JP2011528842A - Separator provided with porous coating layer, method for producing the same and electrochemical device provided with the same - Google Patents

Separator provided with porous coating layer, method for producing the same and electrochemical device provided with the same Download PDF

Info

Publication number
JP2011528842A
JP2011528842A JP2011518665A JP2011518665A JP2011528842A JP 2011528842 A JP2011528842 A JP 2011528842A JP 2011518665 A JP2011518665 A JP 2011518665A JP 2011518665 A JP2011518665 A JP 2011518665A JP 2011528842 A JP2011528842 A JP 2011528842A
Authority
JP
Japan
Prior art keywords
nonwoven fabric
separator
binder polymer
inorganic particles
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011518665A
Other languages
Japanese (ja)
Other versions
JP5384631B2 (en
Inventor
パク、ピル‐キュ
キム、ジョン‐フン
ホン、ジャン‐ヒュク
シン、ビャン‐ジン
キム、イン‐チュル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Chem Ltd
Original Assignee
LG Chem Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Chem Ltd filed Critical LG Chem Ltd
Publication of JP2011528842A publication Critical patent/JP2011528842A/en
Application granted granted Critical
Publication of JP5384631B2 publication Critical patent/JP5384631B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/42Acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/423Polyamide resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/429Natural polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本発明のセパレータは、多数の気孔を有する平面状の不織布基材;及び前記不織布基材の少なくとも一面に設けられており多数の無機物粒子及びバインダー高分子の混合物で形成された多孔性コーティング層を含むセパレータであって、前記不織布基材は、平均太さが0.5ないし10μmである極細糸から形成され、気孔の長径が0.1ないし70μmである気孔を、全体気孔数を基準にして50%以上含む。本発明によって多孔性コーティング層を備えたセパレータは、所定の太さの極細糸を用いて気孔サイズが制御された不織布基材を使うことで、多孔性コーティング層のローディング量を増加させないながらもリーク電流の発生を防止することができる。  The separator of the present invention comprises a planar nonwoven fabric substrate having a large number of pores; and a porous coating layer formed on a mixture of a large number of inorganic particles and a binder polymer provided on at least one surface of the nonwoven fabric substrate. The nonwoven fabric base material includes pores having an average thickness of 0.5 to 10 μm and a pore length of 0.1 to 70 μm based on the total number of pores. Contains 50% or more. A separator having a porous coating layer according to the present invention uses a non-woven substrate whose pore size is controlled by using an ultrafine thread of a predetermined thickness, and does not increase the loading amount of the porous coating layer. Generation of current can be prevented.

Description

本発明は、リチウム二次電池のような電気化学素子のセパレータ、その製造方法及びこれを備えた電気化学素子に関するものであって、より詳しくは、無機物粒子とバインダー高分子との混合物からなった多孔性コーティング層が不織布基材の少なくとも一面に形成されたセパレータとその製造方法及びこれを備えた電気化学素子に関する。   The present invention relates to a separator for an electrochemical element such as a lithium secondary battery, a method for producing the same, and an electrochemical element having the separator, and more specifically, a mixture of inorganic particles and a binder polymer. The present invention relates to a separator in which a porous coating layer is formed on at least one surface of a nonwoven fabric substrate, a method for producing the separator, and an electrochemical device including the separator.

最近エネルギー貯蔵技術に対する関心がますます高まっている。携帯電話、カムコーダー及びノートPC、ひいては電気自動車のエネルギーまで適用分野が拡大されるに伴い、電気化学素子の研究と開発に対する努力がますます具体化されている。電気化学素子はこのような面で最も注目されている分野であり、その中でも充・放電可能な二次電池の開発は関心の焦点になっており、最近にはこのような電池を開発するにあたって容量密度及び比エネルギーを向上させるために新しい電極と電池の設計に関する研究開発が行われている。   Recently, interest in energy storage technology is increasing. As the field of application expands to the energy of mobile phones, camcorders and notebook PCs, and eventually electric vehicles, efforts to research and develop electrochemical devices are becoming more and more concrete. Electrochemical devices are the field that has received the most attention in this respect, and the development of rechargeable batteries that can be charged and discharged has become the focus of interest. Research and development on new electrode and battery designs is underway to improve capacity density and specific energy.

現在適用されている二次電池の中で1990年代初に開発されたリチウム二次電池は、水溶液の電解液を用いるNi‐MH、Ni‐Cd、硫酸‐鉛電池などの従来の電池に比べて作動電圧が高くエネルギー密度が遥かに高いという長所により脚光を浴びている。しかし、このようなリチウムイオン電池は有機電解液を用いることによる発火及び爆発などの安全の問題があり、製造しにくい短所がある。最近のリチウムイオン高分子電池はこのようなリチウムイオン電池の短所を改善して次世代電池の一つとして挙げられているが、未だに電池の容量がリチウムイオン電池と比較して相対的に低く、特に低温での放電容量が不十分であって、これに対する改善が至急に求められている。   Among secondary batteries currently in use, lithium secondary batteries developed at the beginning of the 1990s are compared to conventional batteries such as Ni-MH, Ni-Cd, and sulfuric acid-lead batteries that use aqueous electrolyte. It is in the limelight due to its high operating voltage and much higher energy density. However, such a lithium ion battery has safety problems such as ignition and explosion caused by using an organic electrolyte, and has a disadvantage that it is difficult to manufacture. Recent lithium ion polymer batteries have been listed as one of the next generation batteries by improving the shortcomings of such lithium ion batteries, but the battery capacity is still relatively low compared to lithium ion batteries, In particular, the discharge capacity at low temperatures is insufficient, and an improvement to this is urgently required.

前記のような電気化学素子は多くのメーカで生産されているが、それらの安全性特性はそれぞれ異なる様相を見せる。このような電気化学素子の安全性評価及び安全性確保は非常に重要である。最も重要な考慮事項は電気化学素子が誤作動するとき使用者に傷害を負わせてはいけないということであり、このような目的で安全規格は電気化学素子の発火及び発煙などを厳格に規制している。電気化学素子の安全性特性において、電気化学素子が過熱されて熱暴走が起きるか又は分離膜が貫通される場合には、爆発を起こす恐れが大きい。特に、電気化学素子の分離膜として通常使われるポリオレフィン系多孔性基材は、材料的特性と延伸を含む製造工程上の特性によって100度以上の温度で激しい熱収縮挙動を見せることで、カソードとアノード間の短絡を起こすという問題点がある。   Although the electrochemical devices as described above are produced by many manufacturers, their safety characteristics are different from each other. It is very important to evaluate the safety and ensure the safety of such electrochemical devices. The most important consideration is that the user should not be injured when the electrochemical device malfunctions. For this purpose, the safety standard strictly controls the ignition and smoke of the electrochemical device. ing. In the safety characteristics of an electrochemical element, if the electrochemical element is overheated and thermal runaway occurs or the separation membrane is penetrated, there is a high risk of explosion. In particular, a polyolefin-based porous substrate usually used as a separation membrane for an electrochemical element exhibits a severe heat shrinkage behavior at a temperature of 100 ° C. or more due to material characteristics and manufacturing process characteristics including stretching. There is a problem of causing a short circuit between the anodes.

このような電気化学素子の安全性問題を解決するために、多数の気孔を有する多孔性基材の少なくとも一面に、無機物粒子とバインダー高分子との混合物をコートして多孔性コーティング層を形成したセパレータが提案された。例えば、特許文献1、特許文献2及び特許文献3には、多孔性基材上に無機物粒子とバインダー高分子との混合物で形成された多孔性コーティング層を設けたセパレータに関する技術が開示されている。   In order to solve the safety problem of such an electrochemical device, a porous coating layer is formed by coating a mixture of inorganic particles and a binder polymer on at least one surface of a porous substrate having a large number of pores. A separator was proposed. For example, Patent Document 1, Patent Document 2 and Patent Document 3 disclose a technique related to a separator provided with a porous coating layer formed of a mixture of inorganic particles and a binder polymer on a porous substrate. .

このような多孔性コーティング層が形成されたセパレータにおいて、多孔性基材として不織布を使用するときリーク電流(leak current)が発生してセパレータの絶縁性が低下する問題点が発生する恐れがある。リーク電流の発生を防止するために多孔性コーティング層のローディング量を増加させる場合、セパレータの厚さが厚くなるので、高容量の電池具現に適していない。   In a separator having such a porous coating layer, when a non-woven fabric is used as the porous base material, there is a possibility that a leakage current is generated and the insulation of the separator is lowered. When increasing the loading amount of the porous coating layer in order to prevent the occurrence of leakage current, the thickness of the separator increases, which is not suitable for realizing a high capacity battery.

したがって、多孔性コーティング層が設けられる不織布基材を最適に設計して、多孔性コーティング層のローディング量を増加させないながらもリーク電流の発生を防止する技術が求められている。   Accordingly, there is a need for a technique for optimally designing a nonwoven fabric substrate on which a porous coating layer is provided and preventing the occurrence of leakage current while not increasing the loading amount of the porous coating layer.

韓国特許公開第2007‐0019958号公報Korean Patent Publication No. 2007-0019958 日本特許公表第2005‐536857号公報Japanese Patent Publication No. 2005-536857 日本特許公開第1999‐080395号公報Japanese Patent Publication No. 1999-080395

したがって、本発明が解決しようとする課題は、多孔性コーティング層が設けられる不織布基材を最適に設計して、多孔性コーティング層のローディング量を増加させないながらもリーク電流の発生を防止したセパレータ及びその製造方法を提供することにある。   Therefore, the problem to be solved by the present invention is to optimize the nonwoven fabric substrate on which the porous coating layer is provided, and to prevent the occurrence of leakage current while not increasing the loading amount of the porous coating layer, and It is in providing the manufacturing method.

本発明が解決しようとする他の課題は、前述のセパレータを備えた高容量の電気化学素子を提供することにある。   Another problem to be solved by the present invention is to provide a high-capacity electrochemical device including the above-described separator.

前記課題を達成するために、本発明のセパレータは、多数の気孔を有する平面状の不織布基材;及び前記不織布基材の少なくとも一面に設けられており多数の無機物粒子及びバインダー高分子の混合物で形成された多孔性コーティング層を含むセパレータであって、前記不織布基材は、平均太さが0.5ないし10μmである極細糸から形成され、気孔の長径が0.1ないし70μm(マイクロメートル)である気孔を、全体気孔数を基準にして50%以上含む。   In order to achieve the above object, the separator of the present invention is a planar nonwoven fabric substrate having a large number of pores; and a mixture of a large number of inorganic particles and a binder polymer provided on at least one surface of the nonwoven fabric substrate. A separator including a formed porous coating layer, wherein the nonwoven fabric substrate is formed of ultrafine yarn having an average thickness of 0.5 to 10 μm, and a major diameter of pores is 0.1 to 70 μm (micrometer). Are contained in an amount of 50% or more based on the total number of pores.

本発明のセパレータにおいて、前記不織布基材の厚さは9ないし30μmであることが望ましい。また、前記不織布基材に対する多孔性コーティング層のローディング量は5ないし20g/mであることが望ましい。 In the separator of the present invention, the thickness of the nonwoven fabric substrate is preferably 9 to 30 μm. The loading amount of the porous coating layer on the nonwoven fabric substrate is preferably 5 to 20 g / m 2 .

前述のセパレータは平均太さが0.5ないし10μmである極細糸から形成され、気孔の長径が0.1ないし70μmである気孔を、全体気孔数を基準にして50%以上含む平面状の不織布基材を用意する段階;及び前記不織布基材の少なくとも一面に無機物粒子が分散されたバインダー高分子溶液をコートし乾燥させることで製造される。   The above-mentioned separator is a flat nonwoven fabric formed of ultrafine yarn having an average thickness of 0.5 to 10 μm and containing 50% or more of pores having a major axis of pores of 0.1 to 70 μm based on the total number of pores. Preparing a base material; and coating a binder polymer solution in which inorganic particles are dispersed on at least one surface of the non-woven fabric base material, followed by drying.

このような本発明のセパレータは、カソードとアノードとの間に介されてリチウム二次電子やスーパーキャパシター素子のような電気化学素子に利用できる。   Such a separator of the present invention can be used for an electrochemical device such as a lithium secondary electron or a supercapacitor device through a cathode and an anode.

本発明のセパレータは、多孔性コーティング層によって電気化学素子が過熱される場合にも多孔性コーティング層に存在する無機物粒子によってカソードとアノードとの間の短絡を抑制することができる。また、所定の太さの極細糸を用いて気孔サイズが制御された不織布基材を使うことで、多孔性コーティング層のローディング量を増加させないながらもリーク電流の発生を防止することができる。   The separator of this invention can suppress the short circuit between a cathode and an anode with the inorganic particle which exists in a porous coating layer, even when an electrochemical element is overheated by a porous coating layer. In addition, by using a nonwoven fabric base whose pore size is controlled using ultrafine yarn of a predetermined thickness, it is possible to prevent the occurrence of leakage current while not increasing the loading amount of the porous coating layer.

したがって、このようなセパレータを備えた電気化学素子は、熱安全性に優れているだけでなく、高容量が具現できる。   Therefore, the electrochemical device provided with such a separator not only has excellent thermal safety but also can realize a high capacity.

本発明の実施例1に使われた不織布基材のSEM写真である。It is a SEM photograph of the nonwoven fabric base material used for Example 1 of this invention. 図1の不織布基材に形成された気孔サイズの分布を示すグラフである。It is a graph which shows distribution of the pore size formed in the nonwoven fabric base material of FIG. 本発明の実施例1に従って形成されたセパレータの表面を撮影したSEM写真である。It is the SEM photograph which image | photographed the surface of the separator formed according to Example 1 of this invention. 比較例1に使われた不織布基材のSEM写真である。2 is a SEM photograph of a nonwoven fabric substrate used in Comparative Example 1. 図4の不織布基材に形成された気孔サイズの分布を示すグラフである。It is a graph which shows distribution of the pore size formed in the nonwoven fabric base material of FIG. 比較例2に使われた不織布基材のSEM写真である。4 is a SEM photograph of a nonwoven fabric substrate used in Comparative Example 2. 図6の不織布基材に形成された気孔サイズの分布を示すグラフである。It is a graph which shows distribution of the pore size formed in the nonwoven fabric base material of FIG. 比較例2に従って多孔性コーティング層のローディング量が0g/mである電池の充放電失敗プロファイルである。Loading weight of the porous coating layer according to Comparative Example 2 is charged and discharged failure profile of the battery is 0 g / m 2. 比較例1によって多孔性コーティング層のローディング量が20g/mを超えた電池のリーク電流プロファイルである。6 is a leakage current profile of a battery in which the loading amount of the porous coating layer exceeded 20 g / m 2 according to Comparative Example 1. 実施例1に従って多孔性コーティング層のローディング量が5〜20g/m及び20g/mを超えた電池の充放電パスプロファイルと、比較例2に従って多孔性コーティング層のローディング量が20g/mを超えた電池の充放電パスプロファイルである。The charge / discharge path profile of the battery in which the loading amount of the porous coating layer exceeded 5-20 g / m 2 and 20 g / m 2 according to Example 1, and the loading amount of the porous coating layer according to Comparative Example 2 was 20 g / m 2. It is the charging / discharging path profile of the battery exceeding this.

以下、本発明に対して詳しく説明する。これに先立って、本明細書及び請求範囲に使われた用語や単語は通常的や辞書的な意味に限定して解釈されてはいけず、発明者は自らの発明を最善の方法で説明するために用語の概念を適切に定義することができるという原則に則して、本発明の技術的思想に符合する意味と概念とに解釈されなければならない。従って、本明細書に記載された実施例と図面に示した構成は本発明の最も望ましい一実施例に過ぎず、本発明の技術的思想の全てを代弁するものではないため、本出願時点においてこれらに代替できる多様な均等物と変形例があり得ることを理解しなければならない。   Hereinafter, the present invention will be described in detail. Prior to this, the terms and words used in the specification and claims should not be construed in a normal or lexicographic sense, and the inventor will explain his invention in the best possible way. Therefore, in accordance with the principle that the concept of a term can be appropriately defined, it should be interpreted as a meaning and a concept consistent with the technical idea of the present invention. Therefore, the embodiment described in the present specification and the configuration shown in the drawings are only the most preferred embodiment of the present invention and do not represent all the technical ideas of the present invention. It should be understood that there are various equivalents and variations that can be substituted for these.

本発明のセパレータは、多数の気孔を有する平面状の不織布基材を備え、不織布基材は平均太さが0.5ないし10μm、望ましくは1ないし7μmである極細糸から形成される。平均太さが0.5μm未満である極細糸から形成された不織布は製造しにくいだけでなく、不織布の機械的物性が低下する。また、極細糸の平均太さが10μmを超えると、不織布の気孔サイズの制御が容易ではないので、後述するサイズ及び分布を有する気孔が形成しにくい。   The separator of the present invention comprises a planar nonwoven fabric substrate having a large number of pores, and the nonwoven fabric substrate is formed from ultrafine yarn having an average thickness of 0.5 to 10 μm, preferably 1 to 7 μm. Not only is it difficult to produce a nonwoven fabric formed from ultrafine yarn having an average thickness of less than 0.5 μm, but the mechanical properties of the nonwoven fabric are reduced. In addition, when the average thickness of the ultrafine yarn exceeds 10 μm, it is difficult to control the pore size of the nonwoven fabric, so that it is difficult to form pores having the size and distribution described later.

また、不織布基材は気孔の長径(気孔の最長直径)が0.1ないし70μmである気孔を、全体気孔数を基準にして50%以上含む。長径が0.1μm未満である気孔を多数有する不織布は製造しにくいだけでなく、これにより不織布の気孔度が低下してリチウムイオンの円滑な移動を部分的に妨害する恐れがある。気孔の長径が70μmを超えると、リーク電流による絶縁性低下の問題が発生しやすい。リーク電流の発生を防止するために多孔性コーティング層のローディング量を増加させる場合、セパレータの厚さが厚くなるので、高容量の電池具現が難しくなる。   Further, the nonwoven fabric substrate contains 50% or more of pores having a pore major diameter (longest pore diameter) of 0.1 to 70 μm based on the total number of pores. Not only is it difficult to produce a nonwoven fabric having a large number of pores having a major axis of less than 0.1 μm, but this may reduce the porosity of the nonwoven fabric and partially hinder the smooth movement of lithium ions. If the long diameter of the pores exceeds 70 μm, the problem of insulation deterioration due to leakage current tends to occur. When increasing the loading amount of the porous coating layer in order to prevent the occurrence of leakage current, the separator becomes thicker, so that it is difficult to implement a high capacity battery.

前述したサイズの気孔は不織布に存在する全体気孔数を基準にして50%以上含まれることで、不織布の構成及び気孔サイズを最適に設計するによる本発明の目的を達成することができる。   By including 50% or more of the pores of the above-mentioned size on the basis of the total number of pores existing in the nonwoven fabric, the object of the present invention can be achieved by optimally designing the configuration and pore size of the nonwoven fabric.

不織布基材を形成する極細糸は、ポリエチレン、ポリプロピレンなどのポリオレフィン、ポリエチレンテレフタレート、ポリブチレンテレフタレートなどのポリエステル、アラミドのようなポリアミド、ポリアセタール、ポリカーボネート、ポリイミド、ポリエーテルエーテルケトン、ポリエーテルスルホン、ポリフェニレンオキサイド、ポリフェニレンスルフィドロ、ポリエチレンナフタレンなどで形成することができるが、これに限定されない。特に、不織布基材の熱安全性を向上させるために、極細糸の溶融温度は200℃以上であることが望ましい。不織布基材の厚さは9ないし30μmであることが望ましい。   The ultra-fine yarns forming the nonwoven fabric substrate are polyolefins such as polyethylene and polypropylene, polyesters such as polyethylene terephthalate and polybutylene terephthalate, polyamides such as aramid, polyacetal, polycarbonate, polyimide, polyetheretherketone, polyethersulfone, and polyphenylene oxide. , Polyphenylene sulfide, polyethylene naphthalene, etc., but is not limited thereto. In particular, in order to improve the thermal safety of the nonwoven fabric substrate, the melting temperature of the ultrafine yarn is desirably 200 ° C. or higher. The thickness of the nonwoven fabric substrate is desirably 9 to 30 μm.

本発明のセパレータは、前述した不織布基材の少なくとも一面に多孔性コーティング層が設けられる。多孔性コーティング層は多数の無機物粒子及びバインダー高分子の混合物で形成される。多数の無機物粒子はバインダー高分子によって互いに連結され、無機物粒子の間には空隙が形成される。不織布基材に対する多孔性コーティング層のローディング量は5ないし20g/mであることが望ましく、ローディング量が5g/m未満である場合には、リーク電流が発生する恐れがあり、ローディング量が20g/mを超えると、セパレータの厚さが厚くなって高容量電池に対する適合性が低下する恐れがある。 In the separator of the present invention, a porous coating layer is provided on at least one surface of the above-described nonwoven fabric substrate. The porous coating layer is formed of a mixture of a large number of inorganic particles and a binder polymer. Many inorganic particles are connected to each other by a binder polymer, and voids are formed between the inorganic particles. The loading amount of the porous coating layer with respect to the nonwoven fabric substrate is desirably 5 to 20 g / m 2 , and if the loading amount is less than 5 g / m 2 , a leakage current may be generated. If it exceeds 20 g / m 2 , the thickness of the separator increases, and the compatibility with a high-capacity battery may be reduced.

本発明のセパレータにおいて、多孔性コーティング層の形成に使われる無機物粒子は電気化学的に安定していれば特に制限されない。すなわち、本発明で用いられる無機物粒子は、適用される電気化学素子の作動電圧範囲(例えは、Li/Li基準で0〜5V)で酸化及び/または還元反応が発生しないものであれば特に制限されない。特に、無機物粒子として誘電率が高い無機物粒子を用いる場合、液体電解質内の電解質塩、例えばリチウム塩の解離度増加に寄与して電解液のイオン伝導度を向上させることができる。 In the separator of the present invention, the inorganic particles used for forming the porous coating layer are not particularly limited as long as they are electrochemically stable. That is, the inorganic particles used in the present invention are not particularly limited as long as oxidation and / or reduction reactions do not occur in the operating voltage range of the applied electrochemical device (for example, 0 to 5 V on the basis of Li / Li + ). Not limited. In particular, when inorganic particles having a high dielectric constant are used as the inorganic particles, the ionic conductivity of the electrolytic solution can be improved by contributing to an increase in the dissociation degree of an electrolyte salt in the liquid electrolyte, for example, a lithium salt.

前述した理由より、前記無機物粒子としては、誘電率定数が5以上、望ましくは10以上である高誘電率無機物粒子を含むことが望ましい。誘電率定数が5以上である無機物粒子の非制限的な例としては、BaTiO、Pb(Zr,Ti)O(PZT)、Pb1−xLaZr1−yTi(PLZT)、Pb(MgNb2/3)O‐PbTiO(PMN‐PT)、hafnia(HfO)、SrTiO、SnO、CeO、MgO、NiO、CaO、ZnO、ZrO、Y、Al、TiO、SiCまたはこれらの混合体などがある。 For the reasons described above, the inorganic particles preferably include high dielectric constant inorganic particles having a dielectric constant of 5 or more, preferably 10 or more. Non-limiting examples of inorganic particles having a dielectric constant of 5 or more include BaTiO 3 , Pb (Zr, Ti) O 3 (PZT), Pb 1-x La x Zr 1-y Ti y O 3 (PLZT). ), Pb (Mg 3 Nb 2/3 ) O 3 -PbTiO 3 (PMN-PT), hafnia (HfO 2), SrTiO 3, SnO 2, CeO 2, MgO, NiO, CaO, ZnO, ZrO 2, Y 2 There are O 3 , Al 2 O 3 , TiO 2 , SiC, or a mixture thereof.

また、無機物粒子としては、リチウムイオン伝達能力を有する無機物粒子、すなわち、リチウム元素を含有するがリチウムを貯蔵せずにリチウムイオンを移動させる機能を有する無機物粒子を使うことができる。リチウムイオン伝達能力を有する無機物粒子の非制限的な例としては、リチウムフォスフェイト(LiPO)、リチウムチタンフォスフェイト(LiTi(PO、0<x<2、0<y<3)、リチウムアルミニウムチタンフォスフェイト(LiAlTi(PO、0<x<2、0<y<1、0<z<3)、14LiO‐9Al‐38TiO‐39Pなどのような(LiAlTiP)系列ガラス(0<x<4、0<y<13)、リチウムランタンチタネート(LiLaTiO、0<x<2、0<y<3)、Li3.25Ge0.250.75などのようなリチウムゲルマニウムチオフォスフェイト(LiGe、0<x<4、0<y<1、0<z<1、0<w<5)、LiNなどのようなリチウムナイトライド(Li、0<x<4、0<y<2)、LiPO‐LiS‐SiSなどのようなSiS系列ガラス(LiSi、0<x<3、0<y<2、0<z<4)、LiI‐LiS‐PなどのようなP系列ガラス(Li、0<x<3、0<y<3、0<z<7)またはこれらの混合物などがある。 Further, as the inorganic particles, inorganic particles having lithium ion transmission ability, that is, inorganic particles containing lithium element but having a function of moving lithium ions without storing lithium can be used. Non-limiting examples of inorganic particles having lithium ion transfer capability include lithium phosphate (Li 3 PO 4 ), lithium titanium phosphate (Li x Ti y (PO 4 ) 3 , 0 <x <2, 0 <. y <3), lithium aluminum titanium phosphate (Li x Al y Ti z ( PO 4) 3, 0 <x <2,0 <y <1,0 <z <3), 14Li 2 O-9Al 2 O 3 -38TiO 2 -39P 2 O 5, such as (LiAlTiP) x O y series glass (0 <x <4,0 <y <13), lithium lanthanum titanate (Li x La y TiO 3, 0 <x <2 , 0 <y <3), lithium germanium thiophosphates such as Li 3.25 Ge 0.25 P 0.75 S 4 (Li x Ge y P z S w , 0 <x <4, 0 <y <1, 0 <z <1, 0 <w <5), i 3 lithium nitride such as N (Li x N y, 0 <x <4,0 <y <2), SiS 2 series glasses, such as Li 3 PO 4 -Li 2 S- SiS 2 (Li x Si y S z, 0 < x <3,0 <y <2,0 <z <4), P 2 S 5 series glass such as LiI-Li 2 S-P 2 S 5 (Li x P y S z , 0 <x <3, 0 <y <3, 0 <z <7) or a mixture thereof.

本発明のセパレータにおいて、多孔性コーティング層の無機物粒子のサイズに制限はないが、均一な厚さのコーティング層形成及び適切な孔隙率のために、可能な限り0.001ないし10μm範囲であることが望ましい。0.001μm未満である場合、分散性が低下し得、10μmを超える場合、多孔性コーティング層の厚さが増加し得、また大きすぎる気孔のサイズにより電池の充・放電時に内部短絡が生じる確率が高くなる。   In the separator of the present invention, the size of the inorganic particles in the porous coating layer is not limited, but it should be in the range of 0.001 to 10 μm as much as possible in order to form a coating layer with a uniform thickness and appropriate porosity. Is desirable. If it is less than 0.001 μm, the dispersibility may decrease, and if it exceeds 10 μm, the thickness of the porous coating layer may increase, and the probability that an internal short circuit will occur during charging / discharging of the battery due to the too large pore size Becomes higher.

また、多孔性コーティング層に含有されるバインダー高分子としては、当業界で不織布基材に多孔性コーティング層を形成するのに通常使われる高分子を用いることができる。特に、ガラス転移温度(glass transition temperature, Tg)が−200ないし200℃である高分子を用いることが望ましく、これは最終的に形成される多孔性コーティング層の柔軟性及び弾性などのような機械的物性を向上させることができるからである。このようなバインダー高分子は無機物粒子の間または無機物粒子と不織布基材との間を連結及び安定的に固定させるバインダーの役割を果たす。   Moreover, as a binder polymer contained in the porous coating layer, a polymer usually used in the industry for forming a porous coating layer on a nonwoven fabric substrate can be used. In particular, it is desirable to use a polymer having a glass transition temperature (Tg) of −200 to 200 ° C., which is a mechanical property such as flexibility and elasticity of the finally formed porous coating layer. This is because the physical properties can be improved. Such a binder polymer serves as a binder for connecting and stably fixing the inorganic particles or between the inorganic particles and the nonwoven fabric substrate.

また、バインダー高分子は、イオン伝導能力を必ず持つ必要はないが、イオン伝導能力を持つ高分子を使う場合、電気化学素子の性能をさらに向上させることができる。従って、バインダー高分子は可能な限り誘電率定数が高いことが望ましい。実際に電解液で塩の解離度は電解液溶媒の誘電率定数に依存するので、バインダー高分子の誘電率定数が高いほど電解質での塩解離度を向上させることができる。このようなバインダー高分子の誘電率定数は、1.0ないし100(測定周波数=1kHz)の範囲が使用可能であり、特に10以上であることが望ましい。   In addition, the binder polymer does not necessarily have ion conduction ability, but when a polymer having ion conduction ability is used, the performance of the electrochemical element can be further improved. Therefore, it is desirable that the binder polymer has a dielectric constant as high as possible. Actually, the degree of salt dissociation in the electrolyte solution depends on the dielectric constant of the electrolyte solvent, and the higher the dielectric constant of the binder polymer, the higher the degree of salt dissociation in the electrolyte. The dielectric constant of such a binder polymer can be in the range of 1.0 to 100 (measurement frequency = 1 kHz), and is preferably 10 or more.

前述した機能以外に、バインダー高分子は、液体電解液含浸時にゲル化されることで高い電解液含浸率(degree of swelling)を現わす特徴を有し得る。従って、溶解度指数が15ないし45MPa1/2である高分子を使うことが望ましく、さらに望ましい溶解度指数は15ないし25MPa1/2及び30ないし45MPa1/2範囲である。従って、ポリオレフィン類のような疎水性高分子よりは極性基を多数有する親水性高分子を使うことが望ましい。溶解度指数が15MPa1/2未満及び45MPa1/2を超える場合、通常の電池用液体電解液によって含浸されにくいからである。 In addition to the functions described above, the binder polymer may have a characteristic of exhibiting a high degree of electrolyte impregnation by being gelled when impregnated with the liquid electrolyte. Accordingly, it is desirable to use a polymer having a solubility index of 15 to 45 MPa 1/2 , and more desirable solubility indexes are in the ranges of 15 to 25 MPa 1/2 and 30 to 45 MPa 1/2 . Therefore, it is desirable to use a hydrophilic polymer having a large number of polar groups rather than a hydrophobic polymer such as polyolefins. If solubility index exceeds 15 MPa 1/2 and less than 45 MPa 1/2, which not easily impregnated by conventional battery liquid electrolyte.

このような高分子の非制限的な例としては、ポリビニリデンフルオライド‐ヘキサフルオロプロピレン(polyvinylidene fluoride‐co‐hexafluoropropylene)、ポリビニリデンフルオライド‐トリクロロエチレン(polyvinylidene fluoride‐co‐trichloroethylene)、ポリメチルメタクリレート(polymethylmethacrylate)、ポリアクリロニトリル(polyacrylonitrile)、ポリビニルピロリドン(polyvinylpyrrolidone)、ポリビニルアセテート(polyvinylacetate)、エチレンビニルアセテート共重合体(polyethylene‐co‐vinyl acetate)、ポリエチレンオキサイド(polyethylene oxide)、セルロースアセテート(cellulose acetate)、セルロースアセテートブチレート(cellulose acetate butyrate)、セルロースアセテートプロピオネート(cellulose acetate propionate)、シアノエチルプルラン(cyanoethylpullulan)、シアノエチルポリビニルアルコール(cyanoethylpolyvinylalcohol)、シアノエチルセルロース(cyanoethylcellulose)、シアノエチルスクロース(cyanoethylsucrose)、プルラン(pullulan)、カルボキシルメチルセルロース(carboxylmethyl cellulose)などを挙げることができる。   Non-limiting examples of such polymers include polyvinylidene fluoride-hexafluoropropylene (polyvinylidene fluoride-co-hexafluoropropylene), polyvinylidene fluoride-trichloroethylene (polyvinylidene fluoride-co-trichloroethylene methacrylate, polymethylmethacrylate, polyacrylonitrile, poly (vinylpyrrolidone), poly (vinyl acetate), poly (ethylene-co-vinyl) copolymer. tate, polyethylene oxide, cellulose acetate, cellulose acetate butyrate, cellulose acetate propionate, cyanoethylpolybutyl alcohol , Cyanoethyl cellulose, cyanoethyl sucrose, pullulan, carboxymethyl cellulose (carbox) lmethyl cellulose) and the like.

本発明によって不織布基材にコートされた多孔性コーティング層の無機物粒子とバインダー高分子との組成比は、例えば50:50ないし99:1の範囲が望ましく、さらに望ましくは70:30ないし95:5である。バインダー高分子に対する無機物粒子の含量比が50:50未満である場合、高分子の含量が多すぎて多孔性コーティング層の気孔サイズ及び気孔度が減少し得る。無機物粒子の含量が99重量部を超える場合には、バインダー高分子の含量が少なすぎるので多孔性コーティング層の耐剥離性が弱化され得る。多孔性コーティング層の気孔サイズ及び気孔度に特に制限はないが、気孔サイズは0.001ないし10μm範囲が望ましく、気孔度は10ないし90%範囲が望ましい。気孔サイズ及び気孔度は主に無機物粒子のサイズに依存するが、例えば粒径が1μm以下である無機物粒子を用いる場合形成される気孔も約1μm以下を示すことになる。このような気孔構造は後で注入される電解液で充填されることになり、このように充填された電解液はイオン伝達の役割を果たすことになる。気孔サイズ及び気孔度がそれぞれ0.001μm及び10%未満である場合抵抗層として作用し得、気孔サイズ及び気孔度が10μm及び90%をそれぞれ超える場合には機械的物性が低下し得る。   The composition ratio of the inorganic particles and the binder polymer in the porous coating layer coated on the nonwoven fabric substrate according to the present invention is preferably in the range of 50:50 to 99: 1, and more preferably 70:30 to 95: 5. It is. When the content ratio of the inorganic particles to the binder polymer is less than 50:50, the polymer content is too high, and the pore size and porosity of the porous coating layer may be reduced. When the content of the inorganic particles exceeds 99 parts by weight, the peel resistance of the porous coating layer can be weakened because the content of the binder polymer is too small. The pore size and porosity of the porous coating layer are not particularly limited, but the pore size is preferably in the range of 0.001 to 10 μm, and the porosity is preferably in the range of 10 to 90%. The pore size and porosity mainly depend on the size of the inorganic particles. For example, when inorganic particles having a particle size of 1 μm or less are used, the formed pores also show about 1 μm or less. Such a pore structure will be filled with an electrolyte to be injected later, and the electrolyte thus filled will play a role of ion transfer. When the pore size and porosity are less than 0.001 μm and less than 10%, respectively, it can act as a resistance layer, and when the pore size and porosity exceed 10 μm and 90%, respectively, mechanical properties can be lowered.

本発明のセパレータは、多孔性コーティング層の成分として前述の無機物粒子及び高分子以外に、その他添加剤をさらに含み得る。   The separator of the present invention may further contain other additives in addition to the aforementioned inorganic particles and polymer as components of the porous coating layer.

本発明によるセパレータの望ましい製造方法を下記に例示するが、これに限定されるのではない。   Although the desirable manufacturing method of the separator by this invention is illustrated below, it is not limited to this.

まず、平均太さが0.5ないし10μmである極細糸から形成され、気孔の長径が0.1ないし70μmである気孔を、全体気孔数を基準にして50%以上含む平面状の不織布基材を用意する。このような構成を有する不織布は極細糸を紡糸するノズルの直径と紡糸密度などを調節して製造することができる。   First, a planar nonwoven fabric base material comprising 50% or more of pores having an average thickness of 0.5 to 10 μm and pores having a major diameter of 0.1 to 70 μm based on the total number of pores Prepare. Nonwoven fabrics having such a configuration can be manufactured by adjusting the diameter and spinning density of nozzles for spinning ultrafine yarns.

次いで、前記不織布基材の少なくとも一面に無機物粒子が分散されたバインダー高分子溶液をコートし乾燥させてセパレータを製造する。   Next, a separator is manufactured by coating and drying a binder polymer solution in which inorganic particles are dispersed on at least one surface of the nonwoven fabric substrate.

無機物粒子が分散されたバインダー高分子溶液は、バインダー高分子を溶媒に溶解させてバインダー高分子溶液を製造した後、これに無機物粒子を添加して分散させることで製造することができる。溶媒としては使用しようとするバインダー高分子に溶解度指数が類似し、沸点が低いものが望ましい。これは、均一な混合及びその後の溶媒除去を容易にするためである。使用可能な溶媒の非制限的な例としては、アセトン(acetone)、テトラヒドロフラン(tetrahydrofuran)、塩化メチレン(methylene chloride)、クロロホルム(chloroform)、ジメチルホルムアミド(dimethylformamide)、N‐メチル‐2‐ピロリドン(N‐methyl‐2‐pyrrolidone、NMP)、シクロヘキサン(cyclohexane)、水またはこれらの混合体などがある。バインダー高分子溶液に無機物粒子を添加した後、無機物粒子を破砕することが望ましい。このとき、破砕時間は1ないし20時間が適切であり、破砕された無機物粒子の粒度は前述したように0.001ないし10μmが望ましい。破砕方法としては通常の方法を使うことができ、特にボールミル法が望ましい。   The binder polymer solution in which the inorganic particles are dispersed can be produced by dissolving the binder polymer in a solvent to produce a binder polymer solution, and then adding and dispersing the inorganic particles. A solvent having a solubility index similar to that of the binder polymer to be used and a low boiling point is desirable. This is to facilitate uniform mixing and subsequent solvent removal. Non-limiting examples of solvents that can be used include acetone, tetrahydrofuran, methylene chloride, chloroform, dimethylformamide, N-methyl-2-pyrrolidone (N -Methyl-2-pyrrolidone (NMP), cyclohexane, water or mixtures thereof. It is desirable to crush the inorganic particles after adding the inorganic particles to the binder polymer solution. At this time, the crushing time is appropriately 1 to 20 hours, and the particle size of the crushed inorganic particles is preferably 0.001 to 10 μm as described above. A normal method can be used as the crushing method, and the ball mill method is particularly desirable.

無機物粒子が分散されたバインダー高分子の溶液を、例えば、10ないし80%の湿度条件下で不織布基材にコートし乾燥させるとき、当業界に知られた通常のコーティング方法を使うことができる。例えば、ディップ(dip)コーティング、ダイ(die)コーティング、ロール(roll)コーティング、コンマ(comma)コーティング、またはこれらの混合方式など多様な方式を用いることができる。また、多孔性コーティング層は不織布基材の両面または一面にのみ選択的に形成することができる。このようなコーティング方法に従って形成された多孔性コーティング層は不織布基材の表面は勿論、不織布基材の特性上、その内部にも一部存在することになる。   For example, when a non-woven substrate is coated with a solution of a binder polymer in which inorganic particles are dispersed and dried under a humidity condition of 10 to 80%, a normal coating method known in the art can be used. For example, various methods such as a dip coating, a die coating, a roll coating, a comma coating, or a mixture thereof may be used. Further, the porous coating layer can be selectively formed only on both sides or one side of the nonwoven fabric substrate. The porous coating layer formed in accordance with such a coating method is partially present not only on the surface of the nonwoven fabric substrate but also on the inside thereof due to the properties of the nonwoven fabric substrate.

このような本発明のセパレータはカソードとアノードとの間に介されて電気化学素子として製造される。このとき、液体電解液の含浸時にゲル化可能な高分子をバインダー高分子成分として使う場合、前記セパレータを利用して電池を組み立ててから注入された電解液と高分子とが反応してゲル化され得る。   Such a separator of the present invention is manufactured as an electrochemical element through a cathode and an anode. At this time, when a polymer that can be gelled at the time of impregnation with the liquid electrolyte is used as a binder polymer component, the electrolyte and polymer injected after the battery is assembled using the separator react to gel. Can be done.

本発明の電気化学素子は電気化学反応をする全ての素子を含み、具体的に例を挙げれば、全ての種類の一次、二次電池、燃料電池、太陽電池、またはスーパーキャパシタ素子のようなキャパシタ(capacitor)などがある。特に、前記二次電池の中で、リチウム金属二次電池、リチウムイオン二次電池、リチウムポリマー二次電池、またはリチウムイオンポリマー二次電池などを含むリチウム二次電池が望ましい。   The electrochemical element of the present invention includes all elements that undergo an electrochemical reaction. For example, all types of capacitors such as primary, secondary batteries, fuel cells, solar cells, or supercapacitor elements (Capacitor). In particular, among the secondary batteries, lithium secondary batteries including lithium metal secondary batteries, lithium ion secondary batteries, lithium polymer secondary batteries, or lithium ion polymer secondary batteries are preferable.

本発明のセパレータと共に使用される電極は、特に制限されず、当業界に知られた通常の方法に従って電極活物質を電極電流集電体に結着させた形態で製造することができる。前記電極活物質の中でカソード活物質の非制限的な例としては、従来電気化学素子のカソードとして用いられる通常のカソード活物質が使用可能であり、特にリチウムマンガン酸化物、リチウムコバルト酸化物、リチウムニッケル酸化物、リチウム鉄酸化物またはこれらを組み合わせたリチウム複合酸化物を用いることが望ましい。アノード活物質の非制限的な例としては、従来電気化学素子のアノードとして用いられる通常のアノード活物質が使用可能であり、特にリチウム金属またはリチウム合金、炭素、石油コーク(petroleum coke)、活性化炭素(activated carbon)、グラファイト(graphite)またはその他炭素類などのようなリチウム吸着物質などが望ましい。カソード電流集電体の非制限的な例としては、アルミニウム、ニッケルまたはこれらの組み合わせによって製造されるホイルなどがあり、アノード電流集電体の非制限的な例としては、銅、金、ニッケルまたは銅合金、もしくはこれらの組み合わせによって製造されるホイルなどがある。   The electrode used together with the separator of the present invention is not particularly limited, and can be produced in a form in which an electrode active material is bound to an electrode current collector according to a usual method known in the art. Among the electrode active materials, as a non-limiting example of the cathode active material, a conventional cathode active material conventionally used as a cathode of an electrochemical device can be used, particularly lithium manganese oxide, lithium cobalt oxide, It is desirable to use lithium nickel oxide, lithium iron oxide, or a lithium composite oxide combining these. As a non-limiting example of the anode active material, a conventional anode active material conventionally used as an anode of an electrochemical element can be used, and in particular, lithium metal or lithium alloy, carbon, petroleum coke, activation Lithium adsorbents such as activated carbon, graphite or other carbons are desirable. Non-limiting examples of cathode current collectors include foils made from aluminum, nickel or combinations thereof, and non-limiting examples of anode current collectors include copper, gold, nickel or There are foils manufactured from copper alloys or combinations thereof.

本発明で用いることができる電解液はAのような構造の塩であり、AはLi、Na、Kのようなアルカリ金属陽イオン、またはこれらの組み合わせからなるイオンを含み、BはPF 、BF 、Cl、Br、I、ClO 、AsF 、CHCO 、CFSO 、N(CFSO 、C(CFSO のような陰イオン、またはこれらの組み合わせからなるイオンを含む塩が、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、ジプロピルカーボネート(DPC)、ジメチルスルホキシド、アセトニトリル、ジメトキシエタン、ジエトキシエタン、テトラヒドロフラン、N‐メチル‐2‐ピロリドン(NMP)、エチルメチルカーボネート(EMC)、ガンマブチロラクトン(γ‐ブチロラクトン)、またはこれらの混合物からなる有機溶媒に溶解または解離されたものがあるが、これに限定されるのではない。 The electrolyte that can be used in the present invention is a salt having a structure such as A + B , and A + is an ion composed of an alkali metal cation such as Li + , Na + , K + , or a combination thereof. B is PF 6 , BF 4 , Cl , Br , I , ClO 4 , AsF 6 , CH 3 CO 2 , CF 3 SO 3 , N (CF 3 SO 2 ) 2 -, C (CF 2 sO 2 ) 3 - anions or salt, propylene carbonates containing ions a combination thereof, such as (PC), ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate ( DMC), dipropyl carbonate (DPC), dimethyl sulfoxide, acetonitrile, dimethoxyethane, diethoxyethane, tetrahydro Examples include, but are not limited to, those dissolved or dissociated in organic solvents consisting of orchid, N-methyl-2-pyrrolidone (NMP), ethyl methyl carbonate (EMC), gamma butyrolactone (γ-butyrolactone), or mixtures thereof. It is not done.

前記電解液の注入は最終製品の製造工程及び要求物性に応じて、電池製造工程の中で適切な段階で行うことができる。すなわち、電池組立ての前または電池組立ての最終段階などに適用することができる。   The electrolyte can be injected at an appropriate stage in the battery manufacturing process according to the manufacturing process and required physical properties of the final product. That is, the present invention can be applied before battery assembly or at the final stage of battery assembly.

本発明のセパレータを電池に適用する工程としては、一般的な工程である巻取り(winding)以外にも、セパレータと電極の積層(lamination、stack)及び折り畳み(folding)工程が可能である。   As a process of applying the separator of the present invention to a battery, in addition to a general process of winding, there can be a lamination and stacking process of a separator and an electrode and a folding process.

以下、本発明を具体的に説明するために実施例を挙げて詳しく説明する。しかし、本発明による実施例は多くの形態に変形でき、本発明の範囲が後述する実施例に限定されると解釈されてはいけない。本発明の実施例は、当業界において通常の知識を持つ者に本発明をより完全に説明するために提供されるものである。   Hereinafter, the present invention will be described in detail with reference to examples. However, the embodiments according to the present invention can be modified in many forms, and the scope of the present invention should not be construed to be limited to the embodiments described later. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the concept of the invention to those skilled in the art.

実施例1
セパレータの製造
PVdF−CTFE(ポリビニリデンフルオライド‐クロロトリフルオロエチレン共重合体)及びシアノエチルプルランを10:2の重量比でそれぞれアセトンに添加し、50℃で約12時間以上溶解させて高分子溶液を製造した。製造したバインダー高分子溶液にBaTiO粉末をバインダー高分子/BaTiO=10/90重量比になるように添加し、12時間以上ボールミル法を利用してBaTiO粉末を破砕及び分散してスラリーを製造した。このように製造されたスラリーのBaTiO粒径はボールミルで使われるビーズのサイズ(粒度)及びボールミル時間によって制御することができるが、本実施例1では約400nmに粉砕してスラリーを製造した。このように製造されたスラリーをディップコーティング法で、厚さ12μmのポリエチレンテレフタレートの不織布にローディング量を変化させながらコートした。使われた不織布は平均太さが約3μmである極細糸からなり(図1参照)、図2に示すように、長径が70μm未満である気孔が100%であるものを使った。本発明において、不織布基材を構成する極細糸の平均太さはSEM写真を用いて測定し、気孔の長径サイズ及び気孔分布による気孔数はASTM F316に従って測定した。
Example 1
Manufacture of separator PVdF-CTFE (polyvinylidene fluoride-chlorotrifluoroethylene copolymer) and cyanoethyl pullulan were added to acetone at a weight ratio of 10: 2, respectively, and dissolved at 50 ° C. for about 12 hours or more to obtain a polymer solution. Manufactured. BaTiO 3 powder is added to the produced binder polymer solution so that the binder polymer / BaTiO 3 = 10/90 weight ratio, and the slurry is obtained by crushing and dispersing the BaTiO 3 powder using the ball mill method for 12 hours or more. Manufactured. The BaTiO 3 particle size of the slurry thus produced can be controlled by the size (particle size) of the beads used in the ball mill and the ball mill time. In Example 1, the slurry was pulverized to about 400 nm. The slurry thus produced was coated on a 12 μm thick polyethylene terephthalate nonwoven fabric by dip coating while changing the loading amount. The non-woven fabric used was made of ultrafine yarn having an average thickness of about 3 μm (see FIG. 1), and as shown in FIG. 2, a material having a major axis of less than 70 μm and 100% pores was used. In the present invention, the average thickness of the ultrafine yarn constituting the nonwoven fabric substrate was measured using an SEM photograph, and the pore size due to the pore size and pore distribution was measured according to ASTM F316.

図3は、製造されたセパレータの表面を撮影した写真である。   FIG. 3 is a photograph of the surface of the manufactured separator.

アノードの製造
アノード活物質として炭素粉末、結合剤としてポリビニリデンフルオライド(PVdF)、導電材としてカーボンブラック(carbon black)をそれぞれ96重量%、3重量%、1重量%にして、溶剤であるN‐メチル‐2‐ピロリドン(NMP)に添加してアノード活物質スラリーを製造した。前記アノード活物質スラリーを厚さが10μmであるアノード集電体である銅(Cu)薄膜に塗布、乾燥してアノードを製造した後、ロールプレスを行った。
Production of Anode Carbon powder as anode active material, polyvinylidene fluoride (PVdF) as binder, carbon black as conductive material to 96 wt%, 3 wt% and 1 wt%, respectively, as solvent N An anode active material slurry was prepared by adding to -methyl-2-pyrrolidone (NMP). The anode active material slurry was applied to a copper (Cu) thin film as an anode current collector having a thickness of 10 μm and dried to produce an anode, followed by roll pressing.

カソードの製造
カソード活物質としてリチウムコバルト複合酸化物92重量%、導電材としてカーボンブラック4重量%、結合剤としてPVdF4重量%を溶剤であるN‐メチル‐2‐ピロリドン(NMP)に添加してカソード混合物スラリーを製造した。前記カソード混合物スラリーを、厚さが20μmであるカソード集電体であるアルミニウム(Al)薄膜に塗布、乾燥してカソードを製造した後、ロールプレスを行った。
Production of cathode Cathode was prepared by adding 92% by weight of lithium cobalt composite oxide as a cathode active material, 4% by weight of carbon black as a conductive material, and 4% by weight of PVdF as a binder to N-methyl-2-pyrrolidone (NMP) as a solvent. A mixture slurry was produced. The cathode mixture slurry was applied to an aluminum (Al) thin film, which is a cathode current collector having a thickness of 20 μm, and dried to produce a cathode, followed by roll pressing.

電池の製造
以上製造された電極及びセパレータを利用して電池を製造した。
Batteries were manufactured using electrodes and separators manufactured above.

電池の製造は、アノード、カソード及び多孔性有/無機複合セパレータをスタッキング(stacking)方式で組み立て、組み立てられた電池に電解液(エチレンカーボネート(EC)/エチルメチルカーボネート(EMC)=1/2(体積比)、リチウムヘキサフルオロフォスフェイト(LiPF)1モル)を注入した。 The battery is manufactured by assembling an anode, a cathode, and a porous organic / inorganic composite separator in a stacking manner, and an electrolyte (ethylene carbonate (EC) / ethyl methyl carbonate (EMC) = 1/2 ( Volume ratio), lithium hexafluorophosphate (LiPF 6 ) 1 mol) was injected.

比較例1
図4及び図5に示すように、不織布基材として平均太さが約20μmである極細糸からなり、長径が70μmを超える気孔が100%であるものを使ったことを除いては、実施例1と同一の方法で電池を製造した。
Comparative Example 1
As shown in FIG. 4 and FIG. 5, an example was used except that the nonwoven fabric base material was made of ultrafine yarn having an average thickness of about 20 μm and the pores having a major axis exceeding 70 μm were 100%. A battery was produced in the same manner as in Example 1.

比較例2
図6及び図7に示すように、不織布基材として平均太さが約10μmである極細糸からなり、長径が70μm未満である気孔が約10%であるものを使ったことを除いては、実施例1と同一の方法で電池を製造した。
Comparative Example 2
As shown in FIG. 6 and FIG. 7, except that a nonwoven fabric base material composed of ultrafine yarn having an average thickness of about 10 μm and a pore having a major axis of less than 70 μm is about 10% is used. A battery was produced in the same manner as in Example 1.

以上で製造した電池に対して充放電テストを実施し、その結果を表1に示す。

Figure 2011528842
A charge / discharge test was performed on the battery manufactured as described above, and the results are shown in Table 1.
Figure 2011528842

図8は、比較例2に従って多孔性コーティング層のローディング量が0g/mである電池の充放電失敗プロファイルであり、図9は、比較例1によって多孔性コーティング層のローディング量が20g/mを超えた電池のリーク電流プロファイルである。一方、図10には、実施例1に従って多孔性コーティング層のローディング量が5〜20g/m及び20g/mを超えた電池の充放電パスプロファイルと、比較例2に従って多孔性コーティング層のローディング量が20g/mを超えた電池の充放電パスプロファイルとを同時に図示した。 Figure 8 is a discharge failure profile of the battery loading weight of the porous coating layer is 0 g / m 2 according to Comparative Example 2, FIG. 9, loading weight of the porous coating layer in Comparative Example 1 20 g / m 2 is a leakage current profile of a battery exceeding 2 . On the other hand, in FIG. 10, according to example 1 loading weight of the porous coating layer and the charge and discharge path profile of the battery in excess of 5 to 20 g / m 2 and 20 g / m 2, the porous coating layer according to Comparative Example 2 The charge / discharge path profile of the battery having a loading amount exceeding 20 g / m 2 is shown at the same time.

Claims (15)

セパレータであって、
多数の気孔を有する平面状の不織布基材と;及び
前記不織布基材の少なくとも一面に設けられており多数の無機物粒子及びバインダー高分子の混合物で形成された多孔性コーティング層とを備えてなり、
前記不織布基材が、
平均太さが0.5ないし10μmである極細糸から形成されてなり、
気孔の長径が0.1ないし70μmである気孔を、全体気孔数を基準にして50%以上含んでなる、セパレータ。
A separator,
A planar nonwoven fabric substrate having a large number of pores; and a porous coating layer provided on at least one surface of the nonwoven fabric substrate and formed of a mixture of a large number of inorganic particles and a binder polymer,
The nonwoven fabric substrate is
Formed from ultrafine yarn having an average thickness of 0.5 to 10 μm,
A separator comprising 50% or more of pores having a major axis of 0.1 to 70 μm based on the total number of pores.
前記極細糸の平均太さが、1ないし7μmである、請求項1に記載のセパレータ。   The separator according to claim 1, wherein an average thickness of the ultrafine yarn is 1 to 7 µm. 前記極細糸の溶融温度が、200℃以上である、請求項1に記載のセパレータ。   The separator according to claim 1, wherein a melting temperature of the ultrafine yarn is 200 ° C or higher. 前記極細糸が、ポリエステル、ポリアセタール、ポリアミド、ポリカーボネート、ポリイミド、ポリエーテルエーテルケトン、ポリエーテルスルホン、ポリフェニレンオキサイド、ポリフェニレンスルフィドロ及びポリエチレンナフタレンからなる群より選択された何れか一種の高分子またはこれらの 二種以上の混合物で形成されてなるものである、請求項1に記載のセパレータ。   The ultrafine yarn is any one kind of polymer selected from the group consisting of polyester, polyacetal, polyamide, polycarbonate, polyimide, polyether ether ketone, polyether sulfone, polyphenylene oxide, polyphenylene sulfide, and polyethylene naphthalene, or two of these polymers. The separator according to claim 1, which is formed of a mixture of seeds or more. 前記不織布基材の厚さが、9ないし30μmである、請求項1に記載のセパレータ。   The separator according to claim 1, wherein the nonwoven fabric substrate has a thickness of 9 to 30 μm. 前記不織布基材に対する多孔性コーティング層のローディング量が、5ないし20g/mである、請求項1に記載のセパレータ。 Loading weight of the porous coating layer with respect to the nonwoven fabric substrate is a to no 5 20 g / m 2, the separator according to claim 1. 前記多孔性コーティング層の無機物粒子とバインダー高分子との重量比が50:50ないし99:1である、請求項1に記載のセパレータ。   The separator according to claim 1, wherein the weight ratio of the inorganic particles and the binder polymer in the porous coating layer is 50:50 to 99: 1. 前記無機物粒子の平均粒径が、0.001ないし10μmである、請求項1に記載のセパレータ。   The separator according to claim 1, wherein an average particle diameter of the inorganic particles is 0.001 to 10 µm. 前記バインダー高分子が、溶解度指数が15ないし45MPa1/2である、請求項1に記載のセパレータ。 The separator according to claim 1, wherein the binder polymer has a solubility index of 15 to 45 MPa 1/2 . 前記バインダー高分子が、ポリビニリデンフルオライド‐ヘキサフルオロプロピレン、ポリビニリデンフルオライド‐トリクロロエチレン、ポリメチルメタクリレート、ポリアクリロニトリル、ポリビニルピロリドン、ポリビニルアセテート、エチレンビニルアセテート共重合体、ポリエチレンオキサイド、セルロースアセテート、セルロースアセテートブチレート、セルロースアセテートプロピオネート、シアノエチルプルラン、シアノエチルポリビニルアルコール、シアノエチルセルロース、シアノエチルスクロース、プルラン及びカルボキシルメチルセルロースからなる群より選択された何れか一種のバインダー高分子またはこれらの二種以上の混合物である、請求項1に記載のセパレータ。   The binder polymer is polyvinylidene fluoride-hexafluoropropylene, polyvinylidene fluoride-trichloroethylene, polymethyl methacrylate, polyacrylonitrile, polyvinyl pyrrolidone, polyvinyl acetate, ethylene vinyl acetate copolymer, polyethylene oxide, cellulose acetate, cellulose acetate. Any one binder polymer selected from the group consisting of butyrate, cellulose acetate propionate, cyanoethyl pullulan, cyanoethyl polyvinyl alcohol, cyanoethyl cellulose, cyanoethyl sucrose, pullulan and carboxymethyl cellulose, or a mixture of two or more of these. The separator according to claim 1. 平均太さが0.5ないし10μmである極細糸から形成され、気孔の長径が0.1ないし70μmである気孔を、全体気孔数を基準にして50%以上含む平面状の不織布基材を用意する段階と;及び
前記不織布基材の少なくとも一面に無機物粒子が分散されたバインダー高分子溶液をコートし乾燥させる段階とを含んでなる、請求項1に記載のセパレータの製造方法。
A flat nonwoven fabric base material is prepared which is formed from ultrafine yarn having an average thickness of 0.5 to 10 μm and contains 50% or more pores having a major axis of pores of 0.1 to 70 μm based on the total number of pores. And a step of coating and drying a binder polymer solution in which inorganic particles are dispersed on at least one surface of the nonwoven fabric substrate.
前記不織布基材に対する無機物粒子とバインダー高分子とのローディング量が5ないし20g/mになるように調節されてなる、請求項11に記載のセパレータの製造方法。 It said to have no 5 loading amount of the inorganic particles and the binder polymer for the non-woven fabric substrate formed by adjusted to 20 g / m 2, a manufacturing method of a separator according to claim 11. 前記無機物粒子が分散されたバインダー高分子溶液内の無機物粒子とバインダー高分子との重量比を50:50ないし99:1に調節してなる、請求項11に記載のセパレータの製造方法。   The method for producing a separator according to claim 11, wherein the weight ratio of the inorganic particles and the binder polymer in the binder polymer solution in which the inorganic particles are dispersed is adjusted to 50:50 to 99: 1. 電気化学素子であって、
カソードと、アノードと、前記カソードとアノードとの間に介されたセパレータとを備えてなり、
前記セパレータが請求項1に記載のセパレータである、電気化学素子。
An electrochemical element,
A cathode, an anode, and a separator interposed between the cathode and the anode,
An electrochemical element, wherein the separator is the separator according to claim 1.
前記電気化学素子が、リチウム二次電池である、請求項14に記載の電気化学素子。   The electrochemical device according to claim 14, wherein the electrochemical device is a lithium secondary battery.
JP2011518665A 2008-08-25 2009-08-21 Separator provided with porous coating layer, method for producing the same, and electrochemical device provided with the same Active JP5384631B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR20080082978 2008-08-25
KR10-2008-0082978 2008-08-25
PCT/KR2009/004682 WO2010024559A2 (en) 2008-08-25 2009-08-21 Separator furnished with porous coating layer, method of manufacturing same, and electrochemical device furnished therewith

Publications (2)

Publication Number Publication Date
JP2011528842A true JP2011528842A (en) 2011-11-24
JP5384631B2 JP5384631B2 (en) 2014-01-08

Family

ID=41722086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011518665A Active JP5384631B2 (en) 2008-08-25 2009-08-21 Separator provided with porous coating layer, method for producing the same, and electrochemical device provided with the same

Country Status (6)

Country Link
US (1) US9005795B2 (en)
EP (1) EP2328220B1 (en)
JP (1) JP5384631B2 (en)
KR (2) KR20100024358A (en)
CN (1) CN102132452A (en)
WO (1) WO2010024559A2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013151134A1 (en) * 2012-04-04 2013-10-10 旭化成せんい株式会社 Separator
JP2015506058A (en) * 2012-04-30 2015-02-26 エルジー・ケム・リミテッド Separator and electrochemical device including the same
JPWO2014046094A1 (en) * 2012-09-19 2016-08-18 旭化成株式会社 Separator, manufacturing method thereof, and lithium ion secondary battery
JP2020007574A (en) * 2018-07-02 2020-01-16 株式会社日本触媒 Inorganic-organic composite membrane, and diaphram for electrochemical element

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010018731A1 (en) * 2010-04-29 2011-11-03 Li-Tec Battery Gmbh Lithium-sulfur battery
KR20120035858A (en) 2010-10-05 2012-04-16 주식회사 엘지화학 A electrochemical device for progressing cycle characteristic
KR101507499B1 (en) * 2011-01-25 2015-04-01 주식회사 엘지화학 Electrode assembly for secondary battery
US20120258348A1 (en) * 2011-04-05 2012-10-11 Kazuhisa Hayakawa Binder for Separator of Non-Aqueous Electrolyte Battery Comprising 2-Cyanoethyl Group-Containing Polymer and Separator and Battery Using the Same
JP6257122B2 (en) * 2011-10-04 2018-01-10 日産自動車株式会社 Separator with heat-resistant insulation layer
CN102433745B (en) * 2011-10-09 2013-05-29 中国海诚工程科技股份有限公司 Coating for power lithium battery diaphragm, power lithium battery diaphragm and preparation thereof
KR101491062B1 (en) * 2012-06-07 2015-02-10 주식회사 엘지화학 A separator and electrochemical device including the same
JP6088759B2 (en) * 2012-06-29 2017-03-01 Jxエネルギー株式会社 Method for producing separator for lithium ion secondary battery
KR101696312B1 (en) * 2012-08-29 2017-01-13 주식회사 엘지화학 Separator for electrochemical cell with improved mechanical properties and method for preparing the same
KR101699037B1 (en) * 2012-11-12 2017-01-23 주식회사 엘지화학 Manufacturing method of a separator, separator fabricated thereby and electrochemical device including the same
KR101664243B1 (en) * 2013-10-08 2016-10-14 주식회사 엘지화학 A secondary battery
KR101916478B1 (en) * 2013-10-25 2019-01-07 주식회사 엘지화학 Separator for lithium secondary battery and lithium secondary battery comprising the same
EP2999028B1 (en) * 2013-11-05 2019-01-16 LG Chem, Ltd. Separation membrane for electrochemical element
CN103618056B (en) * 2013-11-27 2015-08-12 武汉纺织大学 A kind of preparation method of lithium ion battery separator three-dimensional porous structure nano fibrous membrane
US9905824B2 (en) 2013-12-17 2018-02-27 Lg Chem, Ltd. Separator for electrochemical device
CN104979516B (en) * 2014-04-10 2018-08-03 宁德时代新能源科技股份有限公司 Electrochemical device and method for producing electrochemical device separation film
KR101726382B1 (en) * 2014-07-31 2017-04-12 주식회사 엘지화학 A stack/folding type electrode assembly with safety improvement and a electrochemical cell comprising the same
KR102297823B1 (en) * 2014-11-21 2021-09-02 삼성에스디아이 주식회사 Separator for rechargeable lithium battery and rechargeable lithium battery including the same
KR101822593B1 (en) 2015-03-17 2018-01-26 주식회사 엘지화학 Electrode having porous binder coating layer, method for preparation thereof, and lithium secondary battery comprising the same
CN105244466B (en) * 2015-09-11 2017-07-11 江西先材纳米纤维科技有限公司 Compound many curved hole membrane materials of silica dioxide granule filling and its preparation method and application
CN105226219B (en) * 2015-09-11 2017-07-11 江西先材纳米纤维科技有限公司 Compound many curved hole membrane materials of zirconia particles filling and its preparation method and application
CN105098125B (en) * 2015-09-11 2017-07-11 江西先材纳米纤维科技有限公司 Compound many curved hole membrane materials of alumina particle filling and its preparation method and application
WO2021034423A2 (en) * 2019-07-12 2021-02-25 Ampcera Inc. Interally heatable battery, internally heatable battery system, internally heatable battery method, and electric vehicle comprising the same
US11936028B1 (en) 2020-07-13 2024-03-19 Ampcera Inc. Systems and methods for heating electrochemical systems
CN112886143B (en) * 2021-03-26 2023-01-24 上海电气集团股份有限公司 Multilayer structure composite diaphragm, preparation method thereof, secondary battery and electric equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003288880A (en) * 2002-01-28 2003-10-10 Denso Corp Separator for battery and battery
JP2007157723A (en) * 2005-12-08 2007-06-21 Hitachi Maxell Ltd Separator for electrochemical element, and electrochemical element
WO2008038971A1 (en) * 2006-09-25 2008-04-03 Lg Chem, Ltd. Novel separator and electrochemical device comprising the same
JP2008192483A (en) * 2007-02-06 2008-08-21 Hitachi Maxell Ltd Separator for battery, and lithium secondary battery

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1180395A (en) 1997-09-09 1999-03-26 Nitto Denko Corp Porous film and separator for nonaqueous electrolyte cell or battery
JP2001089967A (en) * 1999-09-20 2001-04-03 Nippon Sheet Glass Co Ltd Nonwoven fabric, its production, separator for battery using the nonwoven fabric and alkaline secondary battery
DE10238944A1 (en) 2002-08-24 2004-03-04 Creavis Gesellschaft Für Technologie Und Innovation Mbh Separator for use in high energy batteries and process for its manufacture
KR20050006540A (en) * 2003-07-09 2005-01-17 한국과학기술연구원 Lithium secondary battery comprising fine fibrous porous polymer separator and preparation method thereof
DE10347567A1 (en) 2003-10-14 2005-05-12 Degussa Electric separator with shut-off mechanism, process for its manufacture and use in lithium batteries
EP3745494A1 (en) 2004-09-02 2020-12-02 Lg Chem, Ltd. Organic/inorganic composite porous film and electrochemical device prepared thereby
KR100742959B1 (en) 2004-09-02 2007-07-25 주식회사 엘지화학 Organic/inorganic composite porous film and electrochemical device using the same
EP1689008B1 (en) * 2005-01-26 2011-05-11 Japan Vilene Company, Ltd. Battery separator and battery comprising the same
TWI330136B (en) * 2005-11-28 2010-09-11 Lg Chemical Ltd Organic/inorganic composite porous membrane and electrochemical device using the same
KR101105748B1 (en) 2005-12-08 2012-01-17 히다치 막셀 가부시키가이샤 Separator for electrochemical device and method for producing same, and electrochemical device and method for manufacturing same
TWI368347B (en) 2006-02-16 2012-07-11 Lg Chemical Ltd Electrode including organic/inorganic composite coating layer and electrochemical device prepared thereby
KR100727248B1 (en) * 2007-02-05 2007-06-11 주식회사 엘지화학 Organic/inorganic composite separator having porous active coating layer and electrochemical device containing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003288880A (en) * 2002-01-28 2003-10-10 Denso Corp Separator for battery and battery
JP2007157723A (en) * 2005-12-08 2007-06-21 Hitachi Maxell Ltd Separator for electrochemical element, and electrochemical element
WO2008038971A1 (en) * 2006-09-25 2008-04-03 Lg Chem, Ltd. Novel separator and electrochemical device comprising the same
JP2008192483A (en) * 2007-02-06 2008-08-21 Hitachi Maxell Ltd Separator for battery, and lithium secondary battery

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013151134A1 (en) * 2012-04-04 2013-10-10 旭化成せんい株式会社 Separator
JPWO2013151134A1 (en) * 2012-04-04 2015-12-17 旭化成せんい株式会社 Separator
US9461290B2 (en) 2012-04-04 2016-10-04 Asahi Kasei Fibers Corporation Separator
JP2015506058A (en) * 2012-04-30 2015-02-26 エルジー・ケム・リミテッド Separator and electrochemical device including the same
US9666851B2 (en) 2012-04-30 2017-05-30 Lg Chem, Ltd. Separator and electrochemical device having the same
JP2018113261A (en) * 2012-04-30 2018-07-19 エルジー・ケム・リミテッド Separator and electrochemical element including the same
JPWO2014046094A1 (en) * 2012-09-19 2016-08-18 旭化成株式会社 Separator, manufacturing method thereof, and lithium ion secondary battery
JP2020007574A (en) * 2018-07-02 2020-01-16 株式会社日本触媒 Inorganic-organic composite membrane, and diaphram for electrochemical element
JP7100514B2 (en) 2018-07-02 2022-07-13 株式会社日本触媒 Inorganic-organic composite membrane and diaphragm for electrochemical devices

Also Published As

Publication number Publication date
WO2010024559A2 (en) 2010-03-04
CN102132452A (en) 2011-07-20
EP2328220A4 (en) 2012-12-19
US20110305941A1 (en) 2011-12-15
WO2010024559A3 (en) 2010-07-08
KR20100024358A (en) 2010-03-05
EP2328220B1 (en) 2017-01-11
US9005795B2 (en) 2015-04-14
KR20120025575A (en) 2012-03-15
JP5384631B2 (en) 2014-01-08
EP2328220A2 (en) 2011-06-01

Similar Documents

Publication Publication Date Title
JP5384631B2 (en) Separator provided with porous coating layer, method for producing the same, and electrochemical device provided with the same
JP5405568B2 (en) Separator provided with porous coating layer and electrochemical device provided with the same
JP6116630B2 (en) Organic-inorganic composite porous film and electrochemical device using the same
JP5415609B2 (en) Separator including porous coating layer, method for producing the same, and electrochemical device including the same
JP5939546B2 (en) Separator coated with porous coating layer and electrochemical element provided with the same
KR101173202B1 (en) Preparation method of separator, separator formed therefrom, and preparation method of electrochemical device containing the same
JP5719306B2 (en) Lithium secondary battery
JP6002175B2 (en) Electrochemical element with different types of separators
JP5671208B2 (en) Organic / inorganic composite separation membrane having morphological gradient, method for producing the same, and electrochemical device including the same
JP5834322B2 (en) Separator, method for producing the same, and electrochemical device including the same
JP5689800B2 (en) Separator provided with porous coating layer and electrochemical device provided with the same
KR101173201B1 (en) Preparation method of separator, separator formed therefrom, and preparation method of electrochemical device containing the same
KR20110035847A (en) Preparation method of separator, separator formed therefrom, and preparation method of electrochemical device containing the same
KR20150051556A (en) A separator having porous coating layer, a manufacturing method thereof, and electrochemical device containing the same
KR101705306B1 (en) Separator for electrochemical cell and method for making the same
KR20120036061A (en) Preparation method of separator, separator formed therefrom, and electrochemical device having the same
KR101028923B1 (en) A preparation method of separator having porous coating layer

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121130

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130226

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131002

R150 Certificate of patent or registration of utility model

Ref document number: 5384631

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250