JP2011506809A - Rotating machine - Google Patents

Rotating machine Download PDF

Info

Publication number
JP2011506809A
JP2011506809A JP2010524005A JP2010524005A JP2011506809A JP 2011506809 A JP2011506809 A JP 2011506809A JP 2010524005 A JP2010524005 A JP 2010524005A JP 2010524005 A JP2010524005 A JP 2010524005A JP 2011506809 A JP2011506809 A JP 2011506809A
Authority
JP
Japan
Prior art keywords
casing
flange
blade
working fluid
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010524005A
Other languages
Japanese (ja)
Other versions
JP4969688B2 (en
Inventor
匠生 山下
肇博 井上
尊昭 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2010524005A priority Critical patent/JP4969688B2/en
Publication of JP2011506809A publication Critical patent/JP2011506809A/en
Application granted granted Critical
Publication of JP4969688B2 publication Critical patent/JP4969688B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • F01D25/243Flange connections; Bolting arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • F01D25/26Double casings; Measures against temperature strain in casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/30Retaining components in desired mutual position

Abstract

回転機械の小型化を図るとともに、回転機械の信頼性と性能の向上を図ることができる回転機械を提供する。動翼11が植設されるロータ軸4を内部に包囲するほぼ円筒状の車室101を、ロータ軸4の軸方向に対してほぼ中央部で2分割した第1の車室1および第2の車室2を有し、第1の車室1および第2の車室2における開口部に、それぞれ第1の接合フランジ1Aおよび第2の接合フランジ2Aを有し、車室101に包囲されるとともに静翼10を保持し、かつ、ロータ軸4を包囲する略円筒状の翼環3における軸方向長さのほぼ中央部に位置し、翼環3を保持する第3の接合フランジ3Aを有し、第1の接合フランジ1Aおよび第2の接合フランジ2Aの間に第3の接合フランジ3Aを挟み込むことにより、第1の車室1、第2の車室2および翼環3を組み立てることを特徴とする。
Provided is a rotating machine capable of reducing the size of the rotating machine and improving the reliability and performance of the rotating machine. First and second casings 1 and 2 are obtained by dividing a substantially cylindrical casing 101 that surrounds the rotor shaft 4 in which the rotor blade 11 is implanted into two substantially at the center with respect to the axial direction of the rotor shaft 4. Of the first and second casings 1 and 2, respectively, having a first joining flange 1 A and a second joining flange 2 A, respectively, surrounded by the casing 101. And a third joint flange 3A that holds the vane ring 3 and is positioned at substantially the center of the axial length of the substantially cylindrical blade ring 3 that holds the stationary blade 10 and surrounds the rotor shaft 4. And assembling the first casing 1, the second casing 2 and the blade ring 3 by sandwiching the third connecting flange 3 </ b> A between the first connecting flange 1 </ b> A and the second connecting flange 2 </ b> A. It is characterized by.

Description

本発明は、回転機械、例えば蒸気タービンやガスタービンなどに用いられる回転機械に関する。   The present invention relates to a rotary machine, such as a rotary machine used in a steam turbine or a gas turbine.

一般に、蒸気タービンやガスタービンに用いられる車室構造は、ロータ軸を内包する車室が上部車室と下部車室の2分割に形成され、これらが水平面においてボルトで結合される水平2分割構成となっている(例えば、特許文献1参照。)。   Generally, a casing structure used for a steam turbine or a gas turbine is formed by dividing a casing containing a rotor shaft into two parts, an upper casing and a lower casing, and these are coupled in a horizontal plane with bolts in a horizontal plane. (For example, refer to Patent Document 1).

あるいは、いわゆる「つぼ型タービン」と言われるタービンにおいては、車室が一体構造であり、車室の一方の端部開口部からロータ軸部を挿入し、前記端部開口部は前記車室の内周側に設けられたねじ部と係合するねじリングを締め付けることにより密閉される構成となっている(例えば特許文献2参照)。 Alternatively, in a turbine referred to as a so-called “vase-type turbine”, the passenger compartment has an integral structure, and a rotor shaft portion is inserted from one end opening of the passenger compartment, and the end opening is the same as that of the passenger compartment. It is configured to be sealed by tightening a screw ring that engages with a screw portion provided on the inner peripheral side (see, for example, Patent Document 2).

上述の車室構造は、高温高圧の作動流体に対し、装置全体の剛性の確保や、作動流体の漏洩防止を目的としている。   The above-described casing structure is intended to ensure the rigidity of the entire apparatus and prevent leakage of the working fluid with respect to the high-temperature and high-pressure working fluid.

実開昭60−195908号公報Japanese Utility Model Publication No. 60-195908 特開昭59−213907号公報JP 59-213907

しかしながら、上述のように水平面で2分割される車室構造の場合には、上部車室および下部車室の水平面全周に接合用のフランジが設けられ、これが車室の水平面の全周から突出するため、車室自体が大型化するという問題があった。
また、車室が大型化すると、タービン全体の質量の増加や、素材や製造コストが上昇したりするという問題があった。
However, in the case of the vehicle compartment structure divided into two in the horizontal plane as described above, a joining flange is provided around the entire horizontal plane of the upper and lower compartments, and this protrudes from the entire circumference of the horizontal plane of the vehicle compartment. Therefore, there is a problem that the passenger compartment itself is enlarged.
Further, when the passenger compartment is enlarged, there are problems that the mass of the entire turbine is increased, and that raw materials and manufacturing costs are increased.

さらに、上部車室と下部車室の接合面から作動流体が漏れ出すとタービン性能に影響を与える恐れがあるが、上述のような水平面で2分割される構造の場合は、接合面が車室の水平面の全周にわたるため、作動流体が漏れ出す範囲が広くなるという問題があった。また、上述のような構造の場合は、車室の接合面にロータ軸の貫通部が位置することになるため、より作動流体が漏れ出しやすいという問題があった。   Furthermore, if the working fluid leaks from the joint surface between the upper compartment and the lower compartment, the turbine performance may be affected. However, in the case of a structure that is divided into two by the horizontal plane as described above, the joint surface is the compartment. Since the entire circumference of the horizontal plane of this is over, there is a problem that the range in which the working fluid leaks becomes wide. Further, in the case of the structure as described above, since the penetrating portion of the rotor shaft is located on the joint surface of the vehicle compartment, there is a problem that the working fluid is more likely to leak out.

一方、つぼ型の車室構造とした場合、車室全体に接合用のフランジが設けられる場合と比較すれば、作動流体が漏洩する範囲を少なくすることができると考えられる。しかしながら、上述のねじ構造により車室を密閉する構造は、比較的小型のタービンにしか採用することができず、大型のタービンにおいては、これをフランジ構造とする必要がある。この場合、軸方向にフランジ部や接合用のボルトが突出し、やはり車室の全長が増加し、全体が大型化するという問題があった。   On the other hand, in the case of the vase-type casing structure, it is considered that the range in which the working fluid leaks can be reduced as compared with the case where a joining flange is provided in the entire casing. However, the structure in which the passenger compartment is sealed by the above-described screw structure can be used only for a relatively small turbine, and in a large turbine, this needs to be a flange structure. In this case, there has been a problem that the flange portion and the joining bolt protrude in the axial direction, the total length of the passenger compartment is increased, and the whole size is increased.

例えば、取り扱いに注意を要する、ある物質を含む流体を作動流体とするタービンの場合、大気に作動流体を漏洩させることが許されない。このため、車室を更に覆う圧力容器(外車室)を設け、この圧力容器と車室の間に、作動流体よりも高圧で、ある物質に汚染されていないクリーンな流体を充填して、車室内部の流体が外部に漏洩することを防止する構成とする(図5参照)。   For example, in the case of a turbine that uses a fluid containing a certain substance that requires attention in handling as a working fluid, it is not allowed to leak the working fluid to the atmosphere. For this reason, a pressure vessel (outer vehicle compartment) that further covers the vehicle compartment is provided, and between this pressure vessel and the vehicle compartment is filled with a clean fluid that is higher in pressure than the working fluid and is not contaminated with a certain substance. The indoor fluid is prevented from leaking outside (see FIG. 5).

図5は、前述のタービン本体の車室101が圧力容器(外車室)200の内部に収容されている構成を示している。車室101の内部にはタービンの構成部品が収容されている(図示せず)。また、ロータ軸4は車室101と圧力容器200を貫通している。ここで、車室101と圧力容器200との間の空間201にはタービンの作動流体よりも高圧で、ある物質に汚染されていないクリーンな流体を充填し、車室101の内部の流体が外部に漏洩することを防止している。しかしながら、前述の構成の場合、車室101の大型化は圧力容器200の更なる大型化を伴うことになる。   FIG. 5 shows a configuration in which the casing 101 of the turbine body described above is accommodated in the pressure vessel (outer casing) 200. The casing 101 accommodates turbine components (not shown). Further, the rotor shaft 4 passes through the vehicle interior 101 and the pressure vessel 200. Here, a space 201 between the casing 101 and the pressure vessel 200 is filled with a clean fluid that is higher in pressure than the working fluid of the turbine and is not contaminated with a certain substance, and the fluid inside the casing 101 is external. To prevent leakage. However, in the case of the above-described configuration, the increase in the size of the passenger compartment 101 is accompanied by a further increase in the size of the pressure vessel 200.

また、前述のようなタービンは、内部が、ある物質に汚染されている場合、安全上、一般的なガスタービンや蒸気タービンなどのように、据付状態からそのまま現場で開放点検を行うようなことができない。このため、タービン建屋から専用の保守エリアまでタービン車室ごと移動させて開放点検を行う必要がある。このような場合、車室の大型化は建屋の剛性確保のみならず、車室を吊り上げるためのクレーン容量にも大きく影響が及んでしまうという問題があった。   In addition, when the inside of the turbine as described above is contaminated with a certain substance, for safety reasons, it is necessary to perform an open inspection from the installation state as it is, such as a general gas turbine or steam turbine. I can't. For this reason, it is necessary to perform open inspection by moving the turbine casing from the turbine building to a dedicated maintenance area. In such a case, the increase in the size of the passenger compartment not only ensures the rigidity of the building, but also has a problem that the capacity of the crane for lifting the passenger compartment is greatly affected.

さらに、上述のつぼ型の車室構造とした場合、タービン静翼を保持する翼環部は主として端部開口部側にて支持されることになるが、この状態では翼環部は片持ち支持となる。特に大型のタービンにおいては、片持ち支持では翼環部のオーバーハングが長くなるため、芯保持が十分になされないだけでなく、回転部と静止部との軸方向熱伸び差の影響も大きくなるという問題があった。   Furthermore, in the case of the above-described crucible-type casing structure, the blade ring portion that holds the turbine stationary blade is supported mainly on the end opening side, but in this state, the blade ring portion is cantilevered. It becomes. Especially in large turbines, the overhang of the blade ring part becomes longer with cantilever support, so that not only the core is not sufficiently held, but also the influence of the difference in axial thermal expansion between the rotating part and the stationary part becomes large. There was a problem.

本発明は、上記の課題を解決するためになされたものであって、回転機械の小型化を図るとともに、回転機械の信頼性と性能の向上を図ることができる回転機械を提供することを目的とする。   The present invention has been made to solve the above-described problem, and an object of the present invention is to provide a rotating machine capable of reducing the size of the rotating machine and improving the reliability and performance of the rotating machine. And

上記目的を達成するために、本発明は、以下の手段を提供する。
本発明のタービンの車室構造の一態様は、動翼が植設されるロータ軸を内部に包囲するほぼ円筒状の車室を、前記ロータ軸の軸方向に対してほぼ中央部で2分割した第1の車室および第2の車室を有し、前記第1の車室および前記第2の車室における開口部に、それぞれ第1の接合フランジおよび第2の接合フランジを有し、前記車室に包囲されるとともに静翼を保持し、かつ、前記ロータ軸を包囲する略円筒状の翼環における前記軸方向長さのほぼ中央部に位置し、前記翼環を保持する第3の接合フランジを有し、前記第1の接合フランジおよび前記第2の接合フランジの間に前記第3の接合フランジを挟み込むことにより、前記第1の車室、前記第2の車室および前記翼環を組み立てる車室構造である。
In order to achieve the above object, the present invention provides the following means.
According to one aspect of the turbine casing structure of the present invention, a substantially cylindrical casing that surrounds a rotor shaft in which a rotor blade is implanted is divided into two at a substantially central portion with respect to the axial direction of the rotor shaft. The first casing and the second casing, and the first casing and the second casing have openings in the first casing and the second casing, respectively. A third ring that is surrounded by the casing and that holds the stationary blade and that is positioned substantially at the center of the axial length of the substantially cylindrical blade ring that surrounds the rotor shaft and holds the blade ring. The first casing, the second casing, and the wing are sandwiched between the first and second joining flanges. It is a cabin structure that assembles the ring.

上記態様によれば、車室を軸方向に2分割、例えば車室をロータ軸に対して交差する分割面により2分割して形成することにより、水平面で2分割、例えばロータ軸に沿って延びる分割面により2分割とした構成と比較して、車室の小型化を図ることができる。
つまり、水平面で2分割した場合には、2分割した車室の締結に用いる接合フランジが車室の全周から外側に突出することになる。一般的な蒸気タービンやガスタービンでは、水平面で2分割した際の車室の断面である水平断面より、ロータ軸方向に対して垂直な面で2分割した際の車室の断面の方が、断面積が小さくなる。そのため、軸方向に2分割して形成された車室(第1の車室および第2の車室)では、車室を水平面で2分割とした構成と比較して、接合フランジが突出する範囲を小さくできる。これにより、車室の小型化を図ることができる。
According to the above aspect, the casing is divided into two in the axial direction, for example, the casing is divided into two by the dividing plane intersecting the rotor axis, so that the casing extends in two, for example, along the rotor axis. Compared to the configuration in which the dividing surface is divided into two, the size of the passenger compartment can be reduced.
That is, when the horizontal plane is divided into two, the joint flange used for fastening the two-divided vehicle compartment projects outward from the entire circumference of the vehicle compartment. In general steam turbines and gas turbines, the cross section of the passenger compartment when divided into two in a plane perpendicular to the rotor axial direction is more horizontal than the horizontal cross section of the passenger compartment when divided into two in the horizontal plane. The cross-sectional area becomes smaller. Therefore, in the vehicle compartment (the first vehicle compartment and the second vehicle compartment) formed by being divided into two in the axial direction, the range in which the joint flange protrudes compared to the configuration in which the vehicle compartment is divided into two in the horizontal plane. Can be reduced. Thereby, size reduction of a vehicle interior can be achieved.

上記態様によれば、翼環から軸方向に対して交差する方向、より好ましくは略垂直な方向に延びる第3の接合フランジを、軸方向に2分割した第1の車室における第1の接合フランジと、第2の車室における第2の接合フランジと、で挟み込むことによって、第1の車室、第2の車室および翼環を組み立てることにより、翼環のオーバーハングを少なくすることができる。
つまり、翼環における軸方向のほぼ中央部分に位置する第3の接合フランジを介して、翼環を車室に対して保持することにより、例えば、特許文献2に記載されたつぼ型構造と比較して、翼環のオーバーハングを少なくすることができる。これにより、ロータ軸に対する翼環の芯保持の精度が向上される。また、翼環を軸方向のほぼ中央部分で支持していることから、翼環における軸方向への熱伸びを均等に配分させることが可能となる。
According to the above aspect, the first joint in the first casing in which the third joint flange extending in the direction intersecting the axial direction from the blade ring, more preferably in the substantially vertical direction, is divided into two in the axial direction. By assembling the first casing, the second casing, and the wing ring by sandwiching between the flange and the second joint flange in the second casing, the overhang of the wing ring can be reduced. it can.
In other words, by holding the blade ring with respect to the passenger compartment via the third joint flange located in the substantially central portion in the axial direction of the blade ring, for example, compared with the crucible structure described in Patent Document 2 Thus, the overhang of the blade ring can be reduced. This improves the accuracy of the blade ring core holding with respect to the rotor shaft. Further, since the blade ring is supported at the substantially central portion in the axial direction, it is possible to evenly distribute the thermal elongation in the axial direction of the blade ring.

上記態様において、前記翼環と前記車室との間に配置される連結部材を、作動流体の高圧側から低圧側へ向かって、前記連結部材の内周側が突出した形状とすることが望ましい。言い換えると、結合部材は、翼環と第3の接合フランジとの間に配置され、ロータ軸を中心とする径方向の外側に向かって、前記動翼および前記静翼の間を流れる作動流体における高圧側から低圧側に傾斜する円錐面状の部材であることが望ましい。
これにより、連結部材が圧力容器における鏡板として機能するため、連結部材の強度が向上する。
In the above aspect, it is desirable that the connecting member disposed between the blade ring and the casing is shaped so that the inner peripheral side of the connecting member protrudes from the high pressure side to the low pressure side of the working fluid. In other words, the coupling member is disposed between the blade ring and the third joint flange, and in the working fluid flowing between the moving blade and the stationary blade toward the radially outer side centering on the rotor shaft. It is desirable that the member is a conical member that is inclined from the high pressure side to the low pressure side.
Thereby, since a connection member functions as an end plate in a pressure vessel, the strength of the connection member is improved.

上記態様によれば、車室を軸方向に2分割に形成することにより、水平面を2分割とした構成と比較して、前記車室外への作動流体の漏れや、前記車室内への他の流体の流入などが低減される。つまり、前記ロータ軸の貫通部に前記フランジの接合面がないことから前記車室外への作動流体の漏れや、前記車室内への他の流体の流入などが低減される。   According to the above aspect, by forming the vehicle compartment in two in the axial direction, compared with the configuration in which the horizontal plane is divided into two, leakage of the working fluid to the outside of the vehicle compartment, Inflow of fluid is reduced. That is, since there is no joint surface of the flange in the through-hole portion of the rotor shaft, leakage of the working fluid to the outside of the vehicle interior, inflow of other fluid into the vehicle interior, and the like are reduced.

上記態様において、軸方向に2分割した前記第1と第2の車室の前記第1と第2の接合フランジによって挟み込まれる前記第3の接合フランジの外周面を前記第1と第2の接合フランジの間に内包させた構成とすることもできる。言い換えると、前記第1の接合フランジおよび前記第2の接合フランジは、前記ロータ軸を中心とする径方向外側で直接接合され、径方向内側で前記第3の接合フランジを間に挟み込み接合される構成とすることもできる。   In the above aspect, an outer peripheral surface of the third joint flange sandwiched between the first and second joint flanges of the first and second casings divided into two in the axial direction is the first and second joints. It can also be set as the structure enclosed between the flanges. In other words, the first joining flange and the second joining flange are joined directly on the radially outer side centering on the rotor shaft, and joined with the third joining flange sandwiched therebetween on the radially inner side. It can also be configured.

これにより、車室における外周面のフランジ接合面が一箇所となり接合面の範囲を小さくできるため、車室外への作動流体の漏れや、車室内への他の流体の流入などがより低減される。   As a result, the flange joint surface on the outer peripheral surface in the passenger compartment becomes one place, and the range of the joint surface can be reduced, so that leakage of working fluid to the outside of the passenger compartment and inflow of other fluid into the passenger compartment is further reduced. .

上記態様においては、前記車室の外側に、前記車室を内部に収容する圧力容器を設け、前記車室と前記圧力容器との間の空間に、前記動翼および前記静翼の間を流れる作動流体よりも高圧の流体を充填することが望ましい。   In the above aspect, a pressure vessel that houses the vehicle compartment is provided outside the vehicle compartment, and flows between the moving blade and the stationary blade in a space between the vehicle compartment and the pressure vessel. It is desirable to fill a higher pressure fluid than the working fluid.

上記態様によれば、車室と圧力容器との間の空間に、作動流体よりも高圧の流体を充填することにより、上述の空間への作動流体の流出が防止されるため、車室の外部への作動流体の流出が防止される。   According to the above aspect, by filling the space between the vehicle compartment and the pressure vessel with a fluid having a pressure higher than that of the working fluid, the working fluid is prevented from flowing out into the space described above. The outflow of the working fluid to the is prevented.

本発明の回転機械によれば、車室を軸方向2分割に形成することにより、車室およびこれを内部に包囲する圧力容器(外部車室)の小型化を図ることができるとともに、車室外への作動流体の漏れや、前記車室内への他の流体の流入などが低減され、回転機械の信頼性と性能の向上を図るという効果を奏する。
さらに、ロータ軸に対する翼環の芯保持の精度が向上し、回転機械の信頼性の向上を図ることができるという効果を奏する。
According to the rotating machine of the present invention, the casing is divided into two in the axial direction, so that the casing and the pressure vessel (external casing) surrounding the casing can be reduced in size, and the outside of the casing can be reduced. Leakage of the working fluid into the vehicle, inflow of other fluid into the vehicle compartment, and the like are reduced, and the reliability and performance of the rotating machine are improved.
Furthermore, the accuracy of the blade ring core holding with respect to the rotor shaft is improved, and the reliability of the rotating machine can be improved.

本発明の第1の実施例に係るガスタービンの全体構成を説明する模式図である。It is a mimetic diagram explaining the whole gas turbine composition concerning the 1st example of the present invention. 図2Aは、車室構造を軸方向2分割とした構成の模式的な平面図である。図2Bは、車室構造を軸方向2分割とした構成の模式的な軸方向側面図である。FIG. 2A is a schematic plan view of a configuration in which the passenger compartment structure is divided into two in the axial direction. FIG. 2B is a schematic axial side view of a configuration in which the passenger compartment structure is divided into two in the axial direction. 図3Aは、車室構造を水平2分割とした構成の模式的な平面図である。図3Bは、車室構造を水平2分割とした構成の模式的な軸方向側面図である。FIG. 3A is a schematic plan view of a configuration in which the passenger compartment structure is divided into two horizontally. FIG. 3B is a schematic axial side view of a configuration in which the vehicle interior structure is divided into two horizontally. 本発明の第2の実施例に係るガスタービンの全体構成を説明する模式図である。It is a schematic diagram explaining the whole structure of the gas turbine which concerns on the 2nd Example of this invention. 圧力容器内にガスタービン車室が収容される構成を説明する模式図である。It is a schematic diagram explaining the structure by which a gas turbine casing is accommodated in a pressure vessel.

〔第1の実施形態〕
この発明の実施形態に係るガスタービンの車室構造およびそれを備えたガスタービンについて、図1から図5を参照して説明する。
[First Embodiment]
A casing structure of a gas turbine according to an embodiment of the present invention and a gas turbine including the same will be described with reference to FIGS. 1 to 5.

図1は、本発明に係る第1の実施例のガスタービンの全体構成を説明する模式図である。
ガスタービン(回転機械)100には、図1に示すように、ガスタービン100の外形を構成する車室101と、タービン静翼10をその内周側に保持する翼環3と、タービン動翼11が植設されるロータ軸4と、作動流体を前記タービン静翼10の第1段に供給する入口スクロール部5と、前記タービン部動翼11の最終段から排出された作動流体が流入する排気スクロール部6と、が設けられている。
FIG. 1 is a schematic diagram for explaining the overall configuration of a gas turbine according to a first embodiment of the present invention.
As shown in FIG. 1, the gas turbine (rotary machine) 100 includes a casing 101 that forms the outer shape of the gas turbine 100, a blade ring 3 that holds the turbine stationary blade 10 on the inner peripheral side, and a turbine blade. The rotor shaft 4 in which the turbine 11 is implanted, the inlet scroll portion 5 that supplies the working fluid to the first stage of the turbine stationary blade 10, and the working fluid discharged from the final stage of the turbine section rotor blade 11 flows in. An exhaust scroll unit 6 is provided.

ガスタービン100では、作動流体をタービン静翼10で加速し、これをタービン動翼11に吹き付けることにより作動流体の熱エネルギーを機械的な回転エネルギーに変換し、ロータ軸4を回転させ、動力を取り出すものである。なお、タービン静翼10とタービン動翼11は複数段設けられていることが一般的である。   In the gas turbine 100, the working fluid is accelerated by the turbine stationary blade 10 and sprayed to the turbine rotor blade 11, thereby converting the thermal energy of the working fluid into mechanical rotational energy, rotating the rotor shaft 4, and generating power. It is something to take out. The turbine stationary blade 10 and the turbine rotor blade 11 are generally provided in a plurality of stages.

車室101は、図1に示すように、ガスタービン100の外形を構成し、その内部に翼環3や、ロータ軸4や、入口スクロール部5や、排気スクロール部6などが収納されるものである。車室101はロータ軸4の方向のほぼ中央部で2分割され、それぞれ高圧側の車室1(第1の車室)、および、低圧側の車室2(第2の車室)とする。   As shown in FIG. 1, the casing 101 constitutes the outer shape of the gas turbine 100, and the blade ring 3, the rotor shaft 4, the inlet scroll portion 5, the exhaust scroll portion 6, and the like are accommodated therein. It is. The vehicle interior 101 is divided into two substantially at the center in the direction of the rotor shaft 4, and is defined as a high pressure side vehicle interior 1 (first vehicle interior) and a low pressure side vehicle interior 2 (second vehicle interior). .

車室1,2は、一方の端部が閉塞された略円筒状の部材、言い換えると、有底円筒状、いわゆる壺型に形成された部材である。車室1,2は、開口端の外周部にそれぞれフランジ1A,2Aを有している。車室1,2は互いに開口端を向き合わせて、フランジ1Aとフランジ2Aとの間に後述する翼環3のフランジ3Aを挟んで締結されるように構成されている。
車室1,2の閉塞端にはロータ軸4が挿通される貫通孔7が設けられ、車室1,2の円筒面には作動流体が流入または流出する配管が挿通される開口部8が設けられている。
The passenger compartments 1 and 2 are substantially cylindrical members whose one end is closed, in other words, a bottomed cylindrical member, that is, a so-called bowl-shaped member. The vehicle compartments 1 and 2 have flanges 1A and 2A, respectively, on the outer periphery of the opening end. The casings 1 and 2 are configured to be fastened with the opening ends facing each other and sandwiching a flange 3A of a blade ring 3 described later between the flange 1A and the flange 2A.
A through hole 7 through which the rotor shaft 4 is inserted is provided at the closed ends of the casings 1 and 2, and an opening 8 through which a pipe through which a working fluid flows in or out is inserted in the cylindrical surfaces of the casings 1 and 2. Is provided.

翼環3は、図1に示すように、車室1,2とともにロータ軸4を包囲し、ガスタービン100を構成するとともに、タービン静翼10を支持するものである。
翼環3は、回転軸線Lと中心とする軸方向に延びる略円筒状の部材と、最外周部に配置されるフランジ3Aと、フランジ3Aにより略円筒状の翼環部材を保持する略円錐面状の連結部材3Bによって構成され、フランジ3Aがフランジ1A,2Aに挟まれて配置される部材である。なお、翼環3の内周側にタービン静翼10が保持される。なお、フランジ3Aは翼環3の軸方向長さのほぼ中央位置にある。
As shown in FIG. 1, the blade ring 3 surrounds the rotor shaft 4 together with the casings 1 and 2, constitutes the gas turbine 100, and supports the turbine stationary blade 10.
The blade ring 3 includes a substantially cylindrical member extending in the axial direction centered on the rotation axis L, a flange 3A disposed on the outermost periphery, and a substantially conical surface that holds the substantially cylindrical blade ring member by the flange 3A. The connecting member 3B is a member, and the flange 3A is disposed between the flanges 1A and 2A. A turbine stationary blade 10 is held on the inner peripheral side of the blade ring 3. The flange 3 </ b> A is substantially at the center position in the axial length of the blade ring 3.

ロータ軸4はタービン動翼11が植設され、図1に示すように、タービン静翼10によって加速された作動流体を、タービン動翼11に吹き付けることによって回転軸線Lまわりに回転駆動されるものである。なお、タービン静翼10とタービン動翼11は交互に複数段設けられているのが一般的であり、これらの構成は、公知の構成を用いることができ、特に限定するものではない。   As shown in FIG. 1, the rotor shaft 4 is rotationally driven around the rotation axis L by spraying the working fluid accelerated by the turbine stationary blade 10 onto the turbine blade 11. It is. In general, the turbine stationary blades 10 and the turbine rotor blades 11 are alternately provided in a plurality of stages, and these configurations can use known configurations and are not particularly limited.

入口スクロール部5および排気スクロール部6は、図1に示すように、作動流体が内部を通過するものであって、それぞれ、作動流体をタービン静翼10の第1段に供給、タービン動翼11の最終段から排出された作動流体が流入するものである。   As shown in FIG. 1, the inlet scroll unit 5 and the exhaust scroll unit 6 pass the working fluid therein, and supply the working fluid to the first stage of the turbine stationary blade 10, respectively. The working fluid discharged from the final stage flows in.

次に、上記の構成からなるガスタービン100における作用について説明する。
ガスタービン100の入口スクロール部5には、図1に示すように、高温ガス炉において高温に加熱された作動流体が流入する。入口スクロール部5に流入した作動流体は環状流路31に流入し、周方向にわたって略均一な流量で筒状流路32に流入する。筒状流路32に流入した作動流体は、タービン静翼10の第1段に向かって導かれる。
Next, the operation of the gas turbine 100 having the above configuration will be described.
As shown in FIG. 1, the working fluid heated to a high temperature in the high temperature gas furnace flows into the inlet scroll portion 5 of the gas turbine 100. The working fluid that has flowed into the inlet scroll portion 5 flows into the annular flow path 31 and flows into the cylindrical flow path 32 at a substantially uniform flow rate in the circumferential direction. The working fluid that has flowed into the cylindrical flow path 32 is guided toward the first stage of the turbine vane 10.

図1に示すように、流入した作動流体によりタービン動翼11が回転駆動され、動翼11により抽出された回転駆動力が回転軸4に伝達される。タービン動翼11により回転駆動力が抽出されて温度が低下した作動流体は、タービン動翼11の最終段から排出される。   As shown in FIG. 1, the turbine rotor blade 11 is rotationally driven by the flowing working fluid, and the rotational driving force extracted by the rotor blade 11 is transmitted to the rotary shaft 4. The working fluid in which the rotational driving force is extracted by the turbine blades 11 and the temperature is lowered is discharged from the final stage of the turbine blades 11.

タービン動翼11の最終段から排出された作動流体は、図1に示すように、排気スクロール部6の筒状流路32に流入し、環状流路31に向かって流れる。環状流路31に流入した作動流体は、排気スクロール部6つまりガスタービン100から排出され、各機器を通って再び高温ガス炉に導かれる。   The working fluid discharged from the final stage of the turbine rotor blade 11 flows into the cylindrical flow path 32 of the exhaust scroll portion 6 and flows toward the annular flow path 31 as shown in FIG. The working fluid that has flowed into the annular flow path 31 is discharged from the exhaust scroll portion 6, that is, the gas turbine 100, and is again guided to the high temperature gas furnace through each device.

上記の構成によれば、車室101を軸方向に2分割に形成することにより、水平面を2分割とした構成と比較して、前記車室101の小型化を図ることができる。つまり、2分割した車室1,2の締結に用いるフランジ1A,1Bが車室101の全周から外側に突出することになるが、水平断面より軸方向に垂直な断面の方が断面積が小さいことから、軸方向2分割に形成された前記車室では、水平面を2分割とした構成と比較して、フランジの突出する範囲を小さくできる。   According to said structure, compared with the structure which divided the horizontal surface into 2 parts by forming the compartment 101 in the axial direction, the size of the said compartment 101 can be achieved. That is, the flanges 1A and 1B used to fasten the two compartments 1 and 2 protrude outward from the entire circumference of the compartment 101, but the cross section of the cross section perpendicular to the axial direction is larger than the horizontal cross section. Due to the small size, in the vehicle compartment formed in the axial direction divided into two parts, the protruding range of the flange can be made small compared to the structure in which the horizontal plane is divided into two parts.

これを図2A、図2B、図3Aおよび図3Bを用いて模式的に示す。
図2Aおよび図2Bは軸方向2分割構成のガスタービンの車室構造を示し、それぞれ平面図と軸方向からみた側面図である。ここで斜線部1Aおよび1Bは、軸方向に2分割した車室1および車室2に設けられた接続フランジであり、車室1および車室2から突出した形状となる。また、車室101全体の長さをL1とし、車室101の直径をD1とする。なお、一般的なガスタービンでは、D1よりもL1は大きくなっている。ここで、前記車室1および車室2の外側に円筒状の圧力容器を設ける場合、圧力容器の外形は二点鎖線200のようになり、長さをL2、直径をD2とする。
This is schematically shown using FIGS. 2A, 2B, 3A and 3B.
2A and 2B show a casing structure of a gas turbine having an axially divided configuration, and are a plan view and a side view as seen from the axial direction, respectively. The hatched portions 1 </ b> A and 1 </ b> B are connecting flanges provided in the vehicle compartment 1 and the vehicle compartment 2 that are divided into two in the axial direction, and project from the vehicle compartment 1 and the vehicle compartment 2. Further, the length of the entire passenger compartment 101 is L1, and the diameter of the passenger compartment 101 is D1. In a general gas turbine, L1 is larger than D1. Here, when a cylindrical pressure vessel is provided outside the vehicle compartment 1 and the vehicle compartment 2, the external shape of the pressure vessel is as indicated by a two-dot chain line 200, the length is L2, and the diameter is D2.

一方、図3Aおよび図3Bは水平面を2分割とした構成のガスタービンの車室構造を示し,それぞれ平面図と軸方向からみた側面図である。ここで斜線部111Aおよび111Bは、水平面で2分割された車室の内の上側の車室111(上部車室)および下側の車室112(下部車室)に設けられた接続フランジであり、車室111および車室112から回転軸線Lを中心とした径方向外側および軸方向外側に突出した形状となる。また、車室101全体の長さをL1とし、車室101の直径をD1とする。軸方向2分割構成(本実施形態の構成)の場合と、上述の水平面で車室を2分割した構成の場合と、におけるガスタービン自体の形状が同一とするとL1,D1は同一寸法となる。ここで、前記車室111および車室112の外側に円筒状の圧力容器を設ける場合には、圧力容器の外形は二点鎖線210のようになり、その長さをL3とし、直径をD3とする。   On the other hand, FIGS. 3A and 3B show a casing structure of a gas turbine having a structure in which a horizontal plane is divided into two, and are a plan view and a side view as seen from the axial direction, respectively. The hatched portions 111A and 111B are connecting flanges provided in the upper compartment 111 (upper compartment) and the lower compartment 112 (lower compartment) of the compartment divided in two on a horizontal plane. The vehicle body 111 and the vehicle compartment 112 have a shape projecting radially outward and axially outward with the rotation axis L as the center. Further, the length of the entire passenger compartment 101 is L1, and the diameter of the passenger compartment 101 is D1. If the shape of the gas turbine itself is the same in the case of the axially divided configuration (configuration of the present embodiment) and the configuration in which the casing is divided into two on the horizontal plane, L1 and D1 have the same dimensions. Here, when a cylindrical pressure vessel is provided outside the vehicle compartment 111 and the vehicle compartment 112, the outer shape of the pressure vessel is as indicated by a two-dot chain line 210, the length thereof is L3, and the diameter is D3. To do.

ここで、図から明らかなように、図2A,図2Bに示す軸方向2分割構成(本実施形態の構成)の方が、図3A,図3Bに示す水平2分割構成(従来の構成)よりも斜線部分の領域が小さい。つまり、フランジの突出範囲が小さいことがわかる。
また、車室101の外側に圧力容器を設ける場合も、軸方向2分割構成の直径D2と水平2分割構成の直径D3とは同等であるが、軸方向2分割構成の長さL2はフランジの突出幅の分だけ水平2分割構成の長さL3よりも短縮できることがわかる。
Here, as is apparent from the figure, the axially divided configuration shown in FIGS. 2A and 2B (configuration of the present embodiment) is more than the horizontal split configuration shown in FIGS. 3A and 3B (conventional configuration). The shaded area is also small. That is, it can be seen that the protruding range of the flange is small.
Also, when the pressure vessel is provided outside the passenger compartment 101, the diameter D2 of the axially divided configuration is equal to the diameter D3 of the horizontally divided configuration, but the length L2 of the axially divided configuration is equal to the length of the flange. It can be seen that the length can be shortened by a length corresponding to the protruding width than the length L3 of the horizontal two-part configuration.

これにより、車室101の小型化を図ることができ、素材や製造のコストが低減できるだけでなく、ガスタービン100全体の質量も低減できるため、点検等によりガスタービン100を移動させることが容易となり、保守性が向上する。また、ガスタービン100の外側に圧力容器200を設ける場合も、小型化を図ることができるため、素材や製造のコストが低減できるだけでなく、ガスタービンの建屋の小型化も図ることができる。なお、前述したとおり、一般的なガスタービンでは、直径D1よりも長さL1は大きいため、軸方向2分割構成とすることにより車室101の小型化を図ることができる。   As a result, it is possible to reduce the size of the passenger compartment 101, not only reduce the material and manufacturing costs, but also reduce the mass of the entire gas turbine 100, which makes it easy to move the gas turbine 100 by inspection or the like. , Improving maintainability. Further, when the pressure vessel 200 is provided outside the gas turbine 100, the size can be reduced, so that not only the material and the manufacturing cost can be reduced, but also the building of the gas turbine can be reduced. Note that, as described above, in a general gas turbine, the length L1 is larger than the diameter D1, and therefore, the casing 101 can be reduced in size by adopting a two-axis configuration.

上記の構成によれば、翼環のフランジ3Aを、車室1,2の接合フランジ1A,2Aで挟み込むことによって、車室1,2と翼環3を組み立てることにより、翼環3のオーバーハングを少なくすることができる。つまり、翼環3の軸方向のほぼ中央部分を車室に対して保持することにより、つぼ型構造と比較して、翼環3のオーバーハングを少なくすることができる。これにより、ロータ軸4に対する翼環3の芯保持の精度が向上される。また、翼環3を軸方向のほぼ中央で支持していることから、翼環3の軸方向熱伸びを均等に配分させることが可能となり、ガスタービン100の信頼性が向上する。   According to the above configuration, the blade ring 3 is overhanged by assembling the casings 1 and 2 and the blade ring 3 by sandwiching the flange 3A of the blade ring between the joint flanges 1A and 2A of the casings 1 and 2. Can be reduced. That is, by holding the substantially central portion of the blade ring 3 in the axial direction with respect to the passenger compartment, the overhang of the blade ring 3 can be reduced as compared with the crucible structure. Thereby, the precision of the core holding | maintenance of the blade ring 3 with respect to the rotor shaft 4 is improved. Further, since the blade ring 3 is supported at substantially the center in the axial direction, the axial thermal expansion of the blade ring 3 can be evenly distributed, and the reliability of the gas turbine 100 is improved.

上記の構成によれば、翼環3の連結部材3Bは、圧力容器における、鏡板の役割を担う。車室1と翼環3に囲まれる領域12は作動流体の入口側であり、車室2と翼環3に囲まれる領域13が作動流体の出口側であることから、領域13の圧力よりも領域12の圧力の方が高くなる。このため、図1に示すように、連結部材3の半径方向の内周側を高圧側の領域12から低圧側の領域13の方へ突出させることにより、連結部材3Bの耐圧性が向上する。
なお、本実施例では連結部材3Bは、略円錐面状としているが、鏡板としての役割を担うものであれば、曲面状としてもよい。また、領域12と領域13の圧力差により、連結部材3Bに要求される強度が相対的に小さいのであれば、連結部材3Bは平板状としてもよく、特に限定されるものではない。
According to said structure, the connection member 3B of the blade ring 3 plays the role of the end plate in a pressure vessel. A region 12 surrounded by the casing 1 and the blade ring 3 is the inlet side of the working fluid, and a region 13 surrounded by the casing 2 and the blade ring 3 is the outlet side of the working fluid. The pressure in the region 12 is higher. Therefore, as shown in FIG. 1, the pressure resistance of the connecting member 3 </ b> B is improved by projecting the radially inner peripheral side of the connecting member 3 from the high pressure side region 12 toward the low pressure side region 13.
In this embodiment, the connecting member 3B has a substantially conical surface shape, but may have a curved surface shape as long as it plays a role as an end plate. Moreover, if the intensity | strength requested | required of the connection member 3B by the pressure difference of the area | region 12 and the area | region 13 is relatively small, the connection member 3B may be flat form, and is not specifically limited.

上記の構成によれば、車室101を軸方向に2分割に形成することにより、水平面を2分割とした構成と比較して、外部への作動流体の漏れや、外部から車室内への他の流体の巻き込まれによる流入などを低減できる。つまり、ロータ軸の貫通部にフランジ接合面がないことから車室外への作動流体の漏れや、車室内への他の流体の流入などがより低減される。   According to the above configuration, the casing 101 is divided into two parts in the axial direction, so that compared with the configuration in which the horizontal plane is divided into two parts, leakage of the working fluid to the outside, Inflow due to the entrainment of the fluid can be reduced. That is, since there is no flange joint surface in the through-hole portion of the rotor shaft, the leakage of the working fluid to the outside of the passenger compartment and the inflow of other fluids into the passenger compartment are further reduced.

上記の構成によれば、車室101を軸方向に2分割に形成することにより、水平面を2分割とした構成と比較して、作動流体の圧力によって分割面の接合フランジに作用する内圧荷重を均一化できると共に、低減することができる。
水平面を2分割とした構成とした場合、前述したように車室内部で高圧部と低圧部が存在するため、接合フランジ部に作用する内圧荷重は位置によって一定ではない。このため、フランジを締結するためのボルトや、フランジ自体の強度設計にはこれを考慮する必要がある。これに対し、車室101を軸方向に2分割に形成したことにより、フランジ1Aおよび2Aに作用する荷重は周方向に均一となるため、フランジや締結ボルトの強度設計が容易になる。さらに、以下に図2A,図2B,図3Aおよび図3Bを用いて模式的に示すように、フランジに作用する内圧荷重も低減できる。
According to the above configuration, by forming the casing 101 in two in the axial direction, the internal pressure load acting on the joint flange of the split surface by the pressure of the working fluid is compared with the configuration in which the horizontal plane is divided into two. It can be made uniform and reduced.
When the horizontal plane is divided into two parts, the high pressure part and the low pressure part exist in the vehicle interior as described above, and therefore the internal pressure load acting on the joint flange part is not constant depending on the position. For this reason, it is necessary to consider this in the strength design of the bolt for fastening the flange and the flange itself. On the other hand, since the casing 101 is divided into two parts in the axial direction, the loads acting on the flanges 1A and 2A are uniform in the circumferential direction, so that the strength design of the flanges and fastening bolts is facilitated. Further, as schematically shown below using FIGS. 2A, 2B, 3A, and 3B, the internal pressure load acting on the flange can be reduced.

軸方向2分割構成の場合、フランジ接合部の受圧面積A1は概略下記の式(1)により算出される。
A1=π×D1÷4 ...(1)
ここで、πは円周率である。
In the case of the axially divided configuration, the pressure receiving area A1 of the flange joint portion is roughly calculated by the following equation (1).
A1 = π × D1 ÷ 4. . . (1)
Here, π is the circumference ratio.

一方、水平2分割構成の場合、フランジ接合部の受圧面積A2は概略下記の式(2)により算出される。
A2=L1×D1 ... (2)
On the other hand, in the case of the horizontal two-part configuration, the pressure receiving area A2 of the flange joint is roughly calculated by the following equation (2).
A2 = L1 × D1. . . (2)

ここで、π≒3.14であり、L1>D1であることから、下記の式(3)により、A1<A2となることがわかる。
A1=π×D1÷4<D1<L1×D1=A2 ... (3)
軸方向2分割構成でも、水平2分割構成でも、分割面に作用する圧力は概ね高圧部と低圧部の平均圧力であり等しいとすれば、フランジに作用する内圧荷重は、前述の受圧面積で決まるため、軸方向2分割構成の方が、内圧荷重が低減されることがわかる。
Here, since π≈3.14 and L1> D1, it can be seen that A1 <A2 from the following equation (3).
A1 = π × D1 2 ÷ 4 <D1 2 <L1 × D1 = A2. . . (3)
Assuming that the pressure acting on the split surface is approximately the average pressure of the high-pressure part and the low-pressure part, and the internal pressure load acting on the flange is determined by the aforementioned pressure-receiving area in both the axially divided structure and the horizontally divided structure. Therefore, it can be seen that the internal pressure load is reduced in the axially divided configuration.

〔第2の実施形態〕
図4は、本発明に係る第2の実施例のガスタービンの全体構成を説明する模式図である。なお、本実施例のガスタービンの基本構成は、第1の実施例と同様であるが、第1の実施例とは、第3の接合フランジの保持構造が異なっている。よって、本実施例においては、図4を用いて第3の接合フランジの保持構造のみを説明し、その他の構成要素等の説明を省略する。また、第1の実施例と同一の構成要素については同一の符号を付してその説明を省略する。
[Second Embodiment]
FIG. 4 is a schematic diagram illustrating the overall configuration of the gas turbine according to the second embodiment of the present invention. The basic configuration of the gas turbine of this embodiment is the same as that of the first embodiment, but the third joining flange holding structure is different from that of the first embodiment. Therefore, in the present embodiment, only the holding structure of the third joint flange will be described with reference to FIG. 4, and description of other components will be omitted. The same components as those in the first embodiment are designated by the same reference numerals and the description thereof is omitted.

第2の実施例においては、図4に示すようにガスタービン300の車室101を軸方向に2分割した車室1および車室2のフランジ1A,1Bによって挟み込まれるフランジ3Aの外周面をフランジ1Aと1Bの間に内包させた構成となっている。   In the second embodiment, as shown in FIG. 4, the outer peripheral surface of the flange 3A sandwiched between the casing 1 of the gas turbine 300 divided into two in the axial direction and the flanges 1A and 1B of the casing 2 is flanged. It is the structure enclosed between 1A and 1B.

ここで、第1の実施例では車室1および車室2のフランジ1Aおよびフランジ2Aでフランジ3Aを挟み込む構成となっていた。このため、車室101の外周側のフランジ接合面が2箇所となっていた。一方、第2の実施例の構成によれば、フランジ3Aの外周部3Cがフランジ1Aとフランジ2Aとの間に内包されることにより、フランジ1Aとフランジ2Aが車室101の外周側で直接接合される。これにより、接合箇所は1箇所となり、接合面の周囲長さを実質的に2分の1にできる。これにより、車室外への作動流体の漏れや、車室内への他の流体の流入などが低減される。   Here, in the first embodiment, the flange 3A is sandwiched between the flange 1A and the flange 2A of the passenger compartment 1 and the passenger compartment 2. For this reason, there are two flange joint surfaces on the outer peripheral side of the passenger compartment 101. On the other hand, according to the configuration of the second embodiment, the outer peripheral portion 3C of the flange 3A is enclosed between the flange 1A and the flange 2A, so that the flange 1A and the flange 2A are directly joined on the outer peripheral side of the vehicle interior 101. Is done. As a result, the number of joints is one, and the peripheral length of the joint surface can be substantially halved. As a result, leakage of the working fluid to the outside of the passenger compartment, inflow of other fluids into the passenger compartment, and the like are reduced.

上記の構成によれば、水平2分割構成に比べ軸方向2分割構成の方が、フランジ接合部の断面の周囲長さが短く、前記車室101を軸方向2分割に形成することにより、水平面で2分割とした構成と比較して、接合面の範囲を小さくできる。これにより、前記車室外への作動流体の漏れや、前記外部ケーシング内への他の流体の流入などが低減される。   According to said structure, compared with the horizontal two division structure, the axial direction two division structure has the circumference length of the cross section of a flange junction part shorter, and forms the said vehicle interior 101 into two axial directions division | segmentation. Thus, the range of the joint surface can be reduced as compared with the configuration divided into two. As a result, leakage of the working fluid to the outside of the passenger compartment, inflow of other fluid into the outer casing, and the like are reduced.

これを図2A,図2B,図3Aおよび図3Bを用いて模式的に示す。
第1の実施例でも説明したように、図2Aおよび図2Bは軸方向2分割構成のガスタービンの車室構造を示し、それぞれ平面図と軸方向からみた側面図である。ここで斜線部1Aおよび1Bは、軸方向に2分割した車室1および車室2に設けられた接続フランジである。一般的なガスタービンでは、車室101の直径D1よりも長さL1は大きくなっている。ここで、フランジ接合部の断面の周囲長さL10は概略下記の式(4)により算出される。
L10=π×D1 ... (4)
ここで、πは円周率である。
This is schematically shown using FIGS. 2A, 2B, 3A and 3B.
As described in the first embodiment, FIG. 2A and FIG. 2B show a casing structure of a gas turbine having an axially divided configuration, and are a plan view and a side view as seen from the axial direction, respectively. Here, hatched portions 1A and 1B are connecting flanges provided in the vehicle compartment 1 and the vehicle compartment 2 that are divided into two in the axial direction. In a general gas turbine, the length L1 is larger than the diameter D1 of the passenger compartment 101. Here, the peripheral length L10 of the cross section of the flange joint is roughly calculated by the following equation (4).
L10 = π × D1. . . (4)
Here, π is the circumference ratio.

一方、図3Aおよび図3Bは水平面2分割構成のガスタービンの車室構造を示し,それぞれ平面図と軸方向からみた側面図である。ここで斜線部111Aおよび111Bは、水平面で2分割した車室111および車室112に設けられた接続フランジである。同様に、車室101全体の長さをL1とし、車室の直径をD1とすると、フランジ接合部の断面の周囲長さL11は概略下記の式(5)により算出される。
L11=2×(L1+D1) ... (5)
On the other hand, FIG. 3A and FIG. 3B show the casing structure of the gas turbine of the horizontal plane divided structure, and are a plan view and a side view as seen from the axial direction, respectively. Here, hatched portions 111A and 111B are connecting flanges provided in the vehicle interior 111 and the vehicle interior 112 that are divided into two on a horizontal plane. Similarly, if the length of the entire casing 101 is L1 and the diameter of the casing is D1, the peripheral length L11 of the cross section of the flange joint is roughly calculated by the following equation (5).
L11 = 2 × (L1 + D1). . . (5)

ここで、π≒3.14であり、L1>D1であることから、下記の式(6)により、L10<L11となることがわかる。
L10=π×D1<2×(D1+D1)<2×(L1+D1)=L11 ... (6)
これにより、水平2分割構成に比べ軸方向2分割構成の方が、フランジ接合部の断面の周囲長さが短く、前記車室101を軸方向2分割に形成することにより、水平面で2分割とした構成と比較して、接合面の範囲を小さくできる。これにより、車室外への作動流体の漏れや、車室内への他の流体の流入などがより低減できるため、ガスタービン300の信頼性向上を図ることができる。
Here, since π≈3.14 and L1> D1, it can be seen that L10 <L11 by the following equation (6).
L10 = π × D1 <2 × (D1 + D1) <2 × (L1 + D1) = L11. . . (6)
As a result, the axial two-part configuration is shorter than the horizontal two-part configuration, and the circumferential length of the cross section of the flange joint is shorter. Compared to the configuration, the range of the joint surface can be reduced. As a result, the leakage of the working fluid to the outside of the passenger compartment, the inflow of other fluids into the passenger compartment, and the like can be further reduced, so that the reliability of the gas turbine 300 can be improved.

なお、本発明の技術範囲は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
例えば、上記の実施の形態においては、この発明を軸流式のタービンに適用して説明したが、この発明は軸流式のタービンに限られることなく、遠心式や斜流式のタービンなど、その他各種のタービンに適用できるものである。
The technical scope of the present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.
For example, in the above embodiment, the present invention is applied to an axial flow turbine, but the present invention is not limited to an axial flow turbine, and a centrifugal or mixed flow turbine, It can be applied to other various turbines.

この発明は、空気を作動流体とし、化石燃料などの燃焼エネルギーを熱源とするガスタービンなど、その他の形式のガスタービン、あるいは蒸気タービンや圧縮機などの回転機械全般に適用することができ、特に限定するものではない。   The present invention can be applied to other types of gas turbines such as gas turbines using air as a working fluid and combustion energy such as fossil fuel as a heat source, or rotating machines such as steam turbines and compressors in particular. It is not limited.

1 車室(第1の車室)
2 車室(第2の車室)
1A,2A,3A,111A,112A フランジ
3 翼環
3B 連結部材
3C フランジ外周面
4 ロータ軸
5 入口スクロール部
6 排気スクロール部
7 軸貫通部
10 タービン静翼
11 タービン動翼
12 高圧側(高圧部)
13 低圧側(低圧部)
31 環状流路
32 筒状流路
100,300 ガスタービン(回転機械)
101 車室(車室全体)
111 車室(上側の車室)
112 車室(下側の車室)
200,210 圧力容器(外部車室)
201 空間
L 回転軸線
L1 車室の長さ
L2 圧力容器の長さ(軸方向2分割構成の場合)
L3 圧力容器の長さ(水平2分割構成の場合)
D1 車室の直径
D2 圧力容器の直径(軸方向2分割構成の場合)
D3 圧力容器の直径(水平2分割構成の場合)
1 compartment (first compartment)
2 compartment (second compartment)
1A, 2A, 3A, 111A, 112A Flange 3 Blade ring 3B Connecting member 3C Flange outer peripheral surface 4 Rotor shaft 5 Inlet scroll portion 6 Exhaust scroll portion 7 Shaft through portion 10 Turbine stationary blade 11 Turbine blade 12 High pressure side (high pressure portion)
13 Low pressure side (low pressure part)
31 annular flow channel 32 cylindrical flow channel 100,300 gas turbine (rotary machine)
101 Cabin (entire cabin)
111 compartment (upper compartment)
112 Car compartment (lower car compartment)
200,210 Pressure vessel (external compartment)
201 Space L Rotation axis L1 Length of vehicle compartment L2 Length of pressure vessel (in the case of a two-part configuration in the axial direction)
L3 Pressure vessel length (in the case of horizontal two-part configuration)
D1 Cabin diameter D2 Pressure vessel diameter (in the case of an axially divided configuration)
D3 Pressure vessel diameter (in the case of horizontal two-part configuration)

Claims (4)

動翼が植設されるロータ軸を内部に包囲するほぼ円筒状の車室を、前記ロータ軸の軸方向に対してほぼ中央部で2分割した第1の車室および第2の車室を有し、
前記第1の車室および前記第2の車室における開口部に、それぞれ第1の接合フランジおよび第2の接合フランジを有し、
前記車室に包囲されるとともに静翼を保持し、かつ、前記ロータ軸を包囲する略円筒状の翼環における前記軸方向長さのほぼ中央部に位置し、前記翼環を保持する第3の接合フランジを有し、
前記第1の接合フランジおよび前記第2の接合フランジの間に前記第3の接合フランジを挟み込むことにより、前記第1の車室、前記第2の車室および前記翼環を組み立てることを特徴とする回転機械。
A first casing and a second casing, which are divided into two substantially in the center with respect to the axial direction of the rotor shaft, are substantially cylindrical casings surrounding the rotor shaft in which the rotor blades are implanted. Have
In the opening in the first casing and the second casing, respectively, a first joining flange and a second joining flange are provided,
A third ring that is surrounded by the casing and that holds the stationary blade and that is positioned substantially at the center of the axial length of the substantially cylindrical blade ring that surrounds the rotor shaft and holds the blade ring. With a joining flange of
The first casing, the second casing, and the blade ring are assembled by sandwiching the third joining flange between the first joining flange and the second joining flange. Rotating machine.
前記翼環は、前記第3の接合フランジに対し、ほぼ円錐面状の結合部材によって保持され、
前記結合部材の前記翼環側内周面は、前記動翼および前記静翼の間を流れる作動流体における高圧側から低圧側に対して突出していることを特徴とする請求項1に記載の回転機械。
The blade ring is held by a substantially conical connecting member with respect to the third joint flange,
2. The rotation according to claim 1, wherein the blade ring side inner peripheral surface of the coupling member protrudes from a high pressure side to a low pressure side in a working fluid flowing between the moving blade and the stationary blade. machine.
前記第3の接合フランジの外周部を、前記第1の接合フランジと前記第2の接合フランジとの間に内包させたことを特徴とする請求項1または2に記載の回転機械。   The rotating machine according to claim 1 or 2, wherein an outer peripheral portion of the third joint flange is enclosed between the first joint flange and the second joint flange. 前記車室の外側に、前記車室を内部に収容する圧力容器を設け、
前記車室と前記圧力容器との間の空間に、前記動翼および前記静翼の間を流れる作動流体よりも高圧の流体を充填することを特徴とする請求項1乃至3のいずれかに記載の回転機械。
A pressure vessel is provided outside the passenger compartment to house the passenger compartment,
The space between the casing and the pressure vessel is filled with a fluid having a pressure higher than that of the working fluid flowing between the moving blade and the stationary blade. Rotating machine.
JP2010524005A 2008-03-31 2009-03-27 Rotating machine Expired - Fee Related JP4969688B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010524005A JP4969688B2 (en) 2008-03-31 2009-03-27 Rotating machine

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008093753 2008-03-31
JP2008093753 2008-03-31
JP2010524005A JP4969688B2 (en) 2008-03-31 2009-03-27 Rotating machine
PCT/JP2009/056929 WO2009123301A2 (en) 2008-03-31 2009-03-27 Rotary machine

Publications (2)

Publication Number Publication Date
JP2011506809A true JP2011506809A (en) 2011-03-03
JP4969688B2 JP4969688B2 (en) 2012-07-04

Family

ID=41136028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010524005A Expired - Fee Related JP4969688B2 (en) 2008-03-31 2009-03-27 Rotating machine

Country Status (7)

Country Link
US (1) US20100260599A1 (en)
EP (1) EP2276912B1 (en)
JP (1) JP4969688B2 (en)
CN (1) CN101952557A (en)
RU (1) RU2483218C2 (en)
WO (1) WO2009123301A2 (en)
ZA (1) ZA201003458B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3014077B1 (en) 2013-06-28 2018-01-17 Mitsubishi Heavy Industries Compressor Corporation Axial flow expander
JP6483106B2 (en) * 2013-06-28 2019-03-13 エクソンモービル アップストリーム リサーチ カンパニー System and method utilizing an axial flow expander
EP3128134A1 (en) * 2015-08-06 2017-02-08 Siemens Aktiengesellschaft Assembly for a steam turbine and corresponding fixation method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4149826A (en) * 1976-07-05 1979-04-17 Stal-Labal Turbin Ab Gas turbine
JPS6216701U (en) * 1985-07-15 1987-01-31
JPS6225842B2 (en) * 1978-06-26 1987-06-05 Gen Electric
JP2007218119A (en) * 2006-02-14 2007-08-30 Mitsubishi Heavy Ind Ltd Casing and fluid machine

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2374122A (en) * 1942-12-05 1945-04-17 Arthur J Nelson Double case pump
US2408637A (en) * 1944-07-31 1946-10-01 Smith Corp A O Double-casing high-pressure pump
US2815645A (en) * 1955-03-01 1957-12-10 Gen Electric Super-critical pressure elastic fluid turbine
SU832089A1 (en) * 1979-04-16 1981-05-23 Ордена Ленина И Ордена Трудовогокрасного Знамени Производственноеобъединение "Невский Завод" Им. B.И.Ленина Turbine machine body
JPS5832902A (en) * 1981-08-20 1983-02-26 Toshiba Corp Steam turbine
JPS593103A (en) * 1982-06-29 1984-01-09 Hitachi Zosen Corp Variable stator blade device in turbine
SU1399485A1 (en) * 1986-06-10 1988-05-30 А. И. Григорьев, К. И. Сбитнев, В. В. Вдовиков и Н. Е. Першин Method of fastening flanges of steam turbine vertical joint
FR2608715B1 (en) * 1986-12-19 1989-12-01 Srti Soc Rech Tech Ind LIQUID LEAKAGE PREVENTION METHOD, AND DEVICE PROVIDED WITH MEANS FOR CARRYING OUT SAID METHOD
US5080557A (en) * 1991-01-14 1992-01-14 General Motors Corporation Turbine blade shroud assembly
US5593277A (en) * 1995-06-06 1997-01-14 General Electric Company Smart turbine shroud
WO1997038209A1 (en) * 1996-04-11 1997-10-16 Siemens Aktiengesellschaft Thrust-compensating process and device for turbomachines
FR2794816B1 (en) * 1999-06-10 2001-07-06 Snecma HIGH PRESSURE COMPRESSOR STATOR
ES2267655T3 (en) * 2001-11-22 2007-03-16 Siemens Aktiengesellschaft METHOD OF MANUFACTURE OF STEAM TURBINES.
FR2860041B1 (en) * 2003-09-22 2005-11-25 Snecma Moteurs REALIZING THE SEALING IN A TURBOJET FOR THE DOUBLE BALL TUBE COLLECTION
FR2891300A1 (en) * 2005-09-23 2007-03-30 Snecma Sa DEVICE FOR CONTROLLING PLAY IN A GAS TURBINE
US7273348B2 (en) * 2005-09-23 2007-09-25 General Electric Company Method and assembly for aligning a turbine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4149826A (en) * 1976-07-05 1979-04-17 Stal-Labal Turbin Ab Gas turbine
JPS6225842B2 (en) * 1978-06-26 1987-06-05 Gen Electric
JPS6216701U (en) * 1985-07-15 1987-01-31
JP2007218119A (en) * 2006-02-14 2007-08-30 Mitsubishi Heavy Ind Ltd Casing and fluid machine

Also Published As

Publication number Publication date
RU2010125558A (en) 2012-05-10
EP2276912A2 (en) 2011-01-26
EP2276912B1 (en) 2017-10-25
ZA201003458B (en) 2013-02-27
WO2009123301A2 (en) 2009-10-08
WO2009123301A3 (en) 2010-09-16
JP4969688B2 (en) 2012-07-04
US20100260599A1 (en) 2010-10-14
RU2483218C2 (en) 2013-05-27
CN101952557A (en) 2011-01-19

Similar Documents

Publication Publication Date Title
US20170009989A1 (en) Gas turbine combustion chamber with integrated turbine inlet guide vane ring as well as method for manufacturing the same
US8651809B2 (en) Apparatus and method for aligning a turbine casing
JP5145408B2 (en) Gas turbine and gas turbine casing opening method
EP2511484A2 (en) Front centerbody support for a gas turbine engine
JP5073060B2 (en) Rotating machine scroll structure and rotating machine
US11434829B2 (en) Fan and low pressure compressor geared to low speed spool of gas turbine engine
RU2675299C2 (en) Annular cover for a turbomachine lubrication chamber and a turbomachine comprising such a cover
JP2016504524A (en) Connection of shunt and bearing support
JP4969688B2 (en) Rotating machine
JP2013541671A (en) Housing for impeller
JP5134680B2 (en) Gas turbine and gas turbine casing opening method
CN113653566A (en) Gas turbine unit body structure
RU2429351C2 (en) Rotor unit, stator unit and comprising such units steam turbine
RU2709752C2 (en) Sealing ring of internal ring of last stage of gas turbine engine axial compressor
JP5118568B2 (en) Exhaust diffuser for gas turbine
CN114080491B (en) Output bearing support for a turbomachine
CN109642475A (en) For assembling the method and radial-flow turbine of radial-flow turbine
CN106150675A (en) Turbocharger and automobile
CN109707645A (en) A kind of Coal Mine Axial Flow Fan of hydraulic-driven
US10774687B2 (en) Gas turbine engine attachment structure and method therefor
JP4127120B2 (en) Micro gas turbine power generator and transition piece used therefor
CN104487659B (en) Exhaust gas turbine having a closed nozzle ring
CN108953569A (en) Gear case of blower method for dismounting and device
JP2009108961A (en) Coupling cover
JPH0680284B2 (en) Steam turbine gland sealing device and method of preventing steam from entering the outer gland

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120321

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120403

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4969688

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees