JP2012000998A - Method of manufacturing plastic-worked lumber - Google Patents

Method of manufacturing plastic-worked lumber Download PDF

Info

Publication number
JP2012000998A
JP2012000998A JP2011191397A JP2011191397A JP2012000998A JP 2012000998 A JP2012000998 A JP 2012000998A JP 2011191397 A JP2011191397 A JP 2011191397A JP 2011191397 A JP2011191397 A JP 2011191397A JP 2012000998 A JP2012000998 A JP 2012000998A
Authority
JP
Japan
Prior art keywords
wood
plastic
face
compression
tree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011191397A
Other languages
Japanese (ja)
Inventor
Takayuki Ito
隆行 伊藤
Takashi Aono
高志 青野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mywood2 Corp
Original Assignee
Mywood2 Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mywood2 Corp filed Critical Mywood2 Corp
Priority to JP2011191397A priority Critical patent/JP2012000998A/en
Publication of JP2012000998A publication Critical patent/JP2012000998A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Chemical And Physical Treatments For Wood And The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide plastic-worked lumber physically stable, small in dispersion of quality among products, never causing distortion due to change of an ambient environmental condition after product formation, having high hardness, and hardly causing a scar or dent.SOLUTION: This plastic-worked lumber is subjected to plastic work by heating and compressing thicknesses of wood materials NW1, NW2 by heating compression force applied to the wood materials NW1, NW2, and manufactured by setting the air-dried specific gravity of the wood materials subjected to the plastic work after being heated and compressed ≥0.85, and setting intersection angles on acute angle sides formed by all annual growth ring lines RL on butt end surfaces of the plastic-worked lumber PW1, PW2 and back-side flat grain faces B1 of the plastic-worked lumber PW1, PW2 or surfaces of tree center-side straight grain faces thereof in the range ≤45°.

Description

本発明は、少なくとも厚み方向に圧縮が加えられた塑性加工木材の製造方法に関するもので、特に、製品間の品質のばらつきを少なくして製造できる塑性加工木材の製造方法に関するものである。 The present invention relates to a method for producing plastically processed wood in which compression is applied at least in the thickness direction, and particularly relates to a method for producing plastically processed wood that can be produced with less quality variation between products.

従来、木材の樹種として、例えば、スギ材のように低密度で硬度が不足しているものにあっては、圧縮して高密度化すれば実用に耐え得る硬度が得られることが知られている。
そして、これに関するものとして、本出願人は先に特許文献1の発明、即ち、木材の厚み全体を圧縮して圧密化した表層材を所定の断面形状の溝状を形成した内層材に接着することによって、床、腰板、テーブル等の利用に供することのできる積層塑性加工木材について特許出願をした。また、本出願人は、従来から、含水率を調整しながらプレス盤等により木材の厚み全体を圧密化する技術を確立してきた(例えば、特許文献2参照)。
Conventionally, as wood species, for example, those with low density and insufficient hardness, such as cedar, it is known that hardness that can withstand practical use can be obtained by compressing and densifying. Yes.
As for this, the present applicant previously bonded the surface material obtained by compressing the entire thickness of the wood of the invention of Patent Document 1 to the inner layer material having a groove shape having a predetermined cross-sectional shape. Thus, a patent application was filed for laminated plastically processed wood that can be used for floors, waistboards, tables, and the like. In addition, the present applicant has conventionally established a technique for consolidating the entire thickness of wood with a press board or the like while adjusting the moisture content (see, for example, Patent Document 2).

特開平2007−301885号公報Japanese Patent Application Laid-Open No. 2007-301885 特開平2003−53705号公報Japanese Patent Laid-Open No. 2003-53705

ところが、これら厚み全体が圧密化された圧縮材において、同じ圧縮率で圧密化されていても一義的に所望の硬度となっているわけではなかった。即ち、同じように圧縮が加えられている場合であっても、物性が一定でなくて、製品間の品質にばらつきが生じてしまうこともある。
これは、木材には一般的に年輪線の間を構成している早材部と年輪線を構成している晩材部とが存在しているところ、早材部における細胞壁の厚さが薄いことや、早材部における(細胞内腔の)空隙率が大きいこと、また、製材された木材によって年輪(早材部と晩材部)の配列状態が異なることに起因して、圧縮変形が局部的に集中してしまい、厚み全体が均一に圧縮されていないことがあったためと思われる。
However, in the compressed material in which the entire thickness is consolidated, even if the compressed material is consolidated at the same compression rate, the desired hardness is not uniquely obtained. That is, even when compression is applied in the same manner, the physical properties are not constant, and the quality between products may vary.
This is because, in wood, there are generally an early wood part that constitutes between the annual ring lines and an late wood part that constitutes the annual ring line, and the cell wall thickness in the early wood part is thin. In addition, because of the large void ratio (in the cell lumen) in the early wood part and the arrangement state of the annual rings (early wood part and late wood part) differ depending on the lumber that is sawn, compression deformation It seems that it was concentrated locally and the whole thickness was not uniformly compressed.

殊に、複数に分割されたプレス盤等を用いて面接触による圧縮を行った場合、この局部的な圧縮変形が、荷重がかかりやすい内層部に発生することが多いためか、圧縮度を高めても所望の表面硬度が得られないことが多く、また、表層部において局部的な圧縮変形を発生させることが困難であることから、圧縮度合いに見合うだけの傷跡や窪みが付き難いという効果が得難かった。
更に、厚み全体が均一に圧縮されてないことによって製品内において周囲の環境条件の変化による寸法変化率にばらつきが生じるため、製品化後の周囲の環境条件の変化によって歪みが発生することがあった。
In particular, when compressing by surface contact using a press panel divided into a plurality of parts, this local compressive deformation often occurs in the inner layer where load is easily applied. However, the desired surface hardness is often not obtained, and since it is difficult to generate local compressive deformation in the surface layer portion, there is an effect that it is difficult to have scars and dents commensurate with the degree of compression. It was hard to get.
Furthermore, since the entire thickness is not uniformly compressed, the dimensional change rate due to changes in the surrounding environmental conditions varies within the product, so distortion may occur due to changes in the surrounding environmental conditions after commercialization. It was.

そこで、本発明は、かかる不具合を解決すべくなされたものであって、物性的に安定していて、製品間の品質にばらつきが少なく、また、製品化後の周囲環境条件の変化による歪みの発生がなく、更に、高い硬度を有し傷跡や窪みが付き難い塑性加工木材の製造方法の提供を課題とするものである。 Therefore, the present invention has been made to solve such problems, and is stable in physical properties, has little variation in quality between products, and is free from distortion due to changes in ambient environmental conditions after commercialization. It is an object of the present invention to provide a method for producing a plastically processed wood that does not generate, has a high hardness, and is unlikely to have scars or dents.

請求項1の塑性加工木材の製造方法は、木材の厚み方向に対して加えた加熱圧縮力によって、前記木材が加熱圧縮されて塑性加工され、前記加熱圧縮された後の前記塑性加工された前記木材を大気中で乾燥して含水率15%の時の気乾比重を0.85以上とし、かつ、前記塑性加工された後の前記木材の木口面の全ての年輪線と、前記塑性加工された木材の裏側板目面または樹心側柾目面の面とがなす鋭角側の交差角度が45度以下の範囲内としたものである。 The method for producing plastic-worked wood according to claim 1 is characterized in that the wood is heat-compressed and plastically processed by a heat-compressing force applied to the thickness direction of the wood, and the plastic-worked after the heat-compressed. When the wood is dried in the atmosphere, the air-drying specific gravity when the moisture content is 15% is 0.85 or more, and all the annual ring lines of the lumber surface of the wood after the plastic working and the plastic working The crossing angle on the acute angle formed by the back side plane of the wood or the surface of the wood side side plane is within a range of 45 degrees or less.

ところで、上記木材に対して加熱圧縮とは、木材の板目面または柾目面に対して加えた外力によって、木材の木口面に対する並行方向に加熱圧縮して、木口面の面積を小さくすることを意味し、上記板目面とは、木材の繊維方向(木目の長さ方向)と並行にあって年輪線の接線方向に切断された面のことであり、また、上記木口面とは、木材の繊維方向に対して交差する方向に切断された面、即ち、木材の繊維方向に対して垂直または斜めに切断された面のことである。なお、上記柾目面とは、木材の繊維方向と並行にあって年輪線の放射方向に切断された面のことであり、ここでは、柾目と板目の中間の追柾面をも柾目に含むものとする。   By the way, heat compression with respect to the above-mentioned wood is to reduce the area of the mouth end surface by heat-compressing in the direction parallel to the end face of the wood by an external force applied to the surface of the wood or the face of the wood. Meaning, the grain surface is a surface cut in the tangential direction of the annual ring line in parallel with the fiber direction of the wood (the length direction of the wood), and the mouth end surface is wood It is a surface cut in a direction intersecting with the fiber direction, that is, a surface cut perpendicularly or obliquely to the fiber direction of the wood. Note that the above-mentioned grid plane is a plane that is cut in the radial direction of the annual ring line in parallel with the fiber direction of the wood, and here, an additional surface between the grid and the plate is included in the grid. Shall be.

また、上記厚み全体が圧縮される塑性加工は、例えば、木材の含水率を厚み全体で略均一となるように設定し、複数に分割されたプレス盤等を用いて所定の条件で加熱圧縮することによって形成することができる。なお、このときの所定の条件となる温度、圧力、時間、圧縮スピード等については、樹種や含水率等をパラメータとして予め実験等によって決定される。
そして、上記木材の気乾比重が0.85以上とは、具体的には、黒檀と同等以上の硬度・耐摩耗性等の特性を持たせることができるものである。
The plastic working in which the entire thickness is compressed is, for example, set so that the moisture content of the wood is substantially uniform over the entire thickness, and is heated and compressed under a predetermined condition using a press panel or the like divided into a plurality of parts. Can be formed. Note that the temperature, pressure, time, compression speed, and the like, which are predetermined conditions at this time, are determined in advance through experiments or the like using tree species, moisture content, and the like as parameters.
And the air dry specific gravity of the above-mentioned wood is 0.85 or more, specifically, it can have characteristics such as hardness and wear resistance equivalent to or higher than ebony .

更に、上記塑性加工木材の木口面の全年輪線と前記木口面からみて樹心側の板目面または柾目面から2mm以下の範囲に前記樹心側の板目面または柾目面に沿って描いた仮想境界線とがなす鋭角側の交差角度が45度以下の範囲内とは、本発明者らが、板目材または柾目材からなる圧縮前の木材を圧縮していくと当該交差角度が次第に小さくなることに着目し、鋭意実験研究を重ねた結果、硬度や耐摩耗性等の特性値のばらつきが少なくなって物性的に安定し、また、製品化後の周囲の環境条件の変化による歪みの発生がなくなり、更に、硬度が顕著に高くなり傷跡や窪みが付き難くなるのは、加熱圧縮前における前記木材の木口面の全年輪線と前記木口面の樹心側の板目面または柾目面から2mm以下の範囲に前記樹心側の板目面または柾目面に沿って描いた仮想境界線とがなす鋭角側の交差角度が85度以下の範囲内にあるとき、特に、加熱圧縮後の塑性加工木材の年輪線と仮想境界線とがなす鋭角側の交差角度が45度以下の範囲内であることを見出し、この知見に基づいて設定されたものである。 Further, the all-annular ring line of the wood end surface of the plastic-processed wood and the end surface of the wood core side or the side surface of the wood surface in the range of 2 mm or less as seen from the front surface of the wood, along the wood surface or wood surface of the wood core side. The acute angle crossing angle formed by the drawn virtual boundary line is within the range of 45 degrees or less. When the present inventors compress the wood before compression made of plate material or grid material, the crossing angle As a result of repeated intensive experimental research focusing on the fact that the material becomes gradually smaller, the variation in the property values such as hardness and wear resistance is reduced and the physical properties are stabilized. The generation of distortion due to the loss, and the hardness becomes remarkably high and scars and dents are hardly formed. The grain face or ridge on the side of the tree in the range of 2 mm or less from the face or ridge face When the intersecting angle on the acute angle side formed by the virtual boundary line drawn along the plane is within the range of 85 degrees or less, especially on the acute angle side formed by the annual ring line and the virtual boundary line of the plastically processed wood after heat compression The crossing angle is found to be within a range of 45 degrees or less, and is set based on this finding.

加えて、上記木材の木口面の全年輪線と前記木口面からみた樹心側の板目面または柾目面から2mm以下の範囲に前記樹心側の板目面または柾目面に沿って描いた仮想境界線とがなす鋭角側の交差角度が85度、45度以下の範囲内とは、本発明者らが、鋭意実験研究を重ねた結果、年輪線の半径方向(放射方向)に製材され、圧縮前の状態で、通常、前記木材の木口面の全年輪線と前記木口面の樹心側の柾目面から2mm以下の範囲に前記樹心側の柾目面に沿って描いた仮想境界線とがなす鋭角側の交差角度が45度〜90度である圧縮前の柾目材において、加熱圧縮前の気乾比重の2倍以上になるよう加熱圧縮を行った場合、圧縮前の交差角度が45度〜85度のもので割れ(クラック)が生じにくくいが、圧縮前の交差角度が85度より大きいものでは年輪線の座屈変形が大きく、場合によっては、割れが生じて商品価値が失われることを見出し、この知見に基づいて設定されたものである。なお、圧縮前の交差角度が60度以下のものであれば殆ど割れ(クラック)が生じることがないためより好ましい。 In addition, it is drawn along the grain face or face plane on the tree center side within the range of 2 mm or less from the wood face side or face face of the tree center side as viewed from the tree ring surface and the tree face side of the wood face. In the range where the acute angle formed by the virtual boundary line is within the range of 85 degrees and 45 degrees or less, the present inventors have conducted extensive experimental research, and as a result, sawed in the radial direction (radial direction) of the annual ring line In an uncompressed state, the hypothesis is usually drawn along the side face of the timber side within a range of 2 mm or less from the all-annual ring line of the timber face of the timber and the side face of the timber side of the timber side. When the compression angle is 45 ° to 90 ° before compression and the compression angle is 45 ° to 90 ° before compression, when heating and compression is performed so that the air-drying specific gravity before heating compression is more than twice, the intersection before compression Although the angle is 45 to 85 degrees and cracks are not likely to occur, the crossing angle before compression is 85 degrees. Large ones in the large buckling of annual ring lines, in some cases, found that the commercial value is lost cracked, in which is set based on this finding. In addition, it is more preferable if the crossing angle before compression is 60 degrees or less because almost no cracks are generated.

一般的に、年輪の半径方向(放射方向)に製材されて市場に流通している柾目材は、圧縮前の状態で、前記木材の木口面の全年輪線と前記木口面の樹心側の柾目面から2mm以下の範囲に前記樹心側の柾目面に沿って描いた仮想境界線とがなす鋭角側の交差角度が全て45度〜90度であるから、圧縮後における木材の交差角度の最大値は、通常、15度〜45度となる。また、板目材からなる塑性加工木材の原材料となる加工前木材には前記木口面の樹心側の板目面から2mm以下の範囲に前記樹心側の板目面に沿って描いた仮想境界線と年輪線とがなす鋭角側の交差角度が全て0〜45度以下であるものを用いるのが好ましいことから、木材の板目材と柾目材とを特定しなければ、また、木材の加工前木材の仮想境界線と木口面の年輪線とがなす鋭角側の交差角度は全て85度以下であるものを用いるのが好ましい。より好ましくは60度以下のものである。また、その結果は、木口面の仮想境界線と年輪線とがなす鋭角側の交差角度は全て45度以下であるのが好ましい。   In general, the timber produced in the radial direction (radial direction) of the annual ring and distributed in the market is in the state before compression, the entire annual ring line of the lumber face of the wood and the core side of the lube face Since the crossing angles on the acute angle side formed by the virtual boundary line drawn along the crossing plane on the tree side within a range of 2 mm or less from the crossing plane of the wood are all 45 degrees to 90 degrees, the crossing angle of the wood after compression The maximum value is normally 15 to 45 degrees. In addition, the pre-processed wood that is the raw material of the plastically processed wood made of a grain material is a virtual drawn along the grain surface on the tree center side within a range of 2 mm or less from the grain surface on the tree core side of the mouthpiece surface. Since it is preferable to use those in which the crossing angles on the acute angle side formed by the boundary line and the annual ring line are all 0 to 45 degrees or less, unless the wood grain material and the wood grain material are specified, It is preferable to use those in which all of the acute angle crossing angles formed by the virtual boundary line of the unprocessed wood and the annual ring line of the end face are 85 degrees or less. More preferably, it is 60 degrees or less. Moreover, as a result, it is preferable that the intersection angles on the acute angle side formed by the virtual boundary line of the end of the tree and the annual ring line are all 45 degrees or less.

因みに、上記気乾比重とは、木材を大気中で乾燥した時の比重で、通常、含水率15%の時の比重で表すものであり、木材を乾燥させた時の重さと同じ体積の水の重さを比べた値である。数値が大きいほど重く、小さいほど軽いことを表す。例えば、自然物の黒檀は0.85〜1.04、紫檀は1.03程度で、国産或いは国内でよく使用される材木のスギは0.36、ヒノキは0.44、カラマツは0.50、ドドマツは0.44、 キリは0.25、クリは0.60、ブナは0.65、ナラは0.58、カバは0.60、イタジイは0.61、カリン0.61、アピトンは0.72、ファルカタは0.27、マラパパイヤは0.50、グメリナは0.45、ゴムは0.64、イエローポプラは0.45、イタリアポプラは0.35、ユーカリは0.75、カユプティは0.75、アカシアマンギウムは0.63程度である。 Incidentally, the above-mentioned air-dry specific gravity is the specific gravity when wood is dried in the air, and is usually expressed by the specific gravity when the moisture content is 15%, and water having the same volume as the weight when wood is dried. It is the value which compared the weight of. The larger the value, the heavier, the smaller the lighter. For example, natural ebony is about 0.85 to 1.04, shidan is about 1.03, Japanese cedar cedar that is often used domestically or domestically is 0.36, cypress is 0.44, larch is 0.50, Dodomatsu is 0.44, Kiri is 0.25, Chestnut is 0.60, Beech is 0.65, Oak is 0.58, Hippopotamus is 0.60, Itagii is 0.61, Karin is 0.61, Apiton is 0 .72, Falkata 0.27, Malapapaia 0.50, Gumelina 0.45, Rubber 0.64, Yellow Poplar 0.45, Italian Poplar 0.35, Eucalyptus 0.75, Cayuputi 0.75, Acacia mangium is about 0.63.

上記気乾比重は、最終的には、樹種や、コストや、必要とされる硬度・耐摩耗性等の特性を考慮して設定されるが、気乾比重を大きくするために圧縮率を余りに高くすると木材を構成する繊維が破壊されてクラックが生じ商品性が失われることになるから、高圧縮によりクラックが発生する直前に測定される気乾比重の値が最大値となる。因みに、本発明者らの実験研究によれば、スギ材を用いた場合には約1.2が上記気乾比重の上限であることが判明した。したがって、本発明における気乾比重の最大値は、樹種等によって決定される有限値である。そして、上記木材の気乾比重が0.85以上とは、黒檀と同等以上の硬度・耐摩耗性等の特性を持たせるものである。上記気乾比重が0.85とは、厳格に0.85であることを要求するものではなくて約0.85以上であればよく、当然、誤差を含む概略値であり、数割の誤差を否定するものではない。 The air-dry specific gravity is ultimately set in consideration of characteristics such as tree species, cost, and required hardness and wear resistance, but the compression ratio is too high to increase the air-dry specific gravity. If the height is increased, the fibers constituting the wood are broken and cracks are generated, resulting in loss of merchantability. Therefore, the value of the air-dry specific gravity measured immediately before the cracks are generated by high compression becomes the maximum value. Incidentally, according to an experimental study by the present inventors, it was found that about 1.2 is the upper limit of the air-dry specific gravity when using cedar wood. Therefore, the maximum value of the air-dry specific gravity in the present invention is a finite value determined by the tree species or the like. And, the air-drying specific gravity of the wood is 0.85 or more is to give characteristics such as hardness and abrasion resistance equal to or higher than that of ebony. The air-dry specific gravity of 0.85 is not strictly required to be 0.85 but may be about 0.85 or more, and is naturally an approximate value including an error, which is an error of several percent. Is not to deny.

請求項1にかかる塑性加工木材の製造方法は、木材に対して加えた加熱圧縮力によって、前記木材が加熱圧縮されて塑性加工され前記加熱圧縮された後の前記塑性加工した前記木材の気乾比重を0.85以上とし、かつ、前記塑性加工された木材の木口面の全ての年輪線と、前記塑性加工された木材の裏側板目面または樹心側柾目面の面とがなす鋭角側の交差角度が45度以下の範囲内になるように塑性加工したものである。 According to a first aspect of the present invention, there is provided a method for producing a plastically processed wood , wherein the wood is heated and compressed by a heat compression force applied to the wood and plastically processed, and the plastically processed wood after the heat compression is compressed. An acute angle having a dry specific gravity of 0.85 or more, and formed by all annual ring lines of the wood-finished surface of the plastic-processed wood and the surface of the back-side plate surface or the tree-centered side surface of the plastic-processed wood This is plastically processed so that the crossing angle on the side falls within a range of 45 degrees or less.

したがって、木材の厚み全体が圧縮されて塑性加工され、前記木材の木口面の全年輪線と前記木口面の樹心側の板目面または柾目面に沿って描いた仮想境界線となす鋭角側の交差角度が45度以下の範囲内であるから、早材部における殆どの細胞が圧縮変形され(細胞内腔の)空隙が極めて少なくなっていて、厚み全体が略均一に圧縮され、物理的性質が安定している。よって、製品間の品質にばらつきが少ない。また、このように厚み全体が略均一に圧縮されていて、製品内部において製品化後の周囲環境条件の変化による寸法変化率のばらつきも少なくなることから、製品化後の周囲環境条件の変化による歪みの発生がない。加えて、早材部における殆どの細胞が圧縮変形されて細胞壁が重なり合っているうえに、細胞内腔の空隙が極めて少なくなり、更に、それによって晩材部の占有率も高くなっていることから、高い硬度を有し、傷跡や窪みが付き難い。具体的には、上記木材の気乾比重が0.85以上とは、黒檀と同等以上の硬度・耐摩耗性等の特性を持たせることができる。
特に、圧縮されて塑性加工された木材の木口面の全年輪線と前記木口面の樹心側の板目面または柾目面に沿って描いた仮想境界線とがなす鋭角側の交差角度を、全て45度以下としたものであり、加熱圧縮による年輪線の座屈変形が防止されるものであるから、クラック等の割れが入らない。したがって、高い製品品質を確保することができる。
Therefore, the entire thickness of the wood is compressed and plastically processed, and an acute angle is formed between the all-annual ring line of the lumber face of the wood and the virtual boundary line drawn along the plank plane or the grid face on the tree center side of the lumber face. Since the crossing angle on the side is within the range of 45 degrees or less, most of the cells in the early wood part are compressed and deformed, and there are very few voids (in the cell lumen), and the entire thickness is compressed almost uniformly, The physical properties are stable. Therefore, there is little variation in the quality between products. In addition, since the entire thickness is compressed almost uniformly in this way, variation in the dimensional change rate due to changes in the ambient environment conditions after product production within the product is reduced, so that changes due to changes in ambient environment conditions after product manufacture. There is no distortion. In addition, most of the cells in the early wood part are compressed and deformed and the cell walls overlap, and the voids in the cell lumen are extremely small, which further increases the occupancy ratio of the late wood part. It has high hardness and scars and dents are difficult to be attached. Specifically, when the wood has an air-dry specific gravity of 0.85 or more, it can have characteristics such as hardness and wear resistance equivalent to or higher than those of ebony.
In particular, the intersection angle on the acute angle side formed by the all-annular ring line of the cuff surface of the compressed and plastic-processed wood and the virtual boundary line drawn along the platen side or the crest side of the tree side of the cuff surface is defined as All are 45 degrees or less, and buckling deformation of the annual ring line due to heat compression is prevented, so cracks such as cracks do not enter. Therefore, high product quality can be ensured.

図1は本発明の実施の形態に係る塑性加工木材を製造するための塑性加工木材製造装置の概略構成を示す断面図である。FIG. 1 is a cross-sectional view showing a schematic configuration of a plastic working wood manufacturing apparatus for manufacturing plastic working wood according to an embodiment of the present invention. 図2は本発明の実施の形態に係る塑性加工木材の製造工程を説明するための説明図で、(a)は原材料となる加工前木材の供給の説明図、(b)は加熱圧縮開始状態による説明図、(c)は密閉加熱圧縮開始状態による説明図、(d)は密閉加熱圧縮状態による蒸気圧制御処理の説明図、(e)は密閉冷却状態による説明図、(f)は塑性加工木材の取り出しの説明図である。FIG. 2 is an explanatory diagram for explaining a manufacturing process of plastically processed wood according to an embodiment of the present invention, in which (a) is an explanatory diagram of supply of unprocessed wood as a raw material, and (b) is a heat compression start state. (C) is an explanatory diagram according to the hermetic heating compression start state, (d) is an explanatory diagram of a vapor pressure control process according to the hermetic heating compression state, (e) is an explanatory diagram according to the hermetic cooling state, and (f) is plastic. It is explanatory drawing of taking-out of processed wood. 図3は本発明の実施の形態に係る塑性加工木材が板目材の場合における木材の木口面、板目面、柾目面を説明するための説明図であり、(a)は本発明の実施の形態に係る塑性加工木材を形成するための原材料となる加工前木材の斜視図、(b)はその木口面を示す正面図、(c)は本発明の実施の形態に係る塑性加工木材の斜視図、(d)はその木口面を示す正面図である。FIG. 3 is an explanatory diagram for explaining a wood mouth surface, a plate surface, and a grid surface when the plastically processed wood according to the embodiment of the present invention is a plate material, and (a) is an embodiment of the present invention. The perspective view of the wood before a process used as the raw material for forming the plastic processing wood which concerns on the form of (2), (b) is a front view which shows the front end, (c) is the plastic processing wood of embodiment of this invention A perspective view and (d) are the front views which show the end face. 図4は本発明の実施の形態に係る塑性加工木材が板目材の場合における本発明の実施の形態に係る塑性加工木材の実施例を示す説明図で、(a)は事例1の圧縮前後の説明図、(b)は事例2の圧縮前後の説明図である。FIG. 4 is an explanatory view showing an example of the plastic processed wood according to the embodiment of the present invention when the plastic processed wood according to the embodiment of the present invention is a plate material, and (a) is before and after the compression of the case 1 (B) is explanatory drawing before and behind the compression of case 2. FIG. 図5は本発明の実施の形態に係る塑性加工木材が板目材の場合における本発明の実施の形態に係る塑性加工木材の実施例を示す説明図で、(c)は事例3の圧縮前後の説明図、(d)は事例4の圧縮前後の説明図である。FIG. 5 is an explanatory view showing an example of the plastic processed wood according to the embodiment of the present invention when the plastic processed wood according to the embodiment of the present invention is a sheet material. (D) is explanatory drawing before and after the compression of the case 4. FIG. 図6は本発明の実施の形態に係る塑性加工木材が板目材または柾目材の場合における本発明の実施の形態に係る塑性加工木材の実施例を示す説明図で、(e)は塑性加工木材が板目材である事例5の圧縮前後の説明図、(f)は塑性加工木材が柾目材である事例6の圧縮前後の説明図である。FIG. 6 is an explanatory view showing an example of the plastic working wood according to the embodiment of the present invention in the case where the plastic working wood according to the embodiment of the present invention is a plate material or a grid material, and (e) is a plastic working wood. Explanatory drawing before and after compression of case 5 in which wood is a plate material, (f) is an explanatory view before and after compression of case 6 in which plastic-worked wood is a mesh material. 図7は本発明の実施の形態に係る塑性加工木材が柾目材の場合における本発明の実施の形態に係る塑性加工木材の実施例を示す説明図で、(g)は事例7の圧縮前後の説明図である。FIG. 7 is an explanatory view showing an example of the plastically processed wood according to the embodiment of the present invention when the plastically processed wood according to the embodiment of the present invention is a checkered material. It is explanatory drawing. 図8は図4の実施の形態の事例1乃至図6の実施の形態の事例5に対応する鋭角側の交差角度を示す表図である。FIG. 8 is a table showing the intersection angle on the acute angle side corresponding to case 1 of the embodiment of FIG. 4 to case 5 of the embodiment of FIG. 図9は図6の実施の形態の事例6及び図7の実施の形態の事例7に対応する鋭角側の交差角度を示す表図である。FIG. 9 is a table showing the intersection angle on the acute angle side corresponding to case 6 of the embodiment of FIG. 6 and case 7 of the embodiment of FIG. 図10は本発明の実施の形態に係る塑性加工木材が柾目材の場合における木材の木口面、板目面、柾目面を説明するための説明図であり、(a)は本発明の実施の形態に係る塑性加工木材を形成するための原材料となる加工前木材の斜視図、(b)はその木口面を示す正面図、(c)は本発明の実施の形態に係る塑性加工木材の斜視図、(d)はその木口面を示す正面図である。FIG. 10 is an explanatory diagram for explaining a wood mouth surface, a plate surface, and a cell surface when the plastically processed wood according to the embodiment of the present invention is a mesh material, and (a) is an embodiment of the present invention. The perspective view of the wood before a process used as the raw material for forming the plastic working wood which concerns on a form, (b) is a front view which shows the mouth end surface, (c) is the perspective of the plastic working wood which concerns on embodiment of this invention FIG. 4D is a front view showing the mouth end surface. 図11は本発明の実施の形態に係る塑性加工木材の特性を比較例と比較して示す硬度の特性図である。FIG. 11 is a characteristic diagram of hardness showing the characteristics of the plastic working wood according to the embodiment of the present invention in comparison with the comparative example. 図12は本発明の実施の形態に係る塑性加工木材の特性を比較例と比較して示す耐摩耗性の指標となる摩耗深さの特性図である。FIG. 12 is a characteristic diagram of wear depth, which is an index of wear resistance, showing the characteristics of plastic-worked wood according to the embodiment of the present invention in comparison with a comparative example. 図13は本発明の実施の形態に係る塑性加工木材の特性を比較例と比較して示す気乾比重、硬度、摩耗深さ及び曲げヤング係数の表図である。FIG. 13 is a table of air-dry specific gravity, hardness, wear depth, and bending Young's modulus showing the characteristics of plastic-worked wood according to an embodiment of the present invention in comparison with a comparative example. 図14(a)は本発明の実施の形態の塑性加工木材を形成するための原材料となる加工前木材を一部拡大して示す電子顕微鏡写真(500倍)の図、図14(b)は本発明の実施の形態に係る塑性加工木材の一部を拡大して示す電子顕微鏡写真(500倍)の図である。FIG. 14A is an electron micrograph (500 times) showing a partially enlarged pre-processed wood that is a raw material for forming the plastically processed wood according to the embodiment of the present invention, and FIG. It is a figure of the electron micrograph (500 times) which expands and shows a part of plastic processing wood which concerns on embodiment of this invention. 図15は加熱圧縮前の気乾比重に対して1.3倍に圧縮した塑性加工木材の一部を拡大して示す電子顕微鏡写真(50倍)の図である。FIG. 15 is an electron micrograph (50 times) showing an enlarged view of a part of plastic-worked wood that has been compressed 1.3 times the air-drying specific gravity before heat compression.

以下、本発明の実施の形態について、図面を参照しながら説明する。
なお、本実施の形態において、同一の記号及び同一の符号は、同一または相当する部分及び機能を意味するものであるから、ここでは重複する説明を省略する。
まず、本発明の実施の形態の塑性加工木材PW1,PW2を製造する手順について、主に、図1及び図2を参照して説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
In the present embodiment, the same symbols and the same reference numerals mean the same or corresponding parts and functions, and therefore redundant description is omitted here.
First, a procedure for manufacturing the plastically processed wood PW1, PW2 according to the embodiment of the present invention will be described mainly with reference to FIGS.

図1において、本実施の形態の塑性加工木材PW1,PW2を製造する塑性加工木材製造装置1は、主として、上プレス盤10Aと下プレス盤10Bとの2分割された構造体によって内部空間ISを形成するプレス盤10と、上プレス盤10Aの所定の上下動の範囲で内部空間ISを密閉状態とする下プレス盤10Bの周縁部10bに対向して上プレス盤10Aの周縁部10aに配設されるシール部材11と、下プレス盤10Bの側面側から内部空間IS内に連通され、内部空間IS内から水蒸気を排出するための配管口12aを有する配管12、配管12内の蒸気圧を検出する圧力計P2、その下流側のバルブV5、バルブV5に接続されたドレン配管13、内部空間IS内にバルブV6に接続された配管14を介して蒸気を供給する上プレス盤10Aの配管口14a等から構成されている。   In FIG. 1, a plastically processed wood manufacturing apparatus 1 for manufacturing plastically processed woods PW1 and PW2 according to the present embodiment has an internal space IS mainly formed by a two-part structure of an upper press panel 10A and a lower press panel 10B. The press plate 10 to be formed and the peripheral portion 10a of the upper press plate 10A are arranged opposite to the peripheral portion 10b of the lower press plate 10B that seals the internal space IS within a predetermined vertical movement range of the upper press plate 10A. A seal member 11 that is connected to the inner space IS from the side surface of the lower press panel 10B, a pipe 12 having a pipe port 12a for discharging water vapor from the inner space IS, and the vapor pressure in the pipe 12 is detected. The upper pressure supplying steam through the pressure gauge P2, the downstream valve V5, the drain pipe 13 connected to the valve V5, and the pipe 14 connected to the valve V6 in the internal space IS. And a piping port 14a or the like of the scan board 10A.

また、プレス盤10の上プレス盤10A及び下プレス盤10B内には、それらを高温の水蒸気を通すことによって所望の温度に昇温するための配管路14b,14cが形成されており、これら配管路14b,14cには蒸気供給側の配管ST1から分岐された配管ST2,ST3、蒸気排出側の配管ET1,ET2がそれぞれ接続されている。そして、蒸気供給側の配管ST1,ST2,ST3の途中にはバルブV1,V2,V3、配管ST1内の蒸気圧を検出する圧力計P1が配設されており、蒸気排出側の配管ET1,ET2は、バルブV4を介してドレン配管13に接続されている。なお、配管ST1に水蒸気を供給するボイラ装置、また、プレス盤10の固定側の下プレス盤10Bに対して上プレス盤10Aを上昇/下降させ加圧するための油圧機構を含むプレス昇降装置は省略されている。また、本実施の形態では、プレス盤10の上プレス盤10A及び下プレス盤10Bで形成される内部空間IS内を加熱するためにバルブV6に接続された配管14を用いて高温の水蒸気を導入しているが、この他、高周波加熱、マイクロ波加熱等を用いることもできる。特に、木材に対する高周波加熱は、マイクロ波による誘電過熱よりも、マイクロ波よりも若干周波数の低い高周波で、木材の中心から加熱する方法が好適である。   Further, in the upper press board 10A and the lower press board 10B of the press board 10, piping paths 14b and 14c are formed for raising the temperature to a desired temperature by passing high-temperature steam. Pipes ST2 and ST3 branched from the steam supply side pipe ST1 and steam discharge side pipes ET1 and ET2 are connected to the paths 14b and 14c, respectively. Further, in the middle of the steam supply side pipes ST1, ST2, ST3, valves V1, V2, V3 and a pressure gauge P1 for detecting the steam pressure in the pipe ST1 are arranged, and the steam discharge side pipes ET1, ET2 Is connected to the drain pipe 13 via a valve V4. In addition, the boiler apparatus which supplies water vapor | steam to piping ST1, and the press raising / lowering apparatus containing the hydraulic mechanism for raising / lowering and pressurizing the upper press board 10A with respect to the lower press board 10B of the fixed side of the press board 10 are abbreviate | omitted. Has been. Further, in the present embodiment, high-temperature water vapor is introduced using the pipe 14 connected to the valve V6 in order to heat the interior space IS formed by the upper press board 10A and the lower press board 10B of the press board 10. However, other than this, high-frequency heating, microwave heating, or the like can also be used. In particular, for the high-frequency heating of wood, a method of heating from the center of wood at a high frequency slightly lower than that of microwave is preferable to dielectric overheating by microwave.

更に、プレス盤10には、上プレス盤10A及び下プレス盤10B内に形成された配管路14b,14cに水蒸気に換えて低温の冷却水を通すことによって所望の温度に冷却する冷却水供給側の配管ST11から分岐された配管ST12,ST13が、上記配管ST2,ST3にそれぞれ接続されている。また、冷却水供給側の配管ST11,ST12,ST13の途中にはバルブV11,V12,V13が配設されている。なお、図1及び図2において、配管ST11に冷却水を供給する冷却水供給装置は省略されている。   Further, on the press board 10, a cooling water supply side that cools to a desired temperature by passing low-temperature cooling water in place of water vapor through the piping paths 14b and 14c formed in the upper press board 10A and the lower press board 10B. Pipes ST12 and ST13 branched from the pipe ST11 are connected to the pipes ST2 and ST3, respectively. Further, valves V11, V12, V13 are arranged in the middle of the pipes ST11, ST12, ST13 on the cooling water supply side. 1 and 2, the cooling water supply device that supplies the cooling water to the pipe ST11 is omitted.

ここで、本実施の形態の塑性加工木材PW1,PW2の原材料となる加工前木材NW1,NW2は、図3(a)及び図3(b)、図10(a)及び図10(b)に示すように、前以って所定の寸法(厚み・幅・長さ)に製材されたもので、木口面(2面)、板目面(木表及び木裏の2面)、柾目面(2面)を有するものである。   Here, the unprocessed woods NW1 and NW2 that are the raw materials of the plastically processed woods PW1 and PW2 of the present embodiment are shown in FIGS. 3 (a), 3 (b), 10 (a), and 10 (b). As shown, the lumber has been pre-sawed to predetermined dimensions (thickness / width / length), and the end face (two faces), the grain face (two faces of the wood front and back), the mesh face ( 2 sides).

具体的には、加工前木材NW1は、図3(a)及び図3(b)に示すように、木材の木口面A及び木裏側板目面B1の境界線BL1と木口面Aの年輪線RLとがなす鋭角側の交差角度θが全て、通常、0度〜45度の範囲内となる板目材を製材後、選択抽出したものであり、本実施の形態の塑性加工木材PW1は、この板目材である加工前木材NW1を塑性加工したものである。
また、加工前木材NW2は、図10(a)及び図10(b)に示すように、木材の木口面A及び樹心側柾目面C1の境界線BL2と木口面Aの年輪線RLとがなす鋭角側の交差角度θが全て、通常、45度〜90度の範囲内となる柾目材を製材後、選択抽出したものであり、本実施の形態の塑性加工木材PW2は、この柾目材である加工前木材NW2を塑性加工したものである。
Specifically, as shown in FIG. 3A and FIG. 3B, the unprocessed wood NW1 includes the boundary line BL1 of the wood mouth surface A and the wood back side surface B1, and the annual ring line of the mouth surface A, as shown in FIGS. All the crossing angles θ on the acute angle side formed by RL are usually selected and extracted after sawing the grain material in the range of 0 to 45 degrees, and the plastically processed wood PW1 of the present embodiment is This pre-processed wood NW1 that is this plate material is plastically processed.
Further, as shown in FIGS. 10 (a) and 10 (b), the unprocessed wood NW2 has a boundary line BL2 between the wood mouth surface A and the wood core side face C1 and an annual ring line RL of the wood face A as shown in FIGS. All the crossing angles θ on the acute angle side which are made are usually selected and extracted after sawing the mesh material in the range of 45 degrees to 90 degrees, and the plastically processed wood PW2 of the present embodiment A certain pre-processed wood NW2 is plastically processed.

なお、後述するように、加熱圧縮による割れを防止するためには、加工前木材NW2に、木口面A及び樹心側柾目面C1の境界線BL2と木口面Aの年輪線RLとがなす鋭角側の交差角度θが全て45度〜85度の範囲内である柾目材を用いている。
ここで、加工前木材NW1,NW2の木裏側板目面B1または樹心側柾目面C1の境界線BL1,BL2と年輪線RLとがなす鋭角側の交差角度θ,δは、木口面Aの全ての年輪線RLと樹心側の木裏側板目面B1または樹心側柾目面C1の面から2mm以下の範囲に樹心側の板目面B1または柾目面C1に沿って描いた仮想境界線とがなす鋭角側の交差角度θ,δとして検出するものであるが、説明を簡単化するために、木裏側板目面B1または樹心側柾目面C1の面との角度として扱う。この様に扱っても、木裏側板目面B1または樹心側柾目面C1の面との交差角度θ,δを、木裏側板目面B1または樹心側柾目面C1の年輪線RLと木裏側板目面B1または樹心側柾目面C1の面から2mm以下の範囲に樹心側の板目面B1または柾目面C1に沿って描いた仮想境界線とがなす鋭角側の交差角度θ,δとしても、誤差は僅かである。
As will be described later, in order to prevent cracking due to heat compression, an acute angle formed between the boundary line BL2 of the end face A and the tree side side face C1 and the annual ring line RL of the end face A is formed on the unprocessed wood NW2. The side crossing angle θ is all in the range of 45 to 85 degrees.
Here, the crossing angles θ and δ on the acute angle formed by the boundary lines BL1 and BL2 of the wood back side plate face B1 or the tree center side face C1 of the unprocessed wood NW1 and NW2 and the annual ring line RL are the values of the cut end A A virtual boundary drawn along the wood face side B1 or the wood face C1 within a range of 2 mm or less from all the annual ring lines RL and the wood face side wood face B1 or the wood face side face C1. Although detected as the acute angle crossing angles θ and δ formed by the line, in order to simplify the explanation, the angle is treated as an angle with the surface of the wood back side plane B1 or the tree side side plane C1. Even if handled in this way, the crossing angles θ and δ with the surface of the wood back side wood plane B1 or the tree side side wood surface C1 can be determined by using the annual ring line RL of the wood back side wood surface B1 or the wood core side wood surface C1 and The acute angle crossing angle θ formed by the virtual boundary line drawn along the tree face side B1 or the face plane C1 within a range of 2 mm or less from the back side face face B1 or the tree face side face C1. Even for δ, the error is slight.

そして、このように構成される塑性加工木材製造装置1によって図3に示す加工前木材NW1から塑性加工木材PW1を、また、図10に示す加工前木材NW2から塑性加工木材PW2を製造するにあたり、まず、図2(a)に示すように、塑性加工木材製造装置1におけるプレス盤10の固定側の下プレス盤10Bに対して上プレス盤10Aが上昇され、予め所定の条件に乾燥させた加工前木材NW1,NW2が、上プレス盤10A及び下プレス盤10Bで形成される内部空間IS内に載置される。
なお、本実施の形態においては、図3(a)及び図3(b)に示す木裏側板目面B1側がプレス盤10の下プレス盤10Bに載置される。勿論、本発明を実施する場合には、木表側板目面B2側を下プレス盤10Bに載置することも可能である。
When the plastically processed wood manufacturing apparatus 1 configured as described above is used to manufacture the plastically processed wood PW1 from the unprocessed wood NW1 shown in FIG. 3 and the plastically processed wood PW2 from the unprocessed wood NW2 shown in FIG. First, as shown to Fig.2 (a), the upper press board 10A is raised with respect to the lower press board 10B of the fixed side of the press board 10 in the plastic working wood manufacturing apparatus 1, and it was made to dry beforehand on the predetermined conditions. The front woods NW1 and NW2 are placed in an internal space IS formed by the upper press board 10A and the lower press board 10B.
In the present embodiment, the wood back side plate face B1 side shown in FIGS. 3A and 3B is placed on the lower press board 10B of the press board 10. FIG. Of course, when practicing the present invention, it is also possible to place the wood surface side grain face B2 side on the lower press panel 10B.

一方、柾目材からなる加工前木材NW2の場合には、本実施の形態においては、図10(a)及び図10(b)に示す樹心側柾目面C1側がプレス盤10の下プレス盤10Bに載置される。勿論、本発明を実施する場合には、柾目面C2側を下プレス盤10Bに載置することも可能である。
続いて、図2(b)に示すように、固定側の下プレス盤10B上に載置された加工前木材NW1,NW2に対して上プレス盤10Aを所定圧力にて下降させて加工前木材NW1,NW2の上面、即ち、本実施の形態においては、加工前木材NW1の場合には木表側板目面B2、加工前木材NW2の場合には樹心側柾目面C1とは反対側の柾目面C2に当接させる(図3(a)及び図3(b)、図10(a)及び図10(b)参照)。そして、上プレス盤10Aの配管路14b及び下プレス盤10Bの配管路14cに所定温度(例えば、110〜160〔℃〕)の水蒸気が通され、内部空間IS内が所定温度(例えば、110〜180〔℃〕)に保持される。
On the other hand, in the case of the unprocessed wood NW2 made of a mesh material, in the present embodiment, the tree-centered mesh surface C1 side shown in FIGS. 10 (a) and 10 (b) is the lower press panel 10B of the press panel 10. Placed on. Of course, when carrying out the present invention, it is also possible to place the grid surface C2 side on the lower press panel 10B.
Subsequently, as shown in FIG. 2 (b), the upper press board 10A is lowered at a predetermined pressure with respect to the unprocessed wood NW1 and NW2 placed on the fixed lower press board 10B, and the unprocessed wood The upper surfaces of NW1 and NW2, that is, in the present embodiment, in the case of the unprocessed wood NW1, the wood surface side grain surface B2 and in the case of the unprocessed wood NW2, the meshes on the side opposite to the tree side side face C1 It is made to contact | abut to the surface C2 (refer Fig.3 (a) and FIG.3 (b), Fig.10 (a) and FIG.10 (b)). Then, steam at a predetermined temperature (for example, 110 to 160 [° C.]) is passed through the piping path 14b of the upper press panel 10A and the piping path 14c of the lower press panel 10B, and the interior space IS has a predetermined temperature (for example, 110-110). 180 [° C.]).

次に、図2(c)に示すように、固定側の下プレス盤10Bに対して上プレス盤10Aの圧縮圧力が所定圧力(例えば、2〜5〔MPa〕)に設定され、加工前木材NW1,NW2が上プレス盤10A及び下プレス盤10Bにて所定時間(例えば、5〜40〔min:分〕)加熱圧縮される。なお、このときの圧縮圧力は、割れを防止するために、加工前木材NW1,NW2の温度上昇、即ち、加工前木材NW1,NW2の内部の温度の伝達状態に応じて徐々に大きくするのが望ましく、加熱圧縮の時間も伝達時間を考慮して設定するのが好ましい。
更に、上プレス盤10Aの周縁部10aが下プレス盤10Bの周縁部10bに当接すると上プレス盤10Aの周縁部10aに配設されたシール部材11によって、上プレス盤10A及び下プレス盤10Bにて形成される内部空間ISが密閉状態となる。そして、内部空間ISの密閉状態で上プレス盤10A及び下プレス盤10Bによる圧縮圧力が保持されたまま、所定温度(例えば、150〜210〔℃〕)まで上昇される。
Next, as shown in FIG. 2 (c), the compression pressure of the upper press board 10A is set to a predetermined pressure (for example, 2 to 5 [MPa]) with respect to the lower press board 10B on the fixed side, and the wood before processing NW1 and NW2 are heated and compressed by the upper press board 10A and the lower press board 10B for a predetermined time (for example, 5 to 40 [min: min]). In order to prevent cracking, the compression pressure at this time should be gradually increased in accordance with the temperature rise of the unprocessed wood NW1, NW2, that is, the temperature transmission state inside the unprocessed wood NW1, NW2. Desirably, the heat compression time is also preferably set in consideration of the transmission time.
Further, when the peripheral edge portion 10a of the upper press board 10A comes into contact with the peripheral edge part 10b of the lower press board 10B, the upper press board 10A and the lower press board 10B are provided by the seal member 11 disposed on the peripheral edge part 10a of the upper press board 10A. The internal space IS formed in is sealed. And it is raised to predetermined temperature (for example, 150-210 [degreeC]), with the compression pressure by the upper press board 10A and the lower press board 10B being hold | maintained in the sealing state of internal space IS.

なお、本実施の形態において、プレス盤10の上プレス盤10A及び下プレス盤10Bによって形成される内部空間ISがシール部材11を介して密閉状態となったときにおける内部空間ISの上下方向の寸法間隔は、加工前木材NW1を塑性加工する場合には、加工前木材NW1が、プレス盤10によって、木口面A及び木裏側板目面B1の境界線を樹心側の境界線BL1側としたとき、年輪線RLとがなす鋭角側の交差角度δが全て25度以下の範囲内である塑性加工木材PW1となるときの厚み方向の仕上がり寸法に設定される。   In this embodiment, the vertical dimension of the internal space IS when the internal space IS formed by the upper press disk 10A and the lower press disk 10B of the press disk 10 is in a sealed state via the seal member 11. When the pre-processed wood NW1 is plastically processed, the pre-processed wood NW1 uses the press board 10 to set the boundary line between the front end surface A and the back side plane grain surface B1 to the side of the boundary line BL1 on the tree side. At this time, the sharp dimension crossing angle δ formed by the annual ring line RL is set to the finished dimension in the thickness direction when the plastic processed wood PW1 is in the range of 25 degrees or less.

また、加工前木材NW2を塑性加工する場合には、加工前木材NW2が、プレス盤10によって、木口面A及び樹心側柾目面C1の境界線を樹心側の境界線BL2側としたとき年輪線RLとがなす鋭角側の交差角度δが全て45度以下の範囲内である塑性加工木材PW2となるときの厚み方向の仕上がり寸法に予め設定されている。
このため、加工前木材NW1が圧縮されることによる木口面A及び木裏側板目面B1の樹心側境界線BL1と木口面Aの年輪線RLとがなす鋭角側の交差角度θの変化は、上プレス盤10Aの周縁部10aが下プレス盤10Bの周縁部10bに当接することで決まることとなる。また、加工前木材NW2が圧縮されることによる木口面A及び樹心側柾目面C1の樹心側境界線BL2と木口面Aの年輪線RLとがなす鋭角側の交差角度θの変化は、上プレス盤10Aの周縁部10aが下プレス盤10Bの周縁部10bに当接することで決まることとなる。
Further, when the pre-processed wood NW2 is plastically processed, the pre-processed wood NW2 uses the press board 10 to set the boundary line between the butt face A and the tree side side face C1 to the tree side boundary line BL2 side. The finished dimension in the thickness direction is set in advance when the plastically processed wood PW2 in which the acute angle crossing angles δ formed by the annual ring line RL are all in the range of 45 degrees or less.
For this reason, the change in the acute angle crossing angle θ between the tree-center side boundary line BL1 of the front end surface A1 and the rear side face plane B1 and the annual ring line RL of the front end surface A due to the compression of the unprocessed wood NW1 is The peripheral edge portion 10a of the upper press board 10A is determined by contacting the peripheral edge part 10b of the lower press board 10B. Further, the change in the crossing angle θ on the acute angle side formed by the tree-center side boundary line BL2 of the end face A and the end face side face C1 and the annual ring line RL of the end face A due to the compression of the unprocessed wood NW2 is as follows: The peripheral edge portion 10a of the upper press board 10A is determined by contacting the peripheral edge part 10b of the lower press board 10B.

更に、図2(c)に示す内部空間ISの密閉状態で、上プレス盤10A及び下プレス盤10Bの圧縮圧力が維持され、かつ、内部空間ISが所定温度(例えば、150〜210〔℃〕)のまま、所定時間(例えば、30〜120〔min〕)保持され、この後の冷却圧縮を解除したときに、戻りのない塑性加工木材PW1,PW2を形成するための加熱処理が行われる。このとき、上プレス盤10A及び下プレス盤10Bで密閉状態とされている内部空間ISを介して、加工前木材NW1,NW2の周囲面とその内部とでは高温高圧の蒸気圧が出入り自在となっている。
そして、このように、本実施の形態においては、加工前木材NW1,NW2の表裏面に上プレス盤10A及び下プレス盤10Bが面接触し、密閉状態の内部空間ISに保持されるため、加工前木材NW1,NW2は、厚み全体が十分に加熱され、効率よく圧縮変形されることになる。
Further, in the sealed state of the internal space IS shown in FIG. 2C, the compression pressure of the upper press panel 10A and the lower press panel 10B is maintained, and the internal space IS has a predetermined temperature (for example, 150 to 210 [° C.]). ) Is maintained for a predetermined time (for example, 30 to 120 [min]), and when the subsequent cooling and compression is released, heat treatment is performed to form plastically processed wood PW1 and PW2 that do not return. At this time, high-temperature and high-pressure steam pressure can freely enter and leave the surrounding surfaces of the unprocessed woods NW1 and NW2 and the interior thereof through the internal space IS that is sealed by the upper press board 10A and the lower press board 10B. ing.
In this way, in this embodiment, the upper press panel 10A and the lower press panel 10B are in surface contact with the front and back surfaces of the unprocessed wood NW1, NW2, and are held in the sealed internal space IS. The front woods NW1 and NW2 are sufficiently heated in their entire thickness, and are efficiently compressed and deformed.

次に、図2(d)に示すように、内部空間ISの密閉状態で加熱圧縮処理が行われているときに、蒸気圧制御処理として圧力計P2で内部空間ISの蒸気圧が検出され、バルブV5が適宜、開閉される。これにより、配管口12a、配管12を通って内部空間ISからドレン配管13側に高温高圧の水蒸気が排出されることで、特に、加工前木材NW1,NW2の外層部分の含水率に基づく余分な内部空間IS内の水分が除去され、内部空間IS内が所定の蒸気圧となるように調節される。また、必要に応じて、バルブV6に接続された配管14、配管口14a(図1)を介して内部空間ISに所定の蒸気圧を供給することができる。
更に、上プレス盤10A及び下プレス盤10Bによる加熱圧縮から冷却圧縮へと移行する直前に、蒸気圧制御処理としてバルブV5が開状態とされることで配管口12a、配管12を通って内部空間ISからドレン配管13側に高温高圧の水蒸気が排出される。これにより、木材の加熱圧縮処理の定着、所謂、木材の固定化がより促進されることとなる。
Next, as shown in FIG. 2D, when the heat compression process is performed in a sealed state of the internal space IS, the vapor pressure of the internal space IS is detected by the pressure gauge P2 as a vapor pressure control process. The valve V5 is appropriately opened and closed. As a result, high-temperature and high-pressure steam is discharged from the internal space IS to the drain pipe 13 through the pipe port 12a and the pipe 12, and in particular, an extra amount based on the moisture content of the outer layer portions of the wood NW1 and NW2 before processing. The moisture in the internal space IS is removed, and the internal space IS is adjusted to have a predetermined vapor pressure. Further, if necessary, a predetermined vapor pressure can be supplied to the internal space IS through the pipe 14 and the pipe port 14a (FIG. 1) connected to the valve V6.
Furthermore, the valve V5 is opened as a vapor pressure control process immediately before shifting from heating compression to cooling compression by the upper press board 10A and the lower press board 10B, so that the internal space passes through the pipe port 12a and the pipe 12. High temperature and high pressure steam is discharged from the IS to the drain pipe 13 side. Thereby, fixing of the heat compression treatment of wood, that is, so-called immobilization of wood is further promoted.

続いて、図2(e)に示すように、上プレス盤10Aの配管路14b及び下プレス盤10Bの配管路14cに常温の冷却水が通されることによって、上プレス盤10A及び下プレス盤10Bが常温前後まで冷却され、材料によって異なる所定時間(例えば、10〜120〔min〕)保持される。なお、このときの固定側の下プレス盤10Bに対する上プレス盤10Aの圧縮圧力は、加熱圧縮の際の圧力と同じ所定圧力(例えば、2〜5〔MPa〕)に保持されたまま、上プレス盤10A及び下プレス盤10Bが冷却される。
そして、最後に、図2(f)に示すように、固定側の下プレス盤10Bに対して上プレス盤10Aを上昇させ、内部空間ISから仕上がり品である塑性加工木材PW1,PW2が取出されることで一連の処理工程が終了する。
なお、このように、本実施の形態においては、蒸気圧を制御し、徐々に解圧して内部蒸気圧を開放し、また、冷却によって木材内の水蒸気圧を下げ定着されるので、冷却圧縮を解除したときの膨らみ変形やパンクと呼ばれる表面割れのない塑性加工木材PW1,PW2を形成できる。即ち、本実施の形態の塑性加工木材PW1,PW2は、圧縮解除後に膨らみ変形や表面割れを生じることがなくて安定した品質が確保されている。
Subsequently, as shown in FIG. 2 (e), normal temperature cooling water is passed through the piping path 14b of the upper press panel 10A and the piping path 14c of the lower press panel 10B, so that the upper press panel 10A and the lower press panel 10B is cooled to around normal temperature and held for a predetermined time (for example, 10 to 120 [min]) depending on the material. At this time, the compression pressure of the upper press panel 10A with respect to the lower press panel 10B on the fixed side is maintained at the same predetermined pressure (for example, 2 to 5 [MPa]) as the pressure at the time of heat compression. The board 10A and the lower press board 10B are cooled.
Finally, as shown in FIG. 2 (f), the upper press platen 10A is raised with respect to the fixed-side lower press platen 10B, and the finished plastic processed woods PW1, PW2 are taken out from the internal space IS. This completes a series of processing steps.
In this way, in this embodiment, the vapor pressure is controlled and gradually released to release the internal vapor pressure, and the water vapor pressure in the wood is lowered and fixed by cooling. It is possible to form plastically processed woods PW1 and PW2 having no surface deformation called bulge deformation or puncture when released. That is, the plastic-processed wood PW1 and PW2 of the present embodiment has a stable quality without causing bulging deformation or surface cracking after being released from compression.

本実施の形態では、上プレス盤10A及び下プレス盤10Bを用いて圧縮し、定着して塑性加工木材PW1,PW2を得ているが、本発明を実施する場合には、通常の電子レンジが使用するマイクロ波の周波数帯域よりも若干周波数の低い高周波で誘電加熱し、加工前木材NW1,NW2を加熱し、圧縮し、定着しても、塑性加工木材PW1,PW2を得ることができる。   In the present embodiment, the upper press board 10A and the lower press board 10B are compressed and fixed to obtain the plastic processed woods PW1 and PW2. However, when the present invention is carried out, a normal microwave oven is used. Even if dielectric heating is performed at a high frequency slightly lower than the frequency band of the microwave to be used, and the unprocessed woods NW1 and NW2 are heated, compressed, and fixed, the plastically processed woods PW1 and PW2 can be obtained.

次に、上述のようにして形成された本実施の形態の塑性加工木材PW1,PW2について図3乃至図13を参照して説明する。
なお、木材の木口面Aの年輪線RLは、図3及び図10に示すように、その年輪線RLの中心側、即ち、樹心側の境界線BL1,BL2との交差付近で曲線状であることが多く、また、加工前木材NW1の木裏側板目面B1側、加工前木材NW2の樹心側柾目面C1側が載置された下プレス盤10Bに対して上プレス盤10Aを下降させ、加熱圧縮を行った場合、通常、木口面Aの下方の年輪線RL(本実施の形態の塑性加工木材PW1においては、木裏側板目面B1側に近い年輪線RL、本実施の形態の塑性加工木PW2においては、樹心側柾目面C1に近い年輪線RL)ほど、その屈曲変形や座屈変形が大きくなり、そのことによって測定のばらつきが予想されることから、本来は、鋭角側の交差角度θ,δは、境界線BL1,BL2から木口面Aの年輪線RLに沿って約1〜2mm離れた樹心側の年輪線RL上の点に対して接線を引き、当該接線と境界線BL1,BL2とがなす角度を測定して得た値とすべきである。
Next, plastically processed woods PW1 and PW2 of the present embodiment formed as described above will be described with reference to FIGS.
As shown in FIGS. 3 and 10, the annual ring line RL of the wood mouth surface A has a curved shape near the center of the annual ring line RL, that is, in the vicinity of the intersection with the boundary lines BL1 and BL2 on the tree side. In many cases, the upper press board 10A is lowered with respect to the lower press board 10B on which the wood back side face B1 side of the unprocessed wood NW1 and the tree side side face C1 side of the unprocessed wood NW2 are placed. When the heat compression is performed, usually, the annual ring line RL below the end face A (in the plastic-processed wood PW1 of the present embodiment, the annual ring line RL close to the wood back side plate face B1 side, In the plastically processed tree PW2, the bending deformation and buckling deformation increase as the annual ring line RL) closer to the tree-centered side plane C1. As a result, variation in measurement is expected. Intersecting angles θ and δ from the boundary lines BL1 and BL2. Obtained by drawing a tangent to a point on the tree-ring annual ring line RL about 1-2 mm away along the annual ring line RL of the end A and measuring the angle formed by the tangent line and the boundary lines BL1 and BL2. Should be the same value.

即ち、正確には、木材の木口面Aの全ての年輪線RLと木口面Aの樹心側の板目面B1または樹心側の柾目面C1から2mm以下の範囲に樹心側の板目面B1または樹心側の柾目面C1に沿って描いた仮想境界線となす鋭角側の交差角度が交差角度θ,δとすべきであるが、説明を単純化するために、以下、樹心側境界線BL1,BL2と木口面Aの年輪線RLとがなす鋭角側の交差角度θ,δと表現することとする。   That is, to be precise, the tree-center side grain within the range of 2 mm or less from all annual ring lines RL of the wood end face A and the wood face side face B1 of the wood end face A or the face side C1 of the tree face side. The acute angle crossing angle formed with the virtual boundary line drawn along the plane B1 or the cell side C1 should be the crossing angles θ and δ. These are expressed as the intersection angles θ and δ on the acute angle side formed by the side boundary lines BL1 and BL2 and the annual ring line RL of the end face A.

ここで、本発明者らは、上プレス盤10A及び下プレス盤10Bによって加工木材NW1の板目面B1,B2に対して垂直方向に加熱圧縮を加えていくと、木裏側板目面B1及び木口面Aの樹心側境界線BL1と木口面Aの年輪線RLとがなす鋭角側の交差角度θが徐々に小さくなっていくことに着目し、一定以上の加熱圧縮を加えると、図11乃至図13に示すように、木材の硬度や耐摩耗性の指標となる摩耗深さ等の特性値のばらつきが少なくなり物性的に安定し、また、硬度が顕著に高くなり傷跡や窪みが付き難くなるのを見出した。そして、物性的に安定し、また、硬度が顕著に高くなりはじめるときの樹心側境界線BL1と木口面Aの年輪線RLとがなす鋭角側の交差角度δを測定したところ、図4乃至図6(e)及び図8に実施例として示すように、板目材からなる塑性加工木材PW1の鋭角側の交差角度δは全て0〜25度の範囲内にあった。   Here, when the inventors apply heat compression in the vertical direction to the grain surfaces B1 and B2 of the processed wood NW1 by the upper press board 10A and the lower press board 10B, the back side board grain B1 and Focusing on the fact that the acute angle side crossing angle θ between the tree-center side boundary line BL1 of the end face A and the annual ring line RL of the end face A gradually decreases, As shown in FIG. 13, the dispersion of characteristic values such as the hardness of wood and the wear depth as an index of wear resistance is reduced and the physical properties are stable, and the hardness is remarkably increased and scars and dents are attached. I found it difficult. Then, when the crossing angle δ on the acute angle side formed by the tree-boundary boundary line BL1 and the annual ring line RL of the end face A when the hardness starts to become significantly high is measured, FIG. 4 to FIG. As shown in FIG. 6 (e) and FIG. 8 as examples, all the crossing angles δ on the acute angle side of the plastically processed wood PW1 made of a plate material were in the range of 0 to 25 degrees.

なお、図4乃至図6(e)及び図8に示す板目材からなる実施例は、物性的に安定し、また、硬度が顕著に高くなりはじめるときの塑性加工木材PW1である。また、鋭角側の交差角度δが全て0〜25度とは、図8に示すように、通常、市場に流通している板目材における鋭角側の交差角度θが約0〜45度であり、それに圧縮を加えていったときの、物性的に安定し、また、硬度が顕著に高くなるときの鋭角側の交差角度δの値を実験研究から求めたもので、圧縮前の交差角度θに対して相対的に決定されたものである。   In addition, the Example which consists of a grain material shown to FIG. 4 thru | or FIG. 6 (e) and FIG. 8 is plastic processing wood PW1 when a physical property is stabilized and hardness begins to become notably high. Moreover, the acute angle side crossing angles δ are all 0 to 25 degrees, as shown in FIG. 8, the acute angle side crossing angle θ in the sheet material normally distributed in the market is about 0 to 45 degrees. The value of the crossing angle δ on the acute angle side when the compression is applied and the physical properties are stable and the hardness becomes remarkably high was obtained from experimental studies. The crossing angle θ before compression Is determined relative to.

そして、図8に示すように、このとき、木裏側板目面B1及び木口面Aの樹心側境界線BL1と木口面Aの年輪線RLとがなす圧縮後の鋭角側の交差角度δは、それに対応する圧縮前の鋭角側の交差角度θに対して、木材全体の角度の算術平均で0.5倍以下となっている。即ち、(加熱圧縮後の交差角度δ)/(それに対応する加熱圧縮前の交差角度θ)が木材全体の算術平均で1/2以下となっている。この値は、Tan-1θとTan-1δの変化に概略比例するが、実用的には、気乾比重の変化にも近い変化となる。 Then, as shown in FIG. 8, at this time, the crossing angle δ on the acute angle side after compression formed by the tree-side side boundary line BL1 of the wood back side surface B1 and the wood front surface A and the annual ring line RL of the wood front surface A is The arithmetic average of the angle of the whole wood is 0.5 times or less with respect to the corresponding acute angle crossing angle θ before compression. That is, (intersection angle δ after heat compression) / (corresponding cross angle θ before heat compression) is 1/2 or less as an arithmetic average of the whole wood. This value is roughly proportional to changes in Tan −1 θ and Tan −1 δ, but practically changes to be close to changes in air-dry specific gravity.

また、本発明者らは、上プレス盤10A及び下プレス盤10Bによって加工木材NW2の柾目面C1,C2に対して垂直方向に加熱圧縮を加えていくと、樹心側柾目面C1及び木口面Aの樹心側境界線BL2と木口面Aの年輪線RLとがなす鋭角側の交差角度θが徐々に小さくなっていくことに着目し、一定以上の加熱圧縮を加えると、図11乃至図13に示すように、木材の硬度や耐摩耗性の指標となる摩耗深さ等の特性値のばらつきが少なくなり物性的に安定し、また、硬度が顕著に高くなり傷跡や窪みが付き難くなるのを見出した。そして、物性的に安定し、また、硬度が顕著に高くなりはじめるときの鋭角側の交差角度を測定したところ、図6(f)及び図7及び図9に実施例として示すように、柾目材の塑性加工木材PW2の鋭角側の交差角度δは全て15〜45度の範囲内にあった。   In addition, when the present inventors apply heat compression in the vertical direction to the mesh planes C1 and C2 of the processed wood NW2 by the upper press board 10A and the lower press board 10B, the tree-center side grid face C1 and the mouthpiece face Focusing on the fact that the acute crossing angle θ formed by the tree-side boundary line BL2 of A and the annual ring line RL of the end face A gradually decreases, and when heating and compression above a certain level are applied, FIG. 11 to FIG. As shown in FIG. 13, the dispersion of characteristic values such as wear depth, which is an index of the hardness and wear resistance of wood, is reduced and the physical properties are stabilized, and the hardness is remarkably increased and scars and dents are hardly attached. I found out. Then, when the crossing angle on the acute angle side when the physical properties were stable and the hardness began to become remarkably high was measured, as shown in FIG. 6 (f), FIG. 7 and FIG. The crossing angles δ on the acute angle side of the plastic processed wood PW2 were all in the range of 15 to 45 degrees.

なお、図6(f)及び図7及び図9に示す実施例も、物性的に安定し、また、硬度が顕著に高くなりはじめるときの塑性加工木材PW2である。また、塑性加工木材PW2の鋭角側の交差角度δが15〜45度とは、図9に示すように、通常、市場に流通している柾目材における圧縮する前の柾目材からなる加工前木材NW2の鋭角側の交差角度θが約45〜90度であり、それに圧縮を加えていったときの、物性的に安定し、また、硬度が顕著に高くなるときの鋭角側の交差角度θの値を実験研究から求めたもので、圧縮前の交差角度θに対して相対的に決定されたものである。
そして、図9に示すように、このとき、樹心側柾目面C1及び木口面Aの樹心側境界線BL2と木口面Aの年輪線RLとがなす圧縮後の鋭角側の交差角度δは、それに対応する圧縮前の鋭角側の交差角度θに対して、木材全体の算術平均で0.5倍以下となっている。即ち、(加熱圧縮後の交差角度δ)/(それに対応する加熱圧縮前の交差角度θ)が木材全体の算術平均で1/2以下となっている。この値は、Tan-1θとTan-1δの変化に概略比例するが、実用的には、気乾比重の変化にも近い変化となる。
Note that the examples shown in FIGS. 6 (f), 7 and 9 are also plastically processed wood PW2 when the physical properties are stable and the hardness starts to increase remarkably. Moreover, the crossing angle δ on the acute angle side of the plastically processed wood PW2 is 15 to 45 degrees, as shown in FIG. 9, the pre-processed wood made of the mesh material before compression in the mesh material normally distributed in the market The crossing angle θ on the acute angle side of NW2 is about 45 to 90 degrees, and when the compression is applied thereto, the physical properties are stable, and the crossing angle θ on the acute angle side when the hardness is remarkably increased The value was obtained from experimental research and was determined relative to the crossing angle θ before compression.
Then, as shown in FIG. 9, at this time, the intersection angle δ on the acute angle side after compression formed by the tree-center side boundary line BL2 of the tree-center side grid surface C1 and the tree-edge surface A and the annual ring line RL of the tree-edge surface A The arithmetic average of the whole wood is 0.5 times or less with respect to the intersection angle θ on the acute angle side before compression corresponding thereto. That is, (intersection angle δ after heat compression) / (corresponding cross angle θ before heat compression) is 1/2 or less as an arithmetic average of the whole wood. This value is roughly proportional to changes in Tan −1 θ and Tan −1 δ, but practically changes to be close to changes in air-dry specific gravity.

ここで、本発明者らの実験によると、板目材からなる木裏側板目面B1及び木口面Aの樹心側境界線BL1と木口面Aの年輪線RLとがなす鋭角側の交差角度δが、圧縮前の鋭角側の交差角度θに対して木材全体の算術平均で0.5以下となっているものは、その気乾比重が2倍以上になっていることが確認された。また、柾目材からなる樹心側柾目面C1及び木口面Aの樹心側境界線BL2と木口面Aの年輪線RLとがなす圧縮後の鋭角側の交差角度δも、圧縮前の鋭角側の交差角度θに対して、木材全体の算術平均で0.5倍以下となっているものは、その気乾比重が2倍以上になっていることが確認された(図13参照)。
そこで、本実施の形態の塑性加工木材PW1,PW2は、加工前木材NW1,NW2に対して加えた外力によって、加工前木材NW1,NW2の厚みが加熱圧縮されて塑性加工し、加熱圧縮した木材の気乾比重を加熱圧縮前の気乾比重の2倍以上とし、かつ、木材の木口面Aの全ての年輪線RLと木口面Aの樹心側の板目面B1または柾目面C1から2mm以下の範囲に樹心側の板目面B1または柾目面C1に沿って描いた仮想境界線とがなす鋭角側の交差角度を45度以下の範囲内としたものである。
Here, according to the experiments of the present inventors, the crossing angle on the acute angle side formed by the wood back side wood grain surface B1 made of wood grain material and the tree center side boundary line BL1 of the wood front surface A and the annual ring line RL of the wood front surface A is formed. It was confirmed that when δ is 0.5 or less in arithmetic average of the whole wood with respect to the crossing angle θ on the acute angle side before compression, the air-dry specific gravity is twice or more. Further, the crossing angle δ on the acute angle side formed by the tree side side plane C1 and the tree side side line BL2 of the end face A and the annual ring line RL of the end face A is also the acute side before compression. It was confirmed that the air-drying specific gravity of the wood having an arithmetic average of 0.5 times or less with respect to the crossing angle θ of the wood is twice or more (see FIG. 13).
Therefore, the plastic-processed wood PW1 and PW2 of the present embodiment are plastically processed by heat-compressing the pre-processed wood NW1 and NW2 with the thickness of the pre-processed wood NW1 and NW2 being heated and compressed by the external force applied to the pre-processed wood NW1 and NW2. The air-drying specific gravity is 2 times or more than the air-drying specific gravity before heating and compression, and 2 mm from all annual ring lines RL of the timber face A and the wood face B1 or the face face C1 of the timber side of the lip face A The acute angle crossing angle formed by the virtual boundary line drawn along the grain surface B1 or the mesh surface C1 on the tree center side in the following range is within a range of 45 degrees or less.

ところで、本発明者らの実験研究によると、樹心側柾目面C1及び木口面Aの樹心側境界線BL1と木口面Aの年輪線RLとがなす鋭角側の交差角度θが85度より大きい加工前木材NW2を用いて、塑性加工木材PW2を製造したところ、塑性加工木材PW2において年輪線RLの座屈変形が大きくなり、場合によっては割れが生じることもあった。   By the way, according to the experimental study by the present inventors, the acute angle side crossing angle θ formed by the tree-center side boundary line BL1 of the tree-center side plane C1 and the tree-edge surface A and the annual ring line RL of the tree-edge surface A is more than 85 degrees. When the plastically processed wood PW2 was manufactured using the large unprocessed wood NW2, the buckling deformation of the annual ring line RL increased in the plastically processed wood PW2, and cracking sometimes occurred.

このため、柾目材からなる塑性加工木材PW2の原材料となる加工前木材NW2には、樹心側柾目面C1及び木口面Aの樹心側境界線BL2と木口面Aの年輪線RLとがなす鋭角側の交差角度θが全て85度以下であるものを用いるのが好ましい。即ち、塑性加工木材PW2は、圧縮前の樹心側柾目面C1及び木口面Aの樹心側境界線BL2と木口面Aの年輪線RLとがなす鋭角側の交差角度θを全て85度以下とすることが好ましい。これにより、年輪線の座屈変形が防止されて、加熱圧縮による割れが防止されるから、塑性加工木材PW2において、高い品質を確保することができる。さらには、圧縮前の交差角度が60度以下のものであれば殆ど割れ(クラック)が生じることがないためより好ましい。   For this reason, the unprocessed wood NW2 that is the raw material of the plastically processed wood PW2 made of the mesh material includes the tree center side mesh surface C1 and the tree center side boundary line BL2 of the wood end surface A and the annual ring line RL of the wood end surface A. It is preferable to use those having an acute angle crossing angle θ of 85 degrees or less. That is, the plastically processed wood PW2 has an acute angle side crossing angle θ formed by the tree-center side wall plane C1 and the tree-center side boundary line BL2 of the end face A and the annual ring line RL of the end face A of 85 degrees or less. It is preferable that Thereby, buckling deformation of the annual ring line is prevented and cracking due to heat compression is prevented, so that high quality can be ensured in the plastic processed wood PW2. Furthermore, it is more preferable that the crossing angle before compression is 60 degrees or less because almost no cracks are generated.

同様に、板目材からなる塑性加工木材PW1の原材料となる加工前木材NW1には木裏側板目面B1及び木口面Aの樹心側境界線BL1と木口面Aの年輪線RLとがなす鋭角側の交差角度θが全て0〜45度以下であるものを用いるのが好ましい。即ち、塑性加工木材PW1は、圧縮前の木裏側板目面B1及び木口面Aの樹心側境界線BL1と木口面Aの年輪線RLとがなす鋭角側の交差角度θを全て0〜45度とすることが好ましい。これにより、年輪線の座屈変形が防止されて、加熱圧縮による割れがなくなるから、塑性加工木材PW1においても、高い品質を確保することができる。   Similarly, the unprocessed wood NW1 that is the raw material of the plastically processed wood PW1 made of a wood grain material includes the wood back side wood grain surface B1 and the wood core side boundary line BL1 of the wood front surface A and the annual ring line RL of the wood front surface A. It is preferable to use those having an acute angle crossing angle θ of 0 to 45 degrees or less. That is, the plastic-processed wood PW1 has all the acute-angled crossing angles θ formed by the wood back side grain surface B1 and the tree face side boundary line BL1 of the end face A and the annual ring line RL of the end face A of 0 to 45 before compression. It is preferable to set the degree. As a result, buckling deformation of the annual ring line is prevented and cracking due to heat compression is eliminated, so that high quality can be ensured even in the plastic processed wood PW1.

即ち、木材の板目材と柾目材とを特定しなければ、また、板目材にも部分的にみれば、柾目材の構造を有することからすれば、木材の加工前木材NW1,NW2には、木裏側板目面B1または樹心側柾目面C1及び木口面Aの樹心側境界線BL1,BL2と木口面Aの年輪線RLとがなす鋭角側の交差角度θが全て85度以下であるものを用いるのが好ましい。より好ましくは60度以下のものである。
そして、塑性加工木材PW1,PW2は、木裏側板目面B1及び木裏側板目面B1または樹心側柾目面C1の木口面Aの樹心側境界線BL1,BL2と木口面Aの年輪線RLとがなす鋭角側の交差角度δが全て45度以下であるのが好ましい。
That is, if the wood grain material and the wood grain material are not specified, and if it is partially seen from the wood grain material, it has the structure of the wood grain material. Means that the crossing angles θ on the acute angle side formed by the tree-side side plane B1 or the tree-center side plane C1 and the tree-center side boundary lines BL1, BL2 of the tree-edge surface A and the annual ring line RL of the tree-edge surface A are all 85 degrees or less. Is preferably used. More preferably, it is 60 degrees or less.
The plastically processed woods PW1 and PW2 are wood ring side boundary lines BL1 and BL2 of the wood face side face B1 and the wood face side face face B1 or the wood face side face C1 of the wood face A and the annual ring line of the wood face A. It is preferable that all the acute angle crossing angles δ formed by RL be 45 degrees or less.

なお、本実施の形態においては、塑性加工木材PW1,PW2を形成する加工前木材NW1,NW2に、加工前の気乾比重が平均約0、36であるスギ材が用いられており、本実施の形態の塑性加工木材PW1,PW2はスギ材からなるものである。スギ材は一般的に入手しやすく加工しやすいものであるから、塑性加工木材PW1,PW2としてスギ材を用いた場合には、生産性を向上させることができ、低コスト化を図ることが可能になり、また、スギ材の欠点を補うことができる。殊に、オビスギと称されるスギ材は、短期間で成長するもので大量入手が容易なため、最適である。また、スギ材は、我が国において広く分布しており、間伐材等を容易に大量に入手することができるため、塑性加工木材PW1,PW2としてスギ材を用いた場合には、環境保全に貢献することができる。   In the present embodiment, cedar wood having an average air-dry specific gravity of about 0 and 36 before processing is used for the unprocessed wood NW1 and NW2 that form the plastically processed wood PW1 and PW2. The plastically processed wood PW1, PW2 of the form is made of cedar. Since cedar is generally easy to obtain and process, when cedar is used as plastically processed wood PW1, PW2, productivity can be improved and costs can be reduced. Moreover, the defect of a cedar material can be compensated. In particular, cedar wood called Obisugi is optimal because it grows in a short period of time and is easily available in large quantities. In addition, cedar wood is widely distributed in Japan, and thinned wood can be easily obtained in large quantities. Therefore, when cedar wood is used as plastically processed wood PW1, PW2, it contributes to environmental conservation. be able to.

勿論、本発明を実施する場合には、スギ材に限定されるものではなく、例えば、マツ、ヒノキ、イエローポプラ等を用いることも可能である。マツやヒノキは、我が国において広く分布しており、間伐材等を容易に大量に入手することができ、加工も施しやすいため、スギ材を用いた場合と同様の効果が得られる。また、イエローポプラ(学名:Liriodendron tulipifera、別名:ハンテンボク、チューリップポプラ、キャナリーホワイトウッド、ユリノキ)もスギと同様に入手しやすく加工を施しやすいものであることから、生産性を向上させることができ、低コスト化を図ることができる。特に、イエローポプラは元来の色調が明るいため、材料によっては変色するものもあるが、一般に、高圧縮による濃色化、黒色化を抑制することができ、良好な外観を保持することが可能である。
また、塑性加工木材PW1,PW2を形成する加工前木材NW1,NW2には、辺材(白太、白身)を用いるのが好適である。これにより、圧縮したときのヤ二の表出量を抑制することができるし、高圧縮による濃色化を抑えることもでき、良好な外観を保持することが可能になる。
Of course, when implementing this invention, it is not limited to a cedar material, For example, a pine, a cypress, a yellow poplar, etc. can also be used. Pine and cypress are widely distributed in Japan, and thinned wood can be easily obtained in large quantities and can be easily processed, so that the same effect as when using cedar wood can be obtained. In addition, yellow poplar (scientific name: Liriodendron tulipifera, aka: huntenboku, tulip poplar, canary whitewood, lily) is also easy to obtain and process like cedar, so productivity can be improved. Cost reduction can be achieved. In particular, yellow poplar has a light original color tone and may change color depending on the material. In general, darkening and blackening due to high compression can be suppressed, and a good appearance can be maintained. It is.
Further, it is preferable to use sapwood (white, white) as the unprocessed woods NW1, NW2 for forming the plastically processed woods PW1, PW2. Thereby, it is possible to suppress the amount of exposure when compressed, to suppress darkening due to high compression, and to maintain a good appearance.

続いて、本実施の形態の塑性加工木材PW1,PW2の物性について、図11乃至図15を参照して、比較例と比較しながら詳しく説明する。なお、図11及び図12の比較例は、図13の表図に示した比較例と対応するものであり、図13の表図に示した本実施の形態の気乾比重、硬度、摩耗深さ、曲げヤング係数の各値は、図4乃至図7に示した実施例のように、物性的に安定し、また、硬度が顕著に高くなりはじめたときの塑性加工木材PW1,PW2における平均値を示したものである。
ここで、図11及び図13において、硬度〔N/mm2〕は、JIS−Z―2101−1994に準じて評価した結果を示したものであり、具体的には、木材の表面(本実施の形態の塑性加工木材PW1においては、板目面B1,B2側、本実施の形態の塑性加工木材PW2においては、柾目面C1,C2側)に直径10〔mm〕の鋼球を平均圧入速度0.5〔mm/min〕で圧入して、圧入深さが0.32〔mm〕になるときの荷重P〔N〕を測定し、下記の式(1)から算出したものである。
硬度H=P/10・・・(1)
Next, the physical properties of the plastically processed woods PW1 and PW2 of the present embodiment will be described in detail with reference to FIGS. 11 to 15 and comparison with a comparative example. 11 and 12 corresponds to the comparative example shown in the table of FIG. 13, and the air-drying specific gravity, hardness, and wear depth of the present embodiment shown in the table of FIG. Each value of the bending Young's modulus is the average in the plastically processed woods PW1 and PW2 when the physical properties are stable and the hardness starts to increase remarkably as in the examples shown in FIGS. The value is shown.
Here, in FIG. 11 and FIG. 13, the hardness [N / mm 2 ] shows the result of evaluation according to JIS-Z-2101-1994, and specifically, the surface of wood (this embodiment) In the plastic processed wood PW1 of the form, a steel ball having a diameter of 10 mm is placed on the side of the plane grain surfaces B1 and B2, and in the plastically processed wood PW2 of the present embodiment on the side planes C1 and C2). The load P [N] when the press-fit depth is 0.32 [mm] by press-fitting at 0.5 [mm / min] is calculated from the following formula (1).
Hardness H = P / 10 (1)

そして、上記硬度が25〔N/mmThe hardness is 25 [N / mm 22 〕以上とは、本発明者らの実験研究によって、通常、床材に利用されている広葉樹(ナラ等)の硬度が15〔N/mmAccording to the present inventors' experimental research, the hardness of hardwood (eg, oak) normally used for flooring is 15 [N / mm] 22 〕くらいであることが判明していることから、集中荷重や衝撃荷重等を受けやすいために高い表面硬度が要求される床材等に利用するにも十分な硬度であり、広範な用途に使用可能であることを意味する。なお、上記25〔N/mmTherefore, it is easy enough to receive concentrated load and impact load, so it has sufficient hardness to be used for flooring that requires high surface hardness. It means that it is possible. The above 25 [N / mm 22 〕とは、厳格に25〔N/mm] Is strictly 25 [N / mm 22 〕であることを要求するものではなくて約25〔N/mmIt is not required to be about 25 [N / mm 22 〕であればよく、当然、誤差を含む概略値であり、数割の誤差を否定するものではない。Of course, it is an approximate value including an error, and does not deny an error of several percent.

また、図12及び図13の耐摩耗性の指標となる摩耗深さ〔mm〕は、JIS−Z―2101−1994に準じて評価した結果を示したものであり、具体的には、いわゆる摩耗試験装置を用い、木材に加える荷重を約5.2〔N〕として回転速度が約60〔rpm〕となるように木材と摩耗輪を500回転させたときの木材の重量m2〔g〕を測定し、試験前の木材の重量m1〔g〕と摩耗輪により摩耗を受ける部分の面積A〔mm2〕と密度ρ〔g/cm3〕とから下記の式(2)によって算出したものである。
摩耗深さD=(m1−m2)/A・ρ・・・(2)
更に、図13の剛性の指標となる曲げヤング係数(N/mm2)は、JIS−Z―2101に準じて評価した結果を示したものであり、具体的には、2点荷重方式で、次式で測定計算したものである。
=ΔP・L3/48・I・Δy
ここに、
:曲げヤング係数〔N/mm2〕(Kgf/cm2)、
ΔP:比例域における上限荷重と下限荷重との差〔N〕(kgf)、
Δy:ΔPに対応するスパン中央のたわみ(mm)、
I:断面2次モーメントI=bh3/12(mm4)、
L:スパン(mm)、
b:試験体の幅(mm)、
h:試験体の高さ(mm)、
である。
Further, the wear depth [mm] as an index of wear resistance in FIGS. 12 and 13 shows the result of evaluation according to JIS-Z-2101-1994. Specifically, the so-called wear is shown. Using the test device, the weight m 2 [g] of the wood when the wood and the wear wheel are rotated 500 times so that the load applied to the wood is about 5.2 [N] and the rotation speed is about 60 [rpm]. Measured and calculated by the following equation (2) from the weight m 1 [g] of the wood before the test, the area A [mm 2 ] and the density ρ [g / cm 3 ] of the portion subjected to wear by the wear ring It is.
Wear depth D = (m 1 −m 2 ) / A · ρ (2)
Furthermore, the bending Young's modulus (N / mm 2 ), which is an index of rigidity in FIG. 13, shows the result of evaluation according to JIS-Z-2101. It is measured and calculated by the following formula.
E b = ΔP · L 3/ 48 · I · Δy
here,
E b : Young's modulus of bending [N / mm 2 ] (Kgf / cm 2 ),
ΔP: difference between the upper limit load and the lower limit load in the proportional range [N] (kgf),
Δy: deflection at the center of the span corresponding to ΔP (mm),
I: geometrical moment of inertia I = bh 3/12 (mm 4),
L: Span (mm),
b: Width of test specimen (mm),
h: height of test specimen (mm),
It is.

そして、上記摩耗深さが0.12〔mm〕以下とは、本発明者らの実験研究によって、通常、床材に利用されている広葉樹(ナラ等)の摩耗深さが0.14〔mm〕くらいであることが判明しているから、集中荷重や衝撃荷重等を受けやすいために高い耐摩耗性が要求される床材等に利用することもでき、広範な用途に使用可能であることを意味する。なお、上記0.12〔mm〕も、厳格に0.12〔mm〕であることを要求するものではなくて約0.12〔mm〕であればよく、当然、誤差を含む概略値であり、数割の誤差を否定するものではない。The wear depth of 0.12 [mm] or less means that the wear depth of broad-leaved trees (eg, oaks) normally used for flooring is 0.14 [mm], based on experimental studies by the present inventors. Therefore, it can be used for flooring that requires high wear resistance because it is susceptible to concentrated loads and impact loads, and can be used in a wide range of applications. Means. The above 0.12 [mm] is not strictly required to be 0.12 [mm], and may be about 0.12 [mm], and is naturally an approximate value including an error. This does not deny the error of several percent.

図11乃至図13に示すように、比較例と比較すると、本実施の形態の塑性加工木材PW1,PW2は、硬度〔N/mm2〕及び曲げヤング係数〔N/mm2〕の値が極めて大きくなっており、また、摩耗深さ〔mm〕においても、その値がとても小さくなっている。
即ち、図11から、塑性加工によって、加熱圧縮した木材の気乾比重を加熱圧縮前の気乾比重の2倍以上とし、かつ、木材の木口面Aの全ての年輪線RLと木口面Aの樹心側の板目面B1または柾目面C1から2mm以下の範囲に樹心側の板目面B1または柾目面C1に沿って描いた仮想境界線とがなす鋭角側の交差角度を45度以下の範囲内とすることで、優れた硬度、耐摩耗性及び剛性が得られ、傷跡や窪みが付き難くなることが分かる。
As shown in FIGS. 11 to 13, compared with the comparative example, the plastically processed woods PW1 and PW2 of the present embodiment have extremely high hardness [N / mm 2 ] and bending Young's modulus [N / mm 2 ]. In addition, the value of the wear depth [mm] is very small.
That is, from FIG. 11, the air-drying specific gravity of the heat-compressed wood by plastic working is set to be twice or more of the air-drying specific gravity before the heat-compression, and all the annual ring lines RL and the wood front A of the wood front A are The acute angle crossing angle formed by the virtual boundary line drawn along the grain surface B1 or the mesh plane C1 within the range of 2 mm or less from the grain surface B1 or the mesh plane C1 on the tree center side is 45 degrees or less. It can be seen that by making it within the range, excellent hardness, wear resistance and rigidity are obtained, and scars and dents are hardly attached.

殊に、図11に示すように、硬度〔N/mm2〕は、比較例と比較して著しく高くなっており、しかも、通常、床材に利用されている広葉樹(ナラ等)の硬度が15〔N/mm2〕くらいであることから、本実施の形態の塑性加工木材PW1,PW2は、集中荷重や衝撃荷重等を受けやすいために高い硬度が要求される床材等に利用するにも十分な硬度を有していることが分かる。
また、図12に示すように、摩耗深さ〔mm〕においても、通常、床材に利用されている広葉樹(ナラ等)の摩耗深さが0.14〔mm〕くらいであることから、本実施の形態の塑性加工木材PW1,PW2は、集中荷重や衝撃荷重等を受けやすいために高い耐摩耗性が要求される床材等に利用するにも十分な耐摩耗性を有していることが分かる。
このため、本実施の形態の塑性加工木材PW1,PW2は、集中荷重や衝撃荷重を受けやすい床材等に利用しても傷跡や窪みが付き難く、広範な用途に使用可能である。
In particular, as shown in FIG. 11, the hardness [N / mm 2 ] is remarkably higher than that of the comparative example, and the hardness of hardwood (eg, oak) that is usually used for flooring is high. Since it is about 15 [N / mm 2 ], the plastic-processed woods PW1 and PW2 of the present embodiment are susceptible to concentrated loads, impact loads, etc., and are therefore used for flooring materials that require high hardness. It can be seen that it has sufficient hardness.
Also, as shown in FIG. 12, the wear depth [mm] is usually about 0.14 [mm] for hardwoods (eg, oak) used for flooring. The plastically processed woods PW1 and PW2 of the embodiment have sufficient wear resistance to be used for floor materials and the like that require high wear resistance because they are easily subjected to concentrated loads and impact loads. I understand.
For this reason, the plastically processed woods PW1 and PW2 of the present embodiment are hardly scratched or dented even when used for floor materials and the like that are easily subjected to concentrated loads and impact loads, and can be used in a wide range of applications.

そして、図11及び図12に示すように、比較例では、硬度〔N/mm2〕及び摩耗深さ〔mm〕の値に大きなばらつきが見られるのに対し、加熱圧縮した木材の気乾比重を加熱圧縮前の気乾比重の2倍以上とし、かつ、木材の木口面Aの全ての年輪線RLと木口面Aの樹心側の板目面B1または柾目面C1から2mm以下の範囲に樹心側の板目面B1または柾目面C1に沿って描いた仮想境界線とがなす鋭角側の交差角度を45度以下の範囲内と本実施の形態の塑性加工木材PW1,PW2となるように塑性加した本実施の形態の塑性加工木材PW1,PW2では、その値のばらつきが小さくなっている。即ち、本実施の形態の塑性加工木材PW1,PW2は、物性的に安定していて、製品間の品質にばらつきが少ない。 As shown in FIGS. 11 and 12, in the comparative example, the hardness [N / mm 2 ] and the wear depth [mm] vary greatly, whereas the air-dried specific gravity of the heat-compressed wood Is at least twice the air-dry specific gravity before heating and compression, and within 2 mm or less from all annual ring lines RL of the wood end face A and the grain face B1 or the face face C1 of the wood end side of the end face A. The acute angle crossing angle formed by the virtual boundary line drawn along the wood face B1 or the wood face C1 is within the range of 45 degrees or less, and the plastically processed woods PW1 and PW2 of the present embodiment are used. In the plastically processed woods PW1 and PW2 of the present embodiment, which are plastically added, variation in the values is small. That is, the plastically processed woods PW1 and PW2 of the present embodiment are stable in physical properties and have little variation in quality between products.

これは、木材の早材部における細胞壁の厚さが薄く、また、早材部の空隙率が大きいうえに、製材された木材(加工前木材NW1,NW2)によって年輪(早材部と晩材部)の配列状態が異なることに起因して、比較例においては、細胞の圧縮変形が局部的に集中して厚み全体が平均的に圧縮されていなかったためと推定されるところ、本実施の形態の塑性加工木材PW、PW2においては、早材部の殆どの細胞が圧縮変形されて細胞壁が重なり合い、早材部の(細胞内腔の)空隙が極めて少なくなって、厚み全体が均一に圧縮されたためと推定される。   This is because the cell wall thickness in the early wood portion of the wood is thin, the porosity of the early wood portion is large, and the annual rings (early wood portion and late wood) are produced by the timber that has been sawn (the unprocessed wood NW1, NW2). In the comparative example, it is presumed that the compression deformation of the cells was locally concentrated and the entire thickness was not compressed on average in the comparative example. In the plastically processed wood PW and PW2, most of the cells in the early wood part are compressed and deformed, the cell walls overlap, the voids (in the cell lumen) in the early wood part become extremely small, and the entire thickness is uniformly compressed. It is estimated that

なお、参考までに、図14(a)において、加工前木材NW1,NW2の顕微鏡写真(SEM、500倍)を、また、図14(b)において、本実施の形態の塑性加工木材PW1,PW2の顕微鏡写真(SEM、500倍)を示す。図14から、圧縮によって、主に、早材部の細胞が圧縮変形されて細胞壁が重なり合い、(細胞内腔の)空隙が極めて少なくなることが分かる。更に、参考までに、図15において、加熱圧縮前の気乾比重に対して1.3倍に圧縮した塑性加工木材の顕微鏡写真(SEM、50倍)を示す。図15から、加熱圧縮前の気乾比重に対して1.3倍にしか圧縮していない塑性加工木材においては、圧縮変形が局部的に集中していて厚み全体が平均的に圧縮されていないことが分かる。   For reference, a micrograph (SEM, 500 times) of the unprocessed wood NW1 and NW2 is shown in FIG. 14A, and the plastically processed wood PW1 and PW2 of the present embodiment is shown in FIG. 14B. The micrograph (SEM, 500 times) of is shown. From FIG. 14, it can be seen that the compression mainly deforms the cells in the early wood part, overlaps the cell walls, and extremely reduces the voids (in the cell lumen). Furthermore, for reference, FIG. 15 shows a micrograph (SEM, 50 times) of plastic-worked wood compressed 1.3 times the air-dry specific gravity before heat compression. From FIG. 15, in plastic processed wood that is compressed only 1.3 times the air-dry specific gravity before heat compression, compression deformation is concentrated locally and the entire thickness is not compressed on average. I understand that.

そして、このことは、比較例では、製品化後の周囲環境条件の変化によって歪みが発生することがあったが、本実施の形態の塑性加工木材PW1,PW2では、製品化後の周囲環境条件の変化による歪みの発生がなかったことからも裏付けされる。即ち、比較例においては、圧縮による細胞変形が局部的に集中しているために、製品内部において周囲環境条件の変化による寸法変化率のばらつきがあり、それ故、周囲環境条件の変化によって歪みが発生することがあったが、本実施の形態の塑性加工木材PW1,PW2においては、厚み全体が均一に圧縮されているために、製品内部における周囲環境条件の変化による寸法変化率にばらつきがなく歪みが発生しなかったと考えられる。   In the comparative example, this sometimes caused distortion due to changes in the ambient environmental conditions after commercialization. However, in the plastically processed wood PW1 and PW2 of the present embodiment, the ambient environmental conditions after commercialization. This is also supported by the fact that there was no distortion caused by the change in. That is, in the comparative example, since cell deformation due to compression is concentrated locally, there is a variation in the dimensional change rate due to changes in ambient environment conditions inside the product, and therefore distortion due to changes in ambient environment conditions. However, since the entire thickness of the plastic processed wood PW1 and PW2 of the present embodiment is uniformly compressed, there is no variation in the rate of dimensional change due to changes in ambient environmental conditions inside the product. It is thought that no distortion occurred.

また、硬度が比較例と比較して顕著に高くなっているのは、図14(b)に示すように、圧縮による晩材部の細胞変形は僅かではあるものの、表層部を含む早材部の殆どの細胞が圧縮変形されて、細胞壁が重なり合ったため、また、(細胞内腔の)空隙が極めて少なくなったため、更には、それにより元来細胞壁が厚く空隙が少ないために硬くなっている晩材部が表層部において顕在化した、即ち、晩材部の占有率が高くなったためと考えられる。   Further, the hardness is remarkably higher than that of the comparative example, as shown in FIG. 14B, although the cell deformation of the late part due to compression is slight, the early part including the surface layer part. Most of the cells were compressed and deformed, and the cell walls overlapped, and the voids (in the cell lumen) were extremely small. This is considered to be because the material part became apparent in the surface layer part, that is, the occupation ratio of the late part became high.

殊に、図13に示すように、本実施の形態の塑性加工木材PW1によれば、その気乾比重が0.85以上となっていて空隙率が低くなっていることから、黒檀の特性と同様に優れた硬度、耐摩耗性、剛性を確実に得ることができる。   In particular, as shown in FIG. 13, according to the plastic processed wood PW1 of the present embodiment, the air-drying specific gravity is 0.85 or more and the porosity is low. Similarly, excellent hardness, wear resistance, and rigidity can be reliably obtained.

このように、本実施の形態の塑性加工木材PW1,PW2は、加工前木材NW1,NW2に対して加えた外力によって、加工前木材NW1,NW2の厚みが加熱圧縮されて塑性加工し、加熱圧縮した塑性加工木材PW1,PW2の気乾比重を加工前木材NW1,NW2の気乾比重の2倍以上とし、かつ、塑性加工木材PW1,PW2の木口面Aの全ての年輪線RLと木口面Aの樹心側の板目面B1または柾目面C1から2mm以下の範囲に樹心側の板目面B1または柾目面C1に沿って描いた仮想境界線とがなす鋭角側の交差角度δが45度以下の範囲内にあるものである。   As described above, the plastically processed woods PW1 and PW2 according to the present embodiment are subjected to plastic processing by heating and compressing the thicknesses of the unprocessed woods NW1 and NW2 by the external force applied to the unprocessed woods NW1 and NW2. The air-dry specific gravity of the plastically processed wood PW1, PW2 is more than twice the air-dry specific gravity of the unprocessed wood NW1, NW2, and all the annual ring lines RL and the mouth face A of the wood end surface A of the plastic processed wood PW1, PW2 A crossing angle δ on the acute angle side formed by the virtual boundary line drawn along the grain surface B1 or the mesh plane C1 on the tree center side within a range of 2 mm or less from the grain surface B1 or the mesh plane C1 on the tree center side is 45 It is within the range of less than or equal to degrees.

特に、実施例の塑性加工木材PW1は、木材の板目面B1,B2に対して垂直方向の加熱圧縮により、厚み全体が圧縮されて塑性加工され、木材の木口面A及び木裏側板目面B1の樹心側境界線BL1と木口面Aの年輪線RLとがなす鋭角側の交差角度δが全て0〜25度の範囲内であるものである。
また、実施例の塑性加工木材PW2は、木材の柾目面C1,C2に対して垂直方向の加熱圧縮により、厚み全体が圧縮されて塑性加工され、塑性加工木材PW2の木口面A及び樹心側柾目面C1の樹心側境界線BL2と木口面Aの年輪線RLとがなす鋭角側の交差角度δが全て10度〜45度の範囲内であるものである。
In particular, the plastically processed wood PW1 of the example is subjected to plastic processing by compressing the entire thickness by heat compression in the direction perpendicular to the wood grain planes B1 and B2, and the wood mouth surface A and the wood side side grain surface. The acute angle side crossing angles δ formed by the tree-center side boundary line BL1 of B1 and the annual ring line RL of the end face A are all in the range of 0 to 25 degrees.
In addition, the plastically processed wood PW2 of the example is subjected to plastic processing by compressing the entire thickness by heat compression in a direction perpendicular to the grid planes C1 and C2 of the wood. The acute angle side crossing angles δ formed by the tree-center side boundary line BL2 of the grid face C1 and the annual ring line RL of the end face A are all in the range of 10 degrees to 45 degrees.

したがって、本実施の形態の塑性加工木材PW1,PW2によれば、樹心側境界線BL1,BL2と木口面Aの年輪線RLとがなす鋭角側の交差角度δが全て45度以下の範囲内であるものであり、物性的に安定していて、製品間の品質にばらつきが少ない。また、製品化後の周囲環境条件の変化による歪みの発生がない。更に、高い硬度を有し傷跡や窪みが付き難くなっている。
なお、上記実施の形態では、塑性加工木材PW1,PW2について説明したが、塑性加工木材PW1,PW2の製造過程は、塑性加工木材の製造方法の発明の実施の形態として捉えることができる。
Therefore, according to the plastically processed woods PW1 and PW2 of the present embodiment, the acute angle side crossing angles δ formed by the tree center side boundary lines BL1 and BL2 and the annual ring line RL of the end face A are all within a range of 45 degrees or less. The product is stable in physical properties and has little variation in quality among products. In addition, there is no distortion due to changes in ambient environmental conditions after commercialization. Furthermore, it has high hardness and scars and dents are hardly attached.
In the above-described embodiment, the plastic processed woods PW1 and PW2 have been described. However, the manufacturing process of the plastic processed woods PW1 and PW2 can be understood as an embodiment of the invention of the method for manufacturing plastic processed wood.

殊に、本実施の形態の塑性加工木材PW1,PW2によれば、その気乾比重は0.85以上であり、木材における空隙率が低くなっていることから、確実に黒檀に似た優れた硬度を得ることができる。   In particular, according to the plastic-processed wood PW1 and PW2 of the present embodiment, the air-dry specific gravity is 0.85 or more and the porosity in the wood is low, so it is surely superior to ebony. Hardness can be obtained.

また、本実施の形態の塑性加工木材PW1,PW2によれば、JIS−Z―2101−1994に規定された硬度試験による硬度が25〔N/mm2〕以上であり、通常の床材として利用されている広葉樹の硬度より高い値であるから、集中荷重や衝撃荷重等を受けやすいために高い表面硬度が要求される床材等に利用するのにも十分な硬度を有している。
加えて、本実施の形態の塑性加工木材PW1,PW2によればJIS−Z―2101−1994に規定された耐摩耗試験による摩耗深さが0.12〔mm〕以下であり、通常の床材に利用されている広葉樹の摩耗深さより低い値であるから、集中荷重や衝撃荷重等を受けやすいために高い耐摩耗性が要求される床材等に利用するのにも十分な耐摩耗性を有している。
故に、本実施の形態の塑性加工木材PW1,PW2によれば広範な用途に使用可能であり、例えば、床材、腰板材、屋内家具材、表面塗装として使用する住宅用外装材等、学童机、テーブルの天盤、扉等に利用できる。
Further, according to the plastic processed wood PW1 and PW2 of the present embodiment, the hardness according to the hardness test specified in JIS-Z-2101-1994 is 25 [N / mm 2 ] or more, and is used as a normal flooring material. Since it is higher than the hardness of hardwood that has been used, it has sufficient hardness to be used for flooring and the like that require high surface hardness because it is susceptible to concentrated loads and impact loads.
In addition, according to the plastically processed wood PW1 and PW2 of the present embodiment, the wear depth by the wear resistance test specified in JIS-Z-2101-1994 is 0.12 [mm] or less, and a normal flooring material Because it is lower than the wear depth of hardwood used in the field, it has sufficient wear resistance to be used for flooring that requires high wear resistance because it is susceptible to concentrated loads and impact loads. Have.
Therefore, according to the plastic processed wood PW1 and PW2 of the present embodiment, it can be used for a wide range of applications, such as flooring materials, waistboard materials, indoor furniture materials, exterior materials for houses used as surface coating, etc. Can be used for table tops, doors, etc.

そして、本実施の形態の塑性加工木材PW1,PW2は、複数に分割された構造体としての上プレス盤10A、下プレス盤10Bによって内部空間ISを形成し、内部空間ISの容積を変化させることによりプレス圧縮自在なプレス盤10を用いて、内部空間IS内に載置される塑性加工木材PW1の原材料である加工前木材NW1をその板目面B1,B2に対して、または、塑性加工木材PW2の原材料である加工前木材NW2をその柾目面C1,C2に対して垂直方向に加熱圧縮し、更に、密閉状態とした内部空間内ISに保持し、保持された内部空間IS内の蒸気圧を制御して固定したのち冷却してなるものである。即ち、本実施の形態の塑性加工木材PW1,PW2は、効率的に圧縮変形されてなるものであり、圧縮解除後の戻り、膨らみ変形、パンクと呼ばれる表面割れが防止されている。故に、本実施の形態の塑性加工木材PW1,PW2によれば、高い品質を確保することができ、また、生産性が良好となる。   And plastic working wood PW1, PW2 of this embodiment forms internal space IS by upper press board 10A and lower press board 10B as a structure divided into plurality, and changes the volume of internal space IS. The pre-processed wood NW1 that is the raw material of the plastically processed wood PW1 placed in the internal space IS is applied to the plate surfaces B1 and B2 or the plastically processed wood using the press disk 10 that can be press-compressed by The unprocessed wood NW2 that is the raw material of PW2 is heated and compressed in a direction perpendicular to the grid planes C1 and C2, and further held in the sealed internal space IS, and the vapor pressure in the held internal space IS Is controlled and fixed and then cooled. That is, the plastically processed woods PW1 and PW2 of the present embodiment are efficiently compressed and deformed, and are prevented from returning after being released from compression, bulging deformation, and surface cracks called puncture. Therefore, according to the plastic processed wood PW1 and PW2 of the present embodiment, high quality can be ensured and productivity is improved.

ところで、本発明を実施する場合には、塑性加工木材PW1,PW2を形成する加工前木材NW1,NW2として、間伐材、風害・水害・雪害・森林火災・凍害・虫害等の自然災害によって倒れたり芯割れを起こしたりして丸太の状態では使えなくなった傷害木材、端材等を用いることもできる。これによって、低コスト化を図ることができ、また、環境美化にも貢献することができる。   By the way, when practicing the present invention, the pre-processed woods NW1 and NW2 that form the plastically processed woods PW1 and PW2 may fall due to thinning materials, natural disasters such as wind damage, water damage, snow damage, forest fire, frost damage, insect damage, etc. Injured wood, scraps, etc. that can no longer be used in the state of logs due to core breakage can also be used. As a result, the cost can be reduced and the environment can be beautified.

なお、本発明の実施の形態で挙げている数値は、臨界値を示すものではなく、実施に好適な好適値を示すものであるから、上記数値を若干変更してもその実施を否定するものではない。   In addition, since the numerical value quoted in the embodiment of the present invention does not indicate a critical value but indicates a preferable value suitable for implementation, even if the numerical value is slightly changed, the implementation is denied. is not.

PW1,PW2 塑性加工木材
NW1,NW2 加工前木材
RL 年輪線
BL1,BL2 境界線
IS 内部空間
10 プレス盤
10A 上プレス盤
10B 下プレス盤
11 シール部材
PW1, PW2 Plastic processed wood NW1, NW2 Wood before processing RL Annual ring line BL1, BL2 Boundary line IS Internal space 10 Press panel 10A Upper press panel 10B Lower press panel 11 Seal member

Claims (1)

木材の厚み方向に対して加えた加熱圧縮力によって、前記木材が加熱圧縮されて塑性加工され、前記加熱圧縮された後の前記塑性加工された前記木材を大気中で乾燥して含水率15%の時の気乾比重を0.85以上とし、かつ、前記塑性加工された後の前記木材の木口面の全ての年輪線と、前記塑性加工された木材の裏側板目面または樹心側柾目面の面とがなす鋭角側の交差角度が45度以下の範囲内にあることを特徴とする塑性加工木材の製造方法。 The wood is heat-compressed and plastically processed by a heat-compressing force applied to the thickness direction of the wood, and the plastic-processed wood after the heat-compressed is dried in the air to have a moisture content of 15%. The air-drying specific gravity at that time is 0.85 or more, and all the annual ring lines of the lumber surface of the wood after the plastic working, and the back-side plate face or the tree-center side square of the plastic-worked wood A method for producing plastically processed wood, characterized in that an acute angle crossing angle formed by a surface is within a range of 45 degrees or less .
JP2011191397A 2011-09-02 2011-09-02 Method of manufacturing plastic-worked lumber Withdrawn JP2012000998A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011191397A JP2012000998A (en) 2011-09-02 2011-09-02 Method of manufacturing plastic-worked lumber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011191397A JP2012000998A (en) 2011-09-02 2011-09-02 Method of manufacturing plastic-worked lumber

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010127593A Division JP2011251485A (en) 2010-06-03 2010-06-03 Plastic processing wood

Publications (1)

Publication Number Publication Date
JP2012000998A true JP2012000998A (en) 2012-01-05

Family

ID=45533498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011191397A Withdrawn JP2012000998A (en) 2011-09-02 2011-09-02 Method of manufacturing plastic-worked lumber

Country Status (1)

Country Link
JP (1) JP2012000998A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016086658A1 (en) * 2014-12-02 2016-06-09 王凯 Device used for compacting softwood into hardwood
WO2019022111A1 (en) * 2017-07-26 2019-01-31 株式会社パームホルツ Precious wood-tone compacted material, and method for manufacturing same
JP2020100130A (en) * 2018-12-21 2020-07-02 凱 王 Non-bond compression method of hard wood by high frequency
JP2020100129A (en) * 2018-12-21 2020-07-02 凱 王 New model hard wood of non-bond compression by high frequency

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003236806A (en) * 2002-02-13 2003-08-26 Mywood 2 Kk Compact joint structure of plate material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003236806A (en) * 2002-02-13 2003-08-26 Mywood 2 Kk Compact joint structure of plate material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016086658A1 (en) * 2014-12-02 2016-06-09 王凯 Device used for compacting softwood into hardwood
WO2019022111A1 (en) * 2017-07-26 2019-01-31 株式会社パームホルツ Precious wood-tone compacted material, and method for manufacturing same
JPWO2019022111A1 (en) * 2017-07-26 2020-07-09 株式会社パームホルツ Meigeki consolidating material and its manufacturing method
JP2020100130A (en) * 2018-12-21 2020-07-02 凱 王 Non-bond compression method of hard wood by high frequency
JP2020100129A (en) * 2018-12-21 2020-07-02 凱 王 New model hard wood of non-bond compression by high frequency

Similar Documents

Publication Publication Date Title
JP5775825B2 (en) Surface-reinforced natural wood mold material and method for producing the same
WO2019235503A1 (en) Plastic working wood
CN103481348B (en) Integral reinforced solid wood section bar and manufacturing method thereof
CN108177209B (en) A kind of method of wood materials compression compact
JP2012000998A (en) Method of manufacturing plastic-worked lumber
JP2011183667A (en) Laminated plastically processed wood
WO2010072139A1 (en) Ultra thick bamboo-wood composite panel, ultra thick solid wood composite panel and manufacturing methods thereof
US20190255731A1 (en) Reconstituted wood panel with natural wood grain and manufacturing method thereof
WO2018143004A1 (en) Compound consolidated plywood
WO2017010005A1 (en) Woody laminated plate and method for manufacturing same
JP3940678B2 (en) Molded body made of wood and method for producing the molded body
JP5138080B2 (en) Plastic processed wood
JP2011251485A (en) Plastic processing wood
JP2011251486A (en) Laminate plastic worked timber
JP6164649B2 (en) Wood laminate, wood compacted laminate, and method for manufacturing wood compacted laminate
JP2012111129A (en) Laminated material
JP2012148506A (en) Laminated material
Feng et al. Effects of densification on low-density plantation species for cross-laminated timber
Li et al. Effect of hot pressing temperature on the density profile of compressed solid wood
JP2010173113A (en) Method for forming pattern in lumber, and pattern-imparted lumber
JP2022131290A (en) Laminated plasticity lumber
JP7072890B2 (en) Three-dimensional compaction wood
JP4580451B2 (en) Hard wood processing equipment
JP6448738B1 (en) Method for producing high-density wood laminate
JP6478179B1 (en) Manufacturing method of wooden building materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110928

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20120907

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20120921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20121026