JP2011524152A - 電力を生成するデバイス及び方法 - Google Patents

電力を生成するデバイス及び方法 Download PDF

Info

Publication number
JP2011524152A
JP2011524152A JP2011504024A JP2011504024A JP2011524152A JP 2011524152 A JP2011524152 A JP 2011524152A JP 2011504024 A JP2011504024 A JP 2011504024A JP 2011504024 A JP2011504024 A JP 2011504024A JP 2011524152 A JP2011524152 A JP 2011524152A
Authority
JP
Japan
Prior art keywords
combustion chamber
mobile device
heat
tec
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011504024A
Other languages
English (en)
Other versions
JP5529113B2 (ja
JP2011524152A5 (ja
Inventor
ジェームズ ピン フアン,
シン−フェン ツァイ,
ハン ヴィ. グイェン,
マーク アレン クリーヴランド,
ジミー エム. キアンバオ,
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boeing Co
Original Assignee
Boeing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boeing Co filed Critical Boeing Co
Publication of JP2011524152A publication Critical patent/JP2011524152A/ja
Publication of JP2011524152A5 publication Critical patent/JP2011524152A5/ja
Application granted granted Critical
Publication of JP5529113B2 publication Critical patent/JP5529113B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0275Arrangements for coupling heat-pipes together or with other structures, e.g. with base blocks; Heat pipe cores
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/13Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the heat-exchanging means at the junction

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Portable Nailing Machines And Staplers (AREA)
  • Fuel Cell (AREA)

Abstract

電力を生成するモバイルデバイスは、燃焼室及びヒート・シンクを備えることができる。TECモジュールは燃焼室とヒート・シンクと熱的に連通して、熱エネルギーを燃焼室からヒート・シンクへ伝播する。TECモジュール全体の熱流束により電力が生成される。モバイルデバイスはまた、燃焼室に燃料を送る燃料送達システムを備えることもできる。燃料送達システムによる燃焼室への燃料の送達を少なくとも監視及び制御し、TECモジュール全体の温度勾配を制御して、熱から電気へのエネルギー変換デバイスによって作られる電力を制御するために、制御システムを備えることができる。

Description

本発明は、電力を生成するデバイス及びシステムに関し、さらに具体的には制御装置を含む、熱から電気へのエネルギー変換デバイスを使用して電力を生成するモバイルデバイス及び方法に関するものである。
現在、電子デバイスへの電力供給に使用する電力を生成するには多数の方法がある。最も一般的なのは、電池供給による直流電流又は交流電流の使用である。電池によって供給される電力は限られており、再充電が必要である。再充電には電力供給へのアクセスが必要となる。その上、電力の要求が増加するにつれて電池がさらに重くなり、それにより電池から供給される電力が重くなる可能性がある。例えば、より高い出力を有する電池は通常、より低い出力を有する電池よりも重い。使われる材料によってはある電池は他の電池よりも軽いものがあるが、電力の要求が増加するにつれ、重量と大きさが比較的増加する。
ある場合には、携帯電話又は携帯端末等の個人用電子デバイスへの電力供給に使用する連続的な電力供給が必要である。具体的には、主に軍人及び救助隊員によって、遠隔地点から使用される電子デバイスへの電力供給に使用される電力供給装置が必要である。現在では、携帯用電力システムでは、長期間の間十分な電力が得られない。したがって、追加の電力供給装置をバックアップ電力供給装置として、又は電気へのアクセスが要求される再充電システムを持ち運ぶ必要がある。
したがって、可動性の、軽量でコンパクト、持続可能な電力供給装置が必要である。
本発明の一実施形態によれば、電力を生成するモバイルデバイスは、燃焼室及びヒート・シンクを含むことができる。熱から電気への変換(TEC)モジュールは、燃焼室とヒート・シンクと熱的連通して、熱エネルギーを燃焼室からヒート・シンクへ伝播する。TECモジュール全体の熱流束により、電力が生成される。モバイルデバイスはまた、燃焼室に燃料を送る燃料送達システムを備えることもできる。燃料送達システムによる燃焼室への燃料の送達を少なくとも監視及び制御し、TECモジュール全体の温度勾配を制御して、熱から電気へのエネルギー変換デバイスによって作られる電力を制御するために、制御システムを備えることができる。
本発明の別の実施形態によれば、電力を生成するモバイルデバイスは燃焼室を含むことができる。本デバイスはまた、燃焼室の一側面と第1冷板と熱的に連通している第1熱板を含むこともできる。第1TECモジュールは、第1熱板と第1冷板との間に配置され、第1熱板と第1冷板と熱的に連通して、熱エネルギーを第1熱板から第1冷板まで伝播する。第1TECモジュール全体の熱流束により、電力が生成される。本デバイスはまた、燃焼室の別の側面と第2冷板と熱的に連通している第2熱板を含むこともできる。第2TECモジュールは、第2熱板と第2冷板との間に配置され、第2熱板と第2冷板と熱的に連通して、熱エネルギーを第2熱板から第2冷板まで伝播する。第2TECモジュール全体の熱流束によってまた、電力が生成される。本デバイスはまた、マグネシウム線を燃焼室に送るための、マグネシウムワイヤ燃料供給装置及びマグネシウムワイヤ供給システムを含むこともできる。制御システムは、TECモジュール全体においてほぼ一定の温度勾配を維持して、ほぼ均一の出力を提供することができる。
本発明の別の実施形態によれば、電力を生成するためのモバイルデバイスは、バードネスト燃焼室を含むことができる。本デバイスはまた、バードネスト燃焼室及び冷板に熱的に連結された熱板も含むことができる。複数のTECモジュールをそれぞれ熱板と冷板との間に配置して、熱板と冷板と熱的に連通させて熱エネルギーを熱板から冷板へ伝播して電気エネルギーを発生させることができる。バードネスト燃焼室と熱板は、各TECモジュールへの熱エネルギーのほぼ均一な配置のための構造を含むことができる。
本発明の別の実施形態によれば、可動性の電動装置は、所定の機能を行うための電気回路を含む。本装置はまた、電気回路を操作するために、電力を生成してモバイル装置に供給するためのモバイルデバイスを含むこともできる。モバイルデバイスは燃焼室とヒート・シンクを含むことができる。TECモジュールは燃焼室とヒート・シンクと熱的に連通して、熱エネルギーを燃焼室からヒート・シンクへ伝播する。TECモジュール全体の熱流束により、電力が生成される。デバイスはまた、燃焼室に燃料を送る燃料送達システムを備えることもできる。制御システムは、燃料送達システムによる燃焼室への燃料の送達を監視及び制御することができる。制御システムはまた、TECモジュール全体の温度勾配を制御して、熱から電気へのエネルギー変換デバイスによって作られる電力を制御することもできる。
本発明の別の実施形態によれば、電力を生成する方法はTECモジュール全体に熱流速を引き起こすことによって電力を生成することを含むことができる。本方法はまた、TECモジュール全体の温度勾配を制御して、ほぼ均一の出力を得ることを含むこともできる。温度勾配の制御には下記の少なくとも1つを含むことができる:電力を生成するデバイスの燃焼室への燃料の送り速度を制御する、及びTECモジュールに熱的に連結されたヒート・シンク全体の冷却用空気の流れを制御する。
本発明の他の態様及び特徴は、請求項によってのみ定義されたように、添付の図面とともに下記の非限定的な本発明の詳細説明を見直すときに、当業者に明らかとなる。
図1は本発明の別の実施形態による制御装置又はシステムを含む、電力を生成する実例となるデバイスの概略ブロック図である。 図2は本発明の一実施形態による電力及び制御システムの概略ブロック図である。 図3Aは本発明の一実施形態による電力を生成するモバイルデバイスの実施例の側面立面図である。 図3Bは線3B−3Bに沿って切り取られた、図3Aのモバイルデバイスの断面図である。 図4は本発明の一実施形態による、ワイヤ燃料供給システムによって送られている燃焼室のイグナイターの実施例の概略図である。 図5は本発明の別の実施形態による、ワイヤ燃料供給システムによって送られている燃焼室のイグナイターの実施例の概略図である。 図6Aは本発明の別の実施形態による、電力を生成するデバイスの実施例の側面立面図である。 図6Bは燃焼室と関連デバイスの要素を示す図7Bの電力を生成するデバイスの上面立面図である。 図7Aは本発明の別の実施形態による、電力を生成するデバイスの実施例の側面立面図である。 図7Bは燃焼室とデバイスの関連要素を示す図7Aの電力を生成するデバイスの上面立面図である。 図7Cは浮上した冷却ファンを示す図7Aの電力を生成するデバイスの上面立面図である。 図8は本発明の別の実施形態による、電力を生成するデバイスの実施例の側面立面図である。 図9は本発明の追加の実施形態による、電力を生成するデバイスの実施例の側面立面図である。 図10は本発明のさらなる実施形態による、電力を生成するデバイスの実施例の側面立面図である。 図11は本発明のさらなる実施形態による、電力を生成するデバイスの実施例の斜視図である。 図12は本発明の一実施形態による、熱電スタックを示す図11のデバイスの一部の断面図である。 図13は本発明の一実施形態による、電力を生成するデバイスを備えた電動装置の実施例のブロック図である。
下記の実施形態の詳細説明は、本発明の特定の実施形態を示す添付の図面を参照する。異なる構造及び操作を有する他の実施形態は、本発明の範囲から逸脱するものではない。
図1は、本発明の一実施形態による、電力を生成するデバイス100の実施例のブロック図である。本明細書に記載されているように、本発明の異なる実施形態は可動性で、他の動力源が利用できない遠隔地域において、電子装置に電力供給するために職員が持ち歩くことができるものであってよい。デバイス100は、2つの同心パイプ又はチューブ104及び106を含む熱交換器102を含むことができる。2つの同心パイプのうちの内側のパイプ104は、燃焼室108を形成又は画定することができる。2つの同心パイプは、金属材料、セラミック又は他の高耐熱材料等の高耐熱材料からできていてよい。第1の熱から電気への変換(TEC)モジュール110又は直接熱−電気変換(DTEC)モジュール又は複数のモジュールを燃焼室108の一側面上に位置づけ又は配置することができ、第2TECモジュール112又は複数のモジュールを、燃焼室108の別の側面又は反対の側面に配置することができる。TEC又はDTECモジュールはそれぞれ、ユタ州ソルトレイクシティのENECO社によって製造された熱半導体チップ等の熱半導体チップであってよい。TECモジュール110及び112は各々、燃焼室108に熱的に連結又は熱的に連通して、燃焼室108から熱エネルギーを受ける。熱板114を、燃焼室108と各TECモジュール110及び112の間に配置して、熱を燃焼室108から各TECモジュール110及び112にほぼ均等に分配することができる。
第1ヒート・シンク116は第1TECモジュール110に配置することができ、第2ヒート・シンク118は、第2TECモジュール112に配置することができる。第1及び第2ヒート・シンク116及び118はそれぞれ、空気冷却フィン型ヒート・シンクであってよい。本発明の一実施形態によると、冷板120は、各モジュール110及び112からそれぞれ関連のヒート・シンク116及び118まで熱を効率的に伝播するために、熱から電気への変換モジュール110及び112各々の間に配置することができる。第1ヒート・シンク116は第1TECモジュール110と熱的に連結している、又は熱的に連通しており、第2ヒート・シンク118は第2TECモジュール112と熱的に連結している、又は熱的に連通している。したがって、熱エネルギーは燃焼室108から各ヒート・シンク116及び118まで、第1及び第2TECモジュール110及び112を介して効率的に伝播され、これにより、各TECモジュール110及び112全体で温度格差(△T)、熱勾配又は熱流速を引き起こす。温度格差、熱勾配又は熱流速により、各TECモジュール110及び112によって電力が生成される。
絶縁材料の層121を、燃焼室108と各ヒート・シンク116及び118の間に配置することができる。絶縁材料121の層121は各TECモジュール110及び112の端部を絶縁して、デバイス100の可能な他の全ての経路を介して寄生損失に終わる代わりに、TECモジュール110及び112を介して熱エネルギーの流れを分離することができる。
デバイス100はまた、燃焼室108に燃料123を制御可能に送るために、燃料送達システム122も含むことができる。本明細書により詳しく記載されているように、燃料が燃焼室108へ送られる速度を調節して、TECモジュール110及び112全体の熱勾配又は熱流速を制御し、デバイス100によって生じた電力を制御することができる。燃料送達システム122は、制御された速度で燃焼室108にマグネシウムワイヤ燃料123を送るために、摩擦ワイヤ供給システムを含むことができる。燃料送達システム122は、下に記載するように制御装置124によって制御可能である。
電力を生成するデバイス100はまた、各ヒート・シンク116及び118に対して空気ブロワー126、又は冷却ファン、又は空気ブロワー126又は冷却ファンを含むこともできる。各空気ブロワー126はそれぞれ、ヒート・シンク116及び118の空気冷却フィン上に冷却用空気を吹き付けることができる。空気ブロワー126を制御して、ヒート・シンク116及び118の空気冷却フィン上の冷却用空気の流れを調節することにより、TECモジュール110及び112全体の熱勾配又は熱流束をさらに制御して、デバイス100によって生じる電力を制御する、又はほぼ一定の又は均一な出力を得ることができる。本明細書にさらに詳しく記載されるように、制御装置124はまた、熱管理システムを監視し、また制御することもできる。熱管理システムは、各ブロワー126の操作を制御することができる。熱板114及び冷板120のそれぞれの温度を検出する熱電対は、空気ブロワー126を制御するために、制御装置124にデータを提供することができる。ブロワー126の速度を調節する、又はブロワーをオンにしたりオフにしたりしてTECモジュール110及び112全体の温度勾配、又は接続された対の熱板114と冷板120の温度差(△T)を制御することができる。
デバイス100はまた、一又は複数の直流/直流(DC−DC)コンバータ128及び130を含むこともできる。例えば、あるDC−DCコンバータ128は、デバイス100を備えた荷重負荷又は装置に電力を供給することができる。別のDC−DCコンバータ130は、空気ブロワー126、燃料送達システム122及び制御装置124に電力を供給することができる。デバイス100を備えることができる荷重負荷又は装置の実施例は、全てのモバイル電気デバイス、モバイル通信デバイス、モバイル計算デバイスなどを含むことができる。本明細書にさらに詳しく記載されているように、本発明の異なる実施形態はコンパクトで軽量になるように設計されており、これにより例えば電池等の他のより重く寿命の短い電力供給装置に比べて、長期間現場で使用するために職員が簡単に持ち運びができる。
本発明の一実施形態によれば、熱交換器102は、燃焼室108に外気をダクトに通して送り、燃焼によって生じた高温ガスを排気するための構造を含むことができる。前述したように、熱交換器102は2本の同心パイプ又はチューブ104及び106構造を含むことができる。この構造は、燃焼室からの高温の廃棄ガスを使用して燃焼室に進入する供給冷気を温めて燃焼効率を上げる、そしてまた、供給冷気を利用して高温の排気ガスを放出される前に冷すように構成することができる。冷された排気ガスは外気に放出される前に、高性能(HEPA)フィルター132にかけることができる。
燃焼室108は、燃焼室108の燃料123に点火して熱を発生させるイグナイター134を含むことができる。イグナイター134に使用可能なイグナイターの実施例は、図4及び5を参照してさらに詳しく説明される。イグナイター134は、電池136を備えることができる。電池136は、二極単投(DPST)スイッチ138によってイグナイター134に接続可能である。時間遅延及び過渡サプレッサ回路140をスイッチ138の片側とイグナイター134の間に接続して、デバイス100の開始時に時間遅延を発生させてイグナイター134を破損させ得る全ての過渡状態を抑制することができる。
図2は本発明の一実施形態による、電力及び制御システム200の実施例の概略ブロック図である。電力及び制御システム200を図1のデバイス100とともに使用して、デバイス100の操作を監視及び制御することができる。システム200は制御装置202を含むことができる。制御装置202は、図1の制御装置124と同じであってよい。制御装置202は、標準的なマイクロコントローラー、又は同様のプログラム可能な電子制御装置であってよい。制御装置202は、全てのシステム又はデバイス100等のモバイル電力生成デバイスの機能管理を行うことができる。制御装置202は、燃料送達システム204または燃料調節器、熱管理システム206、燃焼性能、電力生成及び送達と同時に、例えば本明細書に記載された本発明の実施形態等のモバイル電力生成デバイスの効率的な操作に関連する他の機能を監視及び制御するようにプログラミングすることができる。燃料送達システム204は、図1の燃料送達システム122、及び図4及び5を参照して記載されるそれらのシステムと同様のものであってよい。
複数のTECモジュールが図2に示されている。TECモジュール208は、図1のTECモジュール110及び112と同じであってよい。各TECモジュール208は、低損失コンダクタ210を介して高効率チョッパー変換機部212又は同期整流器の入力に接続可能である。各チョッパー交換機部212は、対応ゲート駆動回路(図示せず)によって駆動される高電力、低損失MOS電界効果トランジスタ(MOSFET)デバイス(図2に図示せず)を利用することができる。MOSFETの出力は、TECモジュール208によって生じると予測される必要な電力レベルに対して選択される高効率トランス214に連結可能である。トランスへの連結によって、各TECモジュール208からの出力をフルに利用し、全てのシステムコンポーネントを電気的に絶縁させることができる。各チョッパー変換機トランス214の出力は、整流損失を最小限に抑えるために、同期整流器の技術を利用してDCに変換されて戻る。電力生成デバイス100を備えている特定の電気装置で要求される可能性のある所望の電圧レベルとなるように、各チョッパーコンバータ212のDC出力は直列に接続される。コンバータシステムからの総出力電圧の電圧調整は、電圧標準と比較して高電圧出力点からフィルターし、この情報を使用して高電圧出力回路上のMOSFETコントローラに適用されるパルス幅変調器を制御可能である。
TECモジュール208は、2つのグループ216及び218に分けることができる。TECモジュール208の第1グループ216は、より大きいグループであってよい。第1グループ216は、第1DC−DCコンバータ220を介して連結し、例えば電動装置又はデバイス等の単一の荷重負荷又は複数の荷重負荷に電力を供給することができる。TECモジュール218の第2グループ218は、第2DC−DCコンバータ222を介して連結し、例えば図1のブロワー126等の空気ブロワー、燃料送達システム204又は燃料レギュレーター、及び制御装置202に電力を供給することができる。
装置202のある第1制御要素は、例えば図1の熱板114及び冷板120等の熱板及び冷板の間に望ましい△T範囲を維持するためのものである。所望の熱板の温度を送るには、適正量の燃料と空気の混合物が必要である。制御装置202は、各熱板及び冷板の温度を検出する熱電対224を通して、△T温度を監視する。制御装置202は、アクティブ制御を使用して△T温度を所望の値に調節することができ、アクティブ制御では、制御装置202が燃料の消耗量を読取り、対応する燃料と空気の比を再調整して、燃焼率及び発生する熱エネルギーを制御する。制御装置202はまた、ブロワー又は冷却ファンをオフ及びオンにする、又は望ましい△T範囲を維持するのに必要なファンの速度を制御することができる。発生する熱エネルギーの制御により、発生する電力が制御される。均一の又はほぼ一定の熱エネルギーの発生を維持することにより、均一な又はほぼ一定の電力出力が生成される。
図3Aは、本発明の一実施形態による電力を生成するためのデバイス300の一実施例の側面立面図である。図3Bは、線3B−3Bに沿って切り取った図3Aの電力を生成するモバイルデバイス300の断面図又は上面立面図である。デバイス300は、コンパクトで軽量なモバイルデバイスであってよく、これにより、他の電力源が利用できない遠隔地域において装置に電力を供給するために職員が簡単に持ち運ぶことができる。デバイス300は、第1ハウジング部302又は燃焼室及び熱交換器部及び第2ハウジング部304又は燃料システム及び制御装置ハウジング部を含むことができる。本発明の別の実施形態によれば、燃料送達システム306は第3ハウジング部(図3A及び3Bに図示せず)に位置することができ、制御装置308及び燃料310は別々のハウジング又は第2ハウジング部304に位置することができる。したがって、燃料送達システムを含む第3ハウジング部(図示せず)は、燃焼室及び第2ハウジング部304を含む第1ハウジング部302の間に配置することができる。
図3Aを参照すると、モバイルデバイス300は燃焼室312を含む。デバイス300は第1熱板314と第1冷板316を含むことができる。第1熱板314及び第1冷板は、例えば銅等の従来の金属材料、または例えばセラミック、亜硝酸アルミニウム等のより特殊な材料、又は効率的に熱を伝播できる同様の材料からできていてよい。第1熱板314は燃焼室312の片側に熱的に連通している。第1TECモジュール318又はTECモジュール318の第1セットは、第1熱板314及び第1冷板314の間に配置される又は挟まれる。TECモジュール318の第1セットは、第1熱板314及び第1冷板316と熱的に連結している又は熱的に連通して、熱エネルギーを第1熱板314から第1冷板316へ伝播する。前述したように、第1TECモジュール318全体の熱流束又は温度勾配により、電力が生成される。
モバイルデバイス300はまた、第2熱板320及び第2冷板322を含むこともできる。第2熱板320は燃焼室312の別の側に熱的に連結される又は熱的に連通している。第2熱板320は、第1熱板314に対して燃焼室312のほぼ反対側にあってよい。第2TECモジュール324又はTECモジュール324の第2セットは、第2熱板320及び第2冷板322の間に配置されている又は挟まれている。TECモジュール324の第2セットは、第2熱板320と第2冷板322に熱的に連結され又は熱的に連通して、熱エネルギーを第2熱板320から第2冷板322へ伝播する。同様に、TECモジュール324の第2セット全体の熱流束又は温度勾配により、TECモジュール324の第2セットから電力が生成される。TECモジュール324の実施例は、ユタ州ソルトレイクシティのENECO社から入手可能な熱半導体チップ、または他のタイプの熱から電気への変換モジュールであってよい。
第1冷板316から伝播される熱を受けるために、第1ヒート・シンク326を第1冷板316に熱的に連結させることができる。第2ヒート・シンク328は、第2冷板322から伝播される熱を受けるために、第2冷板322に熱的に連結させることができる。ヒート・シンク326及び328はそれぞれ複数の空気冷却フィンを含むことができる。
絶縁材料の層330を各ヒート・シンク326及び328の間に延ばして燃焼室312、熱板314及び320、TECモジュール318及び324、冷板316及び322の端部をカバーして、これらのコンポーネントの端部を絶縁することができる。絶縁材料の各層330により、熱エネルギーの流れが、寄生損失となる可能性のあるデバイス300を通る他の全ての可能な経路ではなく、TECモジュール318及び324のみを通るように実質的に分離される。
デバイス300はまた、冷却ファン332又はブロワーを含むこともできる。ファン332は、第1ハウジング302の一方の端部に配置することができる。ファン332は図3Aの矢印334で示されるように外の冷却用空気を給気口336に引き込むことができる。冷却用空気はファン332によってヒート・シンク326及び328の上を流れる又は上に引き込まれ、ヒート・シンク326及び328から熱を吸収する。ファン332は次に、矢印338で示されるように加熱された空気を排気口340から外へ送り出す。
供給燃料310は、マグネシウムワイヤ342燃料であってよい。マグネシウムワイヤ342はスプール344に巻かれていてよい。燃料送達システム306は、マグネシウムワイヤ342を燃焼室312に送るための、摩擦ベースのマグネシウムワイヤ供給システムであってよい。マグネシウムワイヤ供給システム306は、ホイール346及び348の間でマグネシウムワイヤを保持するために共にバイアスがかけられた一対のホイール346及び348を含むことができる。ホイール346及び348の一方あるいは両方は次に、電気モータ(図3A及び3Bに図示せず)によって駆動されて、マグネシウムワイヤ燃料342を燃焼室312に送ることができる。電気モータは、図2に関して前述したのと同様に、TECモジュール318及び324のいずれかによって生成された電気で駆動することができる。
制御システム308又はシステムは、図2を参照して説明した制御システム200と同様のものであってよい。制御システム308は、TECモジュール318及び322全体でほぼ一定の温度勾配を維持して、電力出力を制御する、又はほぼ均一な電力出力を提供することができる。対の熱板及冷板314〜316及び320〜322の間の温度勾配又は△Tは、燃焼室312に進入する燃料の燃料比を同時に制御し、ヒート・シンク326及び328を冷却するファン332を制御し、そして前述したのと同様の燃焼プロセスを監視することによって監視及び制御することができる。
デバイス300はまた、一又は複数のバッテリ350を含むことができる。バッテリ350はイグナイター352に電力を供給して、マグネシウムワイヤ342に点火することができる。バッテリ350はまた、デバイス300の他の全ての構成要素の必要に応じて任意の予備電力を提供することができる。
図4は、本発明の一実施形態による、ワイヤ燃料供給システム404によって供給されている燃焼室402のイグナイター400の一実施例の概略図である。イグナイター400を図1のイグナイター134、及び図3A及び3Bのイグナイター350に使用することができる。燃焼室402は前述したのと同様である。燃焼室402の側面は、絶縁材料406の層で絶縁することができる。図示したワイヤ燃料供給システム404は、図3A及び3Bを参照して説明したワイヤ供給システム306と同様のものであり、一対のホイール408及び410を含むことができる。ホイール408及び410両方のうちのいずれかを、電気モータ(図示せず)で駆動して、マグネシウムワイヤ燃料412を燃焼室402に送ることができる。
イグナイター400は、ビーハイブカソード414を含むことができる。電力はイグナイター陽性及び陰性リードワイヤ416及び418によってビーハイブカソード414に接続され、スパークギャップ全体にスパークを発生させて、燃焼室402のワイヤ燃料412に点火する。イグナイターリードワイヤ416及び418は、セラミックビーズ420及びホウ酸塩ガラススリーブ422によって燃焼室402の高熱から保護することができる。
図5は、本発明の別の実施形態による、ワイヤ燃料供給システム504によって供給されている燃焼室502のイグナイター500の一実施例の概略図である。イグナイター500は図4に前述したのと同様の構造を有することができ、ワイヤ燃料供給システム504はまた、図5に関して説明したものと同じものであってよい。高温拡散板506は燃焼室502と熱的に連通していてよい。TECモジュール508の一セットを、高温拡散板506と低温拡散板510の間に挟むことができる。前述したものと同様に、高温拡散板506と低温拡散板510の間の温度格差(△T)により、電気エネルギーを生成することができるTECモジュール508全体の熱流束が起きる。
図5に示す本発明の実施形態によれば、マグネシウムワイヤ燃料514の燃焼によってできたスラグが燃焼室502から落下することが可能になるように、スラグシュート512を位置づけすることができる。
図6Aは、本発明の別の実施形態による電力を生成するためのモバイルデバイス600の一実施例の側面立面図である。デバイス600は、ほぼ円柱形のハウジング602を含むことができる。ハウジング602は、高耐熱及び断熱材料からできていてよい。例えば、ハウジング602は例えば鋼板等の従来の金属材料からできていてよい。デバイス600は、ハウジング602のほぼ中央部分に位置する燃焼室604を含むことができる。燃焼室604は、例えば亜硝酸アルミニウム又は同様の材料等の高耐熱材料からできていてよい。燃焼室604はまた、ほぼ円柱形であってもよい。燃焼室604はマグネシウムワイヤ燃料608のスプール606の中央を通って延在することができる。前述したものと同様のマグネシウムワイヤ燃料送達システム(明確さのために図6Aは図示せず)は、燃焼室604にマグネシウムワイヤ608を制御可能に送って、デバイス600によって生じる電力レベルを制御することができる。
高温拡散板610は、燃焼室604と熱的に連通した状態で配置することができる。複数のTECモジュール612は、熱板610と低温拡散板614の間に挟むことができる。熱板610及び冷板614は、前述したものと同様の材料からできていてよい。図6Bをまた参照すると、図6Bは線6B−6Bに沿って切り取った図6Aの電力を生成するモバイルデバイス600の上面立面図及び断面図である。図6Bは、燃焼室604と、燃焼室604に対してほぼ均一に配置されたTECモジュール612を示す。電気ワイヤ616は、TECモジュール612によって生成される電力を導通して、電気装置(図6A及び6Bには図示せず)に電力供給をするために、TECモジュール612に接続されている。
ヒート・シンク618は、低温拡散板614と熱的に連通している状態に配置することができる。ヒート・シンク618は、複数の冷却フィンを含むことができる。冷却フィン620は、外の冷却用空気を、ハウジング602に形成された多数の給気口622を介してハウジング602に引き込むことができる。給気口622は、ハウジング602の上部に形成することができる。ファン620により、冷却用空気がヒート・シンク618の冷却フィンを通って流れ、ヒート・シンク618から熱を吸収する。加熱された空気はその後、ハウジング602に形成された排気口624を通って放出されることができる。排気口624は、ハウジング602の下部に形成することができる。ファン620は、チップ−マグネチックファン、磁気浮上ファン、又は他の種類のファン又はブロワーであってよい。
バッテリ626は、ハウジング602の外側に取り付けることができる。バッテリ626は、イグナイターに電力を供給することができる(明確さのために図6A及び6Bに図示せず)。イグナイターは、図4及び5を参照して説明したイグナイター400及び500と同様のものであってよい。
図7Aは、本発明の別の実施形態による、電力を生成するモバイルデバイス700の一実施例の側面立面図である。デバイス700は、ほぼ円柱形のハウジング702を含むことができる。ハウジング702は、図6のハウジング602と同じ材料からできていてよい。バードネスト燃焼室704は、ハウジング702のほぼ中央部分に配置することができる。本明細書にさらに詳しく説明するように、バードネスト燃焼室704もまた、ほぼ円柱の形をしていると特徴付けることができる。排気筒706を燃焼室704の上部に接続して、燃焼室704から高熱の燃焼ガスを排出することができる。スラグシュート708を燃焼室704の下部に接続することができ、これにより、マグネシウムワイヤ燃料の燃焼によって形成されたスラグを燃焼室704から落下させて、ハウジング702の下部に集めることができる。ハウジング702の基部712から延びるデバイダー710は、スラグシュート708のすぐ下にスラグがたまって、場合によってはスラグシュート708をブロックし、燃焼室704に燃焼空気の侵入も可能になることを防止することができる。スラグシュート708及び排気筒706は、これらの間に配置された燃焼室704を有する、互いの延長部であってよい。
スラグシュート708は、燃料用のマグネシウムワイヤ716のスプール714の中央を通って延びていてよい。ワイヤ燃料送達システム718は、マグネシウムワイヤ716を前述したものと同様の制御された速度で燃焼室704に送って、燃焼室704内の燃焼と、モバイルデバイス700によって生成された電力を制御することができる。ワイヤ燃料送達システム718は、前述した摩擦ベースのワイヤ供給システムと同様のものであってよい。前述したものと同様に、マグネシウムワイヤ716の送り速度は、図2を参照して説明したシステム200と同様の熱管理システム及び制御装置によって調節することができる。
熱板720は、燃焼室704と熱的に連通するように、燃焼室704に熱的に連結される。複数のTECモジュール722は、熱板720と冷板724の間に挟まれる。図7Bも参照すると、図7Bは、図7Aのモバイルデバイス700の上面立面図であり、燃焼室704と、燃焼室704及び排気筒706周囲にほぼ均一に配置されている複数のTECモジュール722を示す。熱板720及び冷板724に形成されている開口部により、排気筒706が熱板720及び冷板724を通って延びることができる。図7Bはまた、TECモジュール722によって生成された電力を導通させて外部の装置で使用するための電気配線726も示す。
ヒート・シンク728は、冷板724から熱を伝播するために、冷板724に熱的に連結させることができる。ヒート・シンク728は、ヒート・シンクから延びている複数の冷却フィンを含むことができる。
デバイス700はまた、外の冷却用空気をヒート・シンク728の冷却フィンを通って流してデバイス700から熱を除去するための冷却ファン730を含むこともできる。冷却ファン730は、大空隙(LAG)電気リングモータを備えた浮上ファンであってよい。モータのアーマチャー(ステータ巻線)を熱チャンバの外側の低温の環境条件に置いて、電気効率とモータの信頼性を改善することができる。先端磁気ファン(ロータ)は、受動構造であり、極端な温度になる場合があるモバイルTECデバイス700の内側に位置することができる。LAGファン730はTECモジュール722の出力から直接エネルギーを引き出すため、ファンロータを低温に維持することにより、効率が最適化される。浮上ファンにより、図7に示す本発明の実施形態の浮上ファン730よりも信頼性が薄くなる場合がある、潤滑剤を必要とするベアリングを含むであろう中央軸が除去される。
図7Cをまた参照すると、図7Cは図7Aの電力を生成するモバイルデバイス700の上面立面図であり、冷却用浮上ファン730を示す。ファン730は、ハウジング702に形成された給気口732を通してハウジング702に外気を引き込むことができる。ファン730は、外の冷却用空気をヒート・シンク728の冷却フィンを横切るように流す。空気はその後、ヒート・シンク728によって加熱され、ファン730によってハウジング702の下部に向かって流され、ここで加熱された空気はスラグシュート708を上に向かって流される。加熱された空気により、燃焼室704のマグネシウムワイヤ716の燃焼がさらに効率的になる。高熱の燃焼ガスはその後、排気筒706から排出される。排気筒706はHEPAフィルター734に接続可能である。HEPAフィルター734は、高熱の排気ガスを、ガスが排気口736を通って外の空気に排出される前にフィルターにかける。
複数の戻り空気用開口部738をファンケーシング740とハウジング702の内壁の間に形成して、空気がヒート・シンク728を通って戻ることができるようにすることができる。
デバイス700はまた、イグナイター(図7Aに図示せず)、TECモジュール722から電力を受けない可能性がある他の全ての構成要素に電力を提供するために、バッテリ742を含むこともできる。バッテリ742は、ハウジング702の外壁に取り付けることができる。
図8は、本発明の別の実施形態による、電力を生成するためのモバイルデバイス800の一実施例の側面立面図である。デバイス800は、ほぼ円筒形のハウジング802を含むことができる。ハウジング802は、図6のハウジング602に関して前に記載したものと同様の高耐熱及び断熱材料からできていてよい。デバイス600は、ハウジング802のほぼ中央部分に位置づけされた燃焼室804を含むことができる。燃焼室は、燃焼室604に関して前述したのと同様の高耐熱材料からできていてよい。燃焼室804もまたほぼ円筒形であってよい。燃焼室804の燃料806は、デバイス800外部の供給源から供給可能である。図8に示す本発明の実施形態では、例えばJP−8(ジェット燃料配合8)一瓶又は他の燃料等のガスの外部供給源から燃焼室804に燃料が送られてもよい。燃焼室804に進入する燃料速度を制御して、前述したのと同様に、デバイス800によって生成される電力を制御することもできる。
熱拡散板810は、燃焼室804と熱的に連通するように配置することができる。複数のTECモジュール812は、熱板810及び冷拡散板814の間に挟まれていてよい。TECモジュール812は、図6B及び7Bを参照して前に図示し記載したのと同様に、燃焼室604に対してほぼ均一に配置することができる。
ヒート・シンク818は冷拡散板814と熱的に連通するように配置することができる。ヒート・シンク818は、複数の冷却フィンを含むことができる。冷却ファン820は、外の冷却用空気を、ハウジング802に形成された多数の給気口822を介してハウジング802に引き込むことができる。給気口822は、ハウジング802の上部に形成することができる。ファン820により、冷却用空気がヒート・シンク814の冷却フィンを通って流れ、ヒート・シンク814から熱を吸収する。加熱された空気はその後、ハウジング802に形成された排気口824を通って放出される。排気口824は、ハウジング802の下部に形成することができる。ファン820は、前述したものと同様の、チップ−マグネチックファン、又は磁気浮上ファンであってよい。
バッテリ826をハウジング802の外に取り付けることができる。バッテリ826は、イグナイター(明確化のために図8に図示せず)に電力を供給することができる。イグナイターは、図4及び5を参照して説明したイグナイター400及び500と同様のものであってよい。
図9は、本発明の追加の実施形態による、電力を生成するためのモバイルデバイス900の一実施例の側面立面図である。デバイス900は、宇宙探査目的のために電力をほぼ無制限に提供することが可能である。デバイス900は、ハウジング902を含むことができる。ハウジング902はほぼ円筒形であってよく、前述したハウジングと同様のものであってよい。デバイス900は熱板904及び冷板906を含むことができる。複数のTECモジュール908は、熱板904及び冷板906の間に挟むことができる。太陽エネルギー又は太陽からの光を、太陽集光器910によって熱板904上に集中させることができる。冷板906はヒート・シンク912に熱的に連結させることができる。したがって、TECモジュール908全体に温度勾配が発生可能であり、これにより前述したものと同様にモジュールから電力が生成される。液体で充填されたラジエータブランケット914は、デバイス900又はヒート・シンク912と惑星表面又は月面916の間に位置づけすることができる。液体で充填されたラジエータブランケット914は、惑星表面又は月面916のヒート・シンク912から熱を伝播することができる。デバイス900はまた、プログラミング可能な制御装置(PCU)918も含むことができる。PCU918は、デバイス900によってデバイス900から電力供給されている全ての装置に供給される電力レベルを制御することができる。
図10は本発明の更なる実施形態による、電力を生成するデバイス1000の一実施例の側面立面図である。デバイス1000はハウジング1002を含むことができる。ハウジング1002は、前述したのと同様の一又は複数の高耐熱及び断熱材料からできていてよい。燃焼室1004はハウジング1002内に配置可能である。燃焼室1004は、前述したのと同様の高耐熱材料からできていてよい。デバイスの燃料は、燃焼室1004に含まれる放射性燃料ペレット1006であってよい。
デバイス1000は第1熱板1008と第1冷板1010を含むことができる。第1熱板1008は、燃焼室1004の片側と熱的に連通している。第1TECモジュール又はTECモジュールの第1セット1012は第1熱板1010と第1冷板1010の間に配置されている又ははさまれている。TECモジュール1012の第1セットは、前述したのと同様に第1熱板1008及び第1冷板1010と熱的に連結されている又は熱的に連通しており、第1熱板1008からの熱エネルギーを第1冷板1010へ伝播する。前述したように、第1TECモジュール1012全体の熱流束又は温度勾配により、電力が生成される。
デバイス1000はまた、第2熱板1014及び第2冷板1016を含むこともできる。第2熱板1014は、燃焼室1004の別の側に熱的に連結されている又は熱的に連通している。第2熱板1014は、第1熱板1012に対して燃焼室1004のほぼ反対側にあってよい。第2TECモジュール又はTECモジュールの第2セット1018は、第2熱板1014及び第2冷板1016の間に配置されている又ははさまれている。TECモジュールの第2セット1018は、前述したのと同様に第2熱板1014及び第2冷板1016と熱的に連結されている又は熱的に連通しており、第2熱板1014からの熱エネルギーを第2冷板1016へ伝播する。同様に、TECモジュールの第2セット1018全体の熱流束又は温度勾配により、TECモジュールの第2セット1018によって電力が生成される。
第1ヒート・シンク1020は第1冷板1010から伝播される熱を受けるために、第1冷板1010に熱的に連結させることができる。第2ヒート・シンク1022は、第2冷板1016から伝播される熱を受けるために、第2冷板1016に熱的に連結させることができる。ヒート・シンク1020及び1022はそれぞれ、複数の空気冷却フィンを含むことができる。
デバイス1000はまた、冷却ファン1024を含むこともできる。ファン1024は第1ハウジング302の一端に配置することができる。ファン1024は前述したものと同様のチップ−マグネチックファン、又は何らかの他の種類のファンであってよい。ファン1024は、図10の矢印1026で示すように、外の冷却用空気を引き込むことができる。冷却用空気1026は、ファン1024によってヒート・シンク1020及び1022の上を流れる又は上に引き込まれる。外の冷却用空気は、ヒート・シンク1020及び1022から熱を吸収する。ファン1024は次に矢印1028で示すように加熱された空気を排気口の外に出す。
図11は本開示の一実施形態による、電力を生成するデバイス10の斜視図である。デバイス10は熱パイプスタック12及び冷パイプスタック14を含む。熱パイプスタック12は熱源13と熱的に連通している。熱源13の実施例には、燃焼室、マグネシウムバーナー又はコンパクトで軽量な任意の熱源を含むことができる。熱源はまた、太陽熱利用の熱源を含むこともできる。冷パイプスタック14は冷熱源15と熱的に連通している。冷熱源15の実施例には、大気に排出させる冷却ファン、ヒート・シンク、又は他のデバイスを含むことができる。冷熱源15はまた、単なる空気又は大気にさらされる表面領域、あるいは外気への排出口であってもよい。例えば燃焼室等の熱を生成する他のデバイスを、マグネシウムバーナー13の代わりに使用してもよいことに注目すべきである。また、冷却ファン15を他の公知の手段に置き換えて、ある空間からの熱を除去することもできる。
また図12を参照すると、図12は本開示の一実施形態による図11のデバイス10の一部の断面図であり、熱電スタック26を示す。熱電スタック26は、一連の熱素子、例えば熱パイプ16、冷パイプ18、及び特定の順序の熱電発電器20又は熱電板を含む。ある実施形態では、熱パイプ16及び冷パイプ18はナノパイプ、ナノチューブ、又は同様の熱素子であってよい。熱パイプ16及び冷パイプ18は例えば、銅、窒化アルミニウム等の伝熱性のあるどんな材料からできていてもよい。図12に示すように、熱パイプ16は熱源13から少なくとも一方向に平行に外側に延びている。熱パイプ16は熱源13と熱的に連結され、これにより熱パイプ16へ、及び熱パイプ16を通して熱源からの効率的な熱の伝播が保証される。図13に示すのと同様に、冷パイプ18は熱パイプ16と平行に、熱パイプ16の反対方向に冷熱源14から延び、これによりデバイスが組立てられたときに冷パイプと熱パイプは重なり合うことになる。冷パイプ18は冷熱源14に熱的に連結され、これにより冷熱源への及び冷熱源を通した冷パイプからの効率的な熱損失が保証され、熱パイプ16に対して低い温度が維持される。
図12に示すように、スタック26の各熱パイプ16及び冷パイプ18の間に挟まれているのは熱電発電器20である。各熱電発電器20は高温側面22及び低温側面24を有する。高温側面22は熱パイプ16と熱的に接触する。低温側面24は冷パイプ18と熱的に接触する。熱電発電器20は、構造物全体の熱の流れから電力を作る。ある種類の熱電発電器は、ENECO社製の固体熱電交換器である。温度勾配(熱源12及び冷熱源14の間の温度差)が増加すると、構造物全体の熱の流れが増すため、より大きい電力又は電気エネルギー量を生成することができる。最低でも、スタック26は、熱電発電器20が間に挟まれた、少なくとも一つの熱パイプ16と少なくとも1つの冷パイプ18を含む。さらに、高温側面22と熱パイプ16は、熱膨張係数の差が10%を超えない材料からできていることが好ましい。同様に、低温側面24と冷熱パイプは、熱膨張係数の差が10%を超えない材料からできていることが好ましい。高温側面22と低温側面24、及び熱パイプ16と冷熱パイプ18の間の熱膨張係数が類似しているとき、(冷パイプと低温側面、及び熱パイプと高温側面の)表面の膨張及び収縮間の相互作用が同様の割合で起こり、熱の伝播がより効率的になるため、デバイス10はより効率的に機能する。
熱パイプ16、冷パイプ18及び熱電発電器20のスタック26の配置により、デバイス10が、既存のシステムによって現在提供されている電力又は電気エネルギーよりもより大きいレベルの電力又は電気エネルギーを生成しながらもコンパクトな形に構成することができる。さらに、図に示す本開示の実例となる実施形態のスタッキングの構成により、各熱電発電器20全体のより大きい熱の流れが可能になり、各発電器20及びデバイス10の全体的な熱交換率が上がる。したがって、本開示の実例となる実施形態のデバイス10により、デバイス10のサイズ及び重量を減らすことを可能にしながら、より大きい電力又は電気エネルギー量を生成することが可能になる。
図11に戻ると、冷パイプ18と高熱パイプ16の間に断熱材料28が位置づけされる。断熱材料28は、高熱パイプ16からの熱の直接の冷パイプ16への伝播を阻害する。断熱材料28によりスタック26の外の熱パイプ16及び冷パイプ18の間の熱の流れを防止することによって、デバイス10がより大きい電力量をより効率的に生み出すことがさらに可能になる。断熱材料28はアルミナ強化熱バリア又は同様の断熱材料を含むことができる。熱チップモジュール層29はアルミナ強化熱バリアに組み込むことができる。
電力調整器及びプラグ38又はコンセントは、デバイス10の熱電発電器20に電気的に接続され、これによりユーザーがデバイス10からユーザーの電子デバイスへ電力を転送する又は供給する方法が提供される。
制御モジュール40もまた、デバイス10に関連させてデバイス10の操作を制御することができる。考えられる一連の制御機能は:燃焼されるべき燃料の速度を制御して高熱側面の熱源を発生させることを含むことができる。具体的には、制御モジュール40は、マグネシウム又は他の燃料の燃焼速度を、効率的な操作のためにデバイス10の適切な温度及び温度勾配を維持するように調整可能である。追加の制御機能は、低温側面を冷却するためのファンの操作を制御すること、そして目的の圧着デバイスと接触するために、生成される電圧レベルを制御することを含むことができる。
デバイス10はさらに、ウォームスタートバッテリ42とコールドスタートモジュール44を含む。ウォームスタートバッテリは、高温システムが一時期オフであった後に、高温システムを再始動させるために追加して燃料に点火するのに十分なエネルギーを貯蔵する。コールドスタートモジュールは、ウォームスタートバッテリ42を充電するハンドル付きの発電器であってよい。それにより、バッテリ42が放電された場合のデバイス10の始動が可能になる。
ある実施形態では、デバイス10の全体的な寸法は、高さが約74mm、幅が125mm、そして厚さが43mmであり、デバイス10から300ワットの総電力を生成することができる6層の熱電発電器を含むことが予想されている。当然ながら寸法は、デバイス10の設計、機能及び電力生成能力の変更によって変化する。
図13は、本開示の一実施形態による、電力を生成するデバイス52を備えた電動装置50の一実施例のブロック図である。電動装置50は、従来なら蓄電池又は他の蓄電デバイスを備えていた可能性のあるモバイル又はポータブル電動デバイスであってよい。電動装置50は、通信デバイス、計算デバイス又は他の電気デバイスであってよい。
電動装置50は、所定の機能を行うために回路54を含むことができる。例えば通信デバイスの場合、回路54は送信器及び受信器を含むことができる。装置50はまた、ユーザーがデバイスを制御することができるように、ユーザーインターフェース56も含むことができる。インターフェース56は、キーパッド、キーボード、コンピュータのポインティングデバイス又はマウス、ディスプレイ又はユーザーが装置50を操作し制御できるようにする他の全ての手段を含むことができる。電動装置50はまた、例えばデータ保存デバイス、ファイルシステム、処理装置等の他のコンポーネントを含むこともできる。
動力の電気エネルギーを生成するデバイス52は、図11のデバイス10に同様のものであってよい。デバイス52は、熱電発電器スタック60を含むことができる。熱電発電器スタック60は、図11及び12の発電器スタック26と同様のものであってよく、実質的に同様の方法で操作可能である。熱電スタック60は、熱源62及び冷熱源64に熱的に連結し、熱電スタック60の熱電発電器又は熱電板全体に温度勾配を作り出して電気エネルギーを生成することができる。
熱電スタック60によって生成された電気エネルギーを調整回路66によって調整することが可能である。調整回路66は、制御モジュール68によって制御することができ、これにより適切な電圧及び電流レベルが電動装置50に供給される。制御モジュール68はユーザーインターフェースを含むことができる、又はインターフェースを制御モジュール68から分離して、適切な電圧及び電流及び装置50に供給されるべき電力に関連する他の全てのパラメータをユーザーが選択できるようにすることができる。
デバイス52はまた、プラグ、コンセント又は装置50に電力を供給するための同様の手段を含むこともできる。装置50にデバイス52を接続させるために、電気ケーブル又は電源コード72を提供することも可能である。本開示の別の実施形態では、デバイス52を装置50に一体化することができる。
本明細書に使用される専門用語は、特定の実施形態のみを説明するためのものであり、本発明を限定するものではない。本明細書に使用されるように、単一形態の「a」、「an」及び「the」は、文脈上そうでないことが明確に示されていない限り、複数形態も含むものである。さらに当然ながら、用語「含む」及び/又は「含んでいる」は本明細書に使用されるときに、規定された特徴、整数、ステップ、操作、要素、及び/又はコンポーネントの存在を明確に示すものであるが、一又は複数の他の特徴、整数、ステップ、操作、要素、コンポーネント、及び/又はそれらのグループの存在又は追加を除外するものではない。
特定の実施形態について図示及び説明してきたが、当業者には同じ目的を達成するために計算された全ての配置構成を、示した特定の実施形態と置き換えることができ、本発明が他の環境において別の用途を有することが理解される。この用途は、本発明の全ての適応形態又は変化を網羅するものである。下記の請求項は本発明の範囲を本明細書において説明した特定の実施形態に決して限定するものではない。

Claims (32)

  1. 電力を生成するモバイルデバイスであって:
    燃焼室;
    ヒート・シンク;
    燃焼室及びヒート・シンクと熱的に連通して燃焼室からヒート・シンクへ熱エネルギーを伝播する熱から電気への変換(TEC)モジュールであって、TECモジュール全体の熱流束によって電力が生成される熱から電気への変換(TEC)モジュール;
    燃焼室へ燃料を送るための燃料送達システム;及び
    燃料送達システムによる燃焼室への燃料の送達を少なくとも監視及び制御し、TECモジュール全体の温度勾配を制御して熱から電気エネルギーへの変換デバイスによって生じる電力を制御する制御システム
    を含むモバイルデバイス。
  2. TECモジュールが燃焼室の片側に配置され、さらに:
    燃焼室の別の側に配置され、燃焼室と熱的に連通している別のTECモジュール;及び
    別のTECモジュールと熱的に連通している別のヒート・シンクであって、別のTECモジュール全体の熱流束によって電力が生成されるヒート・シンク
    を含む、請求項1に記載のモバイルデバイス。
  3. 2つの同心パイプを含み且つ2つの同心パイプのうちの内側のパイプによって燃焼室が形成され、2つの同心パイプのうちの外側のパイプがヒート・シンクと熱的に連通している熱交換器をさらに含み、さらに:
    別のTECモジュール;及び
    別のTECモジュールと熱的に連通している別のヒート・シンク
    を含み、
    TECモジュール両方が内側のパイプ及び外側のパイプの間に配置され、燃焼室と各ヒート・シンクに熱的に連結して、燃焼室とヒート・シンクの間で熱エネルギーを伝播して電気エネルギーを生成する、請求項1に記載のモバイルデバイス。
  4. 燃焼室及びヒート・シンクの間に配置され、各TECモジュールの端部を絶縁して、デバイスの他の全ての可能な経路を介して寄生損失に終わる代わりに、TECモジュールを介して熱エネルギーの流れを分離する絶縁材料の層をさらに含む、請求項3に記載のモバイルデバイス。
  5. 熱交換器の2つの同心パイプが燃焼用空気を燃焼室へ送り、燃焼で生じた高温ガスを排出させる構造を含む、請求項3に記載のモバイルデバイス。
  6. 熱交換器は、燃焼室からの高温の廃棄ガスを使用して燃焼室に進入する供給冷気を温めて燃焼効率を上げる、そして、供給冷気を利用して高温の排気ガスを放出される前に冷す構造を含む、請求項3に記載のモバイルデバイス。
  7. 各ヒート・シンクが複数の空気冷却フィンを含み、デバイスがさらに、外気を燃焼のために燃焼室に及びヒート・シンクの空気冷却フィンの上に吹き入れる熱交換器の端部のファンを含む、請求項3に記載のモバイルデバイス。
  8. ヒート・シンクから熱を除去するためのファン;及び
    燃料の燃焼室への送り速度を制御し、TECモジュール全体の温度勾配をほぼ一定に維持して、デバイスからのほぼ均一な出力を提供するためにファンを制御する制御装置
    をさらに含む、請求項1に記載のモバイルデバイス。
  9. マグネシウムワイヤ燃料供給源をさらに含み;
    燃料送達システムが、燃焼室へマグネシウムワイヤを送るためのマグネシウムワイヤ供給システムを含み、制御システムがマグネシウムワイヤの送り速度を調節して、TECモジュール全体の温度勾配をほぼ一定に維持してほぼ均一な出力を提供する、
    請求項1に記載のモバイルデバイス。
  10. マグネシウムワイヤ供給システムが摩擦ベースの供給システムであり、デバイスがマグネシウムワイヤに点火して、電気スパークギャップイグナイターをさらに含む、請求項9に記載のモバイルデバイス。
  11. 燃焼室がバードネスト燃焼室を含み、デバイスがさらに:
    バードネスト燃焼室に熱的に連結された熱板;
    冷板;及び、
    熱板及び冷板の間にそれぞれ配置され、熱板及び冷板と熱的に連通して、熱板から熱エネルギーを冷板へ伝播して電気エネルギーを生成する複数のTECモジュール
    を含み、バードネスト燃焼室が、各TECモジュールへ熱エネルギーをほぼ均等に分散させる構造を含む、請求項1に記載のモバイルデバイス。
  12. バードネスト燃焼室に接続され、燃焼用空気が燃焼室に入り、燃焼室から全てのスラグを移動させることを可能にするスラグシュートをさらに含む、請求項11に記載のモバイルデバイス。
  13. 熱板及び冷板に形成された開口部を貫いて配置された、バードネスト燃焼室からの燃焼ガスを排出させるための排気筒をさらに含み、複数のTECモジュールが排気筒周囲に位置づけされ、排気筒がスラグシュートの延長部を形成する、請求項12に記載のモバイルデバイス。
  14. マグネシウムワイヤ燃料が巻かれたスプールをさらに含み、スラグシュートがスプールの中央を貫いて延びており、
    燃料送達システムが、マグネシウムワイヤをバードネスト燃焼室へ送るためのマグネシウムワイヤ供給システムを含み、制御システムが、マグネシウムワイヤの送り速度を調節して、TECモジュール全体の温度勾配をほぼ一定に維持して、デバイスからのほぼ均一な出力を提供する、請求項13に記載のモバイルデバイス。
  15. 冷板に熱的に連結されたヒート・シンク;
    ヒート・シンクから熱を除去する冷却ファン;及び、
    熱板、冷板、ヒート・シンク及び冷却ファンに形成された開口部を通して配置されたバードネスト燃焼室からの燃焼ガスを排出させる排気筒
    を更に含み、複数のTECモジュールが排気筒周囲及び排気筒に位置づけされている、請求項11に記載のモバイルデバイス。
  16. 排気筒からの排気をフィルターにかけるフィルターをさらに含む、請求項15に記載のモバイルデバイス。
  17. 燃焼室へ燃料を供給するためのマグネシウムワイヤ燃料供給システム、ガス燃料供給源、及び放射性燃料ペレットシステムのうちの一つをさらに含む、請求項1に記載のモバイルデバイス。
  18. 燃焼室;
    燃焼室の片側と熱的に連通している第1熱板;
    第1冷板;
    第1熱板及び第1冷板の間に配置され、第1熱板及び第1冷板と熱的に連通して、第1熱板から熱エネルギーを第1冷板へ伝播する第1TECモジュールであって、第1TECモジュール全体の熱流束により電力が生成される第1TECモジュール;
    燃焼室の別の側と熱的に連通している第2熱板;
    第2冷板;
    第2熱板及び第2冷板の間に配置され、第2熱板及び第2冷板と熱的に連通して、第2熱板から熱エネルギーを第2冷板へ伝播する第2TECモジュールであって、第2TECモジュール全体の熱流束により電力が生成される第2TECモジュール;
    マグネシウムワイヤ燃料供給源;
    マグネシウムワイヤを燃焼室へ送るためのマグネシウムワイヤ供給システム;
    TECモジュール全体の温度勾配をほぼ一定に維持してほぼ均一な出力を提供する制御システム
    を含む、電力を生成するモバイルデバイス。
  19. 第1及び第2熱板、第1及び第2冷板、第1及び第2TECモジュール、及び燃焼室を含む第1ハウジング部と、
    マグネシウムワイヤ燃料供給源、マグネシウムワイヤ供給システム、及び制御システムを含む第2ハウジング部
    を含む、請求項18に記載のモバイルデバイス。
  20. 第1冷板から伝播した熱を受ける第1ヒート・シンク;
    第2冷板から伝播した熱を受ける第2ヒート・シンク;
    外の冷却用空気が第1及び第2ヒート・シンク全体に流れるようにするファン
    をさらに含む、請求項19に記載のモバイルデバイス。
  21. 制御システムが、燃焼室へのマグネシウムワイヤ燃料の送り速度を制御し、またファンを制御してTECモジュール全体の温度勾配をほぼ一定に維持し、デバイスからのほぼ均一な出力を提供する熱管理システムを含む、請求項20に記載のモバイルデバイス。
  22. 電力を生成するモバイルデバイスであって:
    バードネスト燃焼室;
    バードネスト燃焼室に熱的に連結した熱板;
    冷板;及び
    熱板及び冷板の間にそれぞれ配置され、熱板及び冷板と熱的に連通して熱板から冷板へ熱エネルギーを伝播して電気エネルギーを生成する複数のTECモジュール
    を含み、
    バードネスト燃焼室と熱板が、熱エネルギーを各TECモジュールへほぼ均等に分配する構造を含む、電力を生成するモバイルデバイス。
  23. さらに:
    マグネシウムワイヤ燃料供給源;及び
    マグネシウムワイヤを燃焼室へ送るマグネシウムワイヤ供給システム
    を含む、請求項22に記載のモバイルデバイス。
  24. 外部燃料源及び放射性燃料ペレット源のうちの一つをさらに含む、請求項22に記載のモバイルデバイス。
  25. 冷板と熱的に連通しているヒート・シンク;
    外の冷却用空気をヒート・シンク全体に流れるようにするファン;及び、
    燃焼室への燃料の速度を制御し、またファンを制御して、TECモジュール全体の温度勾配をほぼ一定に維持してデバイスからのほぼ均一な出力を提供する制御システム
    をさらに含む、請求項22に記載のモバイルデバイス。
  26. バードネスト燃焼室からの燃焼ガスを排出する排気筒をさらに含み、排気筒が熱板及び冷板に形成された開口部を通って延び、複数のTECモジュールが排気筒周囲にほぼ均等に分布している、請求項22に記載のモバイルデバイス。
  27. バードネスト燃焼室と連通して燃焼用空気が燃焼室に進入するのを可能にする空気吸入口をさらに含む、請求項26に記載のモバイルデバイス。
  28. 給気口が燃焼室の延長部を形成し、全てのスラグが燃焼室から落下できるようにする、請求項27に記載のモバイルデバイス。
  29. 電力を生成する方法であって:
    TECモジュール全体に熱流束を作り出して電力を生成すること、及び
    TECモジュール全体の温度勾配を制御してほぼ均一な出力を提供する
    ことを含み、温度勾配の制御が:
    電力を生成するデバイスの燃焼室への燃料の送り速度を制御すること;そして、
    TECモジュールに熱的に連結されたヒート・シンク全体の冷却用空気の流れを制御すること
    のうちの少なくとも1つを含む方法。
  30. 複数のTECモジュールに熱をほぼ均等に分散させるように燃焼室を構成することをさらに含む、請求項29に記載の方法。
  31. 燃焼室からの高温排気ガスを使用して燃焼室へ進入する低温の供給空気を温めることによって燃焼効率を上げること;及び
    低温供給空気を使用して高温排気ガスを冷却すること
    をさらに含む、請求項29に記載の方法。
  32. 燃料の送り速度の制御が、燃焼室へのマグネシウムワイヤの送り速度を制御することを含む、請求項29に記載の方法。
JP2011504024A 2008-04-08 2009-02-20 電力を生成するデバイス及び方法 Active JP5529113B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/099,291 US8519254B2 (en) 2008-04-08 2008-04-08 Device and method for generating electrical power
US12/099,291 2008-04-08
PCT/US2009/034613 WO2009126371A2 (en) 2008-04-08 2009-02-20 Device and method for generating electrical power

Publications (3)

Publication Number Publication Date
JP2011524152A true JP2011524152A (ja) 2011-08-25
JP2011524152A5 JP2011524152A5 (ja) 2012-04-05
JP5529113B2 JP5529113B2 (ja) 2014-06-25

Family

ID=41056929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011504024A Active JP5529113B2 (ja) 2008-04-08 2009-02-20 電力を生成するデバイス及び方法

Country Status (4)

Country Link
US (2) US8519254B2 (ja)
EP (1) EP2277208B1 (ja)
JP (1) JP5529113B2 (ja)
WO (1) WO2009126371A2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014505453A (ja) * 2010-11-16 2014-02-27 エレクトロン ホールディング,エルエルシー 熱から電気エネルギーを生成するための、システム、方法および/または装置
WO2019130929A1 (ja) * 2017-12-27 2019-07-04 株式会社Kelk 熱電発電装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8633371B2 (en) 2007-11-09 2014-01-21 The Boeing Company Device and method for generating electrical power
US8519254B2 (en) 2008-04-08 2013-08-27 The Boeing Company Device and method for generating electrical power
US8415829B2 (en) * 2009-06-02 2013-04-09 Vdc Manufacturing Inc. Transportable modular multi-appliance device
EP2362456A1 (en) * 2010-02-25 2011-08-31 Koninklijke Philips Electronics N.V. Thermo-electric generator system
US8487177B2 (en) 2010-02-27 2013-07-16 The Boeing Company Integrated thermoelectric honeycomb core and method
WO2011120676A2 (en) * 2010-03-30 2011-10-06 Tata Steel Uk Limited Arrangement for generating electricity with thermoelectric generators and solar energy collector means
CN101963342B (zh) * 2010-09-27 2012-10-10 华北电力大学 一种镁能光热发电系统
TW201240892A (en) * 2011-04-13 2012-10-16 Hon Hai Prec Ind Co Ltd Container with self-power-supply function
RS53561B1 (en) * 2011-06-03 2015-02-27 Dušan Švenda HEAT-ABSORPTION ELECTRICITY GENERATOR
US20140034103A1 (en) * 2012-07-31 2014-02-06 Stamp Teg Llc System, methods, and devices for generating power using a thermoelectric device with closed loop cooling system for mobile device and battery charging
US20160204328A1 (en) * 2015-01-12 2016-07-14 Qibiao XIE Waste heat power generation device and gas appliance using the same
DK180206B1 (en) * 2018-06-05 2020-08-17 Entiffic Aps Portable heating system
US11996790B2 (en) 2019-08-20 2024-05-28 Calagen, Inc. Producing electrical energy using an etalon
CN111130390A (zh) * 2019-12-14 2020-05-08 杭州电子科技大学 一种基于热辐射自供电的物理信号监测方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4218266A (en) * 1978-12-21 1980-08-19 The United States Of America As Represented By The Secretary Of The Army Liquid hydrocarbon-fueled thermo-electric generator with counter-flow type regenerative heat exchanger
JPH1136981A (ja) * 1997-07-22 1999-02-09 Nissan Motor Co Ltd 排熱発電装置
JP3082283U (ja) * 2001-05-30 2001-12-07 雅一 林 内部電源を備えた温風暖房機
JP2002110256A (ja) * 2000-10-02 2002-04-12 Matsushita Electric Ind Co Ltd 携帯用機器
JP2004129442A (ja) * 2002-10-04 2004-04-22 Okano Electric Wire Co Ltd 発電装置
JP2007503197A (ja) * 2003-08-18 2007-02-15 ビーエスエスティー エルエルシー 熱電発電システム

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3056701A (en) * 1958-04-30 1962-10-02 Reynolds Metals Co Combustion system comprising metal foil and solid perchlorate
US3306782A (en) 1961-02-23 1967-02-28 Gen Instrument Corp Chemically fueled thermo-electric generator assembly
US3185201A (en) * 1961-07-06 1965-05-25 Exxon Research Engineering Co Combustion device with thermoelectrically powered burner
US3056848A (en) 1961-07-24 1962-10-02 North American Aviation Inc Portable generator utilizing direct conversion of heat to electricity
US3269873A (en) * 1962-08-29 1966-08-30 Gen Motors Corp Thermoelectric generator assembly
US4129003A (en) * 1976-03-29 1978-12-12 Q Corporation Engine operated by a non-polluting recyclable fuel
JPH07123758A (ja) 1993-10-19 1995-05-12 Fuji Electric Co Ltd 熱電発電装置
JPH07221352A (ja) 1994-01-31 1995-08-18 Tokin Corp 積層型熱電変換装置,熱電発電用サブユニット,および発電システム
US5609032A (en) * 1994-03-23 1997-03-11 Bielinski; George Thermoelectric cooling system
WO1998037587A1 (en) * 1997-02-21 1998-08-27 Volvo Aero Corporation A thermoelectric generator unit
JPH11121816A (ja) 1997-10-21 1999-04-30 Morikkusu Kk 熱電モジュールユニット
US7419022B2 (en) * 2000-04-05 2008-09-02 Borealis Technical Limited Thermionic power unit
US6307142B1 (en) 2000-04-13 2001-10-23 Hi-Z Technology, Inc. Combustion heat powered portable electronic device
US6959555B2 (en) 2001-02-09 2005-11-01 Bsst Llc High power density thermoelectric systems
JP4416376B2 (ja) 2002-05-13 2010-02-17 富士通株式会社 半導体装置及びその製造方法
US6856016B2 (en) 2002-07-02 2005-02-15 Intel Corp Method and apparatus using nanotubes for cooling and grounding die
DE10342655A1 (de) 2003-09-15 2005-04-07 Müller-Werth, Bernhard Vorrichtung für die Erzeugung elektrischer Energie
EP1571718A1 (en) 2004-03-04 2005-09-07 Van den Brandhof, Evert Alexander Portable apparatus for generating electrical energy with a thermoelectric element
US8519254B2 (en) 2008-04-08 2013-08-27 The Boeing Company Device and method for generating electrical power

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4218266A (en) * 1978-12-21 1980-08-19 The United States Of America As Represented By The Secretary Of The Army Liquid hydrocarbon-fueled thermo-electric generator with counter-flow type regenerative heat exchanger
JPH1136981A (ja) * 1997-07-22 1999-02-09 Nissan Motor Co Ltd 排熱発電装置
JP2002110256A (ja) * 2000-10-02 2002-04-12 Matsushita Electric Ind Co Ltd 携帯用機器
JP3082283U (ja) * 2001-05-30 2001-12-07 雅一 林 内部電源を備えた温風暖房機
JP2004129442A (ja) * 2002-10-04 2004-04-22 Okano Electric Wire Co Ltd 発電装置
JP2007503197A (ja) * 2003-08-18 2007-02-15 ビーエスエスティー エルエルシー 熱電発電システム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014505453A (ja) * 2010-11-16 2014-02-27 エレクトロン ホールディング,エルエルシー 熱から電気エネルギーを生成するための、システム、方法および/または装置
WO2019130929A1 (ja) * 2017-12-27 2019-07-04 株式会社Kelk 熱電発電装置
GB2581730A (en) * 2017-12-27 2020-08-26 Kelk Ltd Thermoelectric generator
GB2581730B (en) * 2017-12-27 2022-02-23 Kelk Ltd Thermoelectric generation device

Also Published As

Publication number Publication date
JP5529113B2 (ja) 2014-06-25
WO2009126371A2 (en) 2009-10-15
US20130306126A1 (en) 2013-11-21
WO2009126371A3 (en) 2011-04-21
US9054273B2 (en) 2015-06-09
US20090250091A1 (en) 2009-10-08
EP2277208A2 (en) 2011-01-26
EP2277208B1 (en) 2020-01-01
US8519254B2 (en) 2013-08-27

Similar Documents

Publication Publication Date Title
JP5529113B2 (ja) 電力を生成するデバイス及び方法
US10230037B2 (en) Device and method for generating electrical power
US6307142B1 (en) Combustion heat powered portable electronic device
US20070221205A1 (en) Self powered pelletized fuel heating device
JP2011524152A5 (ja)
US20200294780A1 (en) Combined heating and power modules and devices
CN101401252A (zh) 温度控制器
US20190145286A1 (en) Method for thermoelectric energy generation
CN104279678A (zh) 一种具有废热回收功能的空调器
JP3634311B2 (ja) 電源供給システム
CN104143935A (zh) 一种户外应急充电装置
US20030145594A1 (en) Method and apparatus for converting dissipated heat to work energy
EP2784409B1 (en) A portable fuel heater to heat air and a method for heating air through said heater
US8618406B1 (en) Thermoelectric power generation method and apparatus
JP2020017361A (ja) 電池温調装置
JP2006196397A (ja) 電力バックアップ装置
WO2020185944A1 (en) Combined heating and power modules and devices
US20240337415A1 (en) Electric fluid heater
KR102219213B1 (ko) 과열보호부가 구비된 열전발전기를 포함하는 연소장치
KR102219350B1 (ko) 열전발전기를 포함하는 연소장치
US20220359918A1 (en) Mobile energy supply system with battery modules, battery module and method for operating a mobile energy supply system
Sawant et al. An Innovative Approach For Extraction Of Energy From Wastage Heat Dissipation From Vehicle Engine Heat-Up
KR20230083581A (ko) 전지 팩 관리 시스템
GB2584350A (en) Electric generator
JPH10164876A (ja) 熱電発電器

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120214

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140416

R150 Certificate of patent or registration of utility model

Ref document number: 5529113

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250