JP2011529756A5 - - Google Patents

Download PDF

Info

Publication number
JP2011529756A5
JP2011529756A5 JP2011521559A JP2011521559A JP2011529756A5 JP 2011529756 A5 JP2011529756 A5 JP 2011529756A5 JP 2011521559 A JP2011521559 A JP 2011521559A JP 2011521559 A JP2011521559 A JP 2011521559A JP 2011529756 A5 JP2011529756 A5 JP 2011529756A5
Authority
JP
Japan
Prior art keywords
bone
osteoclast
osteoclasts
cells
patient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011521559A
Other languages
English (en)
Japanese (ja)
Other versions
JP2011529756A (ja
Filing date
Publication date
Priority claimed from DE102008036060A external-priority patent/DE102008036060A1/de
Application filed filed Critical
Publication of JP2011529756A publication Critical patent/JP2011529756A/ja
Publication of JP2011529756A5 publication Critical patent/JP2011529756A5/ja
Pending legal-status Critical Current

Links

JP2011521559A 2008-08-04 2009-08-04 骨を再建するための細胞ベースの方法及び手段 Pending JP2011529756A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102008036060.0 2008-08-04
DE102008036060A DE102008036060A1 (de) 2008-08-04 2008-08-04 Zellbasiertes Verfahren und Mittel zum Knochenaufbau
PCT/EP2009/060078 WO2010015619A2 (en) 2008-08-04 2009-08-04 Cell-based method and means for rebuilding bone

Publications (2)

Publication Number Publication Date
JP2011529756A JP2011529756A (ja) 2011-12-15
JP2011529756A5 true JP2011529756A5 (enExample) 2012-08-30

Family

ID=41279459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011521559A Pending JP2011529756A (ja) 2008-08-04 2009-08-04 骨を再建するための細胞ベースの方法及び手段

Country Status (5)

Country Link
US (1) US20110189289A1 (enExample)
EP (1) EP2318518A2 (enExample)
JP (1) JP2011529756A (enExample)
DE (1) DE102008036060A1 (enExample)
WO (1) WO2010015619A2 (enExample)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2013305947A1 (en) * 2012-08-20 2015-03-05 Boston Medical Center Corporation Assays, systems, and methods for obtaining personalized anabolic profiles
WO2014033325A1 (en) * 2012-09-03 2014-03-06 Universitätsspital Basel Rechtsdienst Cell-based activation of devitalized engineered grafts for tissue repair
EP2974753A1 (en) * 2014-07-18 2016-01-20 Institut National De La Sante Et De La Recherche Medicale (Inserm) Bone regenerating biomaterials with selected cells from peripheral blood

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1070757B1 (en) * 1998-04-08 2005-02-02 Shionogi & Co., Ltd. Methods for isolating osteoclast precursor cells and inducing the differentiation of the same into osteoclasts
JP2003507035A (ja) * 1999-08-13 2003-02-25 ユニバーシティー オブ ロチェスター 三次元バイオリアクターにおいて、骨髄から機能的な破骨細胞をエクスビボで産生する方法
WO2006128029A2 (en) * 2005-05-25 2006-11-30 University Of Virginia Patent Foundation Production of osteoclasts from adipose tissues
EP1996013A4 (en) * 2005-09-21 2010-03-10 Dask Technologies Llc METHODS AND COMPOSITIONS FOR FUNCTIONALITY OF ORGANS AND TISSUES

Similar Documents

Publication Publication Date Title
Ding et al. Chitosan/dextran hydrogel constructs containing strontium-doped hydroxyapatite with enhanced osteogenic potential in rat cranium
Wang et al. Smart, elastic, and nanofiber-based 3D scaffolds with self-deploying capability for osteoporotic bone regeneration
Wang et al. Citric acid enhances the physical properties, cytocompatibility and osteogenesis of magnesium calcium phosphate cement
Xin et al. Inorganic strengthened hydrogel membrane as regenerative periosteum
JP6957486B2 (ja) 植物及び真菌由来の脱細胞化された細胞壁構造並びに足場材料としてのその使用
Sun et al. Hydroxyapatite nanowire@ magnesium silicate core–shell hierarchical nanocomposite: Synthesis and application in bone regeneration
Dadhich et al. A simple approach for an eggshell-based 3D-printed osteoinductive multiphasic calcium phosphate scaffold
Thein-Han et al. Calcium phosphate cement with biofunctional agents and stem cell seeding for dental and craniofacial bone repair
Li et al. A conductive photothermal non-swelling nanocomposite hydrogel patch accelerating bone defect repair
Cui et al. Sustained delivery of BMP-2-related peptide from the true bone ceramics/hollow mesoporous silica nanoparticles scaffold for bone tissue regeneration
Betz et al. Macroporous hydrogels upregulate osteogenic signal expression and promote bone regeneration
Liu et al. Sustained release of magnesium ions mediated by a dynamic mechanical hydrogel to enhance BMSC proliferation and differentiation
CN103463675B (zh) 一种抗菌抗肿瘤骨科植入材料及其制备方法
US20130059382A1 (en) Biomedical materials for tissue engineering
Moses et al. Mesoporous silk-bioactive glass nanocomposites as drug eluting multifunctional conformal coatings for improving osseointegration and bactericidal properties of metal implants
Sumathra et al. In vivo assessment of a hydroxyapatite/κ-carrageenan–maleic anhydride–casein/doxorubicin composite-coated titanium bone implant
Liu et al. Magnesium ammonium phosphate composite cell-laden hydrogel promotes osteogenesis and angiogenesis in vitro
Ke et al. Enhancing the osteogenic capability of core–shell bilayered bioceramic microspheres with adjustable biodegradation
He et al. Rational design and fabrication of porous calcium–magnesium silicate constructs that enhance angiogenesis and improve orbital implantation
Yang et al. Double-cross-linked hydrogel with long-lasting underwater adhesion: enhancement of maxillofacial in situ and onlay bone retention
Liu et al. Encapsulation of mesenchymal stem cells in chitosan/β-glycerophosphate hydrogel for seeding on a novel calcium phosphate cement scaffold
Wu et al. Core–shell structured porous calcium phosphate bioceramic spheres for enhanced bone regeneration
Wu et al. Eggshell microparticle reinforced scaffolds for regeneration of critical sized cranial defects
Ma et al. Functionalized 3D hydroxyapatite scaffold by fusion peptides-mediated small extracellular vesicles of stem cells for bone tissue regeneration
Yu et al. Exogenous VEGF introduced by bioceramic composite materials promotes the restoration of bone defect in rabbits