水分解する場合は、過剰な分解による糖自身の分解物が多いことがわかった。これら分解物はその後の低分子ヒアルロン酸の精製工程に於いて不純物となり、精製後の目的とする低分子ヒアルロン酸の純度を下げる原因である。したがって、原料ヒアルロン酸を塩酸で加水分解する場合、上記のとおり精製工程を行っても最終的なHA4の純度は、96%程度となった。   From the above results, it was found that when hydrolyzing the raw material hyaluronic acid with hydrochloric acid, there are many decomposition products of the sugar itself due to excessive decomposition. These decomposition products become impurities in the subsequent purification process of low-molecular hyaluronic acid, and reduce the purity of the target low-molecular hyaluronic acid after purification. Therefore, when the raw material hyaluronic acid was hydrolyzed with hydrochloric acid, the final HA4 purity was about 96% even if the purification step was performed as described above.

一方、原料ヒアルロン酸をスルホン酸水溶液で加水分解する場合は、塩酸を用いる従来法に比べ過剰な分解による糖分解物を減少させることができ、分解工程後にカラム等で分離精製して得られる低分子ヒアルロン酸、特にHA4の純度および収率が、塩酸で分解する場合よりも良好となったと考えられる。   On the other hand, when the raw material hyaluronic acid is hydrolyzed with an aqueous sulfonic acid solution, sugar decomposition products due to excessive decomposition can be reduced as compared with the conventional method using hydrochloric acid, and the low product obtained by separation and purification with a column or the like after the decomposition step. It is believed that the purity and yield of molecular hyaluronic acid, especially HA4, was better than when it was decomposed with hydrochloric acid.

本発明の低分子ヒアルロン酸の製造方法は、効率良く安全かつ低コストで、しかも非常に高い収率で純度の高い低分子ヒアルロン酸、特にHA4を得ることができる。このような純度の高い低分子ヒアルロン酸は、医薬品、飲食品および化粧品等の広い分野で有効に利用することができる。   The method for producing low-molecular hyaluronic acid of the present invention can obtain low-molecular hyaluronic acid, particularly HA4, which is efficient, safe and low-cost, and has a very high yield and high purity. Such high-purity low-molecular hyaluronic acid can be effectively used in a wide range of fields such as pharmaceuticals, foods and drinks, and cosmetics.

Claims (11)

ヒアルロン酸および/またはその塩を有機スルホン酸水溶液により分解して低分子量化する工程を含むことを特徴とする低分子ヒアルロン酸の製造方法。   A method for producing low molecular weight hyaluronic acid, comprising a step of decomposing hyaluronic acid and / or a salt thereof with an organic sulfonic acid aqueous solution to lower the molecular weight. 前記有機スルホン酸が下記式(1)で表される化合物であることを特徴とする請求項1に記載の低分子ヒアルロン酸の製造方法。
(式(1)中、Rは、炭素原子数1〜10の炭化水素基を表す。)
The said organic sulfonic acid is a compound represented by following formula (1), The manufacturing method of the low molecular hyaluronic acid of Claim 1 characterized by the above-mentioned.
(In the formula (1), R represents a hydrocarbon group having 1 to 10 carbon atoms.)
前記有機スルホン酸が、メタンスルホン酸、エタンスルホン酸、ベンゼンスルホン酸、ナフタレンスルホン酸およびトルエンスルホン酸からなる群より選択される少なくとも1種であることを特徴とする請求項1または2に記載の低分子ヒアルロン酸の製造方法。   The organic sulfonic acid is at least one selected from the group consisting of methanesulfonic acid, ethanesulfonic acid, benzenesulfonic acid, naphthalenesulfonic acid, and toluenesulfonic acid. A method for producing low-molecular hyaluronic acid. 前記有機スルホン酸がメタンスルホン酸であることを特徴とする請求項1〜3のいずれか一項に記載の低分子ヒアルロン酸の製造方法。   The method for producing low-molecular hyaluronic acid according to any one of claims 1 to 3, wherein the organic sulfonic acid is methanesulfonic acid. 前記低分子ヒアルロン酸が4糖以下の低分子ヒアルロン酸であることを特徴とする請求項1〜4のいずれか一項に記載の低分子ヒアルロン酸の製造方法。   The method for producing low-molecular hyaluronic acid according to any one of claims 1 to 4, wherein the low-molecular hyaluronic acid is a low-molecular hyaluronic acid having 4 or less sugars. 前記低分子ヒアルロン酸が4糖および/または2糖の低分子ヒアルロン酸であることを特徴とする請求項1〜5のいずれか一項に記載の低分子ヒアルロン酸の製造方法。   The method for producing low-molecular hyaluronic acid according to any one of claims 1 to 5, wherein the low-molecular hyaluronic acid is tetrasaccharide and / or disaccharide low-molecular hyaluronic acid. 前記工程が加熱下で行なわれることを特徴とする請求項1〜6のいずれか一項に記載の低分子ヒアルロン酸の製造方法。   The said process is performed under a heating, The manufacturing method of the low molecular weight hyaluronic acid as described in any one of Claims 1-6 characterized by the above-mentioned. 前記加熱温度が60〜80℃の範囲であることを特徴とする請求項7に記載の低分子ヒアルロン酸の製造方法。   The said heating temperature is the range of 60-80 degreeC, The manufacturing method of the low molecular hyaluronic acid of Claim 7 characterized by the above-mentioned. 前記加熱時間が3〜24時間であることを特徴とする請求項7に記載の低分子ヒアルロン酸の製造方法。   The method for producing low molecular weight hyaluronic acid according to claim 7, wherein the heating time is 3 to 24 hours. 前記有機スルホン酸水溶液の濃度が0.1〜0.6Nであることを特徴とする請求項1〜9のいずれか一項に記載の低分子ヒアルロン酸の製造方法。   The method for producing low-molecular hyaluronic acid according to any one of claims 1 to 9, wherein the concentration of the aqueous organic sulfonic acid solution is 0.1 to 0.6N. 前記有機スルホン酸水溶液100質量部に対して、前記ヒアルロン酸および/またはその塩を1〜10質量部添加することを特徴とする請求項1〜10のいずれか一項に記載の低分子ヒアルロン酸の製造方法。   The low-molecular-weight hyaluronic acid according to any one of claims 1 to 10, wherein 1 to 10 parts by mass of the hyaluronic acid and / or a salt thereof is added to 100 parts by mass of the organic sulfonic acid aqueous solution. Manufacturing method.
JP2010140837A 2010-06-21 2010-06-21 Method for producing low molecular weight hyaluronic acid Active JP5587049B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010140837A JP5587049B2 (en) 2010-06-21 2010-06-21 Method for producing low molecular weight hyaluronic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010140837A JP5587049B2 (en) 2010-06-21 2010-06-21 Method for producing low molecular weight hyaluronic acid

Publications (2)

Publication Number Publication Date
JP2012001696A true JP2012001696A (en) 2012-01-05
JP5587049B2 JP5587049B2 (en) 2014-09-10

Family

ID=45534041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010140837A Active JP5587049B2 (en) 2010-06-21 2010-06-21 Method for producing low molecular weight hyaluronic acid

Country Status (1)

Country Link
JP (1) JP5587049B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015108029A1 (en) * 2014-01-14 2015-07-23 キユーピー株式会社 Hyaluronic acid and/or salt thereof, method for producing same, and food, cosmetic, and pharmaceutical containing said hyaluronic acid and/or salt thereof
JP2017025157A (en) * 2015-07-17 2017-02-02 キユーピー株式会社 Hyaluronic acid and/or salt thereof, foods, cosmetics and pharmaceuticals containing the hyaluronic acid and/or salt thereof
JP2021517452A (en) * 2019-03-05 2021-07-26 シャンドン エーダブリューエー バイオファーム カンパニー リミテッドShandong Awa Biopharm Co., Ltd. Low molecular weight hyaluronic acid or its salt and its preparation method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04505774A (en) * 1989-09-12 1992-10-08 株式会社資生堂 Method for producing low molecular weight hyaluronic acid
JPH06298803A (en) * 1993-03-04 1994-10-25 Genzyme Ltd Method of decreasing molecular weight of polymer
JP2003339393A (en) * 2002-05-27 2003-12-02 Japan Science & Technology Corp Method for producing oligosaccharide (salt)
JP2006265287A (en) * 2005-03-22 2006-10-05 Q P Corp Low molecular weight hyaluronic acid and/or its salt, its manufacturing process and cosmetic and food composition containing it
JP2009256683A (en) * 2009-07-31 2009-11-05 Q P Corp Method for producing low-molecular weight hyaluronic acid and/or salt thereof
JPWO2008059869A1 (en) * 2006-11-16 2010-03-04 国立大学法人 千葉大学 Method for reducing the molecular weight of polysaccharides

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04505774A (en) * 1989-09-12 1992-10-08 株式会社資生堂 Method for producing low molecular weight hyaluronic acid
JPH06298803A (en) * 1993-03-04 1994-10-25 Genzyme Ltd Method of decreasing molecular weight of polymer
JP2003339393A (en) * 2002-05-27 2003-12-02 Japan Science & Technology Corp Method for producing oligosaccharide (salt)
JP2006265287A (en) * 2005-03-22 2006-10-05 Q P Corp Low molecular weight hyaluronic acid and/or its salt, its manufacturing process and cosmetic and food composition containing it
JPWO2008059869A1 (en) * 2006-11-16 2010-03-04 国立大学法人 千葉大学 Method for reducing the molecular weight of polysaccharides
JP2009256683A (en) * 2009-07-31 2009-11-05 Q P Corp Method for producing low-molecular weight hyaluronic acid and/or salt thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015108029A1 (en) * 2014-01-14 2015-07-23 キユーピー株式会社 Hyaluronic acid and/or salt thereof, method for producing same, and food, cosmetic, and pharmaceutical containing said hyaluronic acid and/or salt thereof
JP5824599B1 (en) * 2014-01-14 2015-11-25 キユーピー株式会社 Method for producing hyaluronic acid and / or salt thereof
KR20160106076A (en) * 2014-01-14 2016-09-09 큐피가부시키가이샤 Hyaluronic acid and/or salt thereof, method for producing same, and food, cosmetic, and pharmaceutical containing said hyaluronic acid and/or salt thereof
KR102301455B1 (en) * 2014-01-14 2021-09-10 큐피가부시키가이샤 Hyaluronic acid and/or salt thereof, method for producing same, and food, cosmetic, and pharmaceutical containing said hyaluronic acid and/or salt thereof
JP2017025157A (en) * 2015-07-17 2017-02-02 キユーピー株式会社 Hyaluronic acid and/or salt thereof, foods, cosmetics and pharmaceuticals containing the hyaluronic acid and/or salt thereof
JP2021517452A (en) * 2019-03-05 2021-07-26 シャンドン エーダブリューエー バイオファーム カンパニー リミテッドShandong Awa Biopharm Co., Ltd. Low molecular weight hyaluronic acid or its salt and its preparation method
JP7105888B2 (en) 2019-03-05 2022-07-25 シャンドン エーダブリューエー バイオファーム カンパニー リミテッド Low-molecular-weight hyaluronic acid or its salt and its preparation method

Also Published As

Publication number Publication date
JP5587049B2 (en) 2014-09-10

Similar Documents

Publication Publication Date Title
WO2021120521A1 (en) Ultra-low molecular weight hyaluronic acid and preparation method therefor
Qin et al. Biochemical properties of a novel chitosanase from Bacillus amyloliquefaciens and its use in membrane reactor
JPH07504928A (en) High-molecular glucuronic acid compounds, their production methods and uses, especially as gelling agents, viscosity-imparting agents, moisture-imparting agents, stabilizers, chelating agents, or flocculants
US20210155720A1 (en) Method for Preparing Hyaluronan Odd-numbered Oligosaccharides by Double Enzyme Hydrolysis
KR101521711B1 (en) Novel β-agarooligosaccharide hydrolase and enzymatic production method of 3,6-anhydro-L-galactose and galactose from agarose by using the same
EP3730623A1 (en) Small-molecule hyaluronic acid or salt thereof, and preparation method therefor
JP5587049B2 (en) Method for producing low molecular weight hyaluronic acid
KR20090079413A (en) The polynucleotide fragments complex separated from fish's semen and its separating process
Xie et al. Preparation of chitooligosaccharides by the enzymatic hydrolysis of chitosan
JP2009155486A (en) Depolymerized hyaluronic acid and production method thereof
KR101450983B1 (en) Method for manufacturing purified hyaluronic acids
CN110241155B (en) Production process for extracting D-glucosamine by enzymolysis method and product thereof
JP2587268B2 (en) Method for producing low-viscosity hyaluronic acid or salt thereof
JP3202365B2 (en) Method for separating oligomannuronic acid by degree of polymerization
JP4151092B2 (en) Method for producing oligohyaluronic acid or a salt thereof
EP3017055A1 (en) Inositol biotransformation
CN114350728A (en) Method for preparing hyaluronic acid oligosaccharide by enzyme method
EP3450462B1 (en) Methods for producing chitin oligomer, n-acetylglucosamine, and 1-o-alkyl-n-acetylglucosamine
JP4588205B2 (en) Chitin oligosaccharide production method
JPS6279790A (en) Production of modified hyaluronic acid
JP3939592B2 (en) Method for producing oligosaccharide (salt)
JP2019176839A (en) Methods for producing hydroxyalkanoic acids
CN107163163A (en) A kind of processing method of chondroitin sulfate product
CN105884936A (en) Preparation method of heparin sodium
WO2022174520A1 (en) Preparation method for vegetarian d-glucosamine hydrochloride

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140723

R150 Certificate of patent or registration of utility model

Ref document number: 5587049

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250