JP2011515441A - 1,4−ナフトキノン誘導体およびその治療用途 - Google Patents

1,4−ナフトキノン誘導体およびその治療用途 Download PDF

Info

Publication number
JP2011515441A
JP2011515441A JP2011501210A JP2011501210A JP2011515441A JP 2011515441 A JP2011515441 A JP 2011515441A JP 2011501210 A JP2011501210 A JP 2011501210A JP 2011501210 A JP2011501210 A JP 2011501210A JP 2011515441 A JP2011515441 A JP 2011515441A
Authority
JP
Japan
Prior art keywords
group
formula
compound
hydrogen atom
branched
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011501210A
Other languages
English (en)
Other versions
JP5725299B2 (ja
JP2011515441A5 (ja
Inventor
ダヴィオー−シャルヴェ,エリザベス
ミュラー,トビーアス
バウアー,ホルガー
シルマー,アール.ハイナー
Original Assignee
サントル ナショナル ドゥ ラ ルシェルシュ シアンティフィク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サントル ナショナル ドゥ ラ ルシェルシュ シアンティフィク filed Critical サントル ナショナル ドゥ ラ ルシェルシュ シアンティフィク
Publication of JP2011515441A publication Critical patent/JP2011515441A/ja
Publication of JP2011515441A5 publication Critical patent/JP2011515441A5/ja
Application granted granted Critical
Publication of JP5725299B2 publication Critical patent/JP5725299B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/49Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
    • C07C255/56Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton containing cyano groups and doubly-bound oxygen atoms bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C50/00Quinones
    • C07C50/10Quinones the quinoid structure being part of a condensed ring system containing two rings
    • C07C50/14Quinones the quinoid structure being part of a condensed ring system containing two rings with unsaturation outside the ring system, e.g. vitamin K1
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • A61P33/02Antiprotozoals, e.g. for leishmaniasis, trichomoniasis, toxoplasmosis
    • A61P33/06Antimalarials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C201/00Preparation of esters of nitric or nitrous acid or of compounds containing nitro or nitroso groups bound to a carbon skeleton
    • C07C201/06Preparation of nitro compounds
    • C07C201/12Preparation of nitro compounds by reactions not involving the formation of nitro groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C205/00Compounds containing nitro groups bound to a carbon skeleton
    • C07C205/45Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by at least one doubly—bound oxygen atom, not being part of a —CHO group
    • C07C205/46Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by at least one doubly—bound oxygen atom, not being part of a —CHO group the carbon skeleton containing carbon atoms of quinone rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C221/00Preparation of compounds containing amino groups and doubly-bound oxygen atoms bound to the same carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C225/00Compounds containing amino groups and doubly—bound oxygen atoms bound to the same carbon skeleton, at least one of the doubly—bound oxygen atoms not being part of a —CHO group, e.g. amino ketones
    • C07C225/24Compounds containing amino groups and doubly—bound oxygen atoms bound to the same carbon skeleton, at least one of the doubly—bound oxygen atoms not being part of a —CHO group, e.g. amino ketones the carbon skeleton containing carbon atoms of quinone rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/30Preparation of carboxylic acid nitriles by reactions not involving the formation of cyano groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/01Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms
    • C07C255/24Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms containing cyano groups and singly-bound nitrogen atoms, not being further bound to other hetero atoms, bound to the same saturated acyclic carbon skeleton
    • C07C255/29Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms containing cyano groups and singly-bound nitrogen atoms, not being further bound to other hetero atoms, bound to the same saturated acyclic carbon skeleton containing cyano groups and acylated amino groups bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C269/00Preparation of derivatives of carbamic acid, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C269/06Preparation of derivatives of carbamic acid, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups by reactions not involving the formation of carbamate groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C271/00Derivatives of carbamic acids, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C271/06Esters of carbamic acids
    • C07C271/08Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms
    • C07C271/26Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of a six-membered aromatic ring
    • C07C271/28Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of a six-membered aromatic ring to a carbon atom of a non-condensed six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C46/00Preparation of quinones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C46/00Preparation of quinones
    • C07C46/02Preparation of quinones by oxidation giving rise to quinoid structures
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C50/00Quinones
    • C07C50/10Quinones the quinoid structure being part of a condensed ring system containing two rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C50/00Quinones
    • C07C50/24Quinones containing halogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C50/00Quinones
    • C07C50/26Quinones containing groups having oxygen atoms singly bound to carbon atoms
    • C07C50/32Quinones containing groups having oxygen atoms singly bound to carbon atoms the quinoid structure being part of a condensed ring system having two rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C50/00Quinones
    • C07C50/38Quinones containing —CHO or non—quinoid keto groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/347Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups
    • C07C51/353Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups by isomerisation; by change of size of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C66/00Quinone carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/95Esters of quinone carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D295/00Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
    • C07D295/04Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms
    • C07D295/08Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by singly bound oxygen or sulfur atoms
    • C07D295/096Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by singly bound oxygen or sulfur atoms with the ring nitrogen atoms and the oxygen or sulfur atoms separated by carbocyclic rings or by carbon chains interrupted by carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D295/00Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
    • C07D295/04Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms
    • C07D295/10Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by doubly bound oxygen or sulphur atoms
    • C07D295/112Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by doubly bound oxygen or sulphur atoms with the ring nitrogen atoms and the doubly bound oxygen or sulfur atoms separated by carbocyclic rings or by carbon chains interrupted by carbocyclic rings
    • C07D295/116Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by doubly bound oxygen or sulphur atoms with the ring nitrogen atoms and the doubly bound oxygen or sulfur atoms separated by carbocyclic rings or by carbon chains interrupted by carbocyclic rings with the doubly bound oxygen or sulfur atoms directly attached to a carbocyclic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2602/00Systems containing two condensed rings
    • C07C2602/02Systems containing two condensed rings the rings having only two atoms in common
    • C07C2602/04One of the condensed rings being a six-membered aromatic ring
    • C07C2602/10One of the condensed rings being a six-membered aromatic ring the other ring being six-membered, e.g. tetraline

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

式(I):
Figure 2011515441

[式中、Aは次の環:
Figure 2011515441

から選択される]
の1,4-ナフトキノン誘導体、それらの製造法および抗マラリア剤としての適用。

Description

この発明は、1,4-ナフトキノン誘導体、その製造および医療への適用に関する。
拡大する耐性のため、毎年数百万人の子供達が深刻なマラリアで死んでいる貧困な国々では、マラリアに対する新薬が継続的に必要とされている。処方箋薬は安価でなくてはならず、したがってそれらは化学物質として市場で入手できなければ、簡単に合成されなければならない。
プラスモディウム(Plasmodium)属の寄生生物は、そのライフサイクルを通してヒトの体内で高密度の活性酸素種に晒されるので、細胞内において高活性の抗酸化機構を必要とする。最も重要な抗酸化機構は、ジスルフィド還元酵素により再生されるチオールから構成されており、これらはマラリア寄生生物、プラスモディウム・ファルシパルム(Plasmodium falciparum)のグルタチオン還元酵素(GR)およびヒト赤血球、ならびにP.ファルシパルムのチオレドキシン還元酵素の3つの有効な薬剤の標的を含んでいる(Schirmerら, Angew. Chem. Int. Ed. Engl. 1995, 34, 141-54; Krauth-Siegelら, Angewandte Chemie International Edition (2005), 44(5), 690-715)。
マラリア寄生生物であるプラスモディウム・ファルシパルムに対する有効な標的の一つはグルタチオン還元酵素であり、NADPHの消費によりグルタチオンジスルフィドをチオール型のグルタチオンに還元する。グルタチオンはクロロキン耐性の形成に密接な関わりを有している。P.ファルパシルム内におけるグルタチオン含量の上昇は、クロロキン耐性の増加を招く。一方、グルタチオンの枯渇は、耐性菌のクロロキン感受性を保持させる(Meierjohanら, Biochem. J. 2002, 368, 761-768)。
高い細胞内グルタチオンレベルは、とりわけGRおよび還元されたチオレドキシンによるグルタチオンジスルフィドの効率的な還元に依存している(Kanzokら, Science 2001, 291, 643-646)。抗マラリア薬として一般に用いられているクロロキンについて、GR阻害剤による薬剤耐性の転換に対する寄与が最近研究されている(Sarmaら, J. Mol. Biol. 2003, 328, 893-907)。メナジオン誘導体が、低いマイクロモルの範囲で、ヒトおよびプラスモディウム・ファルシパルム両方のグルタチオン還元酵素の強力な阻害剤となり得ることが示された(Davioud-Charveら, J. Med. Chem. 2001, 44, 4268-4276; Bioら, J. Med. Chem. 47, 5972-5983; Baueら, J. Am. Chem. Soc. 2006, 128, 10784-10794)。
マラリア寄生生物プラスモディウム・ファルシパルムは、その赤血球循環中に、必須栄養源として宿主細胞のヘモグロビンを大量に消化する(Zarchinら, Biochem. Pharmacol. 1986, 35, 2435-2442)。上記の消化は、いくつかのプロテアーゼが関与し、寄生生物の食胞で起こり、寄生生物に対する毒性の副産物としてのフェロプロトポルフィリン鉄III(FPIX)の形成へとつながる複雑な過程である(Goldbergら, Parasitol. Today, 1992, 8, 280-283)。
FPIXの毒性に起因して、寄生生物は一つの解毒プロセスを獲得した。そのプロセスではFPIX(Fe3+)(ヘマチン)が重合され、ヘモゾインまたはマラリア色素の不活性結晶を形成する(Dornら, Nature 1995, 374, 269-271)。FPIX (Fe2+)はヘマチン重合の阻害剤である(Montiら, Biochemistry 1999, 38, 8858-8863)。
初期の報告では、遊離型FPIX (Fe3+) は、窒素を含む芳香族化合物、例えばピリジン類および4-アミノキノリン類と複合体を形成し得ることが示されており(Cohenら, Nature 1964, 202, 805-806; Eganら, J. Inorg. Biochem. 2006, 100, 916-926)、それは現在4-アミノキノリン類がFPIXとμ-オキソダイマー類を形成し、ヘモゾインの形成を阻止し得ることが立証されている。結果として、食胞内での遊離型ヘムの蓄積が寄生生物を殺傷する役割を果たしている(Vippaguntaら, Biomed. Biochim. Acta 2000, 1475, 133-140)。
活性酸素種の存在下で、鉄-ポルフィリン複合体(例えば遊離型ヘム)は酸化反応を触媒する。寄生生物の食胞内で大量に放出されると、それらは、マラリア性食胞の特定の酸性条件下で、薬剤の活性に強い影響を与えると考えられている。薬剤の代謝産物は、その前駆体よりも活性であるか(プロドラッグ効果)、または毒性が強い(Bernadouら, Adv. Synth. Catal. 2004, 346, 171-184)。
メトヘモグロビン(Fe3+)のヘモグロビン(Fe2+)への還元は、マラリアの治療において非常に重要である。マラリア寄生生物は、栄養素としてメトヘモグロビンをより多く使用することができ、ヘモグロビンより速くメトヘモグロビンを消化できるので、メトヘモグロビンの還元はその濃度を減少させることにより、寄生生物のメトヘモグロビンの消化を遅らせるのに用いられ得る。
メトヘモグロビンの還元を目指す2つ目の理由は、ヘモグロビンの鉄型であるメトヘモグロビンが酸素輸送できないからである。高いレベルのメトヘモグロビンは、プラスモディウム・ビバクス(vivax)感染中に見られる(Ansteyら, Trans. R. Soc. Trop. Med. Hyg. 1996, 90, 147-151)。
貧血による血液の酸素輸送能力の低下は、組織への酸素供給の不具合を引き起こす低濃度のメトヘモグロビンからでさえも、酸素輸送量をさらに低下させる:大脳のマラリアにおいて観察された特別な状況。
マラリア寄生生物プラスモディウム・ファルシパルムは、ヒトの赤血球内で繁殖するから、ほとんどの薬剤は寄生生物のライフサイクルのこの段階に向けられている。クロロキンのような標準的な薬剤に対する耐性が強くなるため、新規な薬剤が緊急に必要となっている。
したがって、通常の薬剤のような欠点がなくて、マラリアに対して効果を有する化合物の必要性がなお存在している。さらに、簡単に医薬組成物に製剤化できる抗マラリア剤に対する必要性もある。
それゆえに、本発明は新規で強力な抗マラリア剤、および新規で強力な抗マラリア剤を用いるマラリアの治療方法を提供する。
また、本発明は、P.ファルシパルムのグルタチオン還元酵素阻害剤であり、クロロキン感受性株およびマラリア耐性株に対して活性のある強力な抗マラリア剤をも提供する。
本発明は式(I)の化合物
Figure 2011515441
[式中、- Aは次の環:
Figure 2011515441
(ここで、R6はナフトキノンのフェニル環の5、6、7もしくは8位、またはキノリン-5,8-ジオンの2、3もしくは4位に位置していてもよく、それぞれ独立して、水素原子、ハロゲン原子、ヒドロキシ基、直鎖もしくは分枝鎖状の(C1-C4)アルキル基、ジ-もしくはトリ-フルオロメチル基、トリフルオロメトキシ基、ペンタフルオロスルファニル基を表し、nは0〜4の整数であり、R7はメチル基を表す)から選択され、
- Xは-C(O)-または-CHY-(ここで、Yは水素原子、ヒドロキシ基、直鎖もしくは分枝鎖状の(C1-C4)アルキル基および(C3-C6)シクロアルキル基を含む群から選択される)を表し、
- R1、R2、R3、R4およびR5は、それぞれ独立して、
・水素原子、
・ハロゲン原子、
・ヒドロキシ基、
・直鎖もしくは分枝鎖状の(C1-C4)アルキル基、
・トリフルオロメチル基、
・ジフルオロメチル基、
・直鎖もしくは分枝鎖状の(C1-C4)アルコキシ基、
・トリフルオロメトキシ基、
・ジフルオロメトキシ基、
・ペンタフルオロスルファニル基、
・-COOH、
・-COO(C1-C4)アルキル基、
・-CONR8(CH2)mCN(ここで、R8は水素原子または直鎖もしくは分枝鎖状の(C1-C4)アルキル基であり、mは1、2または3である)、
・-CSNR8(CH2)mCN(ここで、R8は水素原子または直鎖もしくは分枝鎖状の(C1-C4)アルキル基であり、mは1、2または3である)、
・-CONR8Het(ここで、R8は水素原子または直鎖もしくは分枝鎖状の(C1-C4)アルキル基であり、Hetは6位においてアミノ基で、もしくは5位において-CONH2で置換されていてもよいピリジン-2-イル基を表す)、
・-NO2
・-CN、
・-NR9R10(ここで、R9およびR10は、それぞれ独立して、水素原子、Boc基および(C1-C4)アルキル基からなる群より選択されるアミノ保護基を表すか、またはR9およびR10はそれらが結合している窒素原子と共にモルホリン基およびピペラジン基を含む群から選択される環式基を形成し、該環式基は置換されていてもよい)、
・アリール基、あるいは(C1-C4)アルキル基、-NO2基、-COOR11(ここで、R11は水素原子および直鎖もしくは分枝鎖状の(C1-C4)アルキル基から選択される)、-NR12R13(ここで、R12およびR13はそれぞれ独立して水素原子および直鎖もしくは分枝鎖状の(C1-C4)アルキル基を含む群から選択される)で置換されたアリール基、
・モルホリニル基またはピペラジニル基を含む群から選択される複素環式基であり、これらの複素環式基は直鎖もしくは分枝鎖状の(C1-C4)アルキル基、-COOCH2CH3または基:
Figure 2011515441
含む群から選択される1以上の置換基で置換されていてもよい]
およびその医薬的に許容される誘導体に関する。
ただし、式(I)の化合物は、次の化合物を含む群からは選択されない。
Figure 2011515441
これらの化合物は、US 2417919、P. WaskeらによるTetrahedron Lett. 2006, 47, 1329-1332、OgiharaらによるChem. Pharm. Bull., 1997, 45, 437-445、HowlandらによるBiochim. Biophys. Acta, 1965, 105, 205-213、BauerらによるJ. Am. Chem. Soc., 2006, 128, 10784-10794、FriebolinらによるJ. Med. Chem., 2008, 128, 10784-10794およびK. ChandrasenanらによるTetrahedron 1971, 27(12), 2529-39にそれぞれ開示されている。
「アルキル」という用語は、直鎖もしくは分枝鎖状の、示された炭素原子数を有する、飽和の炭化水素鎖を指す。(C1-C4)アルキルは、メチル、エチル、プロピル、イソプロピル、ブチル、sec-ブチル、tert-ブチルを含むが、これらに限定されない。アルキル基は置換されていなくてもよく、1以上の置換基によって任意に置換されていてもよい。
「アルコキシ」という用語は、示された炭素原子数を有する-O-アルキル基を指す。(C1-C4)アルコキシ基は、-O-メチル、-O-エチル、-O-プロピル、-O-イソプロピル、-O-ブチル、-O-sec-ブチル、-O-tert-ブチルを含む。
「アリール」という用語は、6-〜18-員の単環、二環、三環もしくは多環の芳香族炭化水素環式基を指す。アリール基の例は、フェニル、ナフチル、ピレニル、アンスラニル、キノリルおよびイソキノリルを含む。アリール基は置換されていなくてもよく、下記の1以上の置換基によって任意に置換されていてもよい。
本発明によれば、「医薬的に許容される塩」は、本発明の化合物の、医薬的に許容される有機酸もしくは無機酸または有機塩基もしくは無機塩基との塩である。代表的な医薬的に許容される塩は、例えば、アルカリ金属塩、アルカリ土類金属塩、アンモニウム塩、水溶性または水不溶性の塩(アセテート、アムソネート(4,4-ジアミノスチルベン-2,2-ジスルホネート)、ベンゼンスルホネート、ベンゾネート、ビカルボネート、ビサルフェート、ビタートレート、ボレート、ブロマイド、ブチレート、カルシウム、カルシウムエデテート、カムシレート、カーボネート、クロライド、シトレート、クラブラリエート、塩酸塩、エデテート、エディシレート、エストレート、エシレート、フィウナレート、グルセプテート、グルコネート、グルタメート、グリコリラサニレート、ヘキサフルオロホスフェート、ヘキシルレソルシネート、ヒドラバミン、臭化水素酸塩、ヒドロキシナフトエート、ヨーダイド、イソチオネート、ラクテート、ラクトビオネート、ラウレート、マレート、マレエート、マンデレート、 メシレート、メチルブロマイド、メチルナイトレート、メチルサルフェート、ムケート、ナプシレート、ナイトレート、N-メチルグルカミンアンモニウム塩、3-ヒドロキシ-2-ナフトエート、オレエート、オキサレート、パルミテート、パモエート(1,1-メテン-ビス-2-ヒドロキシ-3-ナフトエート、アインボネート)、パントテネート、ホスフェート/ジホスフェート、ピクレート、ポリガラクトロネート、プロピオネート、p-トルエンスルホネート、サリチレート、ステアレート、サブアセテート、スクシネート、サルフェート、スルホサリクレート、スラメート、タンネート、タートレート、テオクレート、トシレート、トリエチオダイドおよびバレレートなどの塩を含む。
医薬的に許容される塩は、1以上の荷電原子をその構造中に有していてもよい。この場合、医薬的に許容される塩は1以上の対イオンを有していてもよい。したがって、医薬的に許容される塩は、1以上の荷電原子および/または1以上の対イオンを有していてもよい。
ある実施態様では、式(I)の化合物は、次のものである
- R1、R2、R4およびR5は、それぞれ他と独立して、水素原子、ハロゲン原子、ジ-もしくはトリ-フルオロメチル基または(C1-C4)アルコキシ基を表し、
- R3は、
・水素原子、
・ハロゲン原子、
・ヒドロキシ基、
・直鎖もしくは分枝鎖状の(C1-C4)アルキル基、
・トリフルオロメチル基、
・ジフルオロメチル基、
・直鎖もしくは分枝鎖状の(C1-C4)アルコキシ基、
・トリフルオロメトキシ基、
・ジフルオロメトキシ基、
・ペンタフルオロスルファニル基、
・-COOH、
・-COO(C1-C4)アルキル基
・-CONR8(CH2)mCN(ここで、R8は水素原子または直鎖もしくは分枝鎖状の(C1-C4)アルキル基であり、mは1、2または3である)、
・-CSNR8(CH2)mCN(ここで、R8は水素原子または直鎖もしくは分枝鎖状の(C1-C4)アルキル基であり、mは1、2または3である)、
・-CONR8Het(ここで、R8は水素原子または直鎖もしくは分枝鎖状の(C1-C4)アルキル基であり、Hetはピリジン-2-イル基、または6位においてアミノ基で置換されているか、もしくは5位において-CONH2で置換されたピリジン-2-イル基を表す)、
・-NO2
・-CN、
・-NR9R10(ここで、R9は水素原子もしくは(C1-C4)アルキル基を表し、R10は(C1-C4)アルキル基を表すか、またはR9およびR10はそれらが結合している窒素原子とともに:
Figure 2011515441
を形成する)、
・パラ位において(C1-C4)アルキル基、NO2基、-COOR11(ここで、R11は水素原子および直鎖もしくは分子鎖状の(C1-C4)アルキル基から選択される)、-NR12R13(ここで、R12およびR13は水素原子および直鎖もしくは分子鎖状の(C1-C4)アルキル基を含む群から選択される)で置換されていてもよいフェニル基、
・モルホリニル基またはピペラジニル基から選択される複素環式基であり、これらの複素環式基は、直鎖もしくは分子鎖状の(C1-C4)アルキル基、-COOCH2CH3または基:
Figure 2011515441
を含む群から選択される、1以上の置換基で任意に置換されていてもよい、
ならびにその医薬的に許容される誘導体。
ただし、式(I)の化合物は、次の化合物を含む群からは選択されない。
Figure 2011515441
もう一つの実施態様では、Aは次の環から選択される。
Figure 2011515441
[式中、R7はメチル基を表す]
さらに他の実施態様では、Xは-C(O)または-CH2-を表す。
さらに他の実施態様では:
- R1、R2、R3、R4、R5はそれぞれ:
・水素原子、
・Br、ClおよびFを含む群から選択されるハロゲン原子、
・ヒドロキシ基、
・メチルおよびt-ブチルを含む群から選択される直鎖もしくは分枝鎖状の(C1-C4)アルキル基、
・ジ-もしくはトリ-フルオロメチル基、
・メトキシ基、
・トリフルオロメトキシ基、
・ペンタフルオロスルファニル基、
・-NO2
・-CN、
・-COOR14(ここで、R14は水素原子またはメチル基を表す)、
・-CONH(CH2)2CN、
・-NHBoc、
・次の:
Figure 2011515441
を含む群から選択される基、
・パラ位においてt-ブチル基、-NO2、N(CH3)2または-NHC(CH3)3で置換されたフェニル基
を表す。
さらに他の実施態様では:
- R1、R2、R3、R4およびR5は、それぞれ独立して、水素原子、ヒドロキシ基、メトキシ基、ジ-もしくはトリ-フルオロメチル基およびトリフルオロメトキシ基、ペンタフルオロスルファニル基、またはアミノ基
を含む群から選択される。
さらに他の実施態様では、R1、R2、R3、R4およびR5は、フッ素原子、ジ-もしくはトリ-フルオロメチル基、またはトリフルオロメトキシ基、ペンタフルオロスルファニル基を表す。
もう一つの実施態様では、本発明は、Aが、
Figure 2011515441
を表す式(I)の化合物の製造法を提供する。
この方法は、式(IIa)または式(IIb):
Figure 2011515441
[式中、R6は1,4-ナフトキノンのフェニル環の5、6、7もしくは8位、またはキノリン-5,8-ジオンの2、3もしくは4位に位置していてもよく、独立して水素原子、ハロゲン原子、ヒドロキシ基、直鎖もしくは分枝鎖状の(C1-C4)アルキル基、ジ-もしくはトリ-フルオロメチル基、トリフルオロメトキシ基、ペンタフルオロスルファニル基を表し、nは0〜4の整数であり、R7はメチル基を表す]
の化合物を、式(III):
Figure 2011515441
[式中、R1、R2、R3、R4およびR5は請求項1で定義されたとおりである]
のフェニル酢酸誘導体と反応させて、それぞれ式(Ia):
Figure 2011515441
の化合物または式(Ib):
Figure 2011515441
の化合物を得、これらの化合物を酸性条件下で処理して、それぞれ式(Ic):
Figure 2011515441
の化合物または式(Id):
Figure 2011515441
[式中、R1、R2、R3、R4、R5、R6およびnは上記で定義されたとおりである]
の化合物を得ることを含む。
本発明は、Aが:
Figure 2011515441
を表し、Xが-CH2-,または-C(O)-を表す、式(I)の化合物に相当する式(Ia1、Ib1、Ic1、Id1、IeおよびIf)の化合物の製造法をも提供する。
この方法は、
a)対応するキノン類を還元し、次いでジヒドロナフトキノン中間体をメチル化して、対応する式(IIc)のジメトキシナフタレンまたは式(IId)のジメトキシキノリンとすることにより、式(IIc):
Figure 2011515441
または式(IId):
Figure 2011515441
[式中、
- R6は1,4-ジメトキシナフタレンのフェニル環の5、6、7もしくは8位、または5,8-ジメトキシキノリンの2、3もしくは4に位置していてもよく、水素原子、ハロゲン原子、ヒドロキシ基、直鎖もしくは分枝鎖状の(C1-C4)アルキル基、ジ-もしくはトリ-フルオロメチル基、トリフルオロメトキシ基、ペンタフルオロスルファニル基を表し、nは0〜4の整数であり、
- R7はメチル基を表し、
- Halは塩素、臭素またはヨウ素原子を表す]
の化合物を製造し、
b)式(IIc)または(IId)のうちの一方の化合物を、式HNR9R10(ここで、R9およびR10は、両者が共に水素原子ではないという条件で、それぞれ独立して水素原子または(C1-C4)アルキル基を表すか、あるいはR9およびR10はそれらが結合している窒素原子と共にモルホリンおよびピペラジン基を含む群から選択される、置換もしくは非置換の環式基を形成する)のアミノ化合物と、パラジウム触媒および適当なパラジウムリガンドの存在下で、それぞれ反応させて、式(Ie):
Figure 2011515441
または式(If):
Figure 2011515441
[式中、R6、R7、R9およびR10は上記で定義されたとおりである、]
の化合物を得、
c)式(Ie)または式(If)の化合物を再び酸化して、式(Ia1)または(Ic1):
Figure 2011515441
あるいは式(Ib1)または式(Id1):
Figure 2011515441
の最終化合物を得ることを含む。
本発明は、式(Ia)または(Ib)または(Ic)または(Id):
[式中、
- R1、R2、R3、R4およびR5のうち1つは、ハロゲン原子を表し、その他は水素原子を表し、
- Xは-C(O)-または-CHY-(ここで、Yは水素原子、ヒドロキシ基、直鎖もしくは分枝鎖状の(C1-C4)アルキル基および (C3-C6)シクロアルキル基を含む群から選択される)を表す]
に相当する化合物と、式(IV):
Figure 2011515441
[式中、R15はtert-ブチル基、-NO2、-COOR11(ここで、R11は水素原子、直鎖もしくは分枝鎖状の(C1-C4)アルキル基である)またはNMe2基を表す]
のボロニックアシッド誘導体とから、パラジウム触媒および塩基の存在下に出発して、式(I):
Figure 2011515441
[式中Aは次の環:
Figure 2011515441
(ここで、R6はナフトキノンのフェニル環の5、6、7もしくは8位、またはキノリン-5,8-ジオンの2、3もしくは4位に位置していてもよく、独立して、水素原子、ハロゲン原子、ヒドロキシ基、直鎖もしくは分枝鎖状の(C1-C4)アルキル基、ジ-もしくはトリ-フルオロメチル基、トリフルオロメトキシ基、ペンタフルオロスルファニル基を表し、nは0〜4の整数であり、R7はメチル基を表す)から選択され、
- R1、R2、R3、R4、R5のうち1つは、パラ位にtertブチル基、-NO2、-COOR11(ここで、R11は水素原子または直鎖もしくは分枝鎖状の(C1-C4)アルキル基である)、またはNMe2基を有するフェニル環を表す]
の化合物の製造法をも提供する。
本発明は、さらに薬剤、特に抗マラリア剤としての、式(I)の化合物を提供する。
もう一つの実施態様において、本発明は、式(I)の化合物が次の:
Figure 2011515441
でないという条件で、治療および予防における、式(I)の化合物の用途を提供する。
本発明によれば、式(I)の化合物またはそれらの医薬的に許容される塩は、医薬的に許容される組成物において有用である。
本発明による医薬組成物は、活性成分として式(I)の1以上の化合物またはその医薬的に許容される塩を、賦形剤および/または医薬的に許容される希釈剤または担体と組み合わせて含む。通常の担体はいずれも利用できる。担体物質は、有機または無機の不活性な担体物質であり、例えば経口投与に適したものである。
好適な担体は、水、ゼラチン、アラビアゴム、ラクトース、澱粉、ステアリン酸マグネシウム、タルク、食用油、ポリアルキレングリコール、グリセリンおよびワセリンを含む。さらに、医薬製剤は他の医薬的に活性な成分も含んでいてもよい。着香料、保存剤、安定剤、乳化剤、緩衝剤などの添加剤は、一般的に受け入れられている薬剤の実践的使用法に従って添加され得る。
医薬製剤は錠剤、カプセル剤、丸剤、散剤、顆粒剤のような経口投与用の固形製剤および直腸用坐薬を含む、通常の剤型に製造され得る。医薬製剤は、滅菌されていてもよく、そして/または、浸透圧および/または緩衝域を変化させるために、保存料、安定化剤、湿潤化剤、乳化剤、塩などのアジュバントを含んでいてもよい。
本発明の化合物は、本発明に従って、局所(経皮、バッカルまたは舌下を含む)または非経口(腹膜内および皮下、静脈内、皮内、筋肉内注射を含む)経路でも患者に投与され得る。
本発明で有用な他の活性成分は、アトバクオン、クロロキン、アモジアキン、メフロキン、アルテミシニン、ならびにアルテスネート、アルティーサーおよびアルテミーサー、メナジオン、メチレンブルー、プログアニル、シクログアニル、クロルプログアニル、ピリメタミン、プリマキン、ピペラキン、ホスミドマイシン、ハロファントリン、ダプソン、トリメトプリム、スルファメトキサゾール、スルファドキシンのような医薬市場からの関連ペルオキサンを含む群から選択される、同時に、別々にまたは連続的に投与される、1〜3の他の抗マラリア剤である。
本発明は、マラリアの予防および治療用の、次の:
Figure 2011515441
を含む群から選択される、式(I)の化合物を含む式(I)の化合物をも提供する。
一つの実施態様では、本発明は、寄生生物を本発明の化合物を含む医薬組成物と接触させることを含む、寄生生物のグルタチオン還元酵素を阻害する方法を提供する。
ある実施態様では、寄生生物はプラスモディウム族のものである。もう一つの実施態様では、寄生生物はプラスモディウム・ファルシパルムまたはプラスモディウム・ビバクスである。
他の実施態様では、本発明は、マラリアを治療または予防する方法、インビトロまたはインビボにおいて、プラスモディウム・ファルシパルムまたはプラスモディウム・ビバクスのような寄生生物におけるグルタチオン還元酵素を阻害する方法、プラスモディウム・ファルシパルムまたはプラスモディウム・ビバクス寄生生物を殺す方法を提供し、これらの方法において、医薬組成物は式(I)の化合物を含む。
式(I):
Figure 2011515441
の化合物に相当する式(II)の化合物は、新規であり、本発明の一部でもある。
上記の式(I)において、Aは次の:
Figure 2011515441
(ここで、R6は1,4-ジメトキシナフタレンのフェニル環の5、6、7もしくは8位、または5,8-ジメトキシキノリンの2、3もしくは4位に位置していてもよく、水素原子、ハロゲン原子、ヒドロキシ基、直鎖もしくは分枝鎖状の(C1-C4)アルキル基、ジ-もしくはトリ-フルオロメチル基、トリフルオロメトキシ基およびペンタフルオロスルファニル基を表し、nは0〜4の整数であり、R7はメチル基を表す)
を表し、
- XはCH2、-C(O)-または-CHY-(ここで、Yは水素原子、ヒドロキシ基、直鎖もしくは分枝鎖状の(C1-C4)アルキル基および(C3-C6)シクロアルキル基を含む群から選択される)であり、
- R1、R2、R3、R4およびR5は、それぞれ独立して、
・水素原子、
・ハロゲン原子、
・ヒドロキシ基、
・直鎖もしくは分枝鎖状の(C1-C4)アルキル基、
・トリフルオロメチル基、
・ジフルオロメチル基、
・直鎖もしくは分枝鎖状の(C1-C4)アルコキシ基、
・トリフルオロメトキシ基、
・ジフルオロメトキシ基、
・ペンタフルオロスルファニル基、
・-COOH、
・-COO(C1-C4)アルキル基、
・-CONR8(CH2)mCN(ここで、R8は水素原子または直鎖もしくは分枝鎖状の(C1-C4)アルキル基であり、mは1、2または3である)、
・-CSNR8(CH2)mCN (ここで、R8は水素原子または直鎖もしくは分枝鎖状の(C1-C4)アルキル基であり、mは1、2または3である)、
・-CONR8Het (ここで、R8は水素原子または直鎖もしくは分枝鎖状の(C1-C4)アルキル基であり、Hetはピリジン-2-イル基、または6位においてアミノ基で置換されたまたは5位において-CONH2で置換されたピリジン-2-イル基を表す)、
・-NO2
・-CN、
・-NR9R10(ここで、R9およびR10は、それぞれ独立して、水素原子、Boc基または(C1-C4)アルキル基を含む群から選択されるアミノ保護基を表すか、またはR9およびR10はそれらが結合した窒素原子と共にモルホリン基およびピペラジン基を含む群から選択される、置換されてもよい環式基を形成する)、
・アリール基、または(C1-C4)アルキル基、-NO2基、-COOR11(ここで、R11は水素原子および直鎖または分枝鎖状の(C1-C4)アルキル基から選択される)、-NR12R13(ここで、R12およびR13は、独立して、水素原子および直鎖または分枝鎖状の(C1-C4)アルキル基を含む群から選択される)置換されたアリール基、
・モルホリニル基またはピペラジニル基から選択される複素環式基であり、該複素環式基は直鎖もしくは分枝鎖状の(C1-C4)アルキル基、-COOCH2CH3基または基:
Figure 2011515441
を含む群から選択される1以上の置換基で置換されていてもよい]
を表す。
ただし、式(II)の化合物は次の:
Figure 2011515441
を含む群からは選択されない。
これらの化合物は、式(I)の化合物を合成するための中間体として使用され得る。
以下の実施例1〜16は、本発明による化合物の合成に関するいくつかの具体的事例を示すことを意図している。
これらの実施例において、融点はBuchi融点装置を用いて測定され、補正されていない。
1H (300 MHz)および13C (75 MHz)NMRスペクトルは、Bruker DRX-300スペクトロメーターで記録された;
ケミカルシフトはTMSに対するppmで表された;
マルチプリシティは、s (シングレット)、d (ダブレット)、t (トリプレット)、q (カルテット)、sep (セプテット)、m (マルチプレット)、dd (ダブルダブレット)、dt (ダブルトリプレット)および td (トリプルダブレット)として表示された。
赤外線スペクトルの強度は、vs (very strong)、s (strong)、m (medium)、w (weak)、b (broad)として表示された。
元素分析は、the Mikroanalytisches Laboratorium der Chemischen Fakultat der Universitat Heidelbergで行われた。
EI-MSおよびCI-MSは、the Institut fur Organische Chemie der Universitat Heidelbergに記録された。
TLC分析は、Macherey&Nagelからの pre-coated Sil G-25 UV254 プレート上で行われた。
フラッシュクロマトグラフィは、Macherey&NagelからのシリカゲルG60(230-400 mesh)を用いて行われた。.
以下の実施例17〜22は、本発明の化合物の薬理活性を示すことを意図している。
図1〜8も、本発明を説明するためのものである。
図1a〜1eは、実施例1〜16により合成されたいくつかの化合物の構造を示す。 図2は、P.ファルシパルムおよびヒトグルタチオン還元酵素阻害剤として、本発明によるメナジオンのベンジル-およびベンゾイル置換誘導体のIC50値を示す。 a実施例17により、値は1 mM GSSGの存在下にpH 6.9および25 °Cで測定された。 b参考文献(Bauerら, J. Am. Chem. Soc. 2006, 128, 10784-10794)からのデータ。 c5 % DMSOの存在下。 dセル内の化合物の沈殿がIC50の測定を妨害した。 e1 % DMSOの存在下。 nd:測定せず。 図3は、実施例18で開示されているようにして測定した、グルタチオン還元酵素の触媒作用を利用したナフトキノンの還元酵素活性を示す。*化合物の沈殿は10 μMより高い濃度で観察された。10 μMでは阻害がない。 図4は、NADPH/GRシステムの存在下で、メトヘモグロビン(Fe3+)をオキシヘモグロビン(Fe2+)に還元するレドックス循環活性に対するP TM25の効果を、5分(青)、10分(黒)、20分(緑)および30分(赤)後に測定したものを示す。MethHb=メトヘモグロビン、OxyHb=オキシヘモグロビン。MB=メチレンブルー。2回目のプロット(右)は、1回目のプロット(左)からの350〜450nm領域におけるスペクトルを拡大したものである。 図5は、マラリア寄生生物(Dd2、3D7、K1、Pf-GHA)およびインビトロでのヒト細胞(KB、MRC-5)に対する、細胞毒性物質としての、メナジオン誘導体のIC50値を示す。a: CQ, Pf 3D7 IC50 0.005 μM, K1 IC50 0.55 μM; b: CQ, Pf K1 IC50 0.01 μM; c: CQ, Pf 3D7 IC50 0.0147 μM; d: CQ, Pf K1 IC50 0.217 μM; e: CQ, Pf K1 IC50 50.7 - 750.1 nM, Pf 3D7 IC50 3.8 nM; f: CQ, Pf K1 IC50 571.2 nM, Pf 3D7 IC50 11.5 - 15.3 nM; g: CQ, Pf 3D7 IC50 0.02 - 0.85 μM, Pf K1 IC50 0.01 - 0.02 μM; h: CQ, Pf 3D7 IC50 1.9 - 5.8 nM, Pf K1 IC50 57.7 - 750.1 nM; CQ=クロロキン。 図6は、実施例21により測定された種々のP.ファルシパルム株に対するIC50およびIC90値を示す。CQ=クロロキン、DHA=ジヒドロアルテミシニン、FQ=フェロキン、LMF=ルメファントリン、 MQ=メフロキン、MDAQ=モノデセチルアモジアキン、QN=キニン。 図7は、実施例22により測定されたプラスモディウム・ベルゲイ(Plasmodium berghei)ANKA感染CD1マウスにおける寄生虫血の還元。*1.0 mg/kg、3.0 mg/kgおよび10.0 mg/kgで、クロロキンはそれぞれ2.5%、16.6%および94.9 %の寄生虫血の還元を示した。 図8は、実施例22により測定されたP.ベルゲイ感染マウスにおけるインビボ抗マラリア活性を示す。
実施例1
1,4-ナフトキノンとカルボン酸の銀触媒作用を利用したカップリング反応の一般的方法
メナジオンまたはプラムバギン(5.81mmol)およびフェニル酢酸誘導体(11.58mmol)のアセトニトリル(52.5mL)および水(17.5mL)の溶液を、85℃に加熱した。AgNO3(90 mg、0.58 mmol)を加えた。アセトニトリル(15mL)および水(5mL)中の(NH4)2S2O8(1.72 g、7.54 mmol)を、45分間滴下し、2時間加熱還流した。アセトニトリルを真空下に除去した。ジクロロメタン(4 x 10 mL)で水相を抽出し、MgSO4で乾燥し、フラッシュクロマトグラフィで精製した。
実施例1.1
2-メチル-3-(4-メチル-ベンジル)-4a,8a-ジヒドロ-[1,4]ナフトキノン(P TM21)
カップリング反応の出発物質として、メナジオンおよびp-トリル酢酸を使用した。合成は、実施例1の一般的な方法に記載の一般的な方法に従って行った。シリカゲル(石油エーテル : 酢酸エチル = 1:1, UV)でのクロマトグラフィの後、2.82gのP TM21(10.21 mmol, 収率77%)を黄色固体として単離した。
融点 : 225 °C(分解)。 - 1H-NMR (300 MHz, CDCl3): δ = 8.04 - 8.05 (m, 2H), 7.64 - 7.70 (m, 2H), 7.08 (m, 4H), 3.98 (s, 2H), 2.27 (s, 3H), 2.23 (s, 3H). - 13C-NMR (75 MHz, CDCl3): δ = 185.42 (Cq), 184.66 (Cq), 145.53 (Cq), 144.20 (Cq), 135.97 (Cq), 134.94 (Cq), 133.42 (CH), 133.39 (CH), 132.12 (Cq), 132.06 (Cq), 129.31 (CH), 128.46 (CH), 126.44 (CH), 126.21 (CH), 31.99 (CH2), 20.96 (CH3), 13.23 (CH3). - FAB MS (NBA, m/z (%)): 277.2 ([M+H]+, 73), 261.1 (26), 212.1 (24). - IR (KBr): 3437 cm-1 (b, m), 2923 (w), 1660 (vs), 1616 (w), 1595 (m), 1512 (m), 1377 (w), 1332 (w), 1295 (vs), 809 (w), 754 (m), 705 (m). - 元素分析 : C19H16O2として、実測値 C, 82.44 %; H, 5.84 %、計算値C, 82.58 %; H, 5.84 % 。
実施例1.2
2-メチル-3-(4-ブロモ-ベンジル)-4a,8a-ジヒドロ-[1,4]ナフトキノン(P TM24)
カップリング反応の出発物質としてメナジオンおよび4-ブロモフェニル酢酸を使用した。合成は、実施例1の一般的な方法に記載の一般的な方法に従って行った。シリカゲル(石油エーテル: CH2Cl2 = 1:1, UV)でのクロマトグラフィの後、3.10gのP TM24(9.12 mmol, 収率78 %)を黄色固体として単離した。
融点 : 121 - 122 °C。 - 1H-NMR (300 MHz, CDCl3): δ = 8.03 - 8.10 (m, 2H), 7.66 - 7.71 (m, 2H), 7.36 (dt, 3J = 8.46 Hz, 4J = 1.95 Hz, 2H), 7.09 (d, 3J = 8.53 Hz, 2H), 3.96 (s, 2H), 2.22 (s, 3H). - 13C-NMR (75 MHz, CDCl3): δ = 185.20 (Cq), 184.54 (Cq), 144.75 (Cq), 144.57 (Cq), 137.06 (Cq), 133.58 (CH), 132.08 (Cq), 131.94 (Cq), 131.71 (CH), 130.32 (CH), 126.50 (CH), 126.35 (CH), 120.31 (Cq), 31.93 (CH2), 13.31 (CH3). - EI MS (70 eV, m/z (%)): 340.1 ([M]+, 13), 325.0 (100), 246.1 (63), 215.1 (41), 202.1 (49), 128.1 (72), 76.0 (74). - IR (KBr): 3449 cm-1 (b, w), 3068 (w), 2962 (w), 1661 (vs), 1624 (m), 1618 (m), 1594 (s), 1486 (s), 1376 (m), 1332 (s), 1315 (s), 1294 (vs), 1071 (m), 1010 (s), 971 (w), 815 (m), 787 (s), 730 (m), 702 (m), 629 (w), 426 (w). -元素分析 : C18H13BrO2として、実測値 C, 63.02 %; H, 3.84 %、計算値 C, 63.36 %; H, 3.84 %。
実施例1.3
2-メチル-3-(4-フルオロ-ベンジル)-4a,8a-ジヒドロ-[1,4]ナフトキノン(P TM26)
カップリング反応の出発物質としてメナジオンおよび4-フルオロフェニル酢酸を使用した。合成は、実施例1の一般的な方法に記載の一般的な方法に従って行った。シリカゲル(シクロへキサン : 酢酸エチル = 3:1, UV)でのクロマトグラフィの後、5.34gのP TM26(19.1 mmol, 収率66 %)を黄色固体として単離した。
融点 : 118 -119 °C。 - 1H-NMR (300 MHz, CDCl3): δ = 8.05 - 8.08 (m, 2H), 7.65 - 7.71 (m, 2H), 7.15 - 7.20 (m, 2H), 6.93 (t, 3J = 8.68 Hz, 2H), 3.97 (s, 2H), 2.22 (s, 3H). - 13C-NMR (75 MHz, CDCl3): δ = 185.31 (Cq), 184.63 (Cq), 161.52 (1JCF = 244.8 Hz, CF), 145.15 (Cq), 144.40 (Cq), 133.72 (Cq), 133.67 (Cq), 133.57 (Cq), 131.02 (CH), 130.05 (3JCF = 8.0 Hz, CH), 128.95 (4JCF = 3.4 Hz, Cq), 126.50 (CH), 126.34 (CH), 115.45 (2JCF = 21.4 Hz, CH), 31.69 (CH2), 13.28 (CH3). - EI MS (70 eV, m/z (%)): 280.1 ([M]+, 21), 265.1 (100), 109.0 (53), 76.0 (24). - IR (KBr): 3428 cm-1 (b, m), 1708 (w), 1684 (w), 1661 (vs), 1619 (w), 1597 (m), 1509 (vs), 1377 (w), 1295 (s), 1222 (m), 1158 (m), 824 (w), 705 (m). -元素分析 : C18H13FO2として、実測値 C, 77.19 %; H, 4.71 %、計算値 C, 77.13 %; H, 4.67 % 。
実施例1.4
2-メチル-3-(4-トリフルオロ-ベンジル)-4a,8a-ジヒドロ-[1,4]ナフトキノン(P TM29)
カップリング反応の出発物質として、メナジオンおよび4-(トリフルオロメチル)フェニル酢酸を使用した。合成は、実施例1の一般的な方法に記載の一般的な方法に従って行った。シリカゲル(石油エーテル: CH2Cl2 = 1:1, UV)でのクロマトグラフィの後、3.09 gのP TM29(9.36 mmol, 収率76 %)を黄色固体として単離した。
融点 : 68 - 69 °C。 - 1H-NMR (300 MHz, CDCl3): δ = 8.04 - 8.09 (m, 2H), 7.66 - 7.72 (m, 2H), 7.50 (d, 3J = 8.21 Hz, 2H), 7.33 (d, 3J = 8.03 Hz, 2H), 4.07 (s, 2H), 2.23 (s, 3H). - 13C-NMR (75 MHz, CDCl3): δ = 185.12 (Cq), 184.50 (Cq), 144.88 (Cq), 144.41 (Cq), 142.22 (Cq), 133.67 (CH), 133.66 (CH), 132.09 (Cq), 131.91 (Cq), 128.88 (CH), 128.85 (2JCF = 32.4 Hz, C-CF3), 126.53 (CH), 126.41 (CH), 125.59 (3JCF = 3.8 Hz, CH), 124.19 (1JCF = 278.6 Hz, CF3), 32.37 (CH2), 13.38 (CH3). - EI MS (70 eV, m/z (%)): 330.0 ([M]+, 30), 315.0 (100). - IR (KBr): 3400 cm-1 (b, m), 3047 (w), 2930 (m), 1662 (vs), 1617 (vs), 1593 (vs), 1418 (m), 1377 (s), 1329 (vs), 1295 (vs), 1259 (m), 1184 (m), 1161 (vs), 1112 (vs), 1069 (vs), 1019 (s), 977 (m), 950 (m), 823 (m), 789 (m), 758 (m), 715 (m), 691 (m). - 元素分析 : C19H13F3O2として、実測値 C, 68.87 %; H, 3.98 %、計算値 C, 69.09 %; H, 3.97 % 。
実施例1.5
2-メチル-3-(4-クロロ-ベンジル)-4a,8a-ジヒドロ-[1,4]ナフトキノン(P TM30)
カップリング反応の出発物質として、メナジオンおよび4-クロロフェニル酢酸を使用した。合成は、実施例1の一般的な方法に記載の一般的な方法に従って行った。シリカゲル(シクロヘキサン : 酢酸エチル = 3:1, UV)でのクロマトグラフィの後、6.46 gのP TM30(21.8 mmol, 収率75 %)を黄色固体として単離した。
融点 : 134 - 135 °C。 - 1H-NMR (300 MHz, CDCl3): δ = 8.04 - 8.10 (m, 2H), 7.66 - 7.72 (m, 2H), 7.22 (d, 3J = 8.37 Hz, 2H), 7.14 (d, 3J = 8.42 Hz, 2H), 3.98 (s, 2H), 2.22 (s, 3H). - 13C-NMR (75 MHz, CDCl3): δ = 185.23 (Cq), 184.56 (Cq), 144.85 (Cq), 144.55 (Cq), 136.53 (Cq), 133.58 (CH), 132.29 (Cq), 132.10 (Cq), 131.97 (Cq), 129.93 (CH), 128.76 (CH), 126.50 (CH), 126.35 (CH), 31.87 (CH2), 13.31 (CH3). - EI MS (70 eV, m/z (%)): 296.1 ([M]+, 25), 281.0 (100). - IR (KBr): 3439 cm-1 (b, m), 3076 (w), 2962 (w), 1687 (s), 1668 (vs), 1656 (vs), 1627 (m), 1595 (m), 1413 (m), 1379 (w), 1326 (vs), 1291 (vs), 1273 (m), 1235 (m), 1172 (s), 1130 (vs), 1110 (m), 1065 (s), 979 (m), 871 (m), 762 (m), 715 (w). - 元素分析 : C18H13ClO2として、実測値 C, 72.89 %; H, 4.38 %; Cl, 11.83 %、計算値 C, 72.85 %; H, 4.42 %; Cl, 11.95 %。
実施例1.6
2-メチル-3-(4-メトキシ-ベンジル)-4a,8a-ジヒドロ-[1,4]ナフトキノン(P TM31)
カップリング反応の出発物質として、メナジオンおよび4-メトキシフェニル酢酸を使用した。シリカゲル(石油エーテル: CH2Cl2 = 1:1, UV)でのクロマトグラフィの後、1.97 gのP TM31(6.74 mmol, 収率45 %)を黄色固体として単離した。
融点 : 112 - 113 °C。 - 1H-NMR (300 MHz, CDCl3): δ = 8.03 - 8.09 (m, 2H), 7.64 - 7.69 (m, 2H), 7.14 (d, 3J = 8.77 Hz, 2H), 6.78 (d, 3J = 8.74 Hz, 2H), 3.97 (s, 2H), 3.73 (s, 3H), 2.23 (s, 3H). - 13C-NMR (75 MHz, CDCl3): δ = 185.45 (Cq), 184.71 (Cq), 158.14 (Cq), 145.59 (Cq), 144.02 (Cq), 133.43 (CH), 133.40 (CH), 132.10 (Cq), 132.04 (Cq), 130.02 (Cq), 129.60 (CH), 126.42 (CH), 126.21 (CH), 114.04 (CH), 55.21 (CH3), 31.53 (CH2), 13.19 (CH3). - EI MS (70 eV, m/z (%)): 292.1 ([M]+, 24), 277.0 (100), 250.1 (14), 219.1 (19). - IR (KBr): 3441 cm-1 (b, m), 2933 (w), 2841 (w), 1662 (vs), 1618 (m), 1595 (s), 1511 (vs), 1458 (w), 1375 (w), 1332 (m), 1297 (vs), 1247 (s), 1178 (m), 1035 (m), 823 (m), 793 (w), 707 (s). - 元素分析 : C19H16O3として、実測値 C, 77.80 %; H, 5.51 %、計算値 C, 78.06 %; H, 5.51 %。
実施例1.7
2-メチル-3-(2-メトキシ-ベンジル)-4a,8a-ジヒドロ-[1,4]ナフトキノン(P TM32)
カップリング反応の出発物質として、メナジオンおよび2-メトキシフェニル酢酸を使用した。合成は、実施例1の一般的な方法に記載の一般的な方法に従って行った。シリカゲル(石油エーテル: CH2Cl2 = 1:1, UV)でのクロマトグラフィの後、3.59gのP TM32(12.28mmol, 収率82%)を黄色固体として単離した。
融点 : 117 - 118 °C。 - 1H-NMR (CDCl3, 300 MHz): δ = 8.04 - 8.10 (m, 2H), 7.64 - 7.70 (m, 2H), 7.13 - 7.19 (m, 1H), 7.03 (d, 3J = 6.53 Hz, 1H), 6.79 (m, 2H), 3.99 (s, 2H), 3.81 (s, 3H), 2.15 (s, 3H). - 13C-NMR (75 MHz, CDCl3): δ = 185.45 (Cq), 184.65 (Cq), 157.17 (Cq), 145.64 (Cq), 144.88 (Cq), 133.39 (CH), 133.30 (CH), 132.27 (Cq), 132.22 (Cq), 129.32 (CH), 127.54 (CH), 126.45 (CH), 126.26 (Cq), 126.22 (CH), 120.56 (CH), 110.30 (CH), 55.34 (CH3), 26.81 (CH2), 13.05 (CH3). - EI MS (70 eV, m/z (%)): 292.1 ([M]+, 39), 277.1 (100), 250.1 (42). - IR (KBr): 3432 cm-1 (b, m), 2960 (w), 2836 (w), 1695 (w), 1661 (s), 1617 (w), 1596 (m), 1493 (m), 1459 (w), 1334 (w), 1295 (s), 1259 (w), 1245 (m), 1110 (w), 1029 (m), 754 (w), 711 (w). - 元素分析 : C19H16O3として、実測値 C, 77.77 %; H, 5.43 %、計算値C, 78.06 %; H, 5.52 %。
実施例1.8
2-メチル-3-(4-ヒドロキシ-ベンジル)-4a,8a-ジヒドロ-[1,4]ナフトキノン(P TM36)
カップリング反応の出発物質として、メナジオンおよび4-ヒドロキシフェニル酢酸を使用した。合成は、実施例1の一般的な方法に記載の一般的な方法に従って行った。シリカゲル(シクロヘキサン:酢酸エチル = 3:1, UV)でのクロマトグラフィの後、596 mgのP TM36(2.1 mmol, 収率7%)を黄色固体として単離した。
融点 : 165 - 166 °C。 - 1H-NMR (300 MHz, CDCl3): δ = 8.04 - 8.09 (m, 2H), 7.65 - 7.71 (m, 2H), 7.06 - 7.10 (m, 2H), 6.69 - 6.73 (m, 2H), 4.70 (bs, 1H), 3.93 (s, 2H), 2.23 (s, 3H). - 13C-NMR (75 MHz, CDCl3): δ = 185.52 (Cq), 184.80 (Cq), 154.09 (Cq), 145.60 (Cq), 144.13 (Cq), 133.50 (CH), 133.47 (Cq), 130.12 (Cq), 129.78 (CH), 129.01 (CH), 126.45 (CH), 126.26 (CH), 115.58 (CH), 115.48 (CH), 31.56 (CH2), 13.23 (CH3). - FAB MS (NBA): 277.9 ([M]+, 49). - IR (KBr): 3480 cm-1 (b, s), 1659 (vs), 1616 (m), 1595 (s), 1513 (vs), 1336 (m), 1295 (vs), 1260 (m), 1217 (m), 1203 (w), 1176 (w), 708 (s). - 元素分析 : C18H14O3として、実測値 C, 77.47 %; H, 5.07 %、計算値C, 77.68 %; H, 5.07 % 。
実施例1.9
2-メチル-3-(4-ニトロ-ベンジル)-4a,8a-ジヒドロ-[1,4]ナフトキノン(P TM37)
カップリング反応の出発物質として、メナジオンおよび4-ニトロフェニル酢酸を使用した。合成は、実施例1の一般的な方法に記載の一般的な方法に従って行った。シリカゲル(シクロヘキサン:酢酸エチル= 3:1, UV)でのクロマトグラフィの後、7.97 gのP TM37(25.9 mmol, 収率89 % )を黄色固体として単離した。
融点 : 156 - 157 °C。 - 1H-NMR (300 MHz, CDCl3): δ = 8.03 - 8.13 (m, 4H), 7.68 - 7.74 (m, 2H), 7.38 (d, 3J = 8.71 Hz, 2H), 4.11 (s, 2H), 2.24 (s, 3H). - 13C-NMR (75 MHz, CDCl3): δ = 184.94 (Cq), 184.39 (Cq), 146.69 (Cq), 145.83 (Cq), 145.17 (Cq), 143.82 (Cq), 133.81 (CH), 133.76 (CH), 132.05 (Cq), 131.81 (Cq), 129.39 (CH), 126.57 (CH), 126.49 (CH), 123.91 (CH), 32.51 (CH2), 13.45 (CH3). - EI MS (70 eV, m/z (%)): 307.0 ([M]+, 37), 292.0 (100). - IR (KBr): 3441 cm-1 (b, m), 3106 (w), 3076 (w), 1662 (vs), 1625 (s), 1604 (s), 1595 (vs), 1510 (vs), 1494 (m), 1381 (m), 1348 (vs), 1324 (vs), 1297 (vs), 1260 (m), 1184 (m), 982 (m), 951 (s), 847 (s), 786 (s), 742 (s), 724 (vs), 694 (s). - 元素分析 : C18H13NO4として、実測値 C, 70.24 %; H, 4.11 %; N, 4.65 %、計算値 C, 70.35 %; H, 4.26 %; N, 4.56 % 。
実施例1.10
2-メチル-3-(4-シアノ-ベンジル)-4a,8a-ジヒドロ-[1,4]ナフトキノン(P TM41)
カップリング反応の出発物質として、メナジオンおよび4-シアノフェニル酢酸を使用した。合成は、実施例1の一般的な方法に記載の一般的な方法に従って行った。シリカゲル(シクロヘキサン:酢酸エチル = 3:1, UV)でのクロマトグラフィの後、565 mgのP TM41(1.9 mmol, 収率63 %)を黄色固体として単離した。
融点 : 159 - 160 °C。 - 1H-NMR (300 MHz, CDCl3): δ = 8.03 - 8.11 (m, 2H), 7.67 - 7.73 (m, 2H), 7.55 (d, 3J = 8.32 Hz, 2H), 7.32 (d, 3J = 8.28 Hz, 2H), 4.06 (s, 2H), 2.22 (s, 3H). - 13C-NMR (75 MHz, CDCl3): δ = 184.98 (Cq), 184.42 (Cq), 145.09 (Cq), 143.91 (Cq), 143.71 (Cq), 133.78 (CH), 133.73 (CH), 132.47 (CH), 132.06 (Cq), 131.82 (Cq), 129.35 (CH), 126.56 (CH), 126.47 (CH), 118.75 (Cq), 110.49 (Cq), 32.69 (CH2), 13.42 (CH3). - EI MS (70 eV, m/z (%)): 287 ([M]+, 8), 286.1 (33), 271.0 (100). - IR (KBr): 3430 cm-1 (b, m), 3087 (w), 3069 (w), 3054 (w), 2941 (w), 2227 (vs, CN), 1664 (vs), 1622 (s), 1604 (s), 1594 (s), 1505 (m), 1336 (s), 1328 (s), 1296 (vs), 1264 (w), 1178 (m), 976 (m), 952 (m), 822 (m), 749 (s), 710 (s), 691 (m), 631 (m), 567 (w). - 元素分析 : C19H13NO2として、実測値 C, 79.16 %; H, 4.52 %; N, 4.89 %、計算値C, 79.43 %; H, 4.56 %; N, 4.88 %。
実施例1.11
2-メチル-3-(4-tert-ブチル-ベンジル)-4a,8a-ジヒドロ-[1,4]ナフトキノン(P TM43)
カップリング反応の出発物質として、メナジオンおよび4-tertブチルフェニル酢酸を使用した。合成は実施例1の一般的な方法に記載の一般的な方法に従って行った。シリカゲル(シクロヘキサン:酢酸エチル = 3:1, UV)でのクロマトグラフィの後、995 mgのP TM43(3.1 mmol, 収率67 %)を黄色固体として単離した。
融点 : 60 - 61 °C。 - 1H-NMR (300 MHz, CDCl3): δ = 8.04 - 8.09 (m, 2H), 7.64 - 7.70 (m, 2H), 7.27 (d, 3J = 8.35 Hz, 2H), 7.15 (d, 3J = 8.33 Hz, 2H), 3.98 (s, 2H), 2.25 (s, 3H), 1.26 (s, 9H). - 13C-NMR (75 MHz, CDCl3): δ = 185.47 (Cq), 184.70 (Cq), 149.28 (Cq), 145.52 (Cq), 144.21 (Cq), 134.90 (Cq), 133.45 (CH), 133.41 (CH), 132.15 (Cq), 132.10 (Cq), 128.28 (CH), 126.46 (CH), 126.24 (CH), 125.56 (CH), 34.36 (Cq), 31.93 (CH2), 31.08 (CH3), 13.30 (CH3). - EI MS (70 eV, m/z (%)): 318.0 ([M]+, 23), 303 (100), 261.0 (31), 247.0 (12). - IR (KBr): 3400 cm-1 (b, m), 2961 (m), 2905 (w), 2868 (w), 1659 (vs), 1619 (m), 1594 (m), 1512 (w), 1462 (w), 1369 (w), 1333 (m), 1314 (m), 1294 (vs), 1270 (w), 976 (w), 81818 (w), 717 (m), 692 (w), 571 (w), 541 (w). - 元素分析 : C22H22O2 . 0.1 EtOAcとして、実測値C, 82.35 %; H, 6.80 %、計算値C, 82.22 %; H, 7.01 %。
実施例1.12
[4-(3-メチル-1,4-ジオキソ-1,4,4a,8a-テトラヒドロ-ナフタレン-2-イルメチル)-フェニル]-カルバミン酸 tert-ブチルエステル(P TM45)
カップリング反応の出発物質として、メナジオンおよび(4-tert-ブトキシカルボニルアミノ-フェニル)酢酸を使用した。合成は、実施例1の一般的な方法に記載の一般的な方法に従って行った。シリカゲル(シクロヘキサン:酢酸エチル = 3:1, UV)でのクロマトグラフィの後、527 mgのP TM45(1.4 mmol, 収率12 %)を黄色固体として単離した。
融点 : 148 - 149 °C。 - 1H-NMR (300 MHz, CDCl3): δ = 8.05 - 8.08 (m, 2H), 7.66 - 7.71 (m, 2H), 7.23 (d, 3J = 8.26 Hz, 2H), 7.12 (d, 3J = 8.57 Hz, 2H), 6.36 (s, 1H), 3.95 (s, 2H), 2.21 (s, 3H), 1.47 (s, 9H). - 13C-NMR (75 MHz, CDCl3): δ = 185.42 (Cq), 184.68 (Cq), 152.73 (Cq), 145.38 (Cq), 144.21 (Cq), 136.70 (Cq), 133.47 (CH), 133.44 (CH), 132.61 (Cq), 132.10 (Cq), 132.03 (Cq), 129.14 (CH), 126.45 (CH), 126.25 (CH), 118.88 (CH), 80.49 (Cq), 31.74 (CH2), 28.30 (CH3), 13.22 (CH3). - EI MS (70 eV, m/z (%)): 377.2 ([M]+, 18), 321.1 (66), 305.9 (100), 261.1 (59), 201.3 (14), 160.1 (18), 121.1 (21). - IR (KBr): 3439 (b, vs), 1704 (w), 1685 (w), 1660 (s), 1618 (m), 1596 (m), 1521 (m), 1370 (w), 1315 (m), 1296 (m), 1236 (w), 1162 (s), 709 (w). -元素分析 : C23H23NO4として、実測値 C, 72.94 %; H, 6.16 %; N, 3.74 %、計算値C, 73.19 %; H, 6.14 %, N, 3.71 % 。
実施例1.13
4-(3-メチル-1,4-ジオキソ-1,4,4a,8a-テトラヒドロ-ナフタレン-2-イルメチル)-安息香酸(P TM50)
カップリング反応の出発物質として、メナジオンおよび4-カルボキシフェニル酢酸を使用した。合成は、実施例1の一般的な方法に記載の一般的な方法に従って行った。シリカゲル(石油エーテル: CH2Cl2= 1:3, UV)でのクロマトグラフィの後、102 mgのP TM50(0.33 mmol, 収率12 %)を黄色固体として単離した。
融点 : 206 - 208 °C。 - 1H-NMR (300 MHz, DMSO): δ = 7.99 - 8.04 (m, 2H), 7.79 - 7.89 (m, 4H), 7.35 (d, 3J = 8.15 Hz, 2H), 4.06 (s, 2H), 2.15 (s, 3H). - 13C-NMR (75 MHz, DMSO): δ = 184.57 (Cq), 184.03 (Cq), 167.26 (Cq), 144.76 (Cq), 143.79 (Cq), 143.33 (Cq), 133.95 (CH), 133.90 (CH), 131.71 (Cq), 131.43 (Cq), 129.51 (CH), 128.40 (CH), 125.98 (CH), 125.88 (CH), 31.78 (CH2), 13.05 (CH3). - EI MS (70 eV, m/z (%)): 305.9 ([M]+, 22), 290.9 (100), 260.9 (21). - IR (KBr): 3455 cm-1 (b, vs), 3071 (m), 2932 (m), 1701 (vs), 1659 (vs), 1610 (s), 1594 (s), 1423 (m), 1376 (m), 1319 (m), 1295 (vs), 1234 (m), 1181 (m), 1114 (w), 949 (w), 778 (m), 757 (m), 719 (m), 695 (m), 631 (w). -元素分析 : C19H14O4 . 0.25 H2Oとして、実測値 C, 73.28 %; H, 4.84 %、計算値 C, 73.42 %; H, 4.70 %。
実施例1.14
2-(3,4-ジメトキシ-ベンジル)-3-メチル-4a,8a-ジヒドロ-[1,4]ナフトキノン(P TM54)
カップリング反応の出発物質として、メナジオンおよび3,4-ジメトキシフェニル酢酸を使用した。合成は、実施例1の一般的な方法に記載の一般的な方法に従って行った。シリカゲル(石油エーテル: CH2Cl2 = 1:1, UV)でのクロマトグラフィの後、4.25gのP TM54(13.2 mmol, 収率65 %)を橙色固体として単離した。
融点 : 102 - 103 °C。 - 1H-NMR (300 MHz, CDCl3): δ = 8.06 - 8.08 (m, 2H), 7.67 - 7.69 (m, 2H), 6.79 (s, 1H), 6.71 - 6.74 (m, 2H), 3.95 (s, 2H), 3.83 (s, 3H), 3.80 (s, 3H), 2.25 (s, 3H). - 13C-NMR (75 MHz, CDCl3): δ = 185.43 (Cq), 184.78 (Cq), 149.01 (Cq), 147.67 (Cq), 145.41 (Cq), 144.13 (Cq), 133.48 (CH), 133.46 (CH), 132.11 (Cq), 132.04 (Cq), 130.47 (Cq), 126.45 (CH), 126.26 (CH), 120.46 (CH), 112.19 (CH), 111.27 (CH), 55.88 (CH3), 31.99 (CH2), 13.26 (CH3). - EI MS (70 eV, m/z (%)): 322.2 ([M]+, 28), 307.1 (100). - IR (KBr): 3400 cm-1 (b, s), 3002 (w), 2954 (w), 2935 (w), 2834 (w), 1660 (vs), 1618 (m), 1594 (m), 1514 (vs), 1461 (m), 1444 (m), 1419 (w), 1376 (w), 1334 (m), 1295 (vs), 1262 (vs), 1238 (s), 1184 (w), 1143 (s), 1027 (m), 976 (w), 748 (m), 701 (m). - 元素分析 : C20H18O4として、実測値 C, 74.28 %; H, 5.64、計算値 C, 74.52 %; H, 5.63 %。
実施例1.15
2-(2,4-ジメトキシ-ベンジル)-3-メチル-4a,8a,-ジヒドロ-[1,4]ナフトキノン(P TM56)
カップリング反応の出発物質として、メナジオンおよび2,4-ジメトキシフェニル酢酸を使用した。合成は、実施例1の一般的な方法に記載の一般的な方法に従って行った。シリカゲル(石油エーテル: CH2Cl2 = 1:1, UV)でのクロマトグラフィの後、922 mgのP TM56(2.86 mmol, 収率37 %)を橙色固体として単離した。
融点 : 103 - 105 °C。 - 1H-NMR (300 MHz, CDCl3,): δ = 8.03 - 8.09 (m, 2H), 7.64 - 7.70 (m, 2H), 6.95 (d, 3J = 8.33 Hz, 1H), 6.41 (d, 4J = 2.40 Hz, 1H), 6.35 (dd, 3J = 8.34 Hz, 4J = 2.44 Hz, 1H), 3.91 (s, 2H), 3.78 (s, 3H), 3.74 (s, 3H), 2.16 (s, 3H). - 13C-NMR (75 MHz, CDCl3): δ = 185.95 (Cq), 185.18 (Cq), 159.87 (Cq), 158.47 (Cq), 146.21 (Cq), 145.03 (Cq), 133.76 (CH), 133.67 (CH), 132.69 (Cq), 132.62 (Cq), 130.21 (CH), 126.82 (CH), 126.59 (CH), 118.98 (Cq), 104.46 (CH), 98.90 (CH), 55.74 (CH3), 26.67 (CH2), 13.39 (CH3). - EI MS (70 eV, m/z (%)): 322.2 ([M]+, 23), 307.2 (89), 138.1 (25). - IR (KBr): 3445 cm-1 (b, m), 2994 (w), 2937 (w), 2836 (w), 1660 (vs), 1614 (s), 1591 (s), 1506 (s), 1462 (m), 1421 (w), 1376 (w), 1331 (m), 1295 (vs), 1262 (s), 1209 (m), 1183 (m), 1157 (m), 1119 (m), 1037 (m), 828 (w), 707 (m). -元素分析 : C20H18O4として、実測値C, 74.33%, H, 5.75 %、計算値C, 74.52 %; H, 5.63 %。
実施例1.16
2-メチル-3-ペンタフルオロフェニルメチル-4a,8a-ジヒドロ[1,4]ナフトキノン(P TM57)
カップリング反応の出発物質として、メナジオンおよび2,3,4,5,6-ペンタフルオロフェニル酢酸を使用した。合成は、実施例1の一般的な方法に記載の一般的な方法に従って行った。シリカゲル(石油エーテル : CH2Cl2 = 1:1, UV)でのクロマトグラフィの後、306 mgのP TM57(0.87 mmol, 収率44 %)を黄色固体として単離した。
融点 : 103 - 104 °C。 - 1H-NMR (300 MHz, CDCl3): δ = 8.00 - 8.07 (m, 2H), 7.67 - 7.70 (m, 2H), 4.02 (s, 2H), 2.24 (s, 3H). - 13C-NMR (75 MHz, CDCl3): δ = 184.70 (Cq), 183.67 (Cq), 146.93 (CF), 145.43 (Cq), 143.66 (CF), 141.85 (Cq), 139.15 (CF), 138.36 (CF), 135.77 (CF), 133.73 (CH), 133.71 (CH), 131.97 (Cq), 131.73 (Cq), 126.48 (CH), 126.47 (CH), 111.95 (Cq), 20.90 (CH2), 12.98 (CH3). - EI MS (70 eV, m/z (%)): 352.1 ([M]+, 100), 332.1 (9), 303.1 (25). - IR (KBr): 3438 cm-1 (b, m), 1667 (vs), 1621 (m), 1594 (s), 1523 (vs), 1501 (vs), 1459 (w), 1375 (s), 1331 (vs), 1294 (vs), 1258 (m), 1119 (s), 1066 (m), 1027 (w), 1002 (s), 972 (s), 952 (vs), 729 (m), 713 (m). - 元素分析 : C18H9F5O2として、実測値 C, 61.18 %; H, 2.68 %、計算値C, 61.37 %; H, 2.58 %。
実施例1.17
2-(3,5-ジメトキシ-ベンジル)-3-メチル-4a,8a-ジヒドロ-[1,4]ナフトキノン(P TM58)
カップリング反応の出発物質として、メナジオンおよび3,5-ジメトキシフェニル酢酸を使用した。合成は、実施例1の一般的な方法に記載の一般的な方法に従って行った。シリカゲル(石油エーテル: CH2Cl2 = 1:1, UV)でのクロマトグラフィの後、555 mgのP TM58(1.72 mmol, 収率75 %)を黄色固体として単離した。
融点 : 127 - 128 °C。 - 1H-NMR (300 MHz, CDCl3): δ = 8.02 - 8.06 (m, 2H), 7.63 - 7.69 (m, 2H), 6.35 (d, 4J = 2.17 Hz, 2H), 6.26 (t, 4J = 2.20 Hz, 1H), 3.94 (s, 2H), 3.72 (s, 6H), 2.21 (s, 3H). - 13C-NMR (75 MHz, CDCl3,): δ = 185.21 (Cq), 184.49 (Cq), 160.84 (Cq), 144.87 (Cq), 144.55 (Cq), 140.22 (Cq), 133.39 (CH), 133.37 (CH), 132.05 (Cq), 131.95 (Cq), 126.40 (CH), 126.18 (CH), 106.78 (CH), 97.94 (CH), 55.18 (CH3), 32.43 (CH2), 13.20 (CH3). - EI MS (70 eV, m/z (%)): 322.1 ([M]+, 20), 307.1 (30), 292.1 (10). - IR (KBr): 3438 cm-1 (b, m), 2958 (w), 2941 (w), 2837 (w), 1661 (vs), 1600 (vs), 1471 (s), 1426 (m), 1376 (m), 1332 (s), 1292 (vs), 1262 (w), 1208 (s), 1157 (vs), 1071 (m), 1055 (m), 975 (w), 822 (m), 737 (vs), 691 (m). - 元素分析 : C20H18O4として、実測値C, 74.24 %; H, 5.61 %、計算値 C, 74.52 %; H, 5.63 %。
実施例1.18
2-メチル-3-(3,4,5-トリメトキシ-ベンジル)-4a,8a-ジヒドロ-[1,4]ナフトキノン(P TM59)
カップリング反応の出発物質として、メナジオンおよび3,4,5-トリメトキシ-フェニル酢酸を使用した。シリカゲル(石油エーテル: CH2Cl2 = 1:3, UV)でのクロマトグラフィの後、1.98 gのP TM59(5.62 mmol, 収率85 %)を黄色固体として単離した。
融点 : 147 - 149 °C。 - 1H-NMR (300 MHz, CDCl3): δ = 8.01 - 8.07 (m, 2H), 7.63 - 7.69 (m, 2H), 6.42 (s, 2H), 3.92 (s, 2H), 3.77 (s, 6H), 3.75 (s, 3H), 2.24 (s, 3H). - 13C-NMR (75 MHz, CDCl3): δ = 185.23 (Cq), 184.63 (Cq), 153.18 (Cq), 144.97 (Cq), 144.23 (Cq), 136.59 (Cq), 133.54 (Cq), 133.44 (CH), 131.98 (Cq), 131.89 (Cq), 126.37 (CH), 126.20 (CH), 106.61 (CH), 105.75 (CH), 60.73 (CH3), 56.06 (CH3), 32.57 (CH2), 13.28 (CH3). - EI MS (70 eV, m/z (%)): 352.1 ([M]+, 54), 337.1 (100). - IR (KBr): 3481 cm-1 (b, s), 2942 (w), 2836 (w), 1658 (vs), 1592 (s), 1507 (m), 1458 (m), 1330 (m), 1296 (s), 1127 (vs), 731 (m). -元素分析 : C21H20O5として、実測値C, 71.25 %; H, 5.75 %、計算値 C, 71.58 %, H, 5.72 %。
実施例1.19
2-(2,5-ジメトキシベンジル)-3-メチル-4a,8a-ジヒドロ-[1,4]ナフトキノン(P TM60)
カップリング反応の出発物質として、メナジオンおよび2,5-ジメトキシフェニル酢酸を使用した。合成は、実施例1の一般的な方法に記載の一般的な方法に従って行った。シリカゲル(石油エーテル: CH2Cl2 = 1:3, UV)でのクロマトグラフィの後、1.96 gのP TM60(6.08 mmol, 収率80 %)を黄色固体として単離した。
融点 : 140 - 142 °C。 - 1H-NMR (300 MHz, CDCl3): δ = 8.05 - 8.08 (m, 2H), 7.64 - 7.69 (m, 2H), 6.76 (d, 3J = 8.80 Hz, 1H), 6.66 (dd, 3J = 8.81 Hz, 4J = 2.96 Hz, 1H), 6.59 (d, 4J = 2.92 Hz, 1H), 3.98 (s, 2H), 3.78 (s, 3H), 3.67 (s, 3H), 2.15 (s, 3H). - 13C-NMR (75 MHz, CDCl3): δ = 185.35 (Cq), 184.55 (Cq), 153.52 (Cq), 151.50 (Cq), 145.40 (Cq), 144.94 (Cq), 133.36 (CH), 133.28 (CH), 132.22 (Cq), 132.21 (Cq), 127.62 (Cq), 126.43 (CH), 126.20 (CH), 116.20 (CH), 111.14 (CH), 110.91 (CH), 55.93 (CH3), 55.61 (CH3), 26.68 (CH2), 12.99 (CH3). - EI MS (70 eV, m/z (%)): 322.1 ([M]+, 100), 307.1 (67), 291.1 (38), 277.0 (20). - IR (KBr): 3450 cm-1 (b, m), 3006 (w), 2955 (w), 2833 (w), 1660 (vs), 1612 (s), 1590 (s), 1499 (vs), 1465 (m), 1372 (m), 1325 (m), 1295 (vs), 1280 (s), 1261 (s), 1235 (vs), 1163 (m), 1051 (s), 1022 (m), 793 (m), 708 (s). - 元素分析 : C20H18O4 . 0.1 CH2Cl2として、実測値 C, 73.16 %; H, 5.51 %、計算値. C, 72.97 %; H, 5.54 %。
実施例1.20
2-メチル-3-(2,3,4-トリメトキシ-ベンジル)-4a,8a-ジヒドロ-[1,4]ナフトキノン(P TM61)
カップリング反応の出発物質として、メナジオンおよび2,3,4-トリメトキシフェニル酢酸を使用した。合成は、実施例1の一般的な方法に記載の一般的な方法に従って行った。シリカゲル(石油エーテル: CH2Cl2 = 1:9, UV)でのクロマトグラフィの後、544 mgのP TM61(1.540 mmol, 収率76 %)を黄色固体として単離した。
融点 : 102 - 103 °C。 - 1H-NMR (300 MHz, CDCl3): δ = 8.04 - 8.08 (m, 2H), 7.64 - 7.69 (m, 2H), 6.70 (d, 3J = 8.69 Hz, 1H), 6.52 (d, 3J = 8.60 Hz, 1H), 3.94 (s, 2H), 3.87 (s, 3H), 3.83 (s, 3H), 3.78 (s, 3H), 2.15 (s, 3H). - 13C-NMR (75 MHz, CDCl3): δ = 185.40 (Cq), 184.59 (Cq), 152.40 (Cq), 151.68 (Cq), 145.70 (Cq), 144.53 (Cq), 142.28 (Cq), 133.38 (CH), 133.31 (CH), 132.18 (Cq), 132.16 (Cq), 126.40 (CH), 126.21 (CH), 123.98 (Cq), 123.36 (CH), 107.18 (CH), 60.75 (CH3), 60.69 (CH3), 55.94 (CH3), 26.52 (CH2), 12.99 (CH3). - EI MS (70 eV, m/z (%)): m/z = 352.2 ([M]+, 61), 337.2 (100), 191.1 (28). - IR (KBr): 3440 cm-1 (b, m), 2974 (w), 2941 (w), 2927 (w), 1663 (vs), 1616 (m), 1594 (s), 1493 (s), 1465 (s), 1416 (m), 1332 (m), 1296 (vs), 1260 (m), 1202 (w), 1101 (vs), 1044 (s), 973 (w), 786 (w), 713 (w), 696 (w). - 元素分析 : C21H20O5として、実測値. C, 71.49 %, H, 5.76 %、計算値. C, 71.58 %; H, 5.72 %。
実施例1.21
2-メチル-3-ベンジル-4a,8a-ジヒドロ-[1,4]ナフトキノン(P TM62)
カップリング反応の出発物質として、メナジオンおよびフェニル酢酸を使用した。合成は、実施例1の一般的な方法に記載の一般的な方法に従って行った。シリカゲル(石油エーテル: CH2Cl2 = 1:3, UV)でのクロマトグラフィの後、2.50 gのP TM62(9.53 mmol, 収率86 %)を黄色吸湿性固体として単離した。
融点 : 103 - 104 °C。 - 1H-NMR (300 MHz, CDCl3): δ = 8.03 - 8.09 (m, 2H), 7.63 - 7.68 (m, 2H), 7.16 - 7.33 (m, 5H), 4.02 (s, 2H), 2.24 (s, 3H). - 13C-NMR (75 MHz, CDCl3): δ = 185.16 (Cq), 184.45 (Cq), 145.17 (Cq), 144.26 (Cq), 137.95 (Cq), 133.33 (CH), 133.30 (CH), 131.97 (Cq), 131.89 (Cq), 128.53 (CH), 128.50 (CH), 126.31 (CH), 126.11 (CH), 32.29 (CH2), 13.14 (CH3). - EI MS (70 eV, m/z (%)): 262.2 ([M]+, 30), 247.1 (100). - IR (KBr): 3454 cm-1 (b, m), 3061 (w), 3028 (w), 2937 (w), 1662 (vs), 1654 (vs), 1620 (m), 1593 (m), 1333 (m), 1293 (vs), 718 (s), 698 (m). - 元素分析 : C18H14O2として、実測値. C, 82.39 %; H, 5.47 %、 計算値. C, 82.42 %; H, 5.38 % 。
実施例1.22
3-(4-ブロモ-ベンジル)-5-ヒドロキシ-2-メチル-4a,8a-ジヒドロ[1,4]ナフトキノン(P TM42)
カップリング反応の出発物質として、プラムバギンおよび4-ブロモフェニル酢酸を使用した。合成は、実施例1の一般的な方法に記載の一般的な方法に従って行った。シリカゲル(シクロヘキサン: 酢酸エチル= 1:3, UV)でのクロマトグラフィの後、1.35 gのP TM42(3.8 mmol, 収率71 %)を赤色固体として単離した。
融点 : 163 - 164 °C。 - 1H-NMR (300 MHz, CDCl3): δ = 12.07 (s, 1H), 7.54 - 7.63 (m, 2H), 7.38 (d, 3J = 8.38 Hz, 2H), 7.22 (dd, 3J = 7.94 Hz, 4J = 1.53 Hz, 1H), 7.09 (d, 3J = 8.33 Hz, 2H), 3.94 (s, 2H), 2.22 (s, 3H). - 13C-NMR (75 MHz, CDCl3): δ = 189.68 (Cq), 184.42 (Cq), 161.33 (Cq), 146.01 (Cq), 144.54 (Cq), 136.72 (Cq), 136.17 (CH), 132.07 (Cq), 131.81 (CH), 130.21 (CH), 124.07 (CH), 120.47 (Cq), 119.09 (CH), 114.86 (Cq), 31.32 (CH2), 13.44 (CH3). - EI MS (70 eV, m/z (%)): 356.0 ([M]+, 26), 341 (100), 261.1 (25), 107 (40), 77.0 (80). - IR (KBr): 3440 cm-1 (b, m), 3047 (w), 1658 (s), 1635 (vs), 1610 (s), 1486 (s), 1456 (s), 1376 (w), 1359 (w), 1315 (w), 1294 (vs), 1266 (vs), 1198 (m), 1163 (w), 1070 (w), 1011 (m), 831 (w), 752 (m), 742 (w). - 元素分析 : C18H13BrO3として、実測値. C, 60.54 %; H, 3.75 %; Br, 22.52 %、計算値. C, 60.52 %; H, 3.67 %; Br, 22.37 %。
実施例1.23
3-(4-tert-ブチル-ベンジル)-5-ヒドロキシ-2-メチル-[1,4]ナフトキノン(P TM81)
カップリング反応の出発物質として、プラムバギンおよび4-tertブチルフェニル酢酸を使用した。合成は、実施例1の一般的な方法に記載の一般的な方法に従って行った。シリカゲル(石油エーテル: CH2Cl2 = 1:3, UV)でのクロマトグラフィの後、1.25 gのP TM81(3.73 mmol, 収率70 %)を赤色固体として単離した。
融点 : 112 - 113 °C。 - 1H-NMR (300 MHz, CDCl3): δ = 12.15 (s, 1H), 7.51 - 7.61 (m, 2H), 7.29 (d, 3J = 8.34 Hz, 2H), 7.14 - 7.21 (m, 3H), 3.97 (s, 2H), 2.25 (s, 3H), 1.28 (s, 9H). - 13C-NMR (75 MHz, CDCl3): δ = 189.82 (Cq), 184.55 (Cq), 161.16 (Cq), 149.39 (Cq), 145.57 (Cq), 145.18 (Cq), 135.91 (CH), 134.48 (Cq), 132.05 (Cq), 128.11 (CH), 125.57 (CH), 123.83 (CH), 118.84 (CH), 114.88 (Cq), 34.32 (Cq), 31.27 (CH2), 31.26 (CH3), 13.36 (CH3). - EI MS (70 eV, m/z (%)): 334.14 ([M]+, 31), 319.11 (100), 277.07 (38), 263.06 (5), 173.05 (8), 152.03 (9). - IR (KBr): 3443 cm-1 (b, w), 2964 (m), 1660 (s), 1634 (vs), 1612 (vs), 1514 (m), 1456 (vs), 1384 (w), 1360 (s), 1323 (m), 1305 (vs), 1294 (vs), 1270 (vs), 1199 (m), 1163 (m), 1058 (w), 831 (m), 761 (s), 748 (s), 710 (m). - 元素分析 : C22H22O3として、実測値. C, 78.61 %; H, 6.60 %、計算値. C, 79.02 %; H, 6.63 % 。
実施例1.24
2-(3-メトキシ-ベンジル)-3-メチル-[1,4]ナフトキノン(P TM96)
カップリング反応の出発物質として、メナジオンおよび3-メトキシフェニル酢酸を使用した。合成は、実施例1の一般的な方法に記載の一般的な方法に従って行った。シリカゲル(石油エーテル: CH2Cl2 = 1:1, UV)でのクロマトグラフィの後、1.64 gのP TM96(5.61 mmol, 収率75 %)を黄色固体として単離した。
融点 : 87 - 88 °C。 - 1H-NMR (300 MHz, CDCl3): δ = 8.05 - 8.08 (m, 2H), 7.66 - 7.69 (m, 2H), 7.16 (t, 3J = 7.87 Hz, 1H), 6.69 - 6.81 (m, 3H), 3.99 (s, 2H), 3.74 (s, 3H), 2.23 (s, 3H). - 13C-NMR (75 MHz, CDCl3): δ = 185.36 (Cq), 184.62 (Cq), 159.78 (Cq), 145.14 (Cq), 144.53 (Cq), 139.58 (Cq), 133.49 (CH), 133.46 (CH), 132.13 (Cq), 132.04 (Cq), 129.59 (CH), 126.49 (CH), 126.27 (CH), 120.97 (CH), 114.68 (CH), 111.42 (CH), 55.16 (CH3), 32.37 (CH2), 13.29 (CH3). - EI MS (70 eV, m/z (%)): 292.19 ([M]+, 39), 277.16 (100), 172.10 (12). - IR (KBr): 3066 cm-1 (w), 2978 (w), 2945 (w), 2838 (w), 1659 (vs), 1617 (s), 1599 (vs), 1490 (vs), 1470 (s), 1434 (m), 1383 (s), 1327 (vs), 1294 (vs), 1264 (vs), 1256 (vs), 1163 (s), 1040 (vs), 976 (m), 849 (m), 799 (s), 788 (m), 745 (vs), 710 (m), 697 (s). - 元素分析 : C19H16O3として、実測値. C, 78.31 %; H, 5.53 %、計算値. C, 78.06 %; H, 5.52 % 。
実施例1.25
2-メチル-3-(4-トリフルオロメトキシ-ベンジル)-[1,4]ナフトキノン(P TM97)
カップリング反応の出発物質として、メナジオンおよび4-(トリフルオロメトキシ)フェニル酢酸を使用した。合成は、実施例1の一般的な方法に記載の一般的な方法に従って行った。シリカゲル(石油エーテル: CH2Cl2 = 1:1, UV)でのクロマトグラフィの後、494 mgのP TM97(1.43 mmol, 収率78 %)を黄色固体として単離した。
融点 : 64 - 65 °C。 - 1H-NMR (300 MHz, CDCl3): δ = 8.03 - 8.10 (m, 2H), 7.65 - 7.71 (m, 2H), 7.34 (d, 3J = 8.74 Hz, 2H), 7.09 (d, 3J = 8.08 Hz, 2H), 4.01 (s, 2H), 2.23 (s, 3H). - 13C-NMR (75 MHz, CDCl3): δ = 185.17 (Cq), 184.52 (Cq), 147.42 (Cq), 144.72 (Cq), 144.57 (Cq), 136.76 (Cq), 133.57 (CH), 132.07 (Cq), 131.92 (Cq), 129.87 (CH), 126.47 (CH), 126.33 (CH), 121.15 (CH), 120.44 (q, 1JCF = 256.91 Hz), 31.78 (CH2), 13.27 (CH3). - EI MS (70 eV, m/z (%)): 346.0 ([M]+, 32), 331.1 (100), 261.1 (8), 175.1 (71), 76.0 (10), 28.0 (49). - IR (KBr): 3077 cm-1 (w), 3047 (w), 3021 (w), 3003 (w), 2963 (w), 2948 (w), 2853 (w), 2143 (w), 2004 (w), 1975 (w), 1901 (w), 1876 (w), 1664 (vs), 1620 (m), 1596 (s), 1508 (s), 1446 (w), 1435 (w), 1378 (m), 1333 (s), 1297 (vs), 1271 (vs), 1217 (vs), 1188 (vs), 1166 (vs), 1111 (m), 1019 (w), 976 (m), 793 (w), 770 (w), 708 (s), 692 (w). - 元素分析 : C19H13F3O3として、実測値. C, 65.78 %; H, 3.98 %、計算値. C, 65.90 %; H, 3.78 %。
実施例1.26
2-メチル-3-(2-ブロモ-ベンジル)-4a,8a-ジヒドロ-[1,4]ナフトキノン(P TM98)
カップリング反応の出発物質として、メナジオンおよび2-ブロモフェニル酢酸を使用した。合成は、実施例1の一般的な方法に記載の一般的な方法に従って行った。シリカゲル(石油エーテル: CH2Cl2 = 1:1, UV)でのクロマトグラフィの後、1.75 gのP TM98(5.14 mmol, 収率88 %)を黄色固体として単離した。
融点 : 94 - 95 °C。- 1H-NMR (300 MHz, CDCl3): δ = 8.06 - 8.11 (m, 2H), 7.66 -7.72 (m, 2H), 7.56 (dd, 3J = 7.87 Hz, 4J = 1.32 Hz, 1H), 7.13 (dt, 3J = 7.47 Hz, 4J = 1.35 Hz, 1H), 7.04 (dt, 3J = 7.69 Hz, 4J = 1.75 Hz, 1H), 6.89 (dd, 3J = 7.61 Hz, 4J = 1.56 Hz, 1H), 4.11 (s, 2H), 2.10 (s, 3H). - 13C-NMR (75 MHz, CDCl3): δ = 184.98 (Cq), 184.30 (Cq), 145.85 (Cq), 144.53 (Cq), 137.31 (Cq), 133.55 (CH), 133.53 (CH), 132.87 (CH), 132.13 (Cq), 131.96 (Cq), 128.59 (CH), 127.93 (CH), 127.55 (CH), 126.53 (CH), 126.33 (CH), 124.67 (Cq), 32.65 (CH2), 13.26 (CH3). - EI MS (70 eV, m/z (%)): 261.1 ([M-Br]+, 100), 231.1 (11), 202.1 (11), 130.1 (8), 76.0 (10). - IR (KBr): 3441 cm-1 (b, s), 3068 (w), 3017 (w), 2923 (w), 1660 (vs), 1621 (s), 1594 (s), 1467 (m), 1439 (m), 1376 (w), 1318 (m), 1296 (vs), 1263 (m), 1223 (w), 1184 (w), 1025 (m), 976 (m), 787 (w), 749 (s), 729 (m), 695 (w), 663 (w). -元素分析 : C18H13BrO2として、実測値. C, 63.12 %; H, 3.91 %; Br, 23.31 %、計算値. C, 63.36 %; H, 3.84 %; Br, 23.42 % 。
実施例1.27
2-メチル-3-(3-ブロモ-ベンジル)-4a,8a-ジヒドロ-[1,4]ナフトキノン(P TM99)
カップリング反応の出発物質として、メナジオンおよび3-ブロモフェニル酢酸を使用した。合成は、実施例1の一般的な方法に記載の一般的な方法に従って行った。シリカゲル(石油エーテル: CH2Cl2 = 1:1, UV)でのクロマトグラフィの後、328 mgのP TM99(0.96 mmol, 収率52 %)を黄色固体として単離した。
融点 : 108 - 109 °C。 - 1H-NMR (300 MHz, CDCl3): δ = 7.98 - 8.02 (m, 2H), 7.59 - 7.65 (m, 2H), 7.28 (s, 1H), 7.24 (td, 3J = 6.78 Hz, 4J = 1.97 Hz, 1H), 7.02 - 7.09 (m, 2H), 3.92 (s, 2H), 2.16 (s, 3H). - 13C-NMR (75 MHz, CDCl3): δ = 185.16 (Cq), 184.45 (Cq), 144.78 (Cq), 144.50 (Cq), 140.35 (Cq), 133.59 (CH), 132.10 (Cq), 131.94 (Cq), 131.52 (CH), 130.16 (CH), 129.65 (CH), 127.26 (CH), 126.54 (CH), 126.36 (CH), 122.72 (Cq), 32.09 (CH2), 13.35 (CH3). - EI MS (70 eV, m/z (%)): 340.0 ([M]+, 28), 325.06 (100), 246.13 (18), 215.14 (7), 202.12 (8), 184.99 (12), 76.0 (10). - IR (KBr): 3430 cm-1 (b, w), 1658 (vs), 1620 (vs), 1595 (vs), 1568 (s), 1474 (s), 1431 (m), 1381 (s), 1334 (vs), 1290 (vs), 1261 (s), 1180 (s), 1074 (m), 974 (s), 955 (s), 793 (s), 780 (vs), 728 (vs), 692 (s), 687 (s), 422 (m). - 元素分析 : C18H13BrO2として、実測値. C, 63.55 %; H, 3.94 %; Br, 23.69 %、計算値. C, 63.36 %; H, 3.84 %; Br, 23.42 % 。
実施例1.28
2-メチル-3-(4-イソプロピル-ベンジル)-4a,8a-ジヒドロ-[1,4]ナフトキノン(P TM100)
カップリング反応の出発物質として、メナジオンおよび4-イソプロピルフェニル酢酸を使用した。合成は、実施例1の一般的な方法に記載の一般的な方法に従って行った。シリカゲル(石油エーテル: CH2Cl2 = 1:1, UV)でのクロマトグラフィの後、395 mgのP TM100(1.30 mmol, 収率58 %)を黄色固体として単離した。
融点 : 64 - 65 °C。 - 1H-NMR (300 MHz, CDCl3): δ = 8.05 - 8.09 (m, 2H), 7.65 - 7.69 (m, 2H), 7.14 (d, 3J = 8.24 Hz, 2H), 7.11 (d, 3J = 8.24 Hz, 2H), 3.99 (s, 2H), 2.83 (sep, 3J = 6.90 Hz, 1H), 2.25 (s, 3H), 1.19 (d, 3J = 6.94 Hz, 6H). - 13C-NMR (75 MHz, CDCl3): δ = 185.45 (Cq), 184.68 (Cq), 146.99 (Cq), 145.52 (Cq), 144.20 (Cq), 135.26 (Cq), 133.44 (CH), 133.40 (CH), 132.13 (Cq), 132.07 (Cq), 128.53 (CH), 126.68 (CH), 126.45 (CH), 126.23 (CH), 33.66 (CH), 32.02 (CH2), 23.97 (CH3), 13.29 (CH3). - EI MS (70 eV, m/z (%)): 304.1 ([M]+, 31), 289.2 (100), 261.2 (31). - IR (KBr): 3447 cm-1 (b, m), 2960 (m), 2928 (w), 2870 (w), 1660 (vs), 1618 (m), 1594 (s), 1511 (m), 1460 (w), 1419 (w), 1377 (w), 1333 (m), 1294 (vs), 1259 (w), 1181 (w), 975 (w), 818 (w), 788 (w), 718 (m), 694 (m). - 元素分析 : C21H20O2として、実測値. C, 82.94 %; H, 6.54 %、計算値. C, 82.86 %; H, 6.62 % 。
実施例1.29
2-(4-ブロモ-ベンジル)-3-ジフルオロメチル-[1,4]ナフトキノン(P TM101)
カップリング反応の出発物質として、ジフルオロメナジオンおよび4-ブロモフェニル酢酸を使用した。合成は、実施例1の一般的な方法に記載の一般的な方法に従って行った。シリカゲル(石油エーテル: CH2Cl2 = 1:1, UV)でのクロマトグラフィの後、132 mgのP TM101(0.35 mmol, 収率73%)を黄色固体として単離した。
融点 : 103 - 104 °C。 - 1H-NMR (300 MHz, CDCl3): δ = 8.07 - 8.13 (m, 1H), 7.99 - 8.05 (m, 1H), 7.70 - 7.79 (m, 2H), 7.36 (d, 3J = 8.46 Hz, 2H), 7.24 (t, 1J = 53.87 Hz, 1H, CHF2), 7.18 (d, 3J = 8.42 Hz, 2H), 4.19 (s, 2H). - 13C-NMR (75 MHz, CDCl3): δ = 184.38 (Cq), 182.79 (Cq), 149.21 (Cq), 136.03 (Cq), 134.41 (CH), 131.76 (Cq), 131.63 (CH), 130.89 (CH), 126.87 (CH), 126.54 (CH), 120.67 (Cq), 110.45 (CHF2, 1J = 239.85 Hz), 31.66 (CH2). - EI MS (70 eV, m/z (%)): 377.1 ([M]+, 21), 325.1 (11), 257.1 (10), 169.0 (100), 90.1 (18). - IR (KBr): 3436 cm-1 (b, w), 3100 (w), 3076 (w), 3049 (w), 3018 (w), 2936 (w), 1672 (vs), 1657 (vs), 1625 (s), 1594 (s), 1487 (vs), 1406 (m), 1329 (s), 1297 (vs), 1181 (m), 1123 (s), 1082 (s), 1071 (m), 1035 (vs), 1013 (s), 876 (m), 831 (s), 788 (s), 733 (s), 713 (m), 535 (m). -元素分析 : C18H11BrF2O2として、実測値. C, 57.01 %; H, 3.12 %、計算値. C, 57.32 %; H, 2.94 % 。
実施例1.30
2-(2-ブロモ-4-メトキシ-ベンジル)-3-メチル-[1,4]ナフトキノン(P TM102)
カップリング反応の出発物質として、メナジオンおよび2-ブロモ-4-メトキシフェニル酢酸を使用した。合成は、実施例1の一般的な方法に記載の一般的な方法に従って行った。シリカゲル(石油エーテル: CH2Cl2 = 1:1, UV)でのクロマトグラフィの後、857 mgのP TM102(2.31 mmol, 収率57 %)を黄色油状物として単離した。
1H-NMR (300 MHz, CDCl3): δ = 7.99 - 8.08 (m, 2H), 7.63 - 7.69 (m, 2H), 7.09 (d, 4J = 2.63 Hz, 1H), 6.79 (d, 3J = 8.57 Hz, 1H), 6.66 (dd, 3J = 8.61 Hz, 4J = 2.63 Hz, 1H), 3.99 (s, 2H), 3.70 (s, 3H), 2.08 (s, 3H). - 13C-NMR (75 MHz, CDCl3): δ = 185.06 (Cq), 184.40 (Cq), 158.55 (Cq), 145.64 (Cq), 144.90 (Cq), 133.54 (CH), 133.51 (CH), 132.14 (Cq), 132.01 (Cq), 129.22 (Cq), 129.08 (CH), 126.52 (CH), 126.31 (CH), 124.71 (Cq), 118.13 (CH), 113.67 (CH), 55.48 (CH3), 31.76 (CH2), 13.27 (CH3). - EI MS (70 eV, m/z (%)): 370.11 ([M]+, 2), 355.08 (8), 291.17 (100), 276.14 (8), 248.14 (5), 202.12 (3). - IR (film): 3295 cm-1 (w), 3069 (w), 3004 (w), 2940 (w), 2987 (w), 1685 (m), 1660 (vs), 1596 (vs), 1566 (m), 1491 (vs), 1439 (m), 1331 (m), 1295 (vs), 1239 (vs), 1186 (m), 1029 (s), 861 (m), 712 (s), 696 (s). - 元素分析 : C19H15BrO3として、実測値. C, 61.64 %; H, 4.35 %, 計算値. C, 61.47 %; H, 4.07 %。
実施例2
2-(3,6-ジオキソ-シクロヘキサ-1,4-ジエニルメチル)-3-メチル-4a,8a-ジヒドロ-[1,4]ナフトキノン(P TM63)
実施例1.19により得られたP TM60(200 mg, 0.62 mmol)を、CH3CN(40mL)および水(10mL)の混液に穏やかに加温しながら溶解して、黄色の溶液を得た。CH3CN/H2O (v/v = 1:1)(10 mL)中のセリウム(IV)硝酸アンモニウム (CAN) (918 mg, 1.67 mmol)を前記の混合液に室温で加えて橙赤色の溶液を得、これを1.5時間撹拌した。真空下にCH3CNを除去し、残留物をCH2Cl2 (5 x 20 mL)で抽出し、MgSO4で乾燥し、フラッシュクロマトグラフィで精製した。シリカゲル(石油エーテル: CH2Cl2 = 1:3, UV)でのクロマトグラフィの後、74 mgのP TM63(0.25 mmol, 収率41 %)を黄色固体として単離した。
融点 : 142 - 144 °C。 - 1H-NMR (300 MHz, CDCl3): δ = 8.10 (dd, 3J = 6.62 Hz, 4J = 2.27 Hz, 1H), 8.05 (dd, 3J = 6.86 Hz, 4J = 1.99 Hz, 1H), 7.69 - 7.74 (m, 2H), 6.81 (d, 3J = 10.10 Hz, 1H), 6.71 (dd, 3J = 10.10 Hz, 4J = 2.49 Hz, 1H), 6.35 (d, 4J = 1.85 Hz, 1H), 3.79 (s, 2H), 2.17 (s, 3H). - 13C-NMR (75 MHz, CDCl3): δ = 187.14 (Cq), 186.48 (Cq), 184.49 (Cq), 183.90 (Cq), 146.28 (s, Cq), 145.70 (Cq), 142.11 (Cq), 136.69 (CH) , 136.43 (CH), 133.85 (CH), 133.76 (CH), 132.61 (CH), 132.06 (Cq), 131.79 (Cq), 126.56 (CH), 126.54 (CH), 26.32 (CH2), 13.32 (CH3). - EI MS (70 eV, m/z (%)): 292.1 (M+, 100), 264.1 (15), 235.1 (19), 221.1 (13). - IR (KBr): 3423 cm-1 (b, m), 3027 (w), 2937 (w), 1659 (vs), 1624 (m), 1596 (m), 1379 (w), 1334 (m), 1295 (vs), 731 (m), 694 (m). - 元素分析 : C12H14O4 . 0.2 H2Oとして、実測値. C, 72.83 %, H, 4.26 %、計算値. C, 73.07 %; H, 4.22 % 。
実施例3
2-メチル-3-(4-アミノ-ベンジル)-4a,8a-ジヒドロ-[1,4]ナフトキノン(P TM103)
実施例1.12により得られたP TM45(100 mg, 0.265 mmol)の乾燥CH2Cl2(7 mL)溶液に、0℃でトリフルオロ酢酸(157 μL, 2.04 mmol)を加えた。この溶液を室温で16時間撹拌した。この混合物をNa2CO3飽和溶液(20mL)で急冷し、生成物をCH2Cl2(4 x 10 mL)で抽出し、MgSO4で乾燥し、シリカゲル(CH2Cl2 : MeOH = 9:1, UV)でのフラッシュクロマトグラフィで精製して、62 mgの分析学上純粋なP TM103(0.22 mmol)を、赤色の固体として収率84%で得た。
融点 : 152 - 153 °C。 - 1H-NMR (300 MHz, CDCl3): δ = 8.04 - 8.06 (m, 2H), 7.65 - 7.68 (m, 2H), 7.00 (d, 3J = 8.32 Hz, 2H), 6.57 (d, 3J = 8.36 Hz, 2H), 3.89 (s, 2H), 2.23 (s, 3H). - 13C-NMR (75 MHz, CDCl3): δ = 185.54 (Cq), 184.78 (Cq), 145.83 (Cq), 144.77 (Cq), 144.71 (Cq), 143.83 (Cq), 133.38 (CH), 133.34 (CH), 132.11 (Cq), 129.51 (CH), 126.39 (CH), 126.17 (CH), 115.39 (Cq), 115.36 (CH), 31.53 (CH2), 13.17 (CH3). - EI MS (70 eV, m/z (%)): 277.1 ([M]+, 52), 262.2 (100), 106.1 (12). - IR (KBr): 3439 cm-1 (b, s), 3380 (m), 1659 (vs), 1619 (s), 1594 (m), 1515 (s), 1334 (w), 1295 (vs), 1261 (w), 819 (w), 786 (w), 771 (w), 708 (m), 693 (w), 630 (w), 605 (w), 572 (w), 512 (w), 458 (w), 423 (w). -元素分析 : C18H15NO2 . 0.3 CH3OHとして、実測値. C, 76.46 %; H, 5.41 %; N, 4.85 %、計算値. C, 76.46 %; H, 5.69 %; N, 4.88 %。
実施例4
ベンジル誘導体の対応するベンゾイル誘導体への酸化の一般的な方法
H5IO6(1.40 g, 6.16 mmol)をアセトニトリル(25 mL)中に勢いよく撹拌して溶解し、この混合物にCrO3(17.6 mg, 0.18 mmol)を溶解して、橙色の溶液を得た。ベンジル誘導体(0.88 mmol)を上記の溶液に撹拌しながら加えた。溶液は数秒のうちに橙色の懸濁液に変わり、その数分後に黄色に変わった。この溶液を全ての出発物質が消費される(TLCコントロール)まで室温で撹拌した。真空下に溶媒を除去し、残渣をフラッシュクロマトグラフィで精製して、対応するベンゾイル誘導体を得た。
実施例4.1
4-(3-メチル-1,4-ジオキソ-1,4,4a,8a-テトラヒドロ-ナフタレン-2-カルボニル)-安息香酸(P TM22)
実施例1.1により合成したP TM21を出発物質として使用した。合成は、実施例4の一般的な方法に記載の一般的な方法に従って行った。シリカゲル(CH2Cl2 : MeOH : CH3COOH = 19:1:0.1, UV)でのクロマトグラフィの後、389 mgのP TM22(1.22 mmol, 収率67 %)を黄色の固体として単離した。
融点 : 201 °C(分解)。 - 1H-NMR (300 MHz, DMSO): δ = 13.38 (s, 1H), 7.87 - 8.19 (m, 8H), 1.95 (s, 3H). - 13C-NMR (75 MHz, DMSO): δ= 193.64 (Cq), 184.07 (Cq), 183.37 (Cq), 166.40 (Cq), 144.34 (Cq), 142.58 (Cq), 138.23 (Cq), 135.79 (Cq), 134.51 (CH), 134.16 (CH), 131.96 (Cq), 131.17 (Cq), 129.94 (CH), 129.31 (CH), 126.19 (CH), 125.70 (CH), 13.47 (CH3). - HR-EI MS m/z (%): 実測値. 320.0699, 計算値. 320.0685 for C19H12O5. - IR (KBr): 3437 cm-1 (b, m), 3070 (w), 1774 (w), 1685 (vs), 1669 (vs), 1594 (m), 1502 (w), 1407 (w), 1292 (vs), 1226 (m), 1110 (w), 979 (w), 763 (m), 730 (w), 714 (w), 691 (w), 652 (w). - 元素分析 : C19H12O5として、実測値. 71.07 %; H, 4.00 %、計算値. C, 71.25 %; H, 3.78 % 。
実施例4.2
2-メチル-3-(4-ブロモ-ベンゾイル)-4a,8a-ジヒドロ-[1,4]ナフトキノン(P TM25)
実施例1.2により製造したP TM24を出発物質として使用した。合成は、実施例4の一般的な方法に記載の一般的な方法に従って行った。シリカゲル(石油エーテル : CH2Cl2 = 1:3, UV)でのクロマトグラフィの後、133 mgのP TM25(0.38 mmol, 収率43 %)を黄色の固体として得た。
融点 : 170 - 171°C。 - 1H-NMR (300 MHz, CDCl3): δ = 8.14 - 8.17 (m, 1H), 8.03 - 8.06 (m, 1H), 7.73 - 7.81 (m, 4H), 7.64 (t, 3J = 2.08 Hz, 1H), 7.61 (t, 3J = 1.95 Hz, 1H), 2.05 (s, CH3). - 13C-NMR (75 MHz, CDCl3): δ = 192.72 (Cq), 184.63 (Cq), 183.32 (Cq), 144.30 (Cq), 143.85 (Cq), 134.49 (Cq), 134.30 (CH), 134.19 (CH), 132.48 (CH), 131.87 (Cq), 131.49 (Cq), 130.52 (CH), 130.01 (Cq), 126.78 (CH), 126.44 (CH), 13.60 (CH3). - EI MS (70 eV, m/z (%)): 353.9 ([M]+, 41), 275.0 (100), 182.9 (71), 115.0 (50), 76.0 (41). - IR (KBr): 3442 cm-1 (b, m), 1669 (vs), 1653 (vs), 1627 (vs), 1586 (m), 1568 (m), 1398 (m), 1378 (m), 1329 (s), 1291 (vs), 1272 (s), 1241 (m), 1176 (m), 1069 (m), 1011 (m), 978 (s), 864 (m), 784 (s), 722 (m), 692 (m). -元素分析 : C18H11BrO3として、実測値. C, 60.96 %; H, 3.24 %; Br, 22.60 %、 計算値. C, 60.87 %; H, 3.12 %; Br, 22.50 %。
実施例4.3
2-メチル-3-(フルオロ-ベンゾイル)-4a,8a-ジヒドロ-[1,4]ナフトキノン(P TM27)
実施例1.3により製造したP TM26を出発物質として使用した。合成は、実施例4の一般的な方法に記載の一般的な方法に従って行った。シリカゲル(石油エーテル : CH2Cl2 = 1:3, UV)でのクロマトグラフィの後、110 mgのP TM27(0.37 mmol, 収率35 %)を黄色の固体として得た。
融点 : 157 - 158 °C。 - 1H-NMR (300 MHz, CDCl3): δ = 8.13 - 8.16 (m, 1H), 8.03 - 8.06 (m, 1H), 7.90 - 7.95 (m, 2H), 7.75 - 7.78 (m, 2H), 7.12 - 7.18 (m, 2H), 2.05 (s, 3H). - 13C-NMR (75 MHz, CDCl3): δ = 192.02 (Cq), 184.69 (Cq), 183.33 (Cq), 166.58 (1JCF = 257.5 Hz, CF), 144.13 (Cq), 144.07 (Cq), 134.23 (3JCF = 7.1 Hz, CH), 132.30 (4JCF = 2.8 Hz, Cq), 132.01 (CH), 131.88 (CH), 131.54 (Cq), 126.77 (CH), 126.45 (CH), 116.41 (2JCF = 22.2 Hz, CH), 13.56 (CH3). - HR-EI MS (m/z): obs. 294.0674, calcd. 294.0692 for C18H11FO3. - IR (KBr): 3436 cm-1 (b, m), 1674 (vs), 1655 (vs), 1623 (m), 1597 (vs), 1507 (w), 1412 (w), 1332 (m), 1293 (vs), 1274 (m), 1240 (s), 1156 (m), 979 (w), 866 (w), 841 (w), 768 (w), 712 (w), 618 (m). - 元素分析 : C18H11FO3として、実測値. C, 73.21 %; H, 3.97 %、計算値. C, 73.47 %; H, 3.77 %。
実施例4.4
2-メチル-3-(4-トリフルオロメチル-ベンゾイル)-4a,8a-ジヒドロ-[1,4]ナフトキノン(P TM33)
実施例1.4により製造したP TM29を出発物質として使用した。合成は、実施例4の一般的な方法に記載の一般的な方法に従って行った。シリカゲル(石油エーテル : CH2Cl2 = 1:3, UV)でのクロマトグラフィの後、174 mgのP TM33(0.51 mmol, 収率36 %)を黄色の固体として得た。
融点 : 155 - 156 °C。 - 1H-NMR (300 MHz, CDCl3): δ = 8.13 - 8.16 (m, 1H), 7.99 - 8.04 (m, 3H), 7.72 - 7.81 (m, 4H), 2.05 (s, 3H). - 13C-NMR (75 MHz, CDCl3): δ = 192.87 (Cq), 184.46 (Cq), 183.32 (Cq), 144.65 (Cq), 143.57 (Cq), 138.28 (Cq), 135.51 (2JCF = 32.8 Hz, C-CF3), 134.36 (CH), 134.23 (CH), 131.83 (Cq), 131.39 (Cq), 129.38 (CH), 126.80 (CH), 126.39 (CH), 126.15 (3JCF = 3.68 Hz, CH), 123.36 (1JCF = 273.1 Hz, CF3), 13.54 (CH3). - EI MS (70 eV, m/z (%)): 344.0 ([M]+, 100), 315 (14), 275 (51), 173.0 (98), 145.0 (47). - IR (KBr): 3433 cm-1 (b, m), 3071 (w), 3032 (w), 2972 (w), 1659 (vs), 1617 (m), 1594 (m), 1490 (m), 1407 (w), 1377 (w), 1333 (m), 1296 (vs), 1103 (w), 1091 (w), 1013 (w), 970 (w), 813 (w), 786 (w), 734 (m), 703 (m), 691 (m), 651 (m). - 元素分析 : C19H11F3O3として、実測値. C, 66.03 %; H, 3.33 %, 計算値. C, 66.28 %; H, 3.22 % 。
実施例4.5
2-メチル-3-(4-クロロ-ベンゾイル)-4a,8a-ジヒドロ-[1,4]ナフトキノン(P TM38)
実施例1.5により製造したP TM30を出発物質として使用した。合成は、実施例4の一般的な方法に記載の一般的な方法に従って行った。シリカゲル(石油エーテル : CH2Cl2 = 1:10, UV)でのクロマトグラフィの後、560 mgのP TM38(1.80 mmol, 収率48 %)を黄色の固体として得た。
融点 : 136 - 137 °C。 - 1H-NMR (300 MHz, CDCl3): δ = 8.13 - 8.16 (m, 1H), 8.02 - 8.05 (m, 1H), 7.83 (d, 3J = 8.60 Hz, 2H), 7.75 - 7.78 (m, 2H), 7.45 (d, 3J = 8.59 Hz, 2H), 2.04 (s, 3H). - 13C-NMR (75 MHz, CDCl3): δ = 192.50 (Cq), 184.65 (Cq), 183.34 (Cq), 144.27 (s, Cq), 143.89 (s, Cq), 141.16 (s, Cq), 134.30 (CH), 134.20 (CH), 134.10 (Cq), 131.87 (Cq), 131.49 (Cq), 130.49 (CH), 129.49 (CH), 126.77 (CH), 126.44 (CH), 13.59 (CH3). - EI MS (70 eV, m/z (%)): 310.9 ([M]+, 100), 284.9 (41). - IR (KBr): 3453 cm-1 (b, m), 1668 (vs), 1628 (m), 1587 (vs), 1571 (m), 1401 (m), 1380 (w), 1329 (m), 1292 (vs), 1274 (s), 1236 (m), 1091 (s), 978 (m), 829 (w), 784 (m), 730 (w), 704 (w), 691 (w), 531 (w). - 元素分析 : C18H11ClO3として、実測値. C, 69.28 %; H, 3.63%; Cl, 11.18 %、計算値. C, 69.58 %; H, 3.57 %; Cl, 11.41 %。
実施例4.6
2-メチル-3-(4-メトキシ-ベンゾイル)-4a,8a-ジヒドロ-[1,4]ナフトキノン(P TM34)
実施例1.6により製造したP TM31を出発物質として使用した。合成は、実施例4の一般的な方法に記載の一般的な方法に従って行った。シリカゲル(石油エーテル : CH2Cl2 = 1:10, UV)でのクロマトグラフィの後、541 mgのP TM34(1.77 mmol, 収率64 %)を黄色の固体として得た。
融点 : 150 - 151 °C。 - 1H-NMR (300 MHz, CDCl3): δ = 8.11 - 8.14 (m, 1H), 8.02 - 8.05 (m, 1H), 7.86 (d, 3J = 8.92 Hz, 2H), 7.71 - 7.78 (m, 2H), 6.93 (d, 3J = 8.93 Hz, 2H), 3.85 (s, 3H), 2.03 (s, 3H). - 13C-NMR (75 MHz, CDCl3): δ = 191.88 (Cq), 184.92 (Cq), 183.36 (Cq), 164.65 (Cq), 144.55 (Cq), 143.59 (Cq), 134.05 (CH), 134.01 (CH), 131.86 (Cq), 131.62 (CH), 128.88 (Cq), 126.59 (CH), 126.36 (CH), 114.32 (CH), 55.58 (CH3), 13.54 (CH3). - EI MS (70 eV, m/z (%)): 306.0 ([M]+, 85), 275 (14), 134.9 (100). - IR (KBr): 3400 (b, m), 3076 (w), 3006 (w), 2937 (w), 2843 (w), 1668 (vs), 1653 (vs), 1624 (m), 1598 (s), 1573 (s), 1511 (s), 1423 (s), 1379 (m), 1344 (m), 1329 (s), 1291 (vs), 1265 (vs), 1246 (vs), 1171 (vs), 1026 (m), 978 (m), 834 (m), 765 (s), 715 (m), 618 (m). -元素分析 : C19H14O4として、実測値. C, 74.15 %; H, 4.60 %、計算値. C, 74.50 %; H, 4.61 %。
実施例4.7
2-メチル-3-(2-メトキシ-ベンゾイル)-4a,8a-ジヒドロ-[1,4]ナフトキノン(P TM35)
実施例1.7により製造したP TM32を出発物質として使用した。合成は、実施例4の一般的な方法に記載の一般的な方法に従って行った。シリカゲル(CH2Cl2 :酢酸エチル = 1:1, UV)でのクロマトグラフィの後、279 mgのP TM35(0.91 mmol, 収率33 %)を黄色の固体として得た。
融点 : 146 - 147 °C。 - 1H-NMR (300 MHz, CDCl3): δ = 8.12 - 8.18 (m, 1H), 8.02 - 8.11 (m, 2H), 7.69 - 7.74 (m, 2H), 7.51 - 7.61 (m, 1H), 7.10 (t, 3J = 2.93 Hz, 1H), 6.85 (d, 3J = 3.26 Hz, 1H), 3.54 (s, 3H), 2.02 (s, 3H). - 13C-NMR (75 MHz, CDCl3): δ = 191.70 (Cq), 185.74 (Cq), 183.33 (Cq), 159.90 (Cq), 147.88 (Cq), 139.86 (Cq), 135.93 (CH), 133.85 (CH), 131.99 (Cq), 131.77 (Cq), 130.86 (CH), 126.55 (CH), 126.01 (CH), 125.68 (Cq), 121.31 (CH), 112.30 (CH), 55.91 (CH3), 12.91 (CH3). - EI MS (70 eV, m/z (%)): 306.0 ([M]+, 100), 274.0 (32), 135.0 (100). - IR (KBr): 3400 cm-1 (b, m), 3100 (w), 3068 (w), 2997 (w), 2943 (w), 2837 (w), 1661 (vs), 1652 (vs), 1626 (m), 1595 (vs), 1484 (s), 1466 (m), 1435 (m), 1385 (m), 1330 (s), 1295 (vs), 1265 (m), 1247 (m), 1224 (m), 1185 (m), 1161 (m), 1018 (m), 981 (s), 770 (vs), 755 (vs), 723 (m). - 元素分析 : C19H14O4 . 0.2 H2Oとして、実測値. C, 73.90 %; H, 4.65 %、計算値. C, 73.74 %; H, 4.68 % 。
実施例4.8
2-メチル-3-(4-ニトロ-ベンゾイル)-4a,8a-ジヒドロ-[1,4]ナフトキノン(P TM40)
実施例1.9により製造したP TM37を出発物質として使用した。合成は、実施例4の一般的な方法に記載の一般的な方法に従って行った。シリカゲル(石油エーテル : CH2Cl2 = 1:10, UV)でのクロマトグラフィの後、506 mgのP TM40(1.57 mmol, 収率48 %)を黄色の固体として得た。
融点 : 170 - 171 °C。 - 1H-NMR (300 MHz, CDCl3): δ = 8.30 - 8.33 (d, 3J = 8.81 Hz, 2H), 8.14 - 8.17 (m, 1H), 8.01 - 8.06 (m, 3H), 7.74 - 7.82 (m, 2H), 2.07 (s, 3H). - 13C-NMR (75 MHz, CDCl3): δ = 192.47 (Cq), 184.34 (Cq), 183.34 (Cq), 150.98 (Cq), 145.12 (Cq), 143.19 (Cq), 140.00 (Cq), 134.54 (CH), 134.36 (CH), 131.83 (Cq), 131.33 (Cq), 130.05 (CH), 126.93 (CH), 126.46 (CH), 124.30 (CH), 13.63 (CH3). - EI MS (70 eV, m/z (%)): 321 ([M]+, 51), 272.9 (100), 245.1 (52), 153.0 (42), 115.1 (46). - IR (KBr): 3433 cm-1 (b, s), 1689 (s), 1668 (vs), 1654 (vs), 1627 (w), 1596 (m), 1527 (vs), 1378 (w), 1345 (s), 1322 (m), 1292 (vs), 1272 (m), 1228 (m), 979 (m), 856 (w), 781 (m), 724 (m), 697 (w). - 元素分析 : C18H11NO5 . 0.2 H2Oとして、実測値. C, 66.39 %; H, 3.64 %; N, 4.19 %、計算値. C, 66.55 %; H, 3.54 %; N, 4.31 % 。
実施例4.9
2-メチル-3-(4-シアノ-ベンゾイル)-4a,8a-ジヒドロ-[1,4]ナフトキノン(P TM46)
実施例1.10により製造したP TM41を出発物質として使用した。シリカゲル(石油エーテル : CH2Cl2 = 1:3, UV)でのクロマトグラフィの後、148 mgのP TM46(0.49 mmol, 収率47 %)を黄色の固体として得た。
融点 : 185 - 186 °C。 - 1H-NMR (300 MHz, CDCl3): δ = 8.15 - 8.18 (m, 1H), 8.02 - 8.05 (m, 1H), 7.98 (d, 3J = 8.46 Hz, 2H), 7.77 - 7.79 (m, 4H), 2.06 (s, 3H). - 13C-NMR (75 MHz, CDCl3): δ = 192.63 (Cq), 184.36 (Cq), 183.35 (Cq), 145.03 (Cq), 143.26 (Cq), 138.58 (Cq), 134.51 (CH), 134.34 (CH), 132.91 (CH), 131.84 (Cq), 131.36 (Cq), 129.37 (CH), 126.92 (CH), 126.46 (CH), 117.64 (Cq), 117.58 (Cq), 13.70 (CH3). - EI MS (70 eV, m/z (%)): 300.8 ([M]+, 60), 270.9 (14), 130.0 (41), 102.0 (45). - IR (KBr): 3444 cm-1 (b, m), 2233 (w), 1685 (vs), 1658 (vs), 1626 (m), 1594 (m), 1407 (w), 1377 (w), 1330 (m), 1292 (vs), 1271 (m), 1234 (m), 1184 (m), 978 (m), 870 (w), 834 (w), 792 (w), 752 (m), 711 (m), 545 (w). - 元素分析 : C19H11NO3として、実測値. C, 75.47 %; H, 3.96 %; N, 4.50 %、計算値. C, 75.74 %; H, 3.68 %; N, 4.65 %。
実施例4.10
2-メチル-3-(4-tertブチル-ベンゾイル)-4a,8a-ジヒドロ-[1,4]ナフトキノン(P TM48)
実施例1.11により製造したP TM43を出発物質として使用した。合成は、実施例4の一般的な方法に記載の一般的な方法に従って行った。シリカゲル(石油エーテル : CH2Cl2 = 1:10, UV)でのクロマトグラフィの後、103 mgのP TM48(0.31 mmol, 収率33 %)を黄色の固体として得た。
融点 : 64 - 65 °C。 - 1H-NMR (300 MHz, CDCl3,): δ = 8.11 - 8.14 (m, 1H), 8.02 - 8.05 (m, 1H), 7.82 (d, 3J = 8.56 Hz, 2H), 7.72 - 7.76 (m, 2H), 7.47 (d, 3J = 8.58 Hz, 2H), 2.04 (s, 3H), 1.31 (s, 9H). - 13C-NMR (75 MHz, CDCl3,): δ = 193.17 (Cq), 184.84 (Cq), 183.38 (Cq), 158.48 (Cq), 144.53 (Cq), 143.71 (Cq), 134.06 (CH), 134.01 (CH), 133.10 (Cq), 131.85 (Cq), 131.54 (Cq), 129.13 (CH), 126.60 (CH), 126.32 (CH), 126.02 (CH), 35.27 (Cq), 30.95 (CH3), 13.53 (CH3). - EI MS (70 eV, m/z (%)): 332 ([M]+, 4), 317.1 (18), 275 (100), 161.1 (41). - IR (KBr): 3447 cm-1 (b, m), 2965 (w), 1668 (s), 1657 (s), 1632 (s), 1604 (s), 1328 (w), 1291 (s), 729 (w), 701 (w), 691 (w), 668 (w), 652 (w), 547 (w), 505 (w). -元素分析 : C22H20O3 . 0.2 H2Oとして、実測値. C, 78.38 %; H, 6.12 %、計算値. C, 78.64 %; H, 6.12 % 。
実施例4.11
3-(4-ブロモ-ベンゾイル)-5-ヒドロキシ-2-メチル-4a,8a-ジヒドロ-[1,4]ナフトキノン(P TM47)
実施例1.22により製造したP TM42を出発物質として使用した。合成は、実施例4の一般的な方法に記載の一般的な方法に従って行った。シリカゲル(石油エーテル : 酢酸エチル = 3:1, UV)でのクロマトグラフィの後、216 mgのP TM47(0.58 mmol, 収率52 %)を橙色の固体として得た。
融点 : 161 - 162 °C。 - 1H-NMR (300 MHz, CDCl3): δ = 11.59 (s, 1H), 7.77 (d, 3J = 8.63 Hz, 2H), 7.62 - 7.71 (m, 4H), 7.28 (dd, 3J = 7.84 Hz, 4J = 1.70 Hz, 1H), 2.03 (s, 3H). - 13C-NMR (75 MHz, CDCl3): δ = 192.12 (Cq), 188.28 (Cq), 183.83 (Cq), 161.50 (Cq), 145.73 (Cq), 143.78 (Cq), 136.85 (CH), 134.36 (Cq), 132.59 (CH), 131.66 (Cq), 130.47 (CH), 130.28 (Cq), 124.80 (CH), 119.75 (CH), 114.44 (Cq), 13.70 (CH3). - EI MS (70 eV, m/z (%)): 370 ([M]+, 41), 290.2 (100), 183.0 (81). - IR (KBr): 3450 cm-1 (b, m), 1677 (vs), 1636 (vs), 1615 (s), 1585 (vs), 1570 (m), 1456 (s), 1399 (m), 1382 (m), 1367 (m), 1296 (s), 1273 (vs), 1238 (s), 1068 (m), 1009 (m), 972 (m), 766 (m), 743 (m). - 元素分析 : C18H11BrO4として、実測値. C, 58.21 %; H, 3.13 %、計算値. C, 58.24 %; H, 2.99 %。
実施例5
4-(3-メチル-1,4-ジオキソ-1,4-ジヒドロ-ナフタレン-2-カルボニル)-安息香酸メチルエステル(P TM28)
実施例4.1により製造したP TM22(500 mg, 1.56 mmol)をSOCl2(4 mL)に懸濁し、3時間還流した。SOCl2を真空下に除去し、メタノール(5 mL)を加えた。反応混合物を室温で3時間撹拌して、黄色の懸濁液を得た。メタノールを真空下に除去し、残渣をクロマトグラフィで精製した。シリカゲル(石油エーテル : 酢酸エチル = 1:1, UV)でのクロマトグラフィの後、351 mgのP TM28(1.05 mmol, 収率67 %)を黄色の固体として単離した。
融点 : 162 - 162 °C。 - 1H-NMR (300 MHz, CDCl3): δ = 8.15 - 8.18 (m, 1H), 8.13 (d, 3J = 8.52 Hz, 2H), 8.04 - 8.06 (m, 1H), 7.95 (d, 3J = 8.21 Hz, 2H), 7.77 - 7.81 (m, 2H), 3.93 (s, 3H), 2.06 (s, 3H). - 13C-NMR (75 MHz, CDCl3): δ = 193.33 (Cq), 184.62 (Cq), 183.36 (Cq), 165.93 (Cq), 144.44 (Cq), 143.89 (Cq), 138.75 (Cq), 135.06 (Cq), 134.35 (CH), 134.24 (CH), 131.89 (Cq), 131.49 (Cq), 130.26 (CH), 129.00 (CH), 126.83 (CH), 126.47 (CH), 52.62 (CH3), 13.63 (CH3). - EI MS (70 eV, m/z (%)): 334.1 ([M]+, 69), 275.1 (86), 163.0 (100). - IR (KBr): 3425 cm-1 (b, w), 1725 (s), 1670 (s), 1655 (s), 1595 (w), 1436 (w), 1407 (w), 1328 (m), 1291 (vs), 1231 (w), 1110 (m), 978 (w), 777 (w), 733 (w), 720 (w), 697 (w), 692 (w). - 元素分析 : C20H14O5として、実測値. C, 71.46 %; H, 4.30 %, 計算値. C, 71.85 %; H, 4.22 % 。
実施例6
2-メチル-3-(4-ヒドロキシ-ベンゾイル)-4a,8a-ジヒドロ-[1,4]ナフトキノン(P TM39)
実施例4.6により製造したP TM34(100 mg, 0.33 mmol)を乾燥ジクロロメタン(5 mL)に溶解し、−78℃に冷却した。BBr3の1M CH2Cl2溶液(1.0 mL)を20分間滴下して、赤色の溶液を得た。この混合物を室温まで温め、一晩撹拌した。H2O(1 mL)を加え、5分間撹拌し、H2O(2 mL)を加え、混合液をさらに10分間撹拌した。生成物をCH2Cl2 (5 x 5 mL)で抽出し、MgSO4で乾燥し、クロマトグラフィで精製した。シリカゲル(シクロヘキサン :酢酸エチル = 1:2, UV)でのクロマトグラフィの後、75 mgのP TM39( 0.25 mmol, 収率78 %)を黄色の固体として単離した。
融点 : 184 - 185 °C。 - 1H-NMR (300 MHz, CDCl3): δ = 8.13 - 8.16 (m, 1H), 8.03 - 8.06 (m, 1H), 7.72 - 7.81 (m, 4H), 6.84 (d, 3J = 8.77 Hz, 2H), 6.24 (bs, 1H), 2.04 (s, 3H). - 13C-NMR (75 MHz, CDCl3): = 192.01 (Cq), 184.92 (Cq), 183.67 (Cq), 161.58 (Cq), 144.48 (Cq), 143.88 (Cq), 134.25 (CH), 134.13 (CH), 132.01 (CH), 131.90 (Cq), 131.58 (Cq), 128.84 (Cq), 126.72 (CH), 126.46 (CH), 116.00 (CH), 13.64 (CH3). - EI MS (70 eV, m/z (%)): 292.0 ([M]+, 63), 275 (6), 121.0 (100). - IR (KBr): 3443 cm-1 (b, vs), 1667 (vs), 1599 (vs), 1517 (w), 1442 (w), 1331 (w), 1292 (vs), 1245 (m), 1167 (m), 773 (w). - 元素分析 : C18H12O4 . 0.3 H2Oとして、実測値. C, 72.76 %; H, 4.21 %、計算値. C, 72.62; H, 4.27 %。
実施例7
(4-ブロモ-フェニル)-(1,4-ジメトキシ-3-メチル-ナフタレン-2-イル)-メタノール(P TM7)
1.6 Mヘキサン中のnBuLi(7.0 mL)の無水THF(20 mL)溶液を、窒素雰囲気下で、2-ブロモ-3-メチル-1,4-ジメトキシナフタレン(3.0 g, 10.67 mmol)の無水THF(30 mL)溶液に−78℃で滴下した。黄色の溶液を−78℃で30分間撹拌した。次いで、無水THF(15mL)中の4-ブロモベンズアルデヒド(1.97 g, 10.67 mmol)を、−78℃でカニューレを介して加えた。生じた混合物を−78℃で30分間撹拌し、その後室温に温めた。色は黄色から橙黄色に変化した。室温で2時間撹拌した後、NH4Cl飽和溶液(15 mL)を添加して反応を止めた。ジエチルエーテル(20 mL)を加えると,
層が分離した。水相をジエチルエーテル(10mL)で2回抽出した。有機相を集め、無水MgSO4で乾燥し、溶媒を真空下に除去し、淡黄色の粗生成物を得、クロマトグラフィで精製した。シリカゲル(CH2Cl2 : 石油エーテル = 1:2、次いで 4:1、次いで純粋な水酢酸エチル, UV)でのクロマトグラフィの後、3.5 gのP TM7(9.06 mmol, 収率85 %)を淡黄色固体として単離した。
融点 : 67 - 68 °C。 - 1H-NMR (300 MHz, CDCl3): δ = 8.01 - 8.05 (m, 1H), 7.89 - 7.93 (m, 1H), 7.37 - 7.49 (m, 4H), 7.14 - 7.18 (m, 2H), 6.19 (s, 1H), 3.80 (s, 3H), 3.48 (s, 3H), 2.28 (s, 3H). - 13C-NMR (75 MHz, CDCl3): δ = 150.76 (Cq), 150.59 (Cq), 143.52 (Cq), 131.96 (CH), 131.54 (Cq) 131.32 (Cq), 127.58 (CH), 127.19 (Cq), 126.53 (Cq), 126.05 (CH), 125.59 (CH), 122.37 (CH), 122.29 (CH), 120.83 (Cq), 70.42 (CH), 62.69 (CH3), 61.52 (CH3), 12.66 (CH3). - EI MS (70 eV, m/z (%)): 386.1 ([M]+, 53), 260.1 (14), 184.9 (34), 61.1 (100). - IR (KBr): 3427 cm-1 (bs), 3068 (w), 2935 (w), 2839 (m), 1624 (w), 1590 (m), 1486 (m), 1456 (m), 1378 (w), 1351 (vs), 1268 (w), 1193 (w), 1172 (w), 1098 (m), 1068 (vs), 1030 (m), 1009 (s), 961 (m), 774 (m), 727 (w). - 元素分析 : C20H19BrO3として、実測値. C, 61.92 %; H, 5.00 %、 計算値. C, 62.03%, H, 4.95 % 。
実施例8
2-[(4-ブロモ-フェニル)-ヒドロキシ-メチル]-3-メチル-[1,4]ナフトキノン(P TM23)
実施例7により製造したP TM7 (500 mg, 1.29 mmol)をCH3CN/H2O (v/v = 3:1)(40mL)に溶解した。セシウム(IV)硝酸アンモニウム(2.13 g, 3.89 mmol)を室温で加えて、橙色の溶液を得、これを室温で一晩撹拌した。CH3CNを真空下に除去し、生成物をCH2Cl2(4 x 15 mL)で抽出し、MgSO4 で乾燥し、フラッシュクロマトグラフィで精製した。シリカゲル(石油エーテル: CH2Cl2 = 1:10, UV)でのクロマトグラフィの後、395 mgのP TM23(1.11 mmol, 収率86 %)を黄色の固体として単離した。
融点 : 61 - 62 °C。 - 1H-NMR (300 MHz, CDCl3): δ = 8.07 - 8.11 (m, 1H), 7.97 - 8.01 (m, 1H), 7.67 - 7.76 (m, 2H), 7.45 (d, 3J = 8.36 Hz, 2H), 7.26 (d, 3J = 8.95 Hz, 2H), 5.92 (d, 3J = 9.84 Hz, 1H), 4.33 (d, 3J = 10.78 Hz, 1H), 2.21 (s, 3H). - 13C-NMR (75 MHz, CDCl3): δ = 184.87 (Cq), 186.43 (Cq), 144.80 (Cq), 143.77 (Cq), 140.63 (Cq), 134.11 (CH), 133.84 (CH), 131.83 (Cq), 131.68 (CH), 127.05 (CH), 126.53 (CH), 126.40 (CH), 121.51 (Cq), 71.06 (CH), 12.54 (CH3). - EI MS (70 eV, m/z (%)): 356.0 ([M]+, 8), 340.9 (100), 275.1 (25), 202.1 (39), 184.9 (42), 115.1 (80), 77.0 (41). - IR (KBr): 3443 cm-1 (bs), 1657 (s), 1619 (m), 1592 (m), 1485 (w), 1329 (w), 1292 (s), 1187 (w), 1072 (w), 1010 (w), 785 (w), 718 (w), 536 (w). - 元素分析 : C18H13BrO3として、実測値. C, 60.25 %; H, 3.73 %、計算値. C, 60.52 %; H, 3.67 %。
実施例9
N-(2-シアノ-エチル)-4-(3-メチル-1,4-ジオキソ-1,4,4a,8a-テトラヒドロナフタレン-2-イルメチル)-ベンズアミド(P TM53)
実施例1.13により製造したP TM50(90 mg, 0.29 mmol)をSOCl2(3 mL)に溶解し、2時間加熱還流して、橙色の溶液を得た。SOCl2を真空下に除去し、残渣を乾燥CH2Cl2(4 mL)に再び溶解し、その後、3-アミノプロピオニトリル(22 μL, 0.29 mmol)を加え、室温で1時間撹拌した。H2O(10 mL)で反応を止め、生成物をCH2Cl2(5 x 10 mL)で抽出し、MgSO4 で乾燥し、フラッシュクロマトグラフィ(シクロヘキサン : アセトン = 1:1, SiO2, UV)で精製して、19mgのP TM53を黄色の固体として、収率18%で得た。
融点 : 131 - 132 °C。 - 1H-NMR (300 MHz, CDCl3,): δ = 8.06 - 8.09 (m, 2H), 7.66 - 7.71 (m, 4H), 7.29 (d, 3J = 8.10 Hz, 2H), 6.49 (s, 1H), 4.07 (s, 2H), 3.68 (q, 3J = 6.10 Hz, 2H), 2.71 (t, 3J = 6.16 Hz, 2H), 2.22 (s, 3H). - 13C-NMR (75 MHz, CDCl3): δ = 185.17 (Cq), 184.53 (Cq), 67.57 (Cq), 144.85 (Cq), 144.51 (Cq), 142.63 (Cq), 133.64 (CH), 132.10 (Cq), 131.93 (Cq), 131.71 (sCq), 128.94 (CH), 127.38 (CH), 126.53 (CH), 126.39 (CH), 118.17 (Cq), 36.20 (CH2), 32.43 (CH2), 18.56 (CH2), 13.37 (CH3). - EI MS (70 eV, m/z (%)): 358.2 ([M]+, 28), 343.2 (29), 291.1 (40), 40.0 (100). - IR (KBr): 2920 cm-1 (m), 2252 (w), 1695 (w), 1660 (vs), 1613 (s), 1594 (s), 1548 (m), 1295 (vs), 1261 (w), 723 (w), 698 (w). - HPLC分析 : Rt = 18.08 分。
実施例10
N-(2-シアノ-エチル)-4-(3-メチル-1,4-ジオキソ-1,4,4a,8a-テトラヒドロ-ナフタレン-2-カルボニル)-ベンズアミド(P TM51)
実施例9におけるP TM53の合成に従って、P TM51を調製した。出発物質は実施例4.1により製造したP TM22である。目的化合物を橙色の固体として、収率18%で得た。
融点 : 172 - 173 °C。 - 1H-NMR (300 MHz, DMSO): δ = 9.07 (t, 3J = 5.53 Hz, 1H), 8.16 (d, 3J = 8.40 Hz, 2H), 8.09 - 8.11 (m, 1H), 7.88 - 7.98 (m, 5H), 3.51 (q, 3J = 6.30 Hz, 2H), 2.78 (t, 3J = 6.46 Hz, 2H), 1.92 (s, 3H). - 13C-NMR (75 MHz, DMSO,): δ = 193.59 (Cq), 184.15 (Cq), 183.41 (Cq), 165.64 (Cq), 144.22 (Cq), 142.66 (Cq), 139.03 (Cq), 137.26 (Cq), 134.51 (CH), 134.18 (CH), 132.01 (Cq), 131.22 (Cq), 129.31 (CH), 128.01 (CH), 126.20 (CH), 125.71 (CH), 119.21 (Cq), 35.51 (CH2), 17.44 (CH2), 13.50 (CH3). - EI MS (70 eV, m/z (%)): 372.2 ([M]+, 100), 303.1 (30), 276.1 (29), 201.1 (61). - IR (KBr): 3419 cm-1 (b, s), 3071 (w), 2926 (w), 2252 (w), 1666 (vs), 1595 (m), 1540 (s), 1502 (w), 1440 (w), 1419 (w), 1406 (w), 1379 (w), 1328 (m), 1293 (vs), 1235 (m), 1185 (m), 978 (m), 778 (m), 719 (m), 691 (m), 651 (m). - HPLC 分析 : Rt = 17.59 分。
実施例11
P TM66、P TM67およびP TM69の合成に関する鈴木カップリング反応の一般的な方法
シュレンクチューブをアルゴンで洗浄し、実施例1.2により製造した1当量のP TM24(100 mg, 0.29 mmol)、1.1当量のボロニックアシッド誘導体(0.32mmol)、3.0当量のK2CO3(122 mg, 0.88 mmol)を順次充填し、最後にジオキサン/水(12mL / 3mL)に溶解した。アルゴンの気泡を20分間混合物中に通して、溶液を脱気した。その後、4 mol%のPdCl2(dppf) (10 mg, 0.012 mmol)を加え、シュレンクチューブを密封し、一晩80℃で加熱した。H2O(10mL)を加えて、反応を止めた。すべての揮発性物質を真空下に除去し、生成物をCH2Cl2で抽出し、MgSO4で乾燥し、フラッシュクロマトグラフィで精製した。
実施例11.1
2-(4'-tert-ブチル-ビフェニル-4-イルメチル)-3-メチル-[1,4]ナフトキノン(P TM66)
ボロニックアシッドとして、tertブチルフェニルボロニックアシッドを、実施例1.2により製造したP TM24のカップリング相手として用いた。シリカゲル(CH2Cl2 : 石油エーテル= 3:1, UV)でのクロマトグラフィの後、113mgのP TM66(0.286 mmol, 収率97 %)を黄色の固体として単離した。
融点 : 112 - 114 °C。 - 1H-NMR (300 MHz, CDCl3): δ = 8.06 - 8.13 (m, 2H), 7.66 - 7.71 (m, 2H), 7.41 - 7.50 (m, 6H), 7.24 - 7.30 (m, 2H), 4.06 (s, 2H), 2.28 (s, 3H), 1.35 (s, 9H). - 13C-NMR (75 MHz, CDCl3): δ = 185.34 (Cq), 184.63 (Cq), 150.13 (Cq), 145.25 (Cq), 144.40 (Cq), 139.24 (Cq), 137.85 (Cq), 136.75 (Cq), 133.45 (CH), 132.12 (Cq), 132.03 (Cq), 128.93 (CH), 127.21 (CH), 126.59 (CH), 126.46 (CH), 126.25 (CH), 125.64 (CH), 34.47 (Cq), 32.08 (CH2), 31.32 (CH3), 13.30 (CH3). - EI MS (70 eV, m/z (%)): 394.3 ([M]+, 42), 379.2 (100). - IR (KBr): 3439 cm-1 (b, m), 2962 (w), 1659 (vs), 1620 (m), 1595 (m), 1498 (w), 1462 (w), 1377 (w), 1334 (w), 1295 (s), 1182 (w), 1114 (w), 976 (w), 815 (m), 790 (w), 713 (w), 568 (w). - 元素分析 : C28H26O2として、実測値. C, 85.16 %; H, 6.66 %、計算値. C, 85.25 %; H, 6.64 %。
実施例11.2
2-(4'-ニトロ-ブチル-ビフェニル-4-イルメチル)-3-メチル-[1,4]ナフトキノン(P TM67)
ボロニックアシッドとして、4-ニトロフェニルボロニックアシッドを、実施例1.2により製造したP TM24のカップリング相手として用いた。シリカゲル(CH2Cl2 : 石油エーテル= 3:1, UV)でのクロマトグラフィの後、67mgのP TM67(0.175 mmol, 収率59 %)を黄色の固体として単離した。
融点 : 197 - 199 °C。 - 1H-NMR (300 MHz, CDCl3): δ = 8.23 - 8.26 (m, 2H), 8.05 - 8.11 (m, 2H), 7.65 - 7.73 (m, 4H), 7.51 (d, 3J = 8.27 Hz, 2H), 7.34 (d, 3J = 8.22 Hz, 2H), 4.08 (s, 2H), 2.27 (s, 3H). - 13C-NMR (75 MHz, CDCl3): δ = 185.27 (Cq), 184.65 (Cq), 147.18 (Cq), 147.00 (Cq), 144.86 (Cq), 144.68 (Cq), 139.16 (Cq), 136.95 (Cq), 133.63 (CH), 132.12 (Cq), 131.98 (Cq), 129.40 (CH), 127.65 (CH), 127.59 (CH), 126.52 (CH), 126.38 (CH), 124.12 (CH), 32.22 (CH2), 13.40 (CH3). - EI MS (70 eV, m/z (%)): 383.3 ([M]+, 41), 368.2 (100). - IR (KBr): 3436 cm-1 (b, m), 3073 (w), 2934 (w), 1661 (vs), 1620 (m), 1596 (vs), 1513 (vs), 1485 (m), 1375 (w), 1344 (vs), 1295 (vs), 1261 (w), 1182 (w), 1111 (m), 974 (w), 852 (m), 821 (m), 787 (w), 745 (m), 711 (m), 693 (m), 555 (w). - 元素分析 : C24H17NO4 . 0.7 H2Oとして、実測値. C, 72.95 %; H, 4.47 %; N, 3.56 %、計算値. C, 72.79 %; H, 4.68 %; N, 3.54 %。
実施例11.3
2-(4'-ジメチルアミノ-ビフェニル-4-イルメチル)-3-メチル-[1,4]ナフトキノン(P TM69)
ボロニックアシッドとして、4-ジメチルアミノフェニルボロニックアシッドを、実施例1.2により製造したP TM24のカップリング相手として用いた。シリカゲル(CH2Cl2 : 石油エーテル= 3:1, UV)でのクロマトグラフィの後、96mgのP TM69(0.25 mmol, 収率86 %)を黒色の固体として単離した。
融点 : 170 - 171 °C。 - 1H-NMR (300 MHz, CDCl3): δ = 8.05 - 8.11 (m, 2H), 7.65 - 7.71 (m, 2H), 7.43 (d, 3J = 8.39 Hz, 4H), 7.24 (d, 3J = 8.17 Hz, 2H), 6.76 (d, 3J = 8.09 Hz, 2H), 4.03 (s, 2H), 2.96 (s, 6H), 2.27 (s, 3H). - 13C-NMR (75 MHz, CDCl3): δ = 185.47 (Cq), 184.74 (Cq), 145.43 (Cq), 144.34 (Cq), 139.43 (Cq), 135.69 (Cq), 133.49 (CH), 133.46 (CH), 132.15 (Cq), 132.09 (Cq), 128.94 (CH), 127.58 (CH), 126.53 (CH), 126.52 (CH), 126.28 (CH), 112.75 (CH), 40.60 (CH3), 32.08 (CH2), 13.37 (CH3). - EI MS (70 eV, m/z (%)): 381.2 ([M]+, 100), 366.1 (19). - IR (KBr): 3432 cm-1 (b, m), 3028 (w), 2922 (w), 2855 (w), 2803 (w), 1660 (vs), 1612 (vs), 1595 (s), 1534 (w), 1504 (vs), 1444 (w), 1375 (w), 1357 (m), 1333 (m), 1294 (vs), 1226 (w), 1168 (w), 946 (w), 810 (s), 790 (s), 766 (w), 722 (w), 711 (w), 692 (w). - 元素分析 : C26H23NO2として、実測値. C, 81.58 %; H, 619 %; N, 3.60 %、計算値. C, 81.86 %; H, 6.08 %; N, 3.67 % 。
実施例12
2-(4-クロロ-ベンジル)-1,4-ジメトキシ-3-メチル-ナフタレン(P TM75)
実施例1.5により製造したP TM30(2g, 6.74/mmol)をEtOH(20mL)に懸濁した。36% HCl(4.5 mL)に溶解し、上記の溶液に室温でSnCl2 (3.83g, 20.22 mmol)を滴下し、40分間撹拌した。溶媒を真空下に除去して白色の沈殿物を得、これを分離し、真空下に乾燥した。白色の固体をアセトン(34 mL)に溶解し、硫酸ジメチル(3.2 mL, 33.70 mmol)を加えた。KOH(3.78 g, 67.4 mmol)をMeOH(15mL )に溶解し、60℃で上記溶液に滴下した。この溶液は黒色に変わり、白色の沈殿物を形成した。この混合物を4時間60℃で加熱した。20% KOH溶液(30 mL)を加え、反応を止めた。生成物をCH2Cl2(6 x 30 mL)で抽出し、MgSO4で乾燥し、シリカゲル(CH2Cl2 : 石油エーテル = 1:1, UV)でのクロマトグラフィで精製して、1.49gのP TM75(4.569 mmol, 収率68 %)を白色の固体として得た。
融点 : 101 - 102 °C。 - 1H-NMR (300 MHz, CDCl3): δ = 8.10 - 8.17 (m, 2H), 7.50 - 7.56 (m, 2H), 7.22 (d, 3J = 8.42 Hz, 2H), 7.08 (d, 3J = 8.39 Hz, 2H), 4.26 (s, 2H), 3.89 (s, 3H), 3.86 (s, 3H), 2.28 (s, 3H). - 13C-NMR (75 MHz, CDCl3): δ = 150.49 (Cq), 150.40 (Cq), 138.90 (Cq), 131.46 (Cq), 129.38 (CH), 128.56 (Cq), 128.40 (CH), 128.00 (Cq), 127.13 (Cq), 126.76 (Cq), 125.81 (CH), 125.48 (CH), 122.42 (CH), 122.19 (CH), 62.21 (CH3), 61.31 (CH3), 32.07 (CH2), 12.58 (CH3). - EI MS (70 eV, m/z (%)): 326.12 ([M]+, 100), 311.10 (43), 296.08 (8), 279.07 (10), 261.11 (5), 244.10 (10), 215.10 (8). - IR (KBr): 3443 cm-1 (b, m), 2990 (w), 2933 (m), 2838 (w), 1592 (m), 1490 (s), 1456 (m), 1377 (m), 1353 (vs), 1273 (m), 1193 (w), 1096 (s), 1063 (vs), 1028 (m), 1014 (vs), 963 (m), 804 (w), 784 (m), 770 (s), 694 (w). - 元素分析 : C20H19ClO2として、実測値. C, 73.30 %; H, 5.90 %; Cl, 10.84 %、計算値. C, 73.50 %; H, 5.86 %, Cl, 10.85 % 。
実施例13
P TM75と異なったアミンとの間のブッフバルト-ハートウィッグカップリング反応の一般的な方法
シュレンクチューブをアルゴンで洗浄し、実施例12により製造した1当量のP TM75(100 mg, 0.306 mmol)、2.0当量のNaOtBu(59mg, 0.612mmol)、5 mol%の1,3-ビス(2,6-ジイソプロピルフェニル)イミダゾリウムクロライド(7 mg, 0.015 mmol)、5 mol% Pd(dba)2(8 mg, 0.015 mmol)、4.0当量のアミン(1.224 mmol)および乾燥DME(3 mL)で順次満たした。シュレンクチューブを密封し、80℃で4〜24時間加熱した。溶媒を真空下に除去し、残渣をフラッシュクロマトグラフィで精製した。
実施例13.1
1-(4-tert-ブチル-ベンジル)-4-[4-(1,4-ジメトキシ-3-メチル-ナフタレン-2-イルメチル)-フェニル]-ピペラジン(P TM78)
アミンとして、1-(4-tert-ブチルベンジル)ピペラジンを用いた。シリカゲル(CH2Cl2 : MeOH = 40:1, UV)でのクロマトグラフィの後、390 mgのP TM78(0.746 mmol, 収率81%)を灰色の固体として単離した。
融点 : 63 - 65 °C。 - 1H-NMR (300 MHz, CDCl3): δ = 8.07 - 8.11 (m, 2H), 7.46 - 7.52 (m, 2H), 7.35 (d, 3J = 8.35 Hz, 2H), 7.27 (d, 3J = 8.31 Hz, 2H), 7.00 (d, 3J = 8.62 Hz, 2H), 6.80 (d, 3J = 8.68 Hz), 4.20 (s, 2H), 3.86 (s, 3H), 3.82 (s, 3H), 3.54 (s, 2H), 3.14 (t, 3J = 4.74 Hz, 4H), 2.59 (t, 3J = 4.95 Hz, 4H), 2.27 (s, 3H), 1.33 (s, 9H). - 13C-NMR (75 MHz, CDCl3): δ = 150.41 (Cq), 150.25 (Cq), 149.97 (Cq), 149.46 (Cq), 134.74 (Cq), 131.38 (Cq), 129.63 (Cq), 128.90 (CH), 128.66 (CH), 127.82 (Cq), 127.21 (Cq), 125.55 (CH), 125.28 (CH), 125.09 (CH), 122.45 (CH), 122.15 (CH), 116.14 (CH), 62.67 (CH2), 62.26 (CH3), 61.32 (CH3), 53.09 (CH2), 49.34 (CH2), 34.45 (Cq), 31.83 (CH2), 31.39 (CH3), 12.63 (CH3). MALDI MS (Dith., m/z): 522.1 (M+). - IR (KBr): 3436 cm-1 (s), 2958 (s), 2904 (m), 2879 (m), 2817 (m), 1612 (m), 1592 (m), 1514 (s), 1454 (s), 1375 (m), 1353 (vs), 1268 (m), 1242 (m), 1229 (m), 1147 (m), 1108 (m), 1097 (m), 1066 (s), 1014 (m), 771 (m). 元素分析 : C35H42N2O2として、実測値. C, 80.19 %; H, 8.01 %; N, 5.35 %、計算値. C, 80.42 %; H, 8.10 %, N, 5.36 % 。
実施例14
2-[4-(4-エチル-ピペラジン-1-イル)-ベンジル]-3-メチル-[1,4]ナフトキノン(P TM87)
実施例13.1により製造したP TM78(59 mg)(0.0957 mmol)を、乾燥CH2Cl2(2 mL)に溶解し、−78℃に冷却した。BBr3(0.478 mmol, 1M CH2Cl2中)(0.5 mL)を加え、混合物を室温に温め、赤色の懸濁液を一晩撹拌した。この混合物を、H2O(2 mL)を加えて急冷し、CH2Cl2(5 x 10 mL)で抽出し、MgSO4で乾燥し、クロマトグラフィで精製して、分析学上純粋なP TM87を得た。シリカゲル(CH2Cl2 : MeOH = 40:1, UV)でのクロマトグラフィの後、37 mgのP TM87(0.075 mmol, 収率78%)を赤色の固体として単離した。
融点 : 81 - 82 °C。 - 1H-NMR (300 MHz, CDCl3): δ = 8.05 - 8.08 (m, 2H), 7.65 - 7.68 (m, 2H), 7.33 (d, 3J = 8.23 Hz, 2H), 7.24 (d, 3J = 8.16 Hz, 2H), 7.11 (d, 3J = 8.50 Hz, 2H), 6.80 (d, 3J = 8.58 Hz, 2H), 3.93 (s, 2H), 3.51 (s, 2H), 3.13 (t, 3J = 4.76 Hz, 4H), 2.58 (t, 3J = 4.99 Hz, 4H), 2.24 (s, 3H), 1.30 (s, 9H). - 13C-NMR (75 MHz, CDCl3): δ = 185.48 (Cq), 184.72 (Cq), 149.99 (Cq), 149.90 (Cq), 145.67 (Cq), 143.86 (Cq), 134.71 (Cq), 133.36 (CH), 133.33 (CH), 132.09 (Cq), 132.05 (Cq), 129.28 (CH), 128.91 (CH), 128.77 (Cq), 126.38 (CH), 126.16 (CH), 125.10 (CH), 116.19 (CH), 62.65 (CH2), 53.01 (CH2), 49.11 (CH2), 34.43 (Cq), 31.48 (CH2), 31.36 (CH3), 13.18 (CH3). - FAB MS (NBA, m/z (%)): 492.2 ([M]+, 100). - IR (KBr): 3448 cm-1 (b, vs), 2961 (m), 2819 (w), 1660 (vs), 1616 (s), 1595 (m), 1514 (s), 1333 (w), 1295 (vs), 1261 (w), 1243 (w), 1230 (w), 815 (w), 803 (w), 707 (w), 581 (w), 555 (w), 537 (w), 528 (w). - 元素分析 : C33H36N2O2 . 0.3 CH2Cl2として、実測値. C, 77.34 %; H, 7.43 %; N, 5.32 %、計算値. C, 77.19 %; H, 7.12 %; N, 5.41 % 。
実施例15
2-ジフルオロメチル-1,4-ジメトキシ-ナフタレン(HB39)
N2雰囲気下でTeflon(商標)のボトル内で反応を行った。Unoら(J. Org. Chem. 1986, 51(3), 350-8)に従って製造した1,4-ジメトキシ-ナフタレン-2-カルバルデヒド(750 mg)(3.47 mmol)の乾燥CH2Cl2(10 mL)溶液に、ジエチルアミノサルファトリフルオライド(DAST)(775 ml)(950 mg, 5.90 mmol)または等量のDeoxo-Fluor(商標)およびのエタノール(10 μL)(0.17 mmol)を0℃で加えた。反応混合物をこの温度で1時間撹拌した後、40℃で一晩加熱した。反応を完結させるため、さらにDAST(140 ml)を加え、さらに5時間40℃でインキュベートした。NaHCO3飽和溶液(10 mL)を少量ずつ加えて、反応を止めた。有機相を分離し、水相をCH2Cl2(2 x 20mL)で抽出し、MgSO4で乾燥し、シリカゲル(石油エーテル : CH2Cl2 = 1:1, UV)でのフラッシュクロマトグラフィで精製して、殆んど無色固体のHB39(723 mg)(3.03 mmol, 88 %)を得た。
1H-NMR (300 MHz, CDCl3): δ = 8.25 - 8.30 (m, 1H), 8.06 - 8.11 (m, 1H), 7.53 - 7.62 (m, 2H), 7.16 (t, 1J = 55.8 Hz, 1H, CHF2), 6.90 (s, 1H), 4.02 (s, 3H), 3.97 (s, 3H). - 13C-NMR (75 MHz, CDCl3): δ = 152.3 (Cq), 148.5 (Cq), 127.9 (Cq), 126.9 (CH), 126.7 (CH), 122.6 (Cq), 122.5 (CH), 122.2 (Cq), 122.0 (CH), 111.7 (t, 1J = 235 Hz, CHF2), 98.6 (CH), 63.8 (CH3), 55.5 (CH3). - 19F-NMR (CDCl3): δ =112.37 (d, 1J = 55.8 Hz); MS (EI, m/z) 238.07 計算値. 238.08. -元素分析 : C13H12F2O2として、実測値. C, 65.39 %; H, 5.20 %, 計算値. C, 65.54 %; H, 5.08 %。
実施例16
2-ジフルオロメチル-1,4-ナフトキノン(HB49)
実施例15により製造した2-ジフルオロメチル-1,4-ジメトキシ-ナフタレン(HB39)(500 mg)(2.10 mmol)を、CH3CN(10 mL)に溶解し、CAN(3.45 g )の(6.30 mmol)水(8 mL)溶液を加えた。反応混合物を室温で15分間撹拌し、アセトニトリルを真空下に除去し、生成物をCH2Cl2(5 x 10 mL)で抽出し、MgSO4で乾燥、シリカゲル(石油エーテル : CH2Cl2 = 1:1, UV)でのフラッシュクロマトグラフィで精製して、405 mgのHB49(1.95 mmol, 93%)を黄色の固体として得た。
融点 : 74 °C。 - 1H-NMR (300 MHz, CDCl3): δ = 8.07 - 8.15 (m, 2H), 7.76 - 7.83 (m, 2H), 7.19 (m, 1H), 6.83 (t, 1J = 53.9 Hz, CHF2, 1H). - 13C-NMR (75 MHz, CDCl3): δ 183.9 (Cq), 182.4 (Cq), 140.4 (t, 2J = 21.2 Hz, Cq), 135.1 (CH), 134.9 (CH), 134.3 (CH), 134.2 (CH), 131.6 (Cq), 131.3 (Cq), 126.4 (CH), 109.2 (t, 1J = 240.4 Hz, CHF2). - 19F-NMR (CDCl3) δ = -123.85 (d, 1J = 53.9 Hz). - MS (EI, m/z) 208.02 calc. 208.03. - 元素分析 : C11H6F2O2として、実測値. C, 63.58 %; H, 3.02 %、計算値. C, 63.47 %; H, 2.91 % 。
実施例17
定常条件でのP.ファルシパルムおよびヒトグルタチオン還元酵素の阻害
17.1.材料および方法
標準アッセイは1 mLセル内で25℃で行った。検定液は100 μMのNADPHおよび1 mM GSSGのGR緩衝液(100 mMリン酸カリウム緩衝液, 200 mM KCl, 1 mM EDTA, pH 6.9)溶液を含んでいた。IC50値は、0〜100 μMの範囲の濃度を示す7つの阻害剤の存在下に、2回評価した。阻害剤の貯留液は100 % DMSO中で調製した。1 % のDMSO濃度をアッセイ用セル内で一定に保った。酵素(8 mU ヒトGR, 6.5 mU P.ファルシパルムGR)を加えて反応を開始させ、最初のNADPH酸化率を340 nm(ε340nm = 6.22 mM-1 cm-1)で観測した。
17.2.結果
結果を図2に示す。
ベンジル-(P TM24, P TM26, P TM29, P TM30, P TM31, P TM36, P TM63)、ならびにベンゾイル-置換誘導体(P TM22, P TM25, P TM27, P TM28, P TM33, P TM34, P TM40, および P TM47)のIC50値を、定常条件下で測定し、参照としてのメナジオンと比較した。
アッセイでは、最も潜在能力の高いグルタチオン還元酵素阻害剤を選別するため、1 mMのグルタチオンジスルフィド(GSSG)濃度を用いた。使用したこの高いGSSG濃度は、細胞生理学的条件ではなく、むしろ細胞病理学的条件であり、このGSSG濃度から寄生生物に対して毒性を示し始める。
メナジオンは、PfGRに対して42.0 μMおよびhGRに対して27.5 μMのIC50値を示した(Bauerら, J. Am. Chem. Soc. 2006, 128, 10784-10794)。
一般に、すべてのベンジル-およびベンゾイル-で置換された誘導体はPfGRに対して0.8 μM〜8.2 μM、そしてhGRに対して0.3 μM〜8.6 μMの範囲のIC50値を示した。特に、PfGRアッセイでは、ベンジル-誘導体は穏やかな阻害性を示したに過ぎず、このシリーズで最良のPfGR阻害剤は7.8μMのIC50値を示したP TM26であった。すべてのベンジル-シリーズは、ヒトGRに対してより高い阻害能力を有しており、このシリーズで最良のhGR阻害剤であるP TM29は1.6 μMのIC50値を示した。対応するベンジル-誘導体に比べて、ベンゾイル-誘導体はより低いIC50値:PfGRに対して 0.8 μM 〜 6.3 μM、そして hGRに対して 0.3 μM 〜 2.0 μMの値を示し、ヒト酵素に対して、レドックス循環するナフトキノン部分に隣接するケト基のより良い認識を立証し、改善された阻害をもたらした。「ベンズハイドロール」、P TM23も、両酵素のアッセイにおいて4.5(PfGR)および 1.3 μM(hGR)のIC50 値を示し、強力な最良のGR阻害剤として作用した。
実施例18
プラスモディウム・ファルシパルムのグルタチオン還元酵素の1,4-ナフトキノン還元酵素活性
18.1.材料および方法
還元アッセイ混合物は、全量1 mL 中、100 mM リン酸カリウム緩衝液pH 6.9、200 mM KCl、 1 mM EDTA および100 μM NADPH からなる。1,4ナフトキノン還元酵素活性は、増加する ナフトキノン濃度(0 - 300 μM)において初速を記録することにより決定した。まず、1,4ナフトキノンをDMSOに溶解し、1,4-ナフトキノン還元酵素アッセイ 中、1%のDMSO最終濃度を保った。KM および Vmax 値の測定のため、非線形回帰分析ソフトウェア(Kaleidagraph)を用いて、Michaelis-Menten式に定常率をフィットさせた。 これらの値から、転換数kcat および触媒効率 kcat/KM を計算した。
18.2.結果
結果を図3に示す。
プラスモディウム・ファルシパルムGRに対するメナジオンの触媒変数は、Biotら(2004 J. Med. Chem. 47, 5972-5983)によって示されており、KM およびkcatはそれぞれ82.2 μMおよび9.6 min-1 であり、触媒効率kcat/KM 1.99 mM-1 s- 1となる。
参照としてのメナジオンと比べると、種々の置換基を有する試験化合物、P TM26、P TM36、P TM27、P TM25、P TM34 および P TM33は、6.1 μM (P TM25)〜 56.1 μM(P TM27)の範囲の低いKM 値を示し、メナジオンと比べて、PfGR酵素により強く結合していることを示唆した。87μMのKM値を示した P TM36だけがメナジオンと比べて似通った親和性を示した。kcat/KM の値で表される触媒効率から、P TM27、P TM25、P TM34、P TM23、P TM39、P TM40、P TM47および P TM63は、メナジオンに対して、極めて効率良いPfGRの基質として作用した。P TM63 (2番目のキノンを有する)およびP TM40 (ニトロフェニル基を有する)のような2つのレドックス活性部位を有する化合物は、メナジオンに対して、17.2倍および3.9倍に増加した触媒効率を示した。プラムバギン誘導体、P TM47で表れる向上した酸化剤特性も、メナジオンと比べて、6.3倍高い基質効率となった。
実施例19
メトヘモグロビン(Fe3+)のオキシヘモグロビン(Fe2+)へのレドックス循環活性
19.1.材料および方法
FPIX(Fe2+)がヘマチンポリマー化の阻害剤であることから、FPIX(Fe3+)を FPIX(Fe2+)に還元する能力を示す化合物は、感染した赤血球細胞内の増大する酸化ストレスに対するGR阻害に相乗効果的に貢献するかもしれない。FPIX(Fe3+)のFPIX(Fe2+)へのレドックス循環活性を評価するため、我々はナフトキノン、ジヒドロナフトキノンを継続的に再生させるグルタチオン還元酵素/NADPH-に基づく組織およびメトヘモグロビン(Fe3+)(MetHb)を用いたアッセイを設計した。300 nm 〜 700 nmのMetHbのUVスペクトルを、405 nmで最大吸光および630 nm程度を中心とした広域バンドにより特定した。還元後、オキシヘモグロビン(Fe2+)(OxyHb)のスペクトルは、405 nm 〜410 nmへの最大吸光のシフトならびに536 および576 nmに2つの弱いバンドを示した。このレドックス循環活性のポジティブコントロールとして、我々は20 μM のメチレンブルーを使用した。
885 μL GR 緩衝液(47 mM リン酸カリウム緩衝液pH 6.9、200 mM KCl、100mM EDTA)に溶解したMetHbを6.4 mg含むエッペンドルフチューブに、DMSO に溶解した20 mM P TM25 (10 μL )およびGR緩衝液に溶解したNADPH(100 μL)を加えた。5 μLのヒトGRを加えて反応を開始させ、37℃でインキュベートした。1 mL のセル中で、20 μLの反応混合物を980 μL GR緩衝液で希釈し、5 分、10分、20分および30分の培養時間後、300 nm〜700 nmのUVスペクトルを測定した。反応混合物中の最終濃度は、 100 μM MetHb、200 μM P TM25、400 μM NADPHおよび1.06 μmol hGR、最終DMSO濃度 1 %であった。
スペクトルは5分(青)、10分(黒)、20分(緑)および30分(赤)後に測定した。
19.2.結果
結果を図4に示す。
P TM25は、、2-ベンジルおよび2-ベンゾイル-シリーズの化合物が、寄生生物に迅速に抵抗を発生させる複数の標的を有することを(P TM25に対してしか示されなかったにも拘らず)支持する生理学的条件下で、GRの存在下にメトヘモグロビンのレドックス循環に耐えることができる。
すなわち、
(i)ベンジル類似体と比べて、より強力な阻害特性を示すベンゾイル-誘導体での、低マイクロモル領域におけるヒトおよびプラスモディウム・ファルシパルムのグルタチオン還元酵素の非競合的阻害;
(ii)化合物、特に2-ベンゾイル誘導体の存在下で、抗酸化剤であるグルタチオン還元酵素を酸化促進剤である酵素への変換を触媒する両酵素(破壊的基質)のレドックス循環、
(iii)さらに、NADPH/GRシステムおよびP TM25に代表される2-ベンゾイルメナジオンの存在下におけるメトヘモグロビンのレドックス循環。
図4は、200 μMのP TM25、400 μMのNADPHおよび1 μmolのヒトGRの存在下における100 μM MetHbのレドックス循環効果を示しているが、405 nn〜410 nmへの最大吸光のシフトは、メナジオンの場合(データ不表示)のように、50 μMのP TM25ですでに見られる。
NADPHおよびヒトGRの存在下におけるP TM25とMetHbの反応は、MetHbのλmax の(405 nm〜410 nmへの)シフトを引き起こす。P TM25に関しては、メナジオンの場合のように、50 μMのP TM濃度においてシフトが見え始める。同じ条件下で、20 μM メチレンブルー(MB)存在下でMetHbのλmax の明瞭なシフトが観察された。
実施例20
インビトロにおける抗マラリアおよび細胞毒性効果
20.1.材料および方法
異なる寄生生物株および異なるアッセイを用いて、50%の寄生生物を殺傷するのに必要な阻害剤濃度(IC50値)を測定することにより、ナフトキノンによるP.ファルシパルムの生育阻害を評価した。
3H-ヒポキサンチン・アッセイ(Desjardinsら、 1979)を用いて、クロロキン感受性株3D7およびクロロキン耐性株K1に対するIC50値の測定と同様にして、多剤耐性株Dd2に対するIC50値を測定した。レドックス反応に基づく低感度比色NBT-ラクテート脱水素酵素アッセイ(Maklerら、Am. J. Trop. Med. Hyg. 1993, 48(6), 739-741)を用いて、Pf-GHAおよびMRC-5に対するIC50値を測定した。
20.1.1.Dd2生育阻害のIC50値の測定
標準的なインビトロ抗増殖アッセイ(Desjardinsら, 1979 Antimicrob. Agents Chemother 1979, 16, 710-718)によりIC50値を評価した。96ウェルプレート中のリング型の感染赤血球細胞(0.5%寄生虫血、2.5%ヘマトクリット)を、48時間化合物にさらし、次いで24時間放射性ヒポキサンチンにさらした。沈殿性の物質における放射活性量を、細胞増殖の指標として扱った。
20.1.2.3D7、K1のIC50値およびヒトKB細胞での細胞毒性の測定
寄生生物用培地
NF54の分離株(Ponnuraiら, 1981 Trop. Geogr. Med., 33, 50-54)であるCQ感受性株3D7のクローン、およびプラスモディウム・ファルシパルムのクロロキン-、ピリメタミン-およびシクログアニル-耐性K1(タイ)株を、MR4 Malaria Research and Reference Reagent Resource Center, Manassas, VAから入手した。P.ファルシパルムのインビトロでの培養は、標準的なプロトコル(Tragerら, 1976 Science, 193, 673-675)に改良を加えて行った。簡単には、寄生生物を25 mM HEPES、24 mM NaHCO3、0.2 % (w/v)グルコース、0.03 % L-グルタミン、150 μMヒポキサンチンおよび 0.5 % Albumax II(商標)(Invitrogen)を増補したRPMI 1640、 5%ヘマトクリットおよびヒトA Rh+赤血球細胞の入った組織培養フラスコ内で、5 % CO2/空気混合気体下、37 °Cで維持し、培地を毎日交換した。
インビトロ抗寄生生物バイオアッセイ
P.ファルシパルムの薬剤感受性を、前記プロトコル(Desjardinsら, 1979)の改良型方法(Cameronら, 2004 J. Biol. Chem. 279, 31429 - 31439)を用いて試験した。すべてのアッセイは、標準およびコントロール用ウェルとしてのCQジホスフェート(Sigma、イギリス)を、未処理の被感染および未感染赤血球細胞と共に含んでいた。S字回帰分析(Microsoft xlfit-商標)によりIC50値を求めた。
細胞毒性の評価
ヒトKB細胞(ヒト口咽頭癌)に対する細胞毒性を、Alamar Blueアッセイを用いて、上記のように評価した。ポジティブコントロール薬剤はポドフィロトキシン(Sigma)であった。IC50値はブランクおよび未処理のコントロールと比較して計算した。
20.1.3. Pf-GHA のIC50値およびMRC-5細胞に対する細胞毒性の測定
インビトロ抗寄生生物バイオアッセイ
菌株を0.37 mMヒポキサンチン、 25 mM HEPES、 25 mM NaHCO3および10 % O+ ヒト血清を増補したRPMI-1640培地中で、2-4%の洗浄済ヒトO+赤血球と共に維持した。4 % CO2、3 % O2 および93 % N2の組成を有する大気下で、すべての培養およびアッセイを行った。96ウェル微量定量プレート上でアッセイを行った。それぞれのウェルは10 μLの水様の化合物希釈液を190 μLのマラリア性寄生生物の接種原(1 %寄生虫血、2 % HCT)と共に含んでいた。72時間培養後、プレートを凍結させ、- 20 °Cで保管した。解凍後、100 μL Malstat試薬ならびに20 μL PES(フェナジンエトサルフェート、0.1 mg/mL)および NBT(Nitro Blue Tetrazolium Grade III, 2 mg/mL)の1対1混合物と共に、それぞれのウェルから20 μLを別のプレートに移す。色の変化を分光光度計を用いて655 nmで測定する。結果は、コントロールウェルと比較した寄生虫血の減少を%で表す。化合物は、5つの濃度(64 - 16 - 4 - 1および0.25 μMまたはμg/mL)で処理した。アルテスネート(IC50 = 0.005 + 0.004 μM)およびクロロキン(IC50 0.05 + 0.08 μM)を指示薬として含む。
細胞毒性の評価
ヒトMRC-5SV2細胞をEarl`s MEM + 5 % FCSi中で培養した。 アッセイを96-ウェル微量定量プレート中で行い、それぞれのウェルは約104細胞 / ウェル を含む。3日間培養後、レサズリンを添加し、細胞生存率を蛍光計で測定し、蛍光を測定した(λex 550 nm, λem 590 nm)。結果は、未処理のコントロールウェルと比較した細胞生育率/生存率の減少を%として表し、CC50を決定する。化合物を5つの濃度(64 - 14 - 4 - 1および0.25 μMまたはmg/mL)で評価する。CC50が4 μg/mLまたはμMより低いとき、化合物は毒性であると分類される。
20.2.結果
結果を図5に示す。
Dd2寄生生物に対するアッセイで、16化合物が100 nM未満のIC50値を有することが明らかになった。参照として、アトバクオンおよびクロロキンのような標準的な薬剤も試験され、それぞれ0.1 nMおよび291 nM未満の IC50値を示した。これらの16化合物は、ハライド-(P TM24, P TM26, P TM30, P TM57)、(複数の)メトキシ-(P TM31, P TM32, P TM58, P TM59, P TM60, P TM61)、ヒドロキシ-(P TM36)、シアノ- (P TM41)、ニトロ-(P TM37)およびアルキル-置換基(P TM29, P TM43)を有するベンジルシリーズに属する。非置換誘導体P TM62は活性が低かった。
ベンジルシリーズと比較して、対応するベンゾイル-シリーズは、ニトロ誘導体、P TM40の場合を除き、1 μMより高いIC50値で、低い抗マラリア活性を示した。ベンジル鎖に対してパラ位にニトロ置換基を有する化合物は、46 nMのIC50値を有するベンジル類似体、P TM37の場合より3倍高い103 nMのIC50値を示した。
3D7およびK1、P.ファルシパルム株に対して化合物を試験した結果、Dd2に対して以前に見出された高い抗マラリア活性が確かめられた。最も活性の高い化合物は、1 μM未満のIC50値を有するベンジルシリーズに属する。コントロールとして、K1に対して約1 μMおよび3D7に対して約20 nMのIC50値を示すクロロキンを用いた。Dd2アッセイとは対照的に、P TM21だけが高い活性(3D7に対して0.27 μMおよび K1に対して0.10 μM)を示した。これは、Dd2に対して791 nMの活性を示した前回のテストでは検出されなかった。
抗マラリア活性の指示薬としてのホルマゾン染色の比色検出に基づいた3番目のアッセイでは、寄生生物株Pf-GHAに対して活性を有する化合物がいくつか明らかになっただけであった。参照としてアトバクオンを用い、0.31 μMのIC50値を示した。P TM21、P TM24、P TM26、P TM29、P TM30、P TM33、P TM36、P TM38、P TM39、P TM41、P TM42、P TM46、P TM57、P TM58、P TM59、P TM66、P TM67、P TM69、P TM72、P TM79およびP TM81は、 IC50値が5 μM 未満で抗マラリア活性を示し、抗マラリア効果を有することは確認できたが、どの化合物もアトバクオンほど活性ではなかった。
実施例21
クロロキンおよび種々の公知の抗マラリア薬に異なった耐性度を示すP.ファルシパルム株に対するインビトロ抗マラリア活性
21.1.材料および方法
プラスモディウム・ファルシパルムの培養
広範囲の国々(アフリカ(3D7)、ブラジル(Bre)、カンボジア(K2および K14)、カメルーン(FCM29)、ジブチ(Voll)、ガンビア(FCR3)、インドシナ(W2)、ニジェール(L1)、セネガル(8425)、シエラレオーネ(D6)およびウガンダ(PA))からの12の寄生生物株または分離株を、10 %ヒト血清(Abcys S.A.、パリ、フランス)で増補されたRPMI 1640(Invitrogen、ペイズリー、イギリス)中で維持し、25 mM HEPESおよび25 mM NaHCO3で緩衝した。10 % O2、5 % CO2 および85 % N2の組成を有し、37 °C、湿度95 %に調製された雰囲気下に、おいて、A-ポジティブヒト血液中で、寄生生物を生育させた。
薬剤
フェロキン塩基(SR97193)(FQ)を、サノフィ・アベンティス社(フランス)から入手した。クロロキンジホスフェート(CQ)、キニン塩酸塩(QN)およびジヒドロアルテミシニン(DHA)をSigma(セント・ルイス、MO)から購入した。モノデセチルアモジアキン(MDAQ)を世界保健機構(ジュネーブ、スイス)、メフロキン(MQ)をホフマン・ラロシュ(バーゼル、スイス)、そしてルメファントリン(LMF)をノバルティス・ファーマ(バーゼル、スイス)から入手した。
FQおよび合成化合物をRPMI-DMSO(99v/1v)中に、再懸濁し希釈して、0.125〜500 nMの範囲の最終濃度とした。
CQを水中に5〜3200 nMの範囲の濃度で再懸濁した。QN、MDAQ、MQおよびDHAは、まずメタノールに溶解し、次いで水に希釈して、5〜3200 nM(QN)、1.56〜1000 nM(MDAQ)、3.2〜400 nM(MQ)および0.1〜100 nM(DHA)の範囲の最終濃度とした。LMFについては、貯蓄液をエタノール中で調製し、次いでエタノールに希釈して、0.5〜310 nMの範囲の濃度とした。
インビトロアッセイ
インビトロ同位体マイクロ試験のため、25 μL/ウェルの抗マラリア薬および200 μL/ウェルの被寄生赤血球細胞の懸濁液(最終寄生虫血濃度 0.5 %;最終ヘマトクリット 1.5 %)を、96ウェルプレートに分配した。時間ゼロの時点で各ウェルに、14.1 Ci/mmol の特定活性を有する1 μCiのトリチウム化されたヒポキサンチン(パーキン・エルマー、クルタブフ、フランス)を加えて寄生生物の生育を評価した。プレートを、調製された雰囲気条件下で48時間インキュベートした。インキュベーション後、直ちにプレートを凍結し、解凍させて、赤血球細胞を溶解した。各ウェルの内容物を標準フィルタマイクロプレート (Unifilter GF/B ; パーキン・エルマー)上に回収し、細胞ハーベスタ(Filter-Mate Cell Harvester; パーキン・エルマー)を使用して洗浄した。フィルタマイクロプレートを乾燥し、25 μLのシンチレーション・カクテル(Microscint O; パーキン・エルマー)を各ウェルに配置した。寄生生物により取り込まれた放射活性をシンチレーション・カウンター(Top Count; パーキン・エルマー)で測定した。
薬剤非添加コントロールウェル中の寄生生物による被トリチウム化ヒポキサンチンの取り込みの50%に相当する薬剤濃度を同定することにより、寄生生物の生育を50%阻害することのできる薬剤濃度、IC50を評価した。用量依存性対数曲線(Riasmart(商標), パッカード、メリデン、アメリカ)の非線形回帰分析により、IC50値を決定した。
クロロキン、キニン、メフロキン、モノデセチルアモジアキン、ルメファントリンおよびジヒドロアルテミシニンに対するインビトロでの耐性または減少した感受性に関して、臨床上の障害の有無にかかわらず平均値より2SD以上に統計学的に定義されたカット-オフ値は、それぞれ100 nM、800 nM、30 nM、60 nM、150 nMおよび10.5 nMであった。
21.2.結果
クロロキン(CQ)および種々の公知抗マラリア薬に対するインビトロで異なった度合いの耐性を示すP.ファルシパルム株におけるP TM24, P TM29, P TM37, P TM41, P TM45 P TM57, P TM58およびP TM60を図6に示す。
クロロキンに対して最も強い感受性を示す株から最も強い耐性を示す株まで、菌株は3D7, D6, 8425, Voll, L1, PA, Bres, FCR3, W2, K2, K14およびFCM29であり、参照として用いられた公知の抗マラリア剤に対して様々な感受性を示した(図6)。クロロキン(CQ)に対して、菌株は21.3(3D7)〜879.0(FCM29)のIC50 値を示し、40.4 nM(3D7)〜1241.7 nM(FCM29)のIC90値を示した。その他の公知の抗マラリア剤はヒト用薬剤または臨床試験に用いられる化合物:キニン(QN)、モノデセチルアモジアキン(MDAQ)、ルメファントリン(LMF)、メフロキン(MQ)、ジヒドロアルテミシニン(DHA)およびフェロキン(FQ)である。
実施例22
マウスにおけるP.ベルゲイに対するインビボ抗マラリア活性
22.1.材料および方法
マウスモデルでのインビボ試験を、標準プロトコル(Petersら、Handbook of Animal Models of Infection; Academic Press, London, 1999; pp. 756-771)に従って行った。Petersにより示されているように、4-day suppressive試験を用いて、クロロキンをポジティブコントロールとして、P.ベルゲイで化合物を試験した。簡単に記述すると、本来の18〜20-g ANKA BALB/c マウスに、2 x 106 寄生赤血球細胞を0日目に静脈注射して感染させた。投与に際しては、使用日に、滅菌リン酸緩衝液で処理した生理食塩水中の10% DMSO中で化合物を新たに調製した。
感染2時間後に、マウスは腹腔内経路により最初の処置を受けた。マウスは1〜3日目にさらに処置された。4日目に尾の血液からの血液塗抹標本を調製し、ギムザ染色した血液塗抹標本の顕微鏡検査により寄生虫血測定した。腹腔内または経口経路により一日投与量50または30 mg/kgで化合物を評価した。ポジティブコントロールとして、10 mg/kg/日のクロロキン経口投与処置を含んでおり、完全阻害という結果を得た(データ不表示)。CQの腹腔内投与は、似通った活性(10 mg/kgの腹腔内投与で 98.9 %の阻害)を示した。マウスを処置し、寄生虫血濃度を上記のとおり測定した。
22.2.結果
結果を図7および図8に示す。
最も活性の強い6化合物(P TM24 = HB67, P TM29, P TM31, P TM36, P TM37, P TM43)をP.ベルゲイ-感染マウスで腹腔内投与により試験した。Petersのfour-day testに従い、クロロキン感受性P.ベルゲイANKA BALB/cマウスに対して行った6化合物について、インビボスクリーンの結果を図7に示す。比較する目的で、CQおよび6誘導体について同じスクリーンで得られたデータを含めてある。化合物P TM37、P TM43、P TM36、P TM29およびP TM24は、4日の処置で顕著な活性を示した。最も活性の強い2つの化合物、P TM43(BJ321)および P TM37(BJ323)は、一日投与量30 mg/kgで寄生虫血がそれぞれ43.4 % 減少および42.4 % 減少を引き起こした。この投与レベルで、P TM31、P TM36およびP TM29は、20.7〜28.4 %の寄生虫血阻害を引き起こしたに過ぎず、これでは乏しい生物学的利用能の結果であると言えるかもしれない。化合物P TM24(HB67)は、一日投与量50 mg/kgの腹腔内投与で、35.6 %の寄生虫血の減少しか示さなかった。
腹腔内投与によるP.ベルゲイ感染マウスにおける化合物、P TM41、P TM45およびP TM57の抗マラリア効果を示す追加のデータを、図8に示す。

Claims (17)

  1. 式(I):
    Figure 2011515441
    [式中、- Aは次の環:
    Figure 2011515441
    ここで、R6はナフトキノンのフェニル環の5、6、7もしくは8位またはキノリン-5,8-ジオンの2、3もしくは4位に位置していてもよく、それぞれ独立して、水素原子、ハロゲン原子、ヒドロキシ基、直鎖もしくは分枝鎖状の(C1-C4)アルキル基、ジ-もしくはトリ-フルオロメチル基、トリフルオロメトキシ基、ペンタフルオロスルファニル基を表し、nは0〜4の整数であり、R7はメチル基を表し、
    - Xは-C(O)-または-CHY-(ここで、Yは水素原子、ヒドロキシ基、直鎖もしくは分枝鎖状の(C1-C4)アルキル基および(C3-C6)シクロアルキル基を含む群から選択される)を表し、
    - R1、R2、R3、R4およびR5は、それぞれ独立して、
    ・水素原子、
    ・ハロゲン原子、
    ・ヒドロキシ基、
    ・直鎖もしくは分枝鎖状の(C1-C4)アルキル基、
    ・トリフルオロメチル基、
    ・ジフルオロメチル基、
    ・直鎖もしくは分枝鎖状の(C1-C4)アルコキシ基、
    ・トリフルオロメトキシ基、
    ・ジフルオロメトキシ基、
    ・ペンタフルオロスルファニル基、
    ・-COOH、
    ・-COO(C1-C4)アルキル基、
    ・-CONR8(CH2)mCN(ここで、R8は水素原子または直鎖もしくは分枝鎖状の(C1-C4)アルキル基であり、mは1、2または3である)、
    ・-CSNR8(CH2)mCN(ここで、R8は水素原子または直鎖もしくは分枝鎖状の(C1-C4)アルキル基であり、mは1、2または3である)、
    ・-CONR8Het(ここで、R8は水素原子または直鎖もしくは分枝鎖状の(C1-C4)アルキル基であり、Hetはピリジン-2-イル基、または6位においてアミノ基で置換されているかもしくは5位において-CONH2で置換されたピリジン-2-イル基を表す)、
    ・-NO2
    ・-CN、
    ・-NR9R10(ここで、R9およびR10は、それぞれ独立して、水素原子、Boc基および(C1-C4)アルキル基から選択されるアミノ保護基を表すか、またはR9およびR10はそれらが結合している窒素原子と共にモルホリン基およびピペラジン基を含む群から選択される環式基または置換されていてもよい環式基を形成する)、
    ・アリール基、または(C1-C4)アルキル基、-NO2基、-COOR11(ここで、R11は水素原子および直鎖もしくは分枝鎖状の(C1-C4)アルキル基から選択される)、-NR12R13(ここで、R12およびR13は独立して、水素原子および直鎖もしくは分枝鎖状の(C1-C4)アルキル基を含む群から選択される)を含む群から選択される1以上の置換基で置換されたアリール基、
    ・モルホリニル基またはピペラジニル基を含む群から選択される複素環式基を表し、これらの複素環式基は直鎖もしくは分枝鎖状の(C1-C4)アルキル基、-COOCH2CH3または基:
    Figure 2011515441
    を含む群から選択される1以上の置換基で置換されていてもよい]
    の化合物、およびその医薬的に許容される塩、
    (ただし、式(I)の化合物は、次の:
    Figure 2011515441
    を含む群から選択されない)。
  2. Aが次の環:
    Figure 2011515441
    [式中、R7はメチルを表す]
    から選択される、請求項1に記載の化合物。
  3. Xが-C(O)または-CH2-を表す、請求項1または2のいずれか1項に記載の化合物。
  4. R1、R2、R3、R4、R5が、それぞれ独立して、
    ・水素原子、
    ・Br、ClおよびFを含む群から選択されるハロゲン原子、
    ・ヒドロキシ基、
    ・メチルおよびt-ブチルを含む群から選択される直鎖もしくは分枝鎖状の(C1-C4)アルキル基、
    ・ジ-またはトリ-フルオロメチル基、
    ・メトキシ基、
    ・トリフルオロメトキシ基、
    ・ペンタフルオロスルファニル基、
    ・-NO2
    ・-CN、
    ・-COOR14(ここで、R14は水素原子またはメチル基を表す)、
    ・-CONH(CH2)2CN、
    ・-NHBoc、
    ・次の:
    Figure 2011515441
    を含む群から選択される基、
    ・t-ブチル基、-NO2、N(CH3)2または-NHC(CH3)3でパラ位が置換されたフェニル基
    を表す、請求項1〜3のいずれか1項に記載の化合物。
  5. R1、R2、R3、R4およびR5が、それぞれ独立して、水素原子、ヒドロキシ基、メトキシ基、ジ-もしくはトリ-フルオロメチル基およびトリフルオロメトキシ基、ペンタフルオロスルファニル基、またはアミノ基を含む群から選択される、請求項1〜4のいずれか1項に記載の化合物。
  6. R1、R2、R3、R4およびR5が、フッ素原子、ジ-もしくはトリ-フルオロメチル基、またはトリフルオロメトキシ基、ペンタフルオロスルファニル基を表す、請求項1〜2のいずれか1項に記載の化合物。
  7. 式(IIa)または(IIb):
    Figure 2011515441
    [式中、R6は1,4-ナフトキノンのフェニル環の5、6、7もしくは8位、またはキノリン-5,8-ジオンの2、3もしくは4位に位置していてもよく、それぞれ独立して、水素原子、ハロゲン原子、ヒドロキシ基、直鎖もしくは分枝鎖状の(C1-C4)アルキル基、ジ-もしくはトリ-フルオロメチル基、トリフルオロメトキシ基、ペンタフルオロスルファニル基を表し、nは0〜4の整数であり、R7はメチル基を表す]
    の化合物を、式(III):
    Figure 2011515441
    [式中、R1、R2、R3、R4およびR5は請求項1で定義されたとおりである]
    と反応させて、式(Ia):
    Figure 2011515441
    または式(Ib):
    Figure 2011515441
    の化合物をそれぞれ得、これらの化合物を酸性条件下で処理して、式(Ic):
    Figure 2011515441
    の化合物、または式(Id):
    Figure 2011515441
    [式中R1、R2、R3、R4、R5、R6およびnは上記で定義されたとおりである]
    の化合物をそれぞれ得ることを含む、Aが基:
    Figure 2011515441
    を表す請求項1に記載の式(I)の化合物の製造法。
  8. (a)対応するキノン類を還元し、次いでジヒドロナフトキノン中間体をメチル化して、式(IIc)のジメトキシナフタレンまたは式(IId)のジメトキシキノリンとすることにより、式(IIc):
    Figure 2011515441
    または式(IId):
    Figure 2011515441
    [式中、R6は1,4-ジメトキシナフタレンのフェニル環の5、6、7もしくは8位、または5,8-ジメトキシキノリンの2、3もしくは4に位置していてもよく、水素原子、ハロゲン原子、ヒドロキシ基、直鎖もしくは分枝鎖状の(C1-C4)アルキル基、ジ-もしくはトリ-フルオロメチル基、トリフルオロメトキシ基、ペンタフルオロスルファニル基を表し、nは0〜4を含む整数であり、R7はメチルを表し、Halは塩素、臭素またはヨウ素原子を表す]
    の化合物を製造し、
    (b)式(IIc)または式(IId)のうちの一方の化合物を式HNR9R10のアミノ化合物(ここで、R9およびR10は、両者が共に水素原子ではないという条件で、それぞれ独立して、水素原子または(C1-C4)アルキル基を表すか、あるいはR9およびR10はそれらが結合している窒素原子と共にモルホリンおよびピペラジン基を含む群から選択される、置換もしくは非置換の環式基を形成する)と、パラジウム触媒および適当なパラジウムリガンドの存在下で、それぞれ反応させて、式(Ie):
    Figure 2011515441
    または式(If):
    Figure 2011515441
    [式中、R6、R7、R9およびR10は上記で定義されたとおりである]
    の化合物を得、
    (c)式(Ie)または(If)の化合物を再び酸化して、式(Ia1)または(Ic1):
    Figure 2011515441
    の最終化合物あるいは式(Ib1)または式(Id1):
    Figure 2011515441
    の化合物を得ることを含む、請求項1に記載の式(I)の化合物(ここで、Aは次の基:
    Figure 2011515441
    を表し、Xは-CH2-または-C(O)-を表す)
    に相当する、式(Ia1、Ib1、Ic1、Id1、IeおよびIf)の化合物を製造する方法。
  9. 式(Ia):
    Figure 2011515441
    [式中、R1、R2、R3、R4およびR5のうちの1つはハロゲン原子を表し、その他は水素原子であり、
    - Xは-C(O)-または-CHY-(ここで、Yは水素原子、ヒドロキシ基、直鎖または分枝鎖状の(C1-C4)アルキル基および(C3-C6)シクロアルキル基を含む群から選択される)を表す]
    に該当する化合物と、式(IV):
    Figure 2011515441
    [式中、R15はtert-ブチル基、-NO2、-COOR11(ここで、R11は水素原子または直鎖もしくは分枝鎖状の(C1-C4)アルキル基である)またはNMe2基を表す]
    のボロニックアシッド誘導体から出発して、パラジウム触媒および塩基の存在下に、式(I):
    Figure 2011515441
    [式中、Aは次の環:
    Figure 2011515441
    (ここで、R6はナフトキノンのフェニル環の5、6、7もしくは8位またはキノリン-5,8-ジオンの2、3もしくは4位に位置していてもよく、それぞれ独立して、水素原子、ハロゲン原子、ヒドロキシ基、直鎖もしくは分枝鎖状の(C1-C4)アルキル基、ジ-もしくはトリ-フルオロメチル基、トリフルオロメトキシ基、ペンタフルオロスルファニル基を表し、nは0〜4を含む整数であり、R7はメチルを表す)から選択され、
    - R1、R2、R3、R4およびR5のうちの1つは、パラ位にtert-ブチル基、NO2、-COOR11(ここで、R11は水素原子または直鎖もしくは分枝鎖状の(C1-C4)アルキル基である)またはNMe2基を有するフェニル環を表す]
    の化合物の製造法。
  10. 式(I)の化合物が:
    Figure 2011515441
    ではないという条件で、薬剤としての、式(I):
    Figure 2011515441
    [式中、A、X、R1、R2、R3、R4、R5は請求項1で定義されたとおりである]
    の化合物。
  11. 式(I)の化合物が
    Figure 2011515441
    ではないという条件で、治療および予防に使用するための、式(I):
    Figure 2011515441
    [式中、A、X、R1、R2、R3、R4、R5は請求項1に定義されたとおりである]
    の化合物。
  12. 式(I)の化合物が:
    Figure 2011515441
    ではないという条件で、抗マラリア剤としての、式(I):
    Figure 2011515441
    [式中、A、X、R1、R2、R3、R4、R5は請求項1で定義されたとおりである]
    の化合物。
  13. 式(I)の化合物が:
    Figure 2011515441
    ではないという条件で、賦形剤および/または医薬的に許容される希釈剤もしくは担体と組み合わせて、式(I):
    Figure 2011515441
    [式中、A、X、R1、R2、R3、R4、R5は請求項1で定義されたとおりである]
    の1以上の化合物を活性成分として含む医薬組成物。
  14. アトバクオン、クロロキン、アモジアキン、メフロキン、アルテミシニンならびにアルテスネート、アルティーサーおよびアルテミーサー、メナジオン、メチレンブルー、プログアニル、シクログアニル、クロルプログアニル、ピリメタミン、プリマキン、ピペラキン、ホスミドマイシン、ハロファントリン、ダプソン、トリメトプリム、スルファメトキサゾール、スルファドキシンのような医薬市場からの関連ペルオキサンを含む群から選択され、同時に、別々にまたは連続的に投与される1〜3の他の抗マラリア剤を活性成分としてさらに含む、請求項13に記載の医薬組成物。
  15. Figure 2011515441
    を含む群から選択される式(I)の化合物を含み、マラリアの予防およびまたは治療に用いられる、式(I)の化合物。
  16. 式(II)の化合物が:
    Figure 2011515441
    を含む群から選択されないという条件で、式(I):
    Figure 2011515441
    [式中、Aは:
    Figure 2011515441
    (ここで、R6は1,4-ジメトキシナフタレンのフェニル環の5、6、7もしくは8位、または5,8-ジメトキシキノリンの2、3もしくは4位に位置していてもよい、水素原子、ハロゲン原子、ヒドロキシ基、直鎖もしくは分枝鎖状の(C1-C4)アルキル基、ジ-もしくはトリ-フルオロメチル基、トリフルオロメトキシ基、ペンタフルオロスルファニル基を表し、nは0〜4の整数であり、R7はメチル基を表す)を表し、
    - XはCH2、-C(O)-または-CHY-(ここで、Yは水素原子、ヒドロキシ基、直鎖もしくは分枝鎖状の(C1-C4)アルキル基および(C3-C6)シクロアルキル基を含む群から選択される)を表し、
    - R1、R2、R3、R4およびR5は請求項1で定義されたとおりである]
    の化合物に相当する、式(II)の化合物。
  17. 式(I)記載の化合物を合成するための中間体としての、請求項16に記載の化合物。
JP2011501210A 2008-03-26 2009-03-25 1,4−ナフトキノン誘導体およびその治療用途 Active JP5725299B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP08290278 2008-03-26
EP08290278.4 2008-03-26
PCT/EP2009/053483 WO2009118327A1 (en) 2008-03-26 2009-03-25 1,4-naphthoquinone derivatives and therapeutic use thereof

Publications (3)

Publication Number Publication Date
JP2011515441A true JP2011515441A (ja) 2011-05-19
JP2011515441A5 JP2011515441A5 (ja) 2012-04-12
JP5725299B2 JP5725299B2 (ja) 2015-05-27

Family

ID=39529700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011501210A Active JP5725299B2 (ja) 2008-03-26 2009-03-25 1,4−ナフトキノン誘導体およびその治療用途

Country Status (7)

Country Link
US (1) US9090549B2 (ja)
EP (1) EP2257515B1 (ja)
JP (1) JP5725299B2 (ja)
CN (2) CN104193609B (ja)
AP (1) AP2660A (ja)
ES (1) ES2637496T3 (ja)
WO (1) WO2009118327A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2505583A1 (en) * 2011-03-29 2012-10-03 Centre National de la Recherche Scientifique Total synthesis of redox-active 1.4-naphthoquinones and their metabolites and their therapeutic use as antimalarial and schistomicidal agents
WO2014051689A1 (en) * 2012-09-25 2014-04-03 University Of Iowa Research Foundation Antimicrobial compositions and methods of use thereof
AU2018255492B2 (en) 2017-04-21 2021-10-28 University Of Tasmania Therapeutic compounds and methods
EP4053096A1 (en) * 2021-03-05 2022-09-07 Centre national de la recherche scientifique Photoredox radical benzylation process
CN113264818B (zh) * 2021-05-25 2022-07-05 湖北工业大学 一种银催化醌类化合物与醇类的碳碳交叉偶联反应的方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999048491A1 (fr) * 1998-03-20 1999-09-30 Suntory Limited INHIBITEURS DE NF-λB CONTENANT DU PHENYLMETHYL-BENZOQUINONE EN TANT QU'INGREDIENT ACTIF

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2398418A (en) * 1943-08-27 1946-04-16 Louis F Fieser Introduction of organic radicals into quinones
DE3869692D1 (de) * 1987-07-29 1992-05-07 Takeda Chemical Industries Ltd Zellproliferationsinhibitor.
US5244917A (en) * 1992-06-02 1993-09-14 The Dupont Merck Pharmaceutical Company Substituted naphthofurans as anti-inflammatory agents
US20040022787A1 (en) * 2000-07-03 2004-02-05 Robert Cohen Methods for treating an autoimmune disease using a soluble CTLA4 molecule and a DMARD or NSAID
JP4780371B2 (ja) 2003-06-27 2011-09-28 武田薬品工業株式会社 光学活性化合物の製造法
CA2537791A1 (en) * 2003-09-05 2005-04-14 University Of North Carolina At Chapel Hill Novel amidine compounds for treating microbial infections
AU2006202040A1 (en) * 2005-05-20 2006-12-07 Reto Brun Novel biochalcophenes and their prodrugs as antiprotozoal agents

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999048491A1 (fr) * 1998-03-20 1999-09-30 Suntory Limited INHIBITEURS DE NF-λB CONTENANT DU PHENYLMETHYL-BENZOQUINONE EN TANT QU'INGREDIENT ACTIF

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JPN5011009668; HOWLAND JOHN L: 'INHIBITION OF MITOCHONDRIAL SUCCINATE OXIDATION BY ALKYL HYDROXY NAPHTHOQUINONES' BIOCHIMICA ET BIOPHYSICA ACTA V105 N2, 19650101, P205-213 *
JPN5011009670; BAUER, HOLGER: 'A FLUORO ANALOGUE OF THE MENADIONE DERIVATIVE 6-[2'-(3'-METHYL)-1',4'-NAPHTHOQUINOLYL]以下備考' JOURNAL OF THE AMERICAN CHEMICAL SOCIETY V128 N33, 2006, P10784-10794 *
JPN5011009672; FRIEBOLIN WOLFGANG: 'ANTIMALARIAL DUAL DRUGS BASED ON POTENT INHIBITORS OF GLUTATHIONE 以下備考' JOURNAL OF MEDICINAL CHEMISTRY V51 N5, 20080209, P1260-1277 *

Also Published As

Publication number Publication date
US20110059972A1 (en) 2011-03-10
WO2009118327A1 (en) 2009-10-01
EP2257515A1 (en) 2010-12-08
CN104193609B (zh) 2017-04-12
ES2637496T3 (es) 2017-10-13
AP2010005435A0 (en) 2010-10-31
AP2660A (en) 2013-05-13
JP5725299B2 (ja) 2015-05-27
CN104193609A (zh) 2014-12-10
EP2257515B1 (en) 2017-05-17
CN102015607A (zh) 2011-04-13
US9090549B2 (en) 2015-07-28

Similar Documents

Publication Publication Date Title
Baramee et al. Synthesis and in vitro activities of ferrocenic aminohydroxynaphthoquinones against Toxoplasma gondii and Plasmodium falciparum
De Souza et al. Synthesis and in vitro antitubercular activity of a series of quinoline derivatives
Jain et al. Synthesis, antimalarial, antileishmanial, and antimicrobial activities of some 8-quinolinamine analogues
JP5725299B2 (ja) 1,4−ナフトキノン誘導体およびその治療用途
Winter et al. Evaluation and lead optimization of anti-malarial acridones
Ekoue-Kovi et al. Synthesis and antimalarial activity of new 4-amino-7-chloroquinolyl amides, sulfonamides, ureas and thioureas
Paloque et al. Discovery of a new antileishmanial hit in 8-nitroquinoline series
Porcal et al. New trypanocidal hybrid compounds from the association of hydrazone moieties and benzofuroxan heterocycle
JP2016515526A (ja) 酸化ストレス障害の処置のためのアルキル−ヘテロアリール置換されたキノン誘導体
Verhaeghe et al. Synthesis and in vitro antiplasmodial evaluation of 4-anilino-2-trichloromethylquinazolines
Staderini et al. Structure-activity relationships and mechanistic studies of novel mitochondria-targeted, leishmanicidal derivatives of the 4-aminostyrylquinoline scaffold
Saini et al. Synthesis and antiplasmodial evaluation of 1H-1, 2, 3-triazole grafted 4-aminoquinoline-benzoxaborole hybrids and benzoxaborole analogues
Manzano et al. Arylthiosemicarbazones as antileishmanial agents
Sparatore et al. Antimalarial activity of novel pyrrolizidinyl derivatives of 4-aminoquinoline
US9409879B2 (en) Total synthesis of redox-active 1.4-naphthoquinones and their metabolites and their therapeutic use as antimalarial and schistomicidal agents
Sola et al. Synthesis, biological profiling and mechanistic studies of 4-aminoquinoline-based heterodimeric compounds with dual trypanocidal–antiplasmodial activity
US20160102058A1 (en) Fluoro-perhexiline compounds and their therapeutic use
Rezaei et al. Novel catechol derivatives of arylimidamides as antileishmanial agents
EP0027679B1 (en) Substituted-5-((7-chloro-4-quinolinyl)amino)-3-(amino-methyl)-(1,1'-biphenyl)-2-ol compounds; processes for their production; and pharmaceutical compositions containing the compounds
EP3319940B1 (en) New indole compounds having antiprotozoal activity and its use as well as methods for producing the same
Mahajan et al. Design, Synthesis and Biological Evaluation of 7-arylbenzo [c] acridine-5, 6-diones as Potential Anti-Leishmanial and anti-trypanosomal Agents
Ralph et al. Synthesis and in vitro Leishmania promastigote growth inhibition efficacy of novel 4 (3H)-quinazolinone derivatives
Klayman et al. Thiosulfuric acid analog of quinine as a potential antimalarial agent
Erasmus Triazole-linked 1, 4-naphthoquinone derivatives: synthesis and antiplasmodial activity
WO2022159649A1 (en) Compounds and methods for treating malaria

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120222

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20131205

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20131212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150317

R150 Certificate of patent or registration of utility model

Ref document number: 5725299

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250