JPS5832902A - Steam turbine - Google Patents

Steam turbine

Info

Publication number
JPS5832902A
JPS5832902A JP12934181A JP12934181A JPS5832902A JP S5832902 A JPS5832902 A JP S5832902A JP 12934181 A JP12934181 A JP 12934181A JP 12934181 A JP12934181 A JP 12934181A JP S5832902 A JPS5832902 A JP S5832902A
Authority
JP
Japan
Prior art keywords
pressure
high pressure
steam
stage
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12934181A
Other languages
Japanese (ja)
Inventor
Morikazu Kitazawa
北沢 守一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP12934181A priority Critical patent/JPS5832902A/en
Publication of JPS5832902A publication Critical patent/JPS5832902A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To withstand the increased temperature and increased pressure of main steam requirements by forming a high pressure outside casing in a barrel-type structure divided in two in the axial direction and with no horizontal flange in the high pressure section of a high powered steam turbine. CONSTITUTION:Double discharge type nozzle boxes 4c, 4d are arranged at both ends of a high pressure stage group. High pressure outside casing 2a, 2b have no flange and are formed in a barrel-type structure divided in two in the axial direction. The steam passing a nozzle 4b and blade 5b flows between the outside casings 2b, 2a and an inside casing 3, and mixing with the steam flown out of the first high pressure blade 5a, then flows into the second high pressure nozzle. Therefore, the high pressure inside casing 3 is invariably kept at a higher pressure at its outside, thus its strength design is made very easy. Accordingly, the steam turbine can withstand an increase of main steam requirements, and the operability can be improved.

Description

【発明の詳細な説明】 本発明は、熱効率向上のための蒸気タービン・プラント
の主蒸気条件の高温、高圧化に伴なって発生する、蒸気
タービンケーシング特に高圧部ケーシングの構造上の問
題を解決するよう構成した蒸気タービンに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention solves structural problems of steam turbine casings, particularly high-pressure section casings, which occur as the main steam conditions of steam turbine plants increase in temperature and pressure to improve thermal efficiency. The present invention relates to a steam turbine configured to.

近年火力発電プラントの熱効率向上策として主蒸気圧力
、温度を現在の超臨界圧プラントの246atg、83
8℃よりさら8二上昇させた計−が各方面で進められて
いる。この様題二タービンを高温、高圧”化を進める上
で大幹な問題となるのが高圧ケーシングの構造である。
In recent years, as a measure to improve the thermal efficiency of thermal power plants, the main steam pressure and temperature have been changed to 246atg, 83
Measures are being taken in many areas to raise the temperature by 82 degrees above 8 degrees Celsius. The main problem in making turbines higher in temperature and pressure is the structure of the high-pressure casing.

第1図および第3sは生能気圧力24@ mtg 、主
蒸気温度s38℃、出カフ00.#W以上のタービンで
用いられている高圧部の構造図である。
Figures 1 and 3s show the vital air pressure 24 @ mtg, the main steam temperature s 38°C, and the output cuff 00. It is a structural diagram of a high pressure part used in a turbine of #W or higher.

第1図において蒸気は4本の主蒸気入口管lを介して高
圧外部ケーシング2及びその内部仁設置された高圧内部
ケーシング3を軽て複流形ノズルボックス4に旅人する
。、との蒸気は、ノズルボックス4において軸方向に2
分流しノズル4 a m 4b内で膨張して、高圧内部
ケーシング3の鴎中心龜;設けられたa−夕10の先端
1;取付けられた高圧初段羽根5m、5bに流入し、仕
事をした結果ロータ10に回転力を与える。高圧初段羽
根IIsより流出した蒸気はそのまま軸方向に流れノズ
ルダイアプラム内輪6Cにより内外を支持された−8段
ノズル6i内に流入する。一方高圧初段羽根sbより流
出した蒸気は、高圧内部ケーシング3内を反転してやは
り第2段ノズル6a内に流入する。
In FIG. 1, steam travels through the high-pressure outer casing 2 and the high-pressure inner casing 3 installed inside it to the double-flow nozzle box 4 through four main steam inlet pipes 1. , the steam of
The result of expanding in the diversion nozzle 4 a m 4 b and flowing into the high pressure inner casing 3's center head; the tip 1 of the provided a-tube 10; the attached high pressure first stage vanes 5 m and 5 b, and doing work. Apply rotational force to the rotor 10. The steam flowing out from the high-pressure first stage vane IIs directly flows in the axial direction and flows into the -8 stage nozzle 6i, which is supported from the inside and outside by the nozzle diaphragm inner ring 6C. On the other hand, the steam flowing out from the high-pressure first-stage vane sb turns around inside the high-pressure internal casing 3 and also flows into the second-stage nozzle 6a.

第2段ノズル6m内で膨張した蒸気は、第3段羽根7に
流入し以下同様に高圧段落群を経て、高圧排気段羽根8
より流出した後、高圧外部ケーシング2の下準備に設け
られた2本の図示せぬ高圧排気管により排気され図示し
ないボイラ再熱器へ戻る。
The steam expanded within the second stage nozzle 6m flows into the third stage vane 7, passes through the high pressure stage group in the same manner, and then passes through the high pressure exhaust stage vane 8.
After flowing out, it is exhausted by two high-pressure exhaust pipes (not shown) provided at the base of the high-pressure outer casing 2 and returns to the boiler reheater (not shown).

ここで高圧初段が複流であるのは、単流とすると羽根高
さが増大し高圧初段の回転部遠心応力が厳しいためであ
る。高温、高圧の超臨界圧タービンでは、第3図に示す
ようにケーシングを2重構造とすることにより内外ケー
シング(31(2)の応力緩和を行なっている。しかし
ながらそれでも高温。
The reason why the high-pressure first stage is a double flow is that if it were a single flow, the blade height would increase and the centrifugal stress in the rotating part of the high-pressure first stage would be severe. In a high-temperature, high-pressure supercritical pressure turbine, the casing has a double structure as shown in Fig. 3 to relieve stress in the inner and outer casings (31(2).However, the temperature is still high.

高圧化では特礪:ケーVングの′水平フランジの設計が
難かしく、高温、高圧に耐えしかも水平継手面よりのリ
ークを無、くすため、水平フランジを大形化しフランジ
継手ポルドロ径を大きくして対撚している。しかし、水
平フランジ2が大きくなるとケーシングの肉厚の不均一
が増大すること一;なり、軸方向及び局方向の温度分布
の不均一を生じ、そのため熱応力、特に起動時、・停止
時、負荷変化時の熱応力が過大も二なるという間■もで
てくる。このように主蒸気条件の高温、高圧化が進んだ
場合、よ゛り以上に高圧1ケーVングの設計が難かしく
なることは以上の説明で明らかである。
Special for high pressure: It is difficult to design the horizontal flange of cable Ving.In order to withstand high temperature and high pressure and eliminate leakage from the horizontal joint surface, the horizontal flange is made larger and the diameter of the flange joint is increased. It is twisted in pairs. However, as the horizontal flange 2 becomes larger, the non-uniformity of the wall thickness of the casing increases, resulting in non-uniform temperature distribution in the axial and local directions, resulting in thermal stress, especially during startup, shutdown, and load. The thermal stress at the time of change may be too high or too low. It is clear from the above explanation that as the main steam conditions become higher in temperature and pressure, it becomes even more difficult to design a single high-pressure casing.

本発明の目的、は以上述べた様な従来技術の問題nを解
決し、且つ主蒸気条件Φ上昇にも耐える、高圧ケーシン
グの強度的1二有利な構・造を有する蒸気タービンを提
供すること幅=ある。
The object of the present invention is to provide a steam turbine having a high-pressure casing having an advantageous structure in terms of strength, which solves the problems of the prior art as described above, and which can withstand increases in main steam conditions Φ. Width = Yes.

以下本発明の実施例を第2図および第4図を用いて説明
する。第2図口おいて4本の主蒸気管1mを介して高圧
外部ケーシング2暑を杯【ノズルボックス4Cに流入し
た蒸気は、ノズル4麿内で膨張して高圧初段羽根ト麿遡
二流入し′て仕事をしa −タ1Gに回転力を与える。
Embodiments of the present invention will be described below with reference to FIGS. 2 and 4. The steam flowing into the nozzle box 4C expands in the nozzle 4 and flows into the high pressure first stage impeller. ' does work and gives rotational force to the a-taper 1G.

高圧初段羽根5mより流出した蒸気はそのまま軸方向に
流れ高圧2Rノズル6%高圧2段羽根1以下高圧一般段
落鮮を通って仕事をしながら高圧初段羽根8より流出し
 ′た後、高圧内一部ケーシングに取付けられ、高圧外
部ケーシングを貫通して外部に出ている図示せぬ高圧排
気管(下準備に2本、或いは軸方向間隔(;′余裕の無
い時は、上下率2本ずつ計4本)より排出されてボイラ
再弊器へ戻る。
The steam flowing out from the high-pressure first stage vane 5 m continues to flow in the axial direction through the high-pressure 2R nozzle 6% high-pressure second-stage vane 1 or less while working through the high-pressure general stage steamer and flows out from the high-pressure first stage vane 8. High-pressure exhaust pipes (not shown) attached to the outer casing and extending outside through the high-pressure outer casing (2 pipes for preparation, or axially spaced (;' If there is no room, measure 2 pipes vertically and 2 pipes apart) 4) and returns to the boiler reheating equipment.

一方4本の主蒸気管1bを介して高圧外部ケーシング2
bを経てノズルボックス・4dに流入した蒸気は、ノズ
ル4b1羽機sbを通過後外部ケーシング2 b * 
2 mと内部ケーシング3の間を通って高圧初段羽根S
麿側書=流れ、さらに、反転して高”圧初設羽根Smよ
り流出した蒸気と混、金して高圧2段ノズルに流入し以
下、前述の通り流れ高圧排気管より排気される。
On the other hand, the high-pressure outer casing 2 is connected via four main steam pipes 1b.
The steam that has flowed into the nozzle box 4d via the nozzle 4b passes through the nozzle 4b and the outer casing 2b*
2 m and the high pressure first stage vane S passing between the inner casing 3
The flow is further reversed, mixed with the steam flowing out from the high-pressure initial vane Sm, and flows into the high-pressure two-stage nozzle, whereupon it flows as described above and is exhausted from the high-pressure exhaust pipe.

即ち第1図の複流形ノズルボックス4c*4dを高圧段
落群の両端口持ってきたことが椿徽である。又高圧外部
ケーシング2m、@bには水平フランジはな(上下半一
体の円筒形で、組立て及びメインテナンスのため縦継ぎ
フランジ部11a。
That is, the fact that the double-flow type nozzle boxes 4c*4d of FIG. 1 are brought to both ends of the high-pressure stage group is the key. In addition, the high-pressure external casing, 2 m long, has a horizontal flange at @b (cylindrical shape with upper and lower halves integrated, with vertical joint flange 11a for assembly and maintenance.

flbにおいて軸直角方向に2ms!bに2分割できる
様になっている。組立て時に情、縦継ぎフランジ部11
a、llbにおいて高圧内部ケージ。
2ms in the direction perpendicular to the axis at flb! It is designed so that it can be divided into two parts. During assembly, the vertical joint flange part 11
a, High pressure internal cage in llb.

ング3の位置決めキー1Bをはさんだ後、ボルト12、
ナラ)13で締めシれガスケットパツキン14で完全に
外部大気とミールされる。第4@は第2図のA−A矢視
図である。
After inserting the positioning key 1B of the ring 3, bolt 12,
Tighten with 13 and seal with gasket 14 to completely eliminate the external atmosphere. 4th @ is a view taken along the line A-A in FIG. 2.

次に以上の様に構−した本発明の詳細な説明する。高圧
初段を両端に設置した理由は1片方の高圧初段よりの流
出蒸気を高圧外部ケーシング21゜zbと高圧内部ケー
シング3の間に流れさせこの間隙の雰囲気を高圧初段シ
ェル、状態にすることを意遇したものである。こうする
ことにより高圧・内部ケーシング3は常に外圧の方が高
(なるため、その強度設計は非常に容易となり、水平フ
ランクの大形化、フランジ継手ボルトの大口径化など苦
慮する必要がなくなる。
Next, the present invention constructed as above will be explained in detail. The reason why the high-pressure first stage was installed at both ends was to allow the steam flowing out from one high-pressure first stage to flow between the high-pressure outer casing 21゜zb and the high-pressure inner casing 3, and to make the atmosphere in this gap similar to that of the high-pressure first stage shell. This is what I encountered. By doing this, the external pressure of the high-pressure internal casing 3 is always higher, so its strength design becomes very easy, and there is no need to worry about increasing the size of the horizontal flank or increasing the diameter of the flange joint bolt.

一方高圧外部ケーシングは、第1図の従来タイプでその
内部が高圧排気雰囲気だったのが、本発明では初段レニ
ル雰囲気1;なるため、水平フッyジ構造をやめ、いわ
ゆるつぼ形構造とすることができる。但し組立て、メイ
ンテナンス上から輪方向2分割としグラ・ンド部16,
17も着脱式としているものである。内褐雰囲気は従来
形より高温、高圧となっているもののっぽ形としたこと
により、大形の水平フランクは全(必要なく、必要肉厚
のみを確保すればよいので、はぼ完全に軸対称構造と出
来るし軸方向にも温度勾配が俸いので熱応力上非常に有
利である。
On the other hand, the high-pressure external casing has a high-pressure exhaust atmosphere inside in the conventional type shown in Fig. 1, but in the present invention, it has a first-stage renyl atmosphere 1; therefore, the horizontal ridge structure has been abandoned and a so-called pot-shaped structure has been adopted. I can do it. However, for assembly and maintenance, it is divided into two parts in the wheel direction, and the ground part 16,
17 is also removable. Although the inner brown atmosphere is higher temperature and pressure than the conventional type, by making it a tail shape, there is no need for a large horizontal flank, and only the required wall thickness needs to be ensured, making it almost completely axially symmetrical. It is very advantageous in terms of thermal stress because it has a good structure and there is no temperature gradient in the axial direction.

pl上説明した様に本発明によれば、高圧外部ケーシン
グを水平フランジ卸しの軸方向2分割つぼ形構造とし且
つ内部ケーシングを外圧構造としたので、メインテナン
ス性を損なうとと静くケーシングのコンパクト化、軸対
称構造化が可能になり、主曹気条件の高温、高圧化にも
耐え得る運転性の良い薮気タービンを供することが出来
る。
As explained above, according to the present invention, the high-pressure outer casing has an axially two-part pot-shaped structure with a horizontal flange, and the inner casing has an external pressure structure, so the casing can be made more compact without impairing maintainability. , it becomes possible to form an axially symmetrical structure, and it is possible to provide a bush air turbine with good operability that can withstand high temperature and high pressure main carbon dioxide conditions.

【図面の簡単な説明】[Brief explanation of drawings]

第4図は従来の超臨界圧大出力蒸気タービンを示す断面
図、第2図は本発明による超臨界圧大出力味気タービン
を示す断面図、第3図は第1図の2e 2a、 2b・
・・高圧外部ケーシング3   ・・・高圧内部ケーシ
ング 4.4C*4d・・・ノズルポック′ス    □4a
*4b  ・・・高圧初段ノズル 5a*5b  ・・・高圧初段羽根 6   ・・・高圧2段ノズル 7   ・・・高圧2段羽根 8   ・・・高圧初段羽根 L 16.17−・・グランドパツキン10    ・
・・a−タ 11暑、11b・・・縦継ぎフランジ 12   ・・・ボルト 13    ・・・ナラ・ト 14    ・・・ガスケットパツキン1s    ・
・・位置決めキー (7317)代理人 弁理士 則 近゛憲 佑(ほか1
名)
FIG. 4 is a sectional view showing a conventional supercritical pressure high output steam turbine, FIG. 2 is a sectional view showing a supercritical pressure high output steam turbine according to the present invention, and FIG.
...High pressure outer casing 3 ...High pressure inner casing 4.4C*4d...Nozzle pock's □4a
*4b...High-pressure first-stage nozzle 5a*5b...High-pressure first-stage blade 6...High-pressure second-stage nozzle 7...High-pressure second-stage blade 8...High-pressure first-stage blade L 16.17--Gland packing 10・
...A-ta 11 heat, 11b...Vertical joint flange 12...Bolt 13...Nara-to 14...Gasket packing 1s.
...Positioning key (7317) Agent: Patent attorney Noriyuki Kon (and 1 others)
given name)

Claims (1)

【特許請求の範囲】[Claims] 高圧初段に複流形ノズルボックスを用い、高温高圧の蒸
気を蒸気源とする大出力蒸気タービンの高圧部において
、2つの高圧初段を高圧段落群の両端に配置し且つ高圧
外部ケーシングを軸方向中央部で軸直角方向に2分割し
てフランジ継手構造としたことを特徴とする蒸気タービ
ン。
In the high-pressure section of a high-power steam turbine that uses high-pressure first stage as a steam source, a double-flow type nozzle box is used in the high-pressure first stage, and two high-pressure first stages are arranged at both ends of the high-pressure stage group, and the high-pressure outer casing is placed in the axial center. A steam turbine characterized in that it is divided into two in the direction perpendicular to the axis and has a flange joint structure.
JP12934181A 1981-08-20 1981-08-20 Steam turbine Pending JPS5832902A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12934181A JPS5832902A (en) 1981-08-20 1981-08-20 Steam turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12934181A JPS5832902A (en) 1981-08-20 1981-08-20 Steam turbine

Publications (1)

Publication Number Publication Date
JPS5832902A true JPS5832902A (en) 1983-02-26

Family

ID=15007210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12934181A Pending JPS5832902A (en) 1981-08-20 1981-08-20 Steam turbine

Country Status (1)

Country Link
JP (1) JPS5832902A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100260599A1 (en) * 2008-03-31 2010-10-14 Mitsubishi Heavy Industries, Ltd. Rotary machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100260599A1 (en) * 2008-03-31 2010-10-14 Mitsubishi Heavy Industries, Ltd. Rotary machine
CN101952557A (en) * 2008-03-31 2011-01-19 三菱重工业株式会社 Rotary mechanism
EP2276912B1 (en) * 2008-03-31 2017-10-25 Mitsubishi Heavy Industries, Ltd. Rotary machine

Similar Documents

Publication Publication Date Title
US3631672A (en) Eductor cooled gas turbine casing
KR100731655B1 (en) Steam turbine having a brush seal assembly
JP2820403B2 (en) Axial turbine
JPH0337305A (en) Mono-axial combined cycle turbine
JPH01318703A (en) Steam turbine
JPH02248603A (en) Steam turbine
US2823891A (en) Steam turbine
JPH0457849B2 (en)
US3408045A (en) Turbine nozzle seal structure
US4697983A (en) Steam introducing part structure of steam turbine
US2840342A (en) Turbine exhaust
US3915588A (en) Two-shell axial-plane split casing structure for high-capacity low-pressure sections of a steam turbine
US1536014A (en) Packing for elastic-fluid turbines and the like
KR102467399B1 (en) Steam turbine plant and combined cycle plant
JPS5832902A (en) Steam turbine
JPS6172806A (en) Method of zoning condenser for double-flow low-pressure turbine
US3741678A (en) Cooling air profiling structures for a gas turbine
JP7134002B2 (en) Steam turbine equipment and combined cycle plants
GB1013835A (en) Improvements in or relating to axial-flow turbines, compressors and exhausters
US2300758A (en) Blading and balancing piston arrangement
US3107046A (en) Turbines, blowers and the like
JPS62267506A (en) Casing of steam turbine
CN106574503B (en) Turbine rotor assembly, turbine and movable vane
JPS6131283B2 (en)
GB191107762A (en) Improvements in or relating to Steam or Fluid Pressure Turbines.