JP2012001023A - Vehicle body member of vehicle - Google Patents

Vehicle body member of vehicle Download PDF

Info

Publication number
JP2012001023A
JP2012001023A JP2010135420A JP2010135420A JP2012001023A JP 2012001023 A JP2012001023 A JP 2012001023A JP 2010135420 A JP2010135420 A JP 2010135420A JP 2010135420 A JP2010135420 A JP 2010135420A JP 2012001023 A JP2012001023 A JP 2012001023A
Authority
JP
Japan
Prior art keywords
end side
collision
cross
vertical walls
vehicle body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010135420A
Other languages
Japanese (ja)
Other versions
JP5534966B2 (en
Inventor
Masato Shida
正人 志田
Isao Satsukawa
勲 薩川
Kazuaki Suzuki
一彰 鈴木
Jiro Iwatani
二郎 岩谷
Yoshie Tachibana
美枝 橘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unipres Corp
Original Assignee
Unipres Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unipres Corp filed Critical Unipres Corp
Priority to JP2010135420A priority Critical patent/JP5534966B2/en
Publication of JP2012001023A publication Critical patent/JP2012001023A/en
Application granted granted Critical
Publication of JP5534966B2 publication Critical patent/JP5534966B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To efficiently restrain impact force, by always causing axial crush deformation, regardless of the input action direction of the impact force caused when a vehicle meets with a collision accident.SOLUTION: When constituted in a cross-sectional hat shape out of a long side body 4 of forming a cross section perpendicular to the axis in a substantially U shape by a pair of vertical walls 2 and a horizontal wall 3 for connecting mutual one end side side end parts 2a of both vertical walls 2 and a flange part 5 respectively formed so as to extend in its longitudinal direction in the respective other end side side end parts 2b in the pair of vertical walls 2 for constituting the body 4, a gradually changing part 10 is formed by gradually and continuously changing a cross-sectional shape perpendicular to the axis of the body 4 in the longitudinal axis direction over the collision rear end side B from the collision front end side A in the longitudinal axis direction of the body 4, and the cross-sectional area perpendicular to the axis of the collision rear end side B is set larger than the cross-sectional area perpendicular to the axis on the collision front end side A.

Description

本発明は、自動車車体のサイドメンバー、クロスメンバー、ピラー或いはサイドシル等の車体骨格部品を構成する自動車の車体メンバー部材に関する。   The present invention relates to a vehicle body member member of an automobile that constitutes a vehicle body skeleton component such as a side member, a cross member, a pillar, or a side sill of an automobile body.

この種の車体メンバー部材は、一般に、軸直角断面が大略コの字状に形成された長尺状の本体と、該本体の両端部に長手方向に延びる一対のフランジ部が形成された軸直角断面が略ハット型を呈して構成されている。   This type of vehicle body member generally has a long main body having a substantially U-shaped cross section perpendicular to the axis and a pair of flange portions extending in the longitudinal direction at both ends of the main body. The cross section has a substantially hat shape.

かかる車体メンバー部材、例えば、自動車車体の前後方向に延在するように設置されるサイドメンバーは、自動車が何らかの事故に遭遇して衝突した場合、自動車前方側に存する衝突前端側から後方側に存する固定端たる衝突後端側に向かって軸線方向の軸圧壊変形を起こして圧潰させ、衝突事故による衝撃を緩和するように構成されている。   Such a vehicle body member member, for example, a side member installed so as to extend in the front-rear direction of the vehicle body, exists on the rear side from the front side of the collision existing on the front side of the vehicle when the vehicle encounters an accident and collides. It is configured to cause axial crushing deformation in the axial direction toward the rear end side of the collision, which is a fixed end, to be crushed and to mitigate the impact caused by the collision accident.

そして、自動車の衝突時における軸圧壊変形がスムーズに行われるようにするために、従来における車体メンバー部材のうち一の車体メンバー部材は、例えば、大略コの字状を呈する長尺状の本体を構成する一対の縦壁の壁面或いは該両縦壁を互いに連結する横壁の壁面に、前記軸線に交差するように、凹状または凸状の潰れビードを形成して、かかる潰れビードをきっかけに、前記軸圧壊変形を起こさせるように意図していた(特許文献1参照)。   In order to smoothly perform the axial crushing deformation at the time of the collision of the automobile, one of the conventional vehicle body member members is, for example, a long body that is substantially U-shaped. A concave or convex crushing bead is formed on a wall surface of a pair of vertical walls or a wall of a horizontal wall connecting the two vertical walls to each other so as to intersect the axis, and the crushing bead is used as a trigger. It was intended to cause axial crushing deformation (see Patent Document 1).

また、従来における車体メンバー部材のうち他の一の車体メンバー部材は、軸直角断面が略四角形を呈する本体の中間部分を断面五角形以上の多角形にして構成しており、衝突荷重を受けた場合に、断面四角形と断面五角形以上の多角形との境の断面変形部を潰れ変形のきっかけ部となして、軸圧壊変形を起こさせて圧潰し、衝突事故による衝撃を緩和するように構成されている(特許文献2参照)。   In addition, among other conventional vehicle body member members, the other vehicle body member member is configured with a polygon having a pentagonal cross section or more in the middle part of the main body, in which the cross section perpendicular to the axis is substantially rectangular, and when subjected to a collision load In addition, the cross-sectional deformation part at the boundary between the cross-sectional square and the polygon more than the pentagonal cross-section is used as a crushing deformation trigger part, causing the axial crushing deformation to crush and reduce the impact caused by the collision accident. (See Patent Document 2).

また、従来における車体メンバー部材のうちさらに他の一の車体メンバー部材は、車両の前半部を八角形閉断面にし、後半部を四角形閉断面として、前半部と後半部との間の中間部を閉断面形状が前半部側から後半部側にかけて八角形から四角形に漸次徐変する断面変化部を設けて構成して、断面変化部の圧潰強度を前半部及び後半部よりも高く設定したものである。   Further, among other conventional vehicle body member members, another vehicle body member member has an octagonal closed cross section at the front half of the vehicle and a quadrangular closed cross section at the rear half, and an intermediate portion between the front half and the rear half. The closed cross-sectional shape is configured by providing a cross-sectional change part that gradually changes from an octagon to a quadrangle from the first half side to the second half side, and the crushing strength of the cross-section change part is set higher than that of the first half and the second half part. is there.

特開昭55−136660号公報(第3図、第4図等参照)JP 55-136660 A (see FIGS. 3 and 4) 特開平6−20576号公報(図1乃至図3等参照)Japanese Patent Laid-Open No. 6-20576 (see FIGS. 1 to 3) 特開平8−26133号公報(図6、図7等参照)Japanese Patent Laid-Open No. 8-26133 (see FIG. 6, FIG. 7, etc.)

しかしながら、この種の車体メンバー部材は、例えばサイドメンバー部材の場合には、前述したように、自動車の衝突事故に遭遇した際など、自動車前方側に存する衝突前端側から後方側に存する衝突後端側に向かって軸線(自動車の前側から後方向)に沿って軸圧壊変形を起こさせて圧潰し、衝突事故による衝撃を緩和するように機能するのであるが、衝突事故等による衝撃力の入力方向は、必ずしも車体の前後方向即ち車体メンバー部材の軸線方向に沿って及ぼされるというものではなく、自動車の斜め衝突などにおいては、車体メンバー部材への衝撃がサイドメンバー部材の軸線方向に対して交差する方向(サイドメンバー部材に対して斜め方向を含む車体左右方向)に入力作用してしまい、サイドメンバー部材を折曲させようとする方向の力として働いてしまうことがあり、かかる場合、特許文献1における潰れビードや特許文献2における断面変形部或いは特許文献3における断面変化部が折曲変形のきっかけとなって、車体メンバー部材の中間部において折曲変形してしまい、軸方向の突っ張り力を充分果たし得ず、所望の軸圧壊性能を発揮し得ないことが考えられる。   However, this type of vehicle body member, for example, in the case of a side member member, as described above, when encountering an automobile collision, the rear end of the collision existing on the rear side from the front side of the collision existing on the front side of the automobile. It functions to crush by causing axial crushing deformation along the axis (from the front side to the rear side of the car) toward the side, and to mitigate the impact caused by a collision accident. Is not necessarily applied along the longitudinal direction of the vehicle body, that is, along the axial direction of the vehicle body member member. In an oblique collision of an automobile, the impact on the vehicle body member member intersects the axial direction of the side member member. Input action in the direction (the vehicle body left-right direction including the oblique direction with respect to the side member member), and attempts to bend the side member member In such a case, the crushing bead in Patent Document 1, the cross-sectional deformation part in Patent Document 2 or the cross-sectional change part in Patent Document 3 triggers the bending deformation, and It is conceivable that the intermediate portion is bent and deformed, and the axial tensile force cannot be sufficiently achieved and the desired axial crushing performance cannot be exhibited.

本発明は、上記のような従来の技術における課題に鑑み、自動車が衝突事故等に遭遇した場合に生じる衝撃力の入力作用方向にかかわらず、常時軸圧壊変形を起こして、軸圧壊性能の向上を図り効率的に衝撃力を抑制しようとした自動車の車体メンバー部材を提供することを目的としている。   In view of the problems in the conventional technology as described above, the present invention always causes axial crushing deformation regardless of the input action direction of the impact force generated when the automobile encounters a collision accident or the like, thereby improving the axial crushing performance. An object of the present invention is to provide a vehicle body member member for an automobile in which the impact force is effectively suppressed.

本発明に係る自動車の車体メンバー部材は、一対の縦壁および該両縦壁の一端側側端部同士を連結する横壁によって軸直角断面が大略コの字状に形成された長尺状の本体と、該本体を構成する前記一対の縦壁における各他端側側端部にその長手方向に延在するようにそれぞれ形成されたフランジ部と、により断面ハット型に構成された自動車の車体メンバー部材であって、前記本体の前記軸直角断面形状を、前記本体の長手軸線方向における衝突前端側から衝突後端側にかけて、前記長手軸線方向に漸次連続的に徐変させる徐変部を形成し、前記衝突前端側の軸直角断面積に対して前記衝突後端側の軸直角断面積を大きく設定したことを特徴とするものである。   An automobile body member according to the present invention includes a pair of vertical walls and a long main body having a substantially perpendicular U-shaped cross section formed by a horizontal wall connecting end portions on one end side of both vertical walls. And a vehicle body member of an automobile configured to have a hat-shaped cross section by flange portions respectively formed so as to extend in the longitudinal direction at end portions on the other end side of the pair of vertical walls constituting the main body Forming a gradual change portion that gradually and gradually changes the cross-sectional shape of the main body perpendicular to the longitudinal axis direction from the front end side to the rear end side in the longitudinal axis direction of the main body. The cross-sectional area perpendicular to the axis on the front end side of the collision is set to be larger than the cross-sectional area perpendicular to the axis on the rear end side of the collision.

かかる構成を有する本発明は、本体の軸直角断面形状が、長手軸線方向における衝突前端側から衝突後端側にかけて、長手軸線方向に漸次連続的に徐変する徐変部を有することで、衝突前端側の軸直角断面積に対して衝突後端側の軸直角断面積を大きく設定したことにより、従来技術のような折曲変形のきっかけとなる変形部を有さずしかも衝突前端側から衝突後端側に行くに従って軸圧壊変形荷重が漸次大きくなって中間部が折曲されることを防止し、最大荷重を向上させて、自動車の衝突事故等によって生じた衝撃力の入力方向にかかわらず、常時軸圧壊変形を起こして軸圧壊性能を向上させ、効率的に衝撃力を抑制することができる。   In the present invention having such a configuration, the cross-sectional shape perpendicular to the axis of the main body has a gradually changing portion gradually and gradually changing in the longitudinal axis direction from the collision front end side to the collision rear end side in the longitudinal axis direction. By setting the axis perpendicular cross-sectional area on the rear end side larger than that on the front end side, there is no deformation part that triggers bending deformation as in the prior art, and the collision occurs from the front end side of the collision. The axial crushing deformation load gradually increases as it goes to the rear end side, preventing the middle part from being bent and improving the maximum load, regardless of the input direction of the impact force caused by a car crash etc. The axial crushing deformation is always caused to improve the axial crushing performance, and the impact force can be efficiently suppressed.

また、本発明に係る自動車の車体メンバー部材は、実施の形態として、前記両縦壁における各一端側側端部と前記横壁とが連結して画成する稜線、および前記両縦壁における各他端側側端部と前記フランジ部とが連結して画成する稜線の少なくとも一方を一定曲率を持って湾曲させて前記本体の前記長手軸線方向に対して円弧状に形成し、前記徐変部を構成している。   Further, the vehicle body member member of the automobile according to the present invention includes, as an embodiment, a ridge line formed by connecting each one end side end of each of the vertical walls and the horizontal wall, and each of the other vertical walls. The gradual change portion is formed by curving at least one of ridge lines defined by connecting the end portion on the end side and the flange portion with a constant curvature in an arc shape with respect to the longitudinal axis direction of the main body. Is configured.

かかる構成を有する本発明は、両縦壁における各一端側側端部と横壁とを連結して画成する稜線又は両縦壁における他端側側端部とフランジ部とを連結して画成する稜線が一定曲率を持って円弧状に形成された除変部を有するために、従来技術のような折曲変形のきっかけとなる変形部を有さないことになって、自動車の衝突事故等によって生じた衝撃力の入力方向にかかわらず、常時軸圧壊変形を起こして軸圧壊性能を向上させ中間部が折曲されることを防止して、効率的に衝撃力を抑制し、最大荷重を向上させることができる。   In the present invention having such a configuration, the ridgeline formed by connecting the one end side end portions and the horizontal wall in both vertical walls or the other end side end portion and the flange portion in both vertical walls are defined. Since the ridge line that has a constant curvature has an ablation part formed in an arc shape, it does not have a deformation part that triggers bending deformation as in the prior art, such as an automobile collision accident, etc. Regardless of the input direction of the impact force generated by, the axial crush deformation is always improved to improve the shaft crush performance and prevent the middle part from being bent, effectively suppressing the impact force and increasing the maximum load. Can be improved.

また、本発明に係る自動車の車体メンバー部材は、実施の形態として、前記両縦壁における各一端側側端部と前記横壁とを連結して画成する稜線、および前記両縦壁における他端側側端部と前記フランジ部とを連結して画成する稜線の少なくとも一方を一定角度を持って傾斜させることによって前記本体の前記長手軸線方向に対して傾斜状に形成して、前記徐変部を構成している。   The vehicle body member according to the present invention includes, as an embodiment, a ridge line formed by connecting the one end side end of the both vertical walls and the horizontal wall, and the other end of the two vertical walls. By forming at least one of the ridge lines defined by connecting the side end portion and the flange portion with a certain angle, the main body is inclined with respect to the longitudinal axis direction, and the gradual change is performed. Part.

かかる構成を有する本発明は、両縦壁における各一端側側端部と横壁とを連結して画成される稜線又は両縦壁における他端側側端部とフランジ部とを連結して画成される稜線が一定角度を持って傾斜して本体の長手軸線方向に対して傾斜状に形成され他除変部を有するために、従来技術のような折曲変形のきっかけとなる変形部を有さないことになって、自動車の衝突事故等によって生じた衝撃力の入力方向にかかわらず、常時軸圧壊変形を起こして軸圧壊性能を向上させ中間部が折曲されるのを防止して衝撃力を効率よく抑制し、最大荷重を向上させることができる。   In the present invention having such a configuration, a ridgeline formed by connecting the end portions on one end side of the vertical walls and the horizontal wall or the end portion on the other end side of the vertical walls and the flange portion are connected. Since the formed ridge line is inclined at a certain angle and is formed in an inclined shape with respect to the longitudinal axis direction of the main body and has other variable parts, the deformation part that triggers the bending deformation as in the prior art is provided. Regardless of the input direction of the impact force caused by a car collision accident, etc., it always causes axial crushing deformation to improve axial crushing performance and prevent the middle part from being bent. The impact force can be efficiently suppressed and the maximum load can be improved.

また、本発明に係る自動車の車体メンバー部材は、実施の形態として、前記両縦壁の壁面に、その長手方向全長に渡って延在する階段状のステップビードを形成して構成している。   Moreover, the vehicle body member member of the automobile according to the present invention is configured by forming stepped step beads extending over the entire length in the longitudinal direction on the wall surfaces of the two vertical walls as an embodiment.

かかる構成を有する本発明は、両縦壁の壁面の長手方向全長に渡って延在するステップビードにより、両縦壁の壁面に稜線を増やすことができて、カルマンの有効理論による面剛性を高めることができ、結果的に、中間部が折曲されるのを防止するための耐荷重を補強して軸圧壊性能を十分発揮し最大荷重を向上させることができる。   The present invention having such a configuration can increase the ridgeline on the wall surfaces of both vertical walls by the step beads extending over the entire length in the longitudinal direction of the wall surfaces of both vertical walls, thereby increasing the surface rigidity according to the Kalman effective theory. As a result, it is possible to reinforce the load resistance for preventing the intermediate portion from being bent to sufficiently exhibit the axial crushing performance and to improve the maximum load.

また、本発明に係る自動車の車体メンバー部材は、実施の形態として、前記ステップビードが、前記縦壁の壁面に複数条形成して構成している。
かかる構成を有する本発明は、両縦壁に形成した複数条のステップビードにより、両縦壁には稜線がさらに追加されることになって、カルマンの有効理論による面剛性を高めることができ、さらなる軸圧壊性能の向上を果たし得ることになる。
Moreover, the vehicle body member member of the automobile according to the present invention is configured by forming a plurality of the step beads on the wall surface of the vertical wall as an embodiment.
In the present invention having such a configuration, a plurality of step beads formed on both vertical walls, ridge lines are further added to both vertical walls, and the surface rigidity according to Kalman's effective theory can be increased, This can further improve the axial crushing performance.

上記する本発明によれば、本体の軸直角断面形状が、長手軸線方向における衝突前端側から衝突後端側にかけて、長手軸線方向に漸次連続的に徐変させる除変部を有すことで、衝突前端側の軸直角断面積に対して衝突後端側の軸直角断面積を大きく設定したことから、従来技術のような折曲変形のきっかけとなる変形部を有さずしかも衝突前端側から衝突後端側に行くに従って軸圧壊変形荷重が漸次大きくなって中間部が折曲されることを防止し、最大荷重を向上させて、自動車の衝突事故等によって生じた衝撃力の入力方向にかかわらず、常時軸圧壊変形を起こして軸圧壊性能を向上させ、効率的に衝撃力を抑制することができる。   According to the present invention described above, the cross-sectional shape perpendicular to the axis of the main body has a changeover section that gradually and gradually changes in the longitudinal axis direction from the collision front end side to the collision rear end side in the longitudinal axis direction. Since the cross-sectional area on the axis perpendicular to the front end of the collision is set larger than the cross-sectional area on the axis on the rear end of the collision, there is no deformation part that triggers bending deformation as in the prior art, and from the front end of the collision. The axial crushing deformation load gradually increases as it goes to the rear end side of the collision, preventing the middle part from being bent, improving the maximum load, and depending on the input direction of the impact force caused by a car crash or the like. Therefore, the axial crushing deformation is always caused to improve the axial crushing performance, and the impact force can be efficiently suppressed.

本発明を採用した実施例1に係る車体メンバー部材であるサイドメンバの概略斜視図である。1 is a schematic perspective view of a side member that is a vehicle body member according to a first embodiment that employs the present invention. 図1におけるステップビードを取り除いた概略底面図である。It is the schematic bottom view which removed the step bead in FIG. 本発明者が本発明に到達するまでに実験した実験モデル例を描画した図である。It is the figure which drawn the example of an experimental model which this inventor experimented until it reached this invention. 図3に示す各実験モデルを軸圧壊させた場合の最大荷重効率の変化推移を描画した図である。FIG. 4 is a diagram depicting changes in the maximum load efficiency when each experimental model shown in FIG. 3 is axially collapsed. 本発明を採用した実施例2に係る車体メンバー部材であるサイドメンバの概略斜視図である。It is a schematic perspective view of the side member which is a vehicle body member which concerns on Example 2 which employ | adopted this invention. 図5におけるステップビードを取り除いた概略底面図である。It is the schematic bottom view which removed the step bead in FIG. 本発明を採用した実施例3に係る車体メンバー部材であるサイドメンバーのステップビードを取り除いた概略底面図である。It is the general | schematic bottom view which removed the step bead of the side member which is a vehicle body member which concerns on Example 3 which employ | adopted this invention. 本発明を採用した実施例4に係る車体メンバー部材であるサイドメンバのステップビードを取り除いた概略底面図である。It is the schematic bottom view which removed the step bead of the side member which is a body member member concerning Example 4 which adopted the present invention. 本発明を採用した実施例5に係る車体メンバー部材であるサイドメンバーの概略斜視図である。It is a schematic perspective view of the side member which is a vehicle body member which concerns on Example 5 which employ | adopted this invention.

以下、図面を用いて本発明の実施例について説明する。   Embodiments of the present invention will be described below with reference to the drawings.

まず、図1および図2を用いて、本発明に係る実施例1である車体メンバー部材として自動車の車体後部側に配置されるサイドメンバー(一般に、リアサイドメンバー等と称される)について説明する。   First, a side member (generally referred to as a rear side member or the like) disposed on the rear side of a vehicle body as a vehicle body member member according to the first embodiment of the present invention will be described with reference to FIGS. 1 and 2.

サイドメンバー1は、一対の縦壁2、2と、両縦壁2、2の一端側側端部2a、2a同士をそれぞれ連結する横壁3とによって、軸直角断面が大略コの字状に形成された長尺状の本体4と、本体4を構成する一対の縦壁2、2における各他端側側端部2b、2bにその長手方向に延在するように形成されたフランジ部5、5とで、断面ハット型に構成されている。   The side member 1 includes a pair of vertical walls 2 and 2 and a lateral wall 3 that connects the end portions 2a and 2a of the vertical walls 2 and 2 to each other, and the cross section perpendicular to the axis is substantially U-shaped. The elongated main body 4 and the flange portion 5 formed so as to extend in the longitudinal direction of the other end side end portions 2b and 2b of the pair of vertical walls 2 and 2 constituting the main body 4, 5 and a hat shape in cross section.

サイドメンバー1は、フランジ部5、5を取付け部としてスポット溶接等により、二点鎖線示する車体6に装着されて、閉断面を持つ強度部材を構成している。   The side member 1 is attached to a vehicle body 6 indicated by a two-dot chain line by spot welding or the like with the flange portions 5 and 5 as attachment portions, and constitutes a strength member having a closed cross section.

そして、両縦壁2、2における他端側側端部2bとフランジ部5とを連結して画成する稜線2c、2bのうち一方側の稜線2c(図面手前側)の軸線方向における衝突前端側(自動車の例えば前部側)Aから衝突後端側(自動車の例えば後部側)Bにかけて、長手軸線方向(図1の左右方向)に一定曲率を持って湾曲させることによって漸次連続的に徐変させ徐変部10を形成して、衝突前端側Aの長手方向の軸直角断面積に対して衝突後端側の長手方向の軸直角面積が大きく設定されるように構成している。   Then, the front end of the collision in the axial direction of the ridge line 2c (the front side of the drawing) on one side of the ridge lines 2c and 2b defined by connecting the other end side end 2b and the flange portion 5 in both the vertical walls 2 and 2. From the side (e.g., the front side of the automobile) A to the rear end side (e.g., the rear side of the automobile) B of the collision, the gradual continuous gradual by curving with a constant curvature in the longitudinal axis direction (left-right direction in FIG. 1). The gradual change portion 10 is formed so that the area perpendicular to the longitudinal axis on the rear end side of the collision is set larger than the sectional area perpendicular to the longitudinal axis on the front end side A of the collision.

さらに、両縦壁2、2の壁面2e、2eには、それぞれ、外方に突出する階段状のステップビード7、7が長手方向全長に渡って延在するように形成されている。両ステップビード7、7のうち、一方のステップビード7(図面手前側)の稜線7aは、稜線2cに沿ってやはり一定曲率を持って湾曲形成されている。   Furthermore, step-like step beads 7 and 7 projecting outward are formed on the wall surfaces 2e and 2e of both the vertical walls 2 and 2, respectively, so as to extend over the entire length in the longitudinal direction. Of both step beads 7, 7, the ridge line 7a of one step bead 7 (the front side of the drawing) is also curved and formed with a certain curvature along the ridge line 2c.

したがって、本体4の長手軸線方向Xに漸次連続的に円弧状に形成された徐変部10により、本体4の軸直角断面形状が、長手軸線方向における衝突前端側Aから衝突後端側Bにかけて、衝突前端側Aの軸直角断面積に対して衝突後端側Bの軸直角断面積を大きく設定したことになって、従来技術のような折曲変形のきっかけとなる変形部を有さずしかも衝突前端側Aから衝突後端側Bに行くに従って軸圧壊変形荷重が漸次大きくして軸圧壊性能を向上させ、中間部が折曲されることを防止し、最大荷重を向上させて、自動車の衝突事故等によって生じた衝撃力の入力方向にかかわらず、常時軸圧壊変形を起こして軸圧壊性能を向上させ、効率的に衝撃力を抑制することができる。   Therefore, the axially perpendicular cross-sectional shape of the main body 4 is changed from the collision front end side A to the rear collision end side B in the longitudinal axis direction by the gradually changing portion 10 formed in an arc shape gradually and continuously in the longitudinal axis direction X of the main body 4. The cross-sectional area perpendicular to the axis A on the front end side A of the collision is set larger than the cross-sectional area on the right side A on the rear end side B, so that there is no deformation part that triggers bending deformation as in the prior art. Moreover, the axial crushing deformation load is gradually increased from the collision front end side A to the collision rear end side B to improve the axial crushing performance, prevent the middle portion from being bent, and improve the maximum load. Regardless of the input direction of the impact force caused by a collision accident or the like, it is possible to constantly cause the shaft crushing deformation to improve the shaft crush performance and to efficiently suppress the impact force.

また、両縦壁2、2の壁面2e、2eの長手方向全長に渡って延在するステップビード7、7により、両縦壁2、2の壁面2e、2eには、ステップビード7、7と壁面2e、2bとをそれぞれ連結して画成する稜線7aが形成されていることになり、稜線2cに加えて本体4に形成される稜線が増えることになり、カルマンの有効理論による面剛性を高めることができ、結果的に、中間部が折曲されるのを防止するための耐荷重を補強して軸圧壊性能を十分発揮し最大荷重を向上させることができことができる。   Further, the step beads 7, 7 extending over the entire length in the longitudinal direction of the wall surfaces 2 e, 2 e of both the vertical walls 2, 2, the step beads 7, 7 are placed on the wall surfaces 2 e, 2 e of both the vertical walls 2, 2. The ridge line 7a is formed by connecting the wall surfaces 2e and 2b to each other. In addition to the ridge line 2c, the ridge line formed in the main body 4 is increased, and the surface rigidity according to the Kalman effective theory is increased. As a result, it is possible to reinforce the load resistance for preventing the intermediate portion from being bent, to sufficiently exhibit the axial crushing performance and to improve the maximum load.

次に、図3及び図4を用いて、本発明に係る実施例1の構成に到達するまでに実験した実験モデルおよび各実験モデルに係る最大荷重の実験結果を説明する。   Next, with reference to FIG. 3 and FIG. 4, an experimental model that has been experimented until reaching the configuration of the first embodiment according to the present invention and the experimental result of the maximum load according to each experimental model will be described.

図3は、実験モデルとして、従来技術である実験モデルEにおけるサイドメンバーが全長に渡って、縦壁とフランジ部とを連結して画成する稜線が平行となった構成に対して、実験モデルDは、衝突後端側を長手方向約1/3の範囲円弧状の徐変部を形成したもの、実験モデルCは、長手方向中央部から衝突前端側の稜線を平行に形成するとともに衝突前端側を円弧状の徐変部に形成したもの、実験モデルBは長手方向2/3の範囲円弧状の徐変部に形成したもの、実験モデルAは本発明に係る実施例1に相当するもので、一方の縦壁2とフランジ部5とを連結して画成する稜線を長手方向全長に渡って円弧状に形成して徐変部に形成したものである。   FIG. 3 shows an experimental model for a configuration in which the side members in the experimental model E, which is a prior art, are parallel to the ridgeline formed by connecting the vertical wall and the flange portion over the entire length. D is the one where the rear end side of the collision is formed with an arc-like gradually changing portion in the range of about 1/3 in the longitudinal direction, and the experimental model C forms the ridge line on the front side of the collision from the center in the longitudinal direction in parallel and the front end of the collision The side is formed in an arc-shaped gradual change part, the experimental model B is formed in an arc-like gradual change part in the range of 2/3 in the longitudinal direction, and the experimental model A corresponds to Example 1 according to the present invention. Thus, a ridge line formed by connecting one vertical wall 2 and the flange portion 5 is formed in an arc shape over the entire length in the longitudinal direction, and formed in a gradually changing portion.

本発明者は、上記各実験モデルA〜Eを使い、実際の自動車の衝突事故の類似状態を再現して実験した結果、図4に示す結果を得た。   The inventor used the above experimental models A to E to reproduce the similar state of an actual automobile collision accident, and as a result, the results shown in FIG. 4 were obtained.

図4は、横軸に車体メンバー部材の軸線方向に対して形成した平行部の長さをとり、縦軸に各実験モデルにおける軸圧壊力に対する最大荷重をとって描画したものである。   In FIG. 4, the horizontal axis represents the length of the parallel portion formed in the axial direction of the vehicle body member member, and the vertical axis represents the maximum load for the axial crushing force in each experimental model.

図4によれば、まず、ステップビード7を形成しない実験モデルについて、実験結果の中では、車体メンバー部材の長手軸線方向全長に渡って湾曲状の除変部10を形成した本発明に係る実験モデルAは、それより除変部が短い実験モデルB〜Dに対して、最大荷重の著しい向上の結果を得ることができた。   According to FIG. 4, first, for an experimental model in which the step beads 7 are not formed, among the experimental results, an experiment according to the present invention in which the curved exfoliation portion 10 is formed over the entire length in the longitudinal axis direction of the vehicle body member member. Model A was able to obtain a result of a significant improvement in the maximum load with respect to experimental models B to D having a shorter change-over part.

また、ステップビードを形成した実験モデルにおいても、車体メンバー部材の長手軸線方向全長に渡って湾曲状の除変部10を形成した本発明に係る実験モデルAは、それより除変部が短い実験モデルB〜Dに対して、最大荷重の著しい向上の結果を得ることができ、加えて、ステップビード7を形成しない場合よりもさらなる最大荷重の向上を果たしている。   Further, even in the experimental model in which the step bead is formed, the experimental model A according to the present invention in which the curved exfoliation part 10 is formed over the entire length in the longitudinal axis direction of the vehicle body member member is an experiment in which the excision part is shorter than that. As a result, the maximum load can be significantly improved with respect to the models B to D. In addition, the maximum load is further improved as compared with the case where the step beads 7 are not formed.

ただし、本発明に係る実験モデルAと従来技術における実験モデルEとにおける最大荷重を比較した場合、ほぼ同等値を示している。   However, when the maximum loads in the experimental model A according to the present invention and the experimental model E in the prior art are compared, almost the same values are shown.

しかしながら、従来技術における実験モデルEは、長手軸線方向全長に渡って平行な車体メンバー部材であるために、自動車の衝突事故等による衝撃力が長手軸線方向に平行に及ぼされた場合には、確かに、大なる最大荷重を発揮することができるが、もし、当該衝撃力が長手軸線方向に対して車体メンバー部材を折曲させようとする方向に働いた場合には、低荷重となって折曲して軸圧壊性能を低下させてしまうという実験結果が出ている。   However, since the experimental model E in the prior art is a vehicle body member that is parallel to the entire length in the longitudinal axis direction, it is certain that the impact force due to a car crash or the like is applied in parallel to the longitudinal axis direction. However, if the impact force acts in a direction in which the vehicle body member is bent with respect to the longitudinal axis direction, the load will be reduced to a low load. There is an experimental result that it will bend and reduce the axial crush performance.

また、実験モデルEにおいては、長手軸線方向に平行な衝撃力に対する最大荷重が大きいために、所定の軸圧壊性能を発揮させるためには、どうしても、縦壁或いは横壁の面部に軸圧壊変形のきっかけとなる潰れビード等を形成する必要意があり、かかる潰れビードを形成した結果、長手軸線方向の最大荷重を著しく低下させてしまうことが、発明者の実験において判明している。   Further, in the experimental model E, since the maximum load with respect to the impact force parallel to the longitudinal axis direction is large, in order to exert a predetermined axial crushing performance, the cause of axial crushing deformation on the surface portion of the vertical wall or the horizontal wall is unavoidable. It is necessary to form a collapsed bead or the like, and it has been found in the experiment of the inventors that the maximum load in the longitudinal axis direction is significantly reduced as a result of forming such a collapsed bead.

かかる点、本発明に係る車体メンバー部材は、除変部10の存在により、本体4の軸直角断面形状を、本体の長手軸線方向に漸次連側的に除変させて、衝突前端側Aの軸直角断面積に対して衝突後端側Bの軸直角断面を大きく設定していることから、従来の潰れビード等を形成することなく、軸圧性能を向上させつつ、大きな最大荷重を得ることができると共に、自動車の衝突事故等により衝撃力の入力方向性を限定せず常に一定した衝撃力の緩和性能を実現することができるのである。   In this respect, the vehicle body member according to the present invention is configured such that the axially perpendicular cross-sectional shape of the main body 4 is gradually changed side by side in the longitudinal axis direction of the main body due to the presence of the change changing portion 10, Since the cross-sectional area at the rear end B of the collision is set to be larger than the cross-sectional area at the right-hand axis, a large maximum load can be obtained while improving the axial pressure performance without forming a conventional crushing bead or the like. In addition, the impact force input directionality is not limited by an automobile collision accident or the like, and a constant impact force relaxation performance can be realized.

次に、図5および図6を用いて、本発明に係る実施例2について説明する。   Next, Embodiment 2 according to the present invention will be described with reference to FIGS.

図5および図6に示す実施例2に係るサイドメンバー1は、両縦壁2、2のうち一方側の縦壁2における他端側側端部2bとフランジ部5とを連結して画成する稜線2cが一定角度を持って傾斜することによって漸次連続的に徐変させて、衝突前端側Aの長手方向の軸直角断面積に対して衝突後端側の長手方向の軸直角面積が大きく設定されるように構成して、徐変部10を形成している。   The side member 1 according to the second embodiment shown in FIG. 5 and FIG. 6 is defined by connecting the other end side end portion 2b and the flange portion 5 of the vertical wall 2 on one side of the vertical walls 2 and 2. The ridgeline 2c is gradually and gradually changed by inclining at a certain angle, and the longitudinal axis perpendicular area on the rear end side of the collision is larger than the longitudinal cross section of the longitudinal axis on the front end side A of the collision. The gradual change portion 10 is formed so as to be set.

さらに、両縦壁2、2の壁面2e、2eには、それぞれ、外方に突出する階段状のステップビード7が長手方向全長に渡って延在するように形成されている。ステップビード7、7と壁面2e、2eとをそれぞれ連結して画成する稜線7aは、稜線2cに沿って一定角度を持って傾斜している。   Further, on each of the wall surfaces 2e and 2e of the vertical walls 2 and 2, stepped step beads 7 projecting outward are formed so as to extend over the entire length in the longitudinal direction. A ridge line 7a defined by connecting the step beads 7, 7 and the wall surfaces 2e, 2e is inclined with a certain angle along the ridge line 2c.

上記のように構成することにより、両縦壁2、2のうち一方側の縦壁2における他端側側端部2bとフランジ部5とを連結して画成する稜線2cが一定角度を持って傾斜状に形成されて、本体4の軸直角断面形状が、長手軸線方向Xにおける衝突前端側Aから衝突後端側Bにかけて、長手軸線方向に漸次連続的に徐変させて形成された徐変部10が存することになって、衝突前端側Aの軸直角断面積に対して衝突後端側Bの軸直角断面積を大きく設定したことにより、従来技術のような折曲変形のきっかけとなる変形部を有さずしかも衝突前端側Aから衝突後端側Bに行くに従って軸圧壊変形荷重が漸次大きくなって軸圧壊性能を向上させて中間部が折曲されることを防止し、最大荷重を向上させて、自動車の衝突事故等によって生じた衝撃力の入力方向にかかわらず、常時軸圧壊変形を起こして、効率的に衝撃力を抑制することができる。   By configuring as described above, the ridge line 2c defined by connecting the other end side end portion 2b and the flange portion 5 of the vertical wall 2 on one side of the vertical walls 2 and 2 has a certain angle. The cross-sectional shape perpendicular to the axis of the main body 4 is formed so as to gradually and gradually change in the longitudinal axis direction from the collision front end side A to the collision rear end side B in the longitudinal axis direction X. Since the deformed portion 10 exists, the axis perpendicular cross-sectional area on the collision rear end side B is set larger than the axis perpendicular cross-sectional area on the collision front end side A. The axial crushing deformation load gradually increases from the collision front end side A to the collision rear end side B to improve the shaft crushing performance and prevent the intermediate part from being bent. Impacts caused by automobile collision accidents by improving the load Regardless of the input direction, causing the constantly axis crush deformation, it is possible to efficiently suppress the impact force.

また、両縦壁2、2の壁面2e、2eの長手方向全長に渡って延在するステップビード7、7により、両縦壁2、2eの壁面2e、2eには、ステップビード7、7と壁面2e、2eとをそれぞれ連結して画成する稜線7a、7aが形成されていることになり、稜線2cに加えて本体4に形成される稜線が増えることになって、カルマンの有効理論による面剛性を高めることができ、結果的に、軸圧壊性能を向上させて中間部が折曲されるのを防止して軸圧壊性能を十分発揮し最大荷重を向上させることができことができる。   Further, the step beads 7, 7 extending over the entire length in the longitudinal direction of the wall surfaces 2 e, 2 e of both the vertical walls 2, 2, the step beads 7, 7 are placed on the wall surfaces 2 e, 2 e of both the vertical walls 2, 2 e. The ridgelines 7a and 7a that are defined by connecting the wall surfaces 2e and 2e are formed. In addition to the ridgeline 2c, the ridgelines formed in the main body 4 are increased, and according to Kalman's effective theory. The surface rigidity can be increased, and as a result, the axial crush performance can be improved to prevent the intermediate portion from being bent, and the axial crush performance can be sufficiently exhibited and the maximum load can be improved.

図7に示す実施例3に係るサイドメンバー1は、両縦壁2、2ともにその他端側側端部2b、2bとフランジ部5、5とをそれぞれ連結して画成する稜線2c、2cが一定曲率を持って円弧状に形成されて、本体4の軸直角断面形状が、長手軸線方向における衝突前端側Aから衝突後端側Bにかけて、長手軸線方向に漸次連続的に徐変させることによって、衝突前端側Aの軸直角断面積に対して衝突後端側Bの軸直角断面積を大きく設定するようにしたものである。   The side member 1 according to Example 3 shown in FIG. 7 has ridgelines 2c and 2c that define both the vertical walls 2 and 2 by connecting the other end side end portions 2b and 2b and the flange portions 5 and 5 respectively. It is formed in an arc shape with a constant curvature, and the axially perpendicular cross-sectional shape of the main body 4 is gradually and gradually changed in the longitudinal axis direction from the collision front end side A to the collision rear end side B in the longitudinal axis direction. The cross-sectional area perpendicular to the axis B at the rear end B of the collision is set larger than the cross-sectional area perpendicular to the axis A at the front end A.

したがって、両縦壁2、2共にその他端側側端部とフランジ部5、5とを連結して画成する稜線2c、2cが一定曲率を持って円弧状に形成されて、本体4の軸直角断面形状が、長手軸線方向における衝突前端側Aから衝突後端側Bにかけて、長手軸線方向に漸次連続的に徐変させることになって、衝突前端側Aの軸直角断面積に対して衝突後端側Bの軸直角断面積を大きく設定したことにより、従来技術のような折曲変形のきっかけとなる変形部を有さずしかも衝突前端側Aから衝突後端側Bに行くに従って軸圧壊変形荷重が漸次大きくなって軸圧壊性能を向上させて中間部が折曲されることを防止し、最大荷重を向上させて、自動車の衝突事故等によって生じた衝撃力の入力方向にかかわらず、常時軸圧壊変形を起こして、効率的に衝撃力を抑制することができる。   Therefore, the ridgelines 2c and 2c that define the two vertical walls 2 and 2 by connecting the other end side end and the flanges 5 and 5 are formed in an arc shape with a certain curvature, so that The right-angle cross-sectional shape gradually and continuously changes in the longitudinal axis direction from the collision front end side A to the collision rear end side B in the longitudinal axis direction. Since the cross-sectional area perpendicular to the axis on the rear end side B is set to be large, there is no deformation part that triggers bending deformation as in the prior art, and the axial crushing proceeds from the collision front end side A to the collision rear end side B. Regardless of the input direction of the impact force caused by a car crash, etc., the deformation load gradually increases and the shaft crushing performance is improved to prevent the middle part from being bent and the maximum load is improved. Efficient impact with constant axial crushing deformation It is possible to suppress.

また、両縦壁2、2の壁面2e、2bの長手方向全長に渡って延在するステップビード7、7により、両縦壁2、2bの壁面には、ステップビード7、7と壁面2e、2bとをそれぞれ連結して画成する稜線7a、7aが形成されていることになり、稜線2cに加えて本体4に形成される稜線が増えることになり、カルマンの有効理論による面剛性を高めることができ、結果的に、軸圧壊性能を向上させて中間部が折曲されるのを防止して軸圧壊性能を十分発揮し最大荷重を向上させることができことができる。   Further, due to the step beads 7 and 7 extending over the entire length in the longitudinal direction of the wall surfaces 2e and 2b of both the vertical walls 2 and 2, the step beads 7 and 7 and the wall surface 2e, As a result, ridge lines 7a and 7a are formed which are connected to each other 2b, and the ridge lines formed on the main body 4 in addition to the ridge line 2c are increased, thereby increasing the surface rigidity according to Kalman's effective theory. As a result, it is possible to improve the axial crush performance and prevent the intermediate portion from being bent, to sufficiently exhibit the axial crush performance and improve the maximum load.

次に、図8に示す実施例4に係るサイドメンバー1は、両縦壁2、2ともにその他端側側端部2b、2bとフランジ部5、5とを連結して画成する稜線2c、2cが一定角度を持って傾斜状に形成されて、本体4の軸直角断面形状が、長手軸線方向における衝突前端側Aから衝突後端側Bにかけて、長手軸線方向に漸次連続的に徐変させて徐変部10を形成することによって、衝突前端側Aの軸直角断面積に対して衝突後端側Bの軸直角断面積を大きく設定するようにしたものである。   Next, the side member 1 according to the fourth embodiment shown in FIG. 8 includes a ridgeline 2c that defines both the vertical walls 2 and 2 by connecting the other end side end portions 2b and 2b and the flange portions 5 and 5; 2c is formed in an inclined shape with a certain angle, and the cross-sectional shape perpendicular to the axis of the main body 4 is gradually and gradually changed in the longitudinal axis direction from the collision front end side A to the collision rear end side B in the longitudinal axis direction. Thus, by forming the gradual change portion 10, the cross-sectional area perpendicular to the axis B on the rear end B of the collision is set larger than the cross-sectional area perpendicular to the axis A on the front end A.

したがって、両縦壁2、2共にその他端側側端部とフランジ部5、5とを連結して画成する稜線2c、2cが一定角度を持って傾斜状に形成されて、本体4の軸直角断面形状が、長手軸線方向における衝突前端側Aから衝突後端側Bにかけて、長手軸線方向に漸次連続的に徐変させて形成された徐変部10によって、衝突前端側Aの軸直角断面積に対して衝突後端側Bの軸直角断面積を大きく設定したことにより、従来技術のような折曲変形のきっかけとなる変形部を有さずしかも衝突前端側Aから衝突後端側Bに行くに従って軸圧壊変形荷重が漸次大きくなって軸圧壊性能を向上させて中間部が折曲されることを防止し、最大荷重を向上させて、自動車の衝突事故等によって生じた衝撃力の入力方向にかかわらず、常時軸圧壊変形を起こして、効率的に衝撃力を抑制することができる。   Accordingly, the ridgelines 2c and 2c defined by connecting the other end side end portion and the flange portions 5 and 5 together with the vertical walls 2 and 2 are formed in an inclined shape with a certain angle, and the shaft of the main body 4 The right-angle cross-sectional shape of the collision front end side A on the axis A on the collision front end side A is formed by the gradual change portion 10 formed by gradually and gradually changing in the longitudinal axis direction from the collision front end side A to the collision rear end side B in the longitudinal axis direction. Since the cross-sectional area perpendicular to the rear end B of the area with respect to the area is set large, there is no deformation part that triggers bending deformation as in the prior art, and the rear end B The axial crushing deformation load gradually increases as it goes to improve the axial crushing performance to prevent the middle part from being bent, improve the maximum load, and input the impact force caused by automobile collision accident etc. Regardless of the direction, it always causes axial crushing deformation. , It is possible to effectively suppress the impact force.

図9に示す実施例5係るサイドメンバー1は、徐変部10を両縦壁2、2と横壁3とが互いに連結して画成する稜線2f、2fの軸線方向における衝突前端側Aから衝突後端側Bにかけて、長手軸線方向(図9の左右方向)に一定曲率を持って湾曲させることによって漸次連続的に徐変させて、衝突前端側Aの長手方向の軸直角断面積に対して衝突後端側の長手方向の軸直角面積が大きく設定されるように構成して、徐変部10を形成している。   The side member 1 according to the fifth embodiment shown in FIG. 9 collides from the front end A of the collision in the axial direction of the ridgelines 2f and 2f that define the gradual change portion 10 by connecting the vertical walls 2 and 2 and the horizontal wall 3 to each other. With respect to the rear end side B, it is gradually and gradually changed by curving with a constant curvature in the longitudinal axis direction (left and right direction in FIG. 9), and with respect to the longitudinal axis perpendicular to the longitudinal direction of the collision front end side A The gradual change portion 10 is formed such that the area perpendicular to the longitudinal axis on the rear end side of the collision is set to be large.

さらに、両縦壁2、2の壁面2e、2eには、それぞれ、外方に突出する階段状のステップビード7、7が長手方向全長に渡って延在するように形成されている。ステップビード7、7と壁面2e、2eとをそれぞれ連結して画成する稜線7aは、稜線2cに沿って一定曲率を持って湾曲している。   Furthermore, step-like step beads 7 and 7 projecting outward are formed on the wall surfaces 2e and 2e of both the vertical walls 2 and 2, respectively, so as to extend over the entire length in the longitudinal direction. A ridge line 7a defined by connecting the step beads 7 and 7 and the wall surfaces 2e and 2e, respectively, is curved with a certain curvature along the ridge line 2c.

上記のように構成することにより、両縦壁2、2における他端側側端部と横壁3とを連結して画成する稜線2cが一定曲率を持って円弧状に形成されて、本体4の軸直角断面形状が、長手軸線方向における衝突前端側Aから衝突後端側Bにかけて、長手軸線方向に漸次連続的に徐変させる徐変部10が存することによって、衝突前端側Aの軸直角断面積に対して衝突後端側Bの軸直角断面積を大きく設定したことにより、従来技術のような折曲変形のきっかけとなる変形部を有さずしかも衝突前端側Aから衝突後端側Bに行くに従って軸圧壊変形荷重が漸次大きくなって軸圧壊性能を向上させて中間部が折曲されることを防止し、最大荷重を向上させて、自動車の衝突事故等によって生じた衝撃力の入力方向にかかわらず、常時軸圧壊変形を起こして、効率的に衝撃力を抑制することができる。   By configuring as described above, the ridge line 2c defined by connecting the other end side end of the vertical walls 2 and 2 and the horizontal wall 3 is formed in an arc shape with a certain curvature, and the main body 4 The gradual change portion 10 that gradually changes gradually in the longitudinal axis direction from the collision front end side A to the collision rear end side B in the longitudinal axis direction is present. By setting the cross-sectional area larger than the cross-sectional area on the axis B perpendicular to the rear end of the collision, there is no deformation part that triggers bending deformation as in the prior art, and the rear end side of the collision from the front end side A of the collision As B goes, the axial crushing deformation load gradually increases to improve the axial crushing performance to prevent the middle part from being bent, to improve the maximum load, and to improve the impact force caused by a car crash, etc. Regardless of the input direction, constant axial deformation Hips, it can be efficiently suppressed impact force.

また、両縦壁2、2の壁面2e、2bの長手方向全長に渡って延在するステップビード7、7により、両縦壁2、2bの壁面には、ステップビード7、7と壁面2e、2eとをそれぞれ連結して画成する稜線7a、7aが形成されていることになり、稜線2cに加えて本体4に形成される稜線が増えることになり、カルマンの有効理論による面剛性を高めることができ、結果的に、軸圧壊性能を向上させて中間部が折曲されるのを防止して軸圧壊性能を十分発揮し最大荷重を向上させることができことができる。   Further, due to the step beads 7 and 7 extending over the entire length in the longitudinal direction of the wall surfaces 2e and 2b of both the vertical walls 2 and 2, the step beads 7 and 7 and the wall surface 2e, 2e and 7e are formed to form the ridgelines 7a and 7a, and the ridgelines formed in the main body 4 in addition to the ridgeline 2c are increased, thereby increasing the surface rigidity according to the Kalman effective theory. As a result, it is possible to improve the axial crush performance and prevent the intermediate portion from being bent, to sufficiently exhibit the axial crush performance and improve the maximum load.

以上説明したように、本発明は、本体の軸直角断面形状が、長手軸線方向における衝突前端側から衝突後端側にかけて、長手軸線方向に漸次連続的に徐変させる除変部を有することによって、衝突前端側の軸直角断面積に対して衝突後端側の軸直角断面積を大きく設定したことから、従来技術のような折曲変形のきっかけとなる変形部を有さずしかも衝突前端側から衝突後端側に行くに従って軸圧壊変形荷重が漸次大きくなって中間部が折曲されることを防止し、最大荷重を向上させて、自動車の衝突事故等によって生じた衝撃力の入力方向にかかわらず、常時軸圧壊変形を起こして、軸圧壊性能を向上させて効率的に衝撃力を抑制することができ、自動車車体のサイドメンバー、クロスメンバー、ピラー或いはサイドシル等の車体骨格部品を構成する自動車の車体メンバー部材等に好適である。   As described above, according to the present invention, the axially perpendicular cross-sectional shape of the main body has a change-over section that gradually and gradually changes in the longitudinal axis direction from the collision front end side to the collision rear end side in the longitudinal axis direction. In addition, since the cross-sectional area at the rear end of the collision is set larger than the cross-sectional area at the front end of the collision, the front end of the collision does not have a deformation part that triggers bending deformation as in the prior art. The axial crushing deformation load gradually increases from the end to the rear end of the collision, preventing the middle part from being bent, improving the maximum load, and in the input direction of impact force caused by a car crash, etc. Regardless, it always causes axial crushing deformation, improves axial crushing performance and efficiently suppresses impact force, and body frame parts such as side members, cross members, pillars or side sills of automobile bodies It is suitable to a vehicle body member member of an automobile constituting.

1 サイドメンバー(車体メンバー部材)
2 縦壁
2c 稜線
2e 壁面
3 横壁
4 本体
5 フランジ部
6 車体
7 ステップビード
7a 稜線
10 徐変部
1 Side member (body member)
2 Vertical wall 2c Ridge line 2e Wall surface 3 Horizontal wall 4 Body 5 Flange part 6 Car body 7 Step bead 7a Ridge line 10 Gradual change part

Claims (5)

一対の縦壁および該両縦壁の一端側側端部同士を連結する横壁によって軸直角断面が大略コの字状に形成された長尺状の本体と、該本体を構成する前記一対の縦壁における各他端側側端部にその長手方向に延在するようにそれぞれ形成されたフランジ部と、により断面ハット型に構成された自動車の車体メンバー部材であって、前記本体の前記軸直角断面形状を、前記本体の長手軸線方向における衝突前端側から衝突後端側にかけて、前記長手軸線方向に漸次連続的に徐変させる除変部を形成して、前記衝突前端側の軸直角断面積に対して前記衝突後端側の軸直角断面積を大きく設定したことを特徴とする自動車の車体メンバー部材。 A pair of vertical walls and a long main body having a cross section perpendicular to the axis formed by a horizontal wall connecting the end portions on one end side of both vertical walls, and the pair of vertical walls constituting the main body. A vehicle body member member having a cross-sectional hat shape formed by a flange portion formed so as to extend in the longitudinal direction at each other end side end portion of the wall, the vehicle body member member being perpendicular to the axis of the main body An axially perpendicular cross-sectional area on the front side of the collision is formed by forming a change-over section that gradually and gradually changes the cross-sectional shape in the longitudinal axis direction from the collision front end side to the rear collision end side in the longitudinal axis direction of the main body. A vehicle body member for an automobile, wherein the cross-sectional area perpendicular to the rear end of the collision is set to be large. 前記両縦壁における各一端側側端部と前記横壁とを連結して画成する稜線、および前記両縦壁における他端側側端部と前記フランジ部とを連結して画成する稜線の少なくとも一方を一定曲率を持って湾曲させることにより、前記徐変部を前記本体の前記長手軸線方向に対して円弧状に形成したことを特徴とする請求項1に記載の自動車の車体メンバー部材。 A ridge line formed by connecting the one end side ends of the vertical walls and the horizontal wall, and a ridge line formed by connecting the other end side ends of the vertical walls and the flange part. 2. The vehicle body member according to claim 1, wherein at least one of the gradually changing portions is curved in a circular arc shape with respect to the longitudinal axis direction of the main body by curving at least one. 前記両縦壁における各一端側側端部と前記横壁とを連結する稜線、および前記両縦壁における他端側側端部と前記フランジ部とを連結する稜線の少なくとも一方を一定角度を持って傾斜させることにより、前記徐変部を前記本体の前記長手軸線方向に対して傾斜状に形成したことを特徴とする請求項1に記載の自動車の車体メンバー部材。 At least one of a ridge line connecting each one end side end portion of the both vertical walls and the horizontal wall and a ridge line connecting the other end side end portion of the both vertical walls and the flange portion has a certain angle. The vehicle body member according to claim 1, wherein the gradually changing portion is formed to be inclined with respect to the longitudinal axis direction of the main body by being inclined. 前記両縦壁の壁面に、その長手方向全長に渡って延在する階段状のステップビードを形成したことを特徴とする請求項1乃至請求項3のいずれか一に記載の自動車の車体メンバー部材。 4. The vehicle body member according to claim 1, wherein stepped beads extending over the entire length in the longitudinal direction are formed on the wall surfaces of the two vertical walls. 5. . 前記ステップビードは、前記縦壁の壁面に複数条形成したことを特徴とする請求項4に記載の自動車の車体メンバー部材。 5. The vehicle body member according to claim 4, wherein a plurality of the step beads are formed on a wall surface of the vertical wall.
JP2010135420A 2010-06-14 2010-06-14 Auto body member members Active JP5534966B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010135420A JP5534966B2 (en) 2010-06-14 2010-06-14 Auto body member members

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010135420A JP5534966B2 (en) 2010-06-14 2010-06-14 Auto body member members

Publications (2)

Publication Number Publication Date
JP2012001023A true JP2012001023A (en) 2012-01-05
JP5534966B2 JP5534966B2 (en) 2014-07-02

Family

ID=45533517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010135420A Active JP5534966B2 (en) 2010-06-14 2010-06-14 Auto body member members

Country Status (1)

Country Link
JP (1) JP5534966B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015089759A (en) * 2013-11-07 2015-05-11 マツダ株式会社 Rear vehicle body structure of vehicle
WO2017151069A1 (en) * 2016-03-04 2017-09-08 Asian Honda Motor Co., Ltd. Vehicle body floor structure
FR3084871A1 (en) * 2018-08-13 2020-02-14 Suzuki Motor Corporation VEHICLE BODY PART, ASSEMBLY OF VEHICLE BODY PARTS, AND VEHICLE BODY STRUCTURE
JP2021080978A (en) * 2019-11-18 2021-05-27 日本製鉄株式会社 Rod body and rod-like structure
EP4029765A1 (en) * 2021-01-18 2022-07-20 Renault s.a.s Reinforcement beam for anchoring of seats and associated motor vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6074810U (en) * 1983-10-26 1985-05-25 マツダ株式会社 Press mold tool
JPH0450083A (en) * 1990-06-15 1992-02-19 Toyota Motor Corp Front side member structure for car body
JPH07185663A (en) * 1993-12-28 1995-07-25 Honda Motor Co Ltd Press forming method and press formed article
JP2005195155A (en) * 2004-01-09 2005-07-21 Toyota Industries Corp Energy absorbing body

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6074810U (en) * 1983-10-26 1985-05-25 マツダ株式会社 Press mold tool
JPH0450083A (en) * 1990-06-15 1992-02-19 Toyota Motor Corp Front side member structure for car body
JPH07185663A (en) * 1993-12-28 1995-07-25 Honda Motor Co Ltd Press forming method and press formed article
JP2005195155A (en) * 2004-01-09 2005-07-21 Toyota Industries Corp Energy absorbing body

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015089759A (en) * 2013-11-07 2015-05-11 マツダ株式会社 Rear vehicle body structure of vehicle
WO2015068556A1 (en) * 2013-11-07 2015-05-14 マツダ株式会社 Rear body structure of vehicle
CN105658506A (en) * 2013-11-07 2016-06-08 马自达汽车株式会社 Rear body structure of vehicle
US9381942B2 (en) 2013-11-07 2016-07-05 Mazda Motor Corporation Rear vehicle body structure of vehicle
WO2017151069A1 (en) * 2016-03-04 2017-09-08 Asian Honda Motor Co., Ltd. Vehicle body floor structure
FR3084871A1 (en) * 2018-08-13 2020-02-14 Suzuki Motor Corporation VEHICLE BODY PART, ASSEMBLY OF VEHICLE BODY PARTS, AND VEHICLE BODY STRUCTURE
JP2021080978A (en) * 2019-11-18 2021-05-27 日本製鉄株式会社 Rod body and rod-like structure
JP7348507B2 (en) 2019-11-18 2023-09-21 日本製鉄株式会社 rod-shaped structure
EP4029765A1 (en) * 2021-01-18 2022-07-20 Renault s.a.s Reinforcement beam for anchoring of seats and associated motor vehicle
FR3118916A1 (en) * 2021-01-18 2022-07-22 Renault S.A.S Reinforcing beam for anchoring seats and associated motor vehicle

Also Published As

Publication number Publication date
JP5534966B2 (en) 2014-07-02

Similar Documents

Publication Publication Date Title
JP6137118B2 (en) Vehicle connecting member and vehicle front structure
JP5637203B2 (en) Body front structure
JP4407755B2 (en) Vehicle hood structure
JP6798457B2 (en) Vampari Information
JP4872541B2 (en) Automotive bumper structure
JP6128569B2 (en) Impact energy absorption structure for vehicles
JP6319251B2 (en) Vehicle skeleton structure
JP2008221920A (en) Bumper beam for automobile
JP5534966B2 (en) Auto body member members
JP6384203B2 (en) Center pillar for vehicle
JP6254448B2 (en) Bumper beam for vehicles
JP6414298B1 (en) Body structure
JP2018008564A (en) Vehicular bumper reinforcement
JP5772389B2 (en) Vehicle front structure
JP5686586B2 (en) Reinforcement structure in automobile body frame
JP2006044311A (en) Hood structure for vehicle
JP5831246B2 (en) Body front structure
EP3851335A1 (en) Automobile frame member and electric vehicle
JP4186125B2 (en) Vehicle front structure
JP2010132065A (en) Structure of side sill of vehicle body
JP5875449B2 (en) Bumper member for vehicles
JP5180950B2 (en) Bumper structure
JP7144529B2 (en) bumper crash box
JP2019034601A (en) Vehicle front structure
JP2014156199A (en) Vehicle body front part structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140422

R150 Certificate of patent or registration of utility model

Ref document number: 5534966

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250