JP2011258608A - Coil component - Google Patents

Coil component Download PDF

Info

Publication number
JP2011258608A
JP2011258608A JP2010129317A JP2010129317A JP2011258608A JP 2011258608 A JP2011258608 A JP 2011258608A JP 2010129317 A JP2010129317 A JP 2010129317A JP 2010129317 A JP2010129317 A JP 2010129317A JP 2011258608 A JP2011258608 A JP 2011258608A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic body
powder
composite
wire ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010129317A
Other languages
Japanese (ja)
Other versions
JP5593127B2 (en
Inventor
Kazuyuki Ono
一之 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2010129317A priority Critical patent/JP5593127B2/en
Publication of JP2011258608A publication Critical patent/JP2011258608A/en
Application granted granted Critical
Publication of JP5593127B2 publication Critical patent/JP5593127B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a coil component which can securely perform filling in a space between a soft magnetic body and a metal mold or a magnetic gap of a soft magnetic body even in the case that the space or the gap are narrow, and which can precisely control high magnetic characteristic while reliably securing insulation quality.SOLUTION: A coil component comprises a magnetic core 3 constituting a closed magnetic circuit, and a coil winding circularly placed in a magnetic path of the magnetic core 3. The magnetic core 3 includes a soft magnetic body 1 having electric conductivity, and a composite magnetic body 2 containing magnetic powder and thermoplastic resin covering a surface of the soft magnetic body. The composite magnetic body 2 is configured to have a higher volume resistivity than the soft magnetic body 1.

Description

本発明は、各種交流機器における整流回路、雑音防止回路、共振回路、電力変換回路等に用いられる線輪部品に関するものである。   The present invention relates to a wire ring component used in a rectifier circuit, a noise prevention circuit, a resonance circuit, a power conversion circuit, and the like in various AC devices.

特許文献1では強磁性体粉末を含む磁束遮断体を線輪部品の外側にトランスファー等で成型することにより被覆漏洩磁束電流を抑制する磁性絶縁被覆線輪の構造を提供している。   Patent Document 1 provides a structure of a magnetic insulating coated wire ring that suppresses a coating leakage magnetic flux current by molding a magnetic flux blocker containing ferromagnetic powder on the outside of the wire ring part by transfer or the like.

また特許文献2には、磁気ギャップ部を有するC字状のコアを作成し、さらに磁気ギャップ部を埋め、同時にC字状のコア表面を被覆するよう、樹脂を材料とするモールディングを施す構成が開示されている。   Further, Patent Document 2 has a configuration in which a C-shaped core having a magnetic gap portion is formed, and further, molding is performed using a resin as a material so as to fill the magnetic gap portion and simultaneously cover the C-shaped core surface. It is disclosed.

また特許文献3には、磁気ギャップに金属磁性粉末を分散させた接着剤を配する構成が開示されている。   Patent Document 3 discloses a configuration in which an adhesive in which metal magnetic powder is dispersed is arranged in a magnetic gap.

実用新案登録第3037638号公報Utility Model Registration No. 3037638 特開2002−93627号公報JP 2002-93627 A 特開2009−117676号公報JP 2009-117676 A

従来技術では、インダクタンス値や通電電流に直流電流を重畳した際にインダクタンスが保たれる、いわゆる直流重畳特性を高めるために、樹脂と磁性粉を混合した複合磁性体が用いられている。一方でインダクタやリアクトルに代表される線輪部品には小型化と高機能化が求められ、磁気コア表面への樹脂被覆は薄さが要求され、磁気コアに設けた磁気ギャップも狭くなって来ている。   In the prior art, a composite magnetic material in which a resin and magnetic powder are mixed is used in order to improve the so-called DC superposition characteristic, in which an inductance is maintained when a DC current is superimposed on an inductance value or an energization current. On the other hand, wire ring parts represented by inductors and reactors are required to be small and highly functional, and the resin coating on the surface of the magnetic core is required to be thin, and the magnetic gap provided in the magnetic core is becoming narrower. ing.

そこで従来技術では、複合磁性体の樹脂として熱硬化樹脂が用いられているが、複合磁性体は磁性粉が多量添加されているため、成型時の流動性が低下し、磁気コアと金型の隙間や、磁気コアの磁気ギャップを充填する途中で硬化してしまうことがあり、充填が不十分な場合は絶縁不良が発生したり、所望の磁気特性が得られないことがあるという課題がある。   Therefore, in the prior art, a thermosetting resin is used as the resin of the composite magnetic body. However, since a large amount of magnetic powder is added to the composite magnetic body, the fluidity at the time of molding is reduced, and the magnetic core and the mold are It may harden in the middle of filling the gap and magnetic gap of the magnetic core, and if the filling is insufficient, there is a problem that insulation failure may occur or desired magnetic characteristics may not be obtained. .

上記課題は、閉磁路を構成する磁気コアと、前記磁気コアの磁路を周回する巻き線を備え、前記磁気コアは、導電性の軟磁性体と、前記軟磁性体の表面を被覆する熱可塑性樹脂と磁性粉を含む複合磁性体を備え、前記複合磁性体は、前記軟磁性体よりも体積抵抗率が高いことを特徴とする線輪部品により解決することができる。   The above-described problem includes a magnetic core that forms a closed magnetic path and a winding that circulates around the magnetic path of the magnetic core, and the magnetic core includes a conductive soft magnetic body and a heat that covers a surface of the soft magnetic body. A wire ring component comprising a composite magnetic body including a plastic resin and magnetic powder, wherein the composite magnetic body has a volume resistivity higher than that of the soft magnetic body can be solved.

導電性の軟磁性体表面は、巻き線との絶縁性を確保し、同時に高い磁気特性を得るために、表面を軟磁性体よりも高い電気抵抗を持つ複合磁性体で被覆する必要があるが、本発明によって、従来技術のような成型途中の硬化が無くなるため、確実に表面を複合磁性体で被覆し、巻き線と磁気コア間の絶縁性を確保することができる。なお、磁性粉に透磁率が求められる場合は軟磁性粉が、磁化が求められる場合は硬質磁性粉すなわちマグネット粉が用いられる。   The surface of the conductive soft magnetic material needs to be coated with a composite magnetic material having an electric resistance higher than that of the soft magnetic material in order to ensure insulation from the winding and at the same time obtain high magnetic properties. The present invention eliminates curing during molding as in the prior art, so that the surface can be reliably covered with the composite magnetic material and the insulation between the winding and the magnetic core can be ensured. When magnetic permeability is required for the magnetic powder, soft magnetic powder is used. When magnetization is required, hard magnetic powder, that is, magnet powder is used.

また、本発明により、インダクタンス調整のため、軟磁性体に磁気ギャップを設け、その磁気ギャップに複合磁性体を確実に充填することができる。   Further, according to the present invention, a magnetic gap can be provided in the soft magnetic material for inductance adjustment, and the magnetic gap can be reliably filled with the composite magnetic material.

また、複合磁性体に必要とされる機能によっては、本発明の磁性粉としてフェライト粉を用いる場合がある。この場合は複合磁性体に対してフェライト粉が60体積%以下(但し0は含まず)含有していれば体積抵抗率が1×10Ω・cm以上と、絶縁性として充分な特性を得ることができる。他に、本発明の磁性粉の複合磁性体に対する含有率が70体積%以下(但し0は含まず)で、前記磁性粉は体積含有率が50%以下(但し0は含まず)の金属磁性粉と、体積含有率が50%より多く100%より少ないフェライト粉よりなっていても、複合磁性体の体積抵抗率が1×10Ω・cm以上となるため、絶縁性として必要な特性を得ることができる。 Further, depending on the function required for the composite magnetic body, ferrite powder may be used as the magnetic powder of the present invention. In this case, if the ferrite powder is contained in an amount of 60% by volume or less (excluding 0) with respect to the composite magnetic material, the volume resistivity is 1 × 10 9 Ω · cm or more, and sufficient insulation properties are obtained. be able to. In addition, the content of the magnetic powder of the present invention with respect to the composite magnetic material is 70% by volume or less (however, 0 is not included), and the magnetic powder has a volume content of 50% or less (however, 0 is not included). Even if it is made of powder and ferrite powder having a volume content of more than 50% and less than 100%, the volume resistivity of the composite magnetic material is 1 × 10 5 Ω · cm or more, so that the necessary properties for insulation are obtained. Obtainable.

また、前記磁気コアにおける前記複合磁性体の軟磁性体に面する部分を除く表面の少なくとも一部を、前記複合磁性体の内部及び軟磁性体に面する表面よりも磁性粉の含有密度が低くすることで、特に導電性の磁性粉を用いる場合には、複合磁性体と巻き線の間の絶縁を確実に確保することができるため、望ましい。   Further, at least part of the surface of the magnetic core excluding the portion facing the soft magnetic body has a lower density of magnetic powder than the inside of the composite magnetic body and the surface facing the soft magnetic body. Thus, in particular, when conductive magnetic powder is used, insulation between the composite magnetic body and the winding can be reliably ensured, which is desirable.

なお、熱可塑性樹脂としてはABS系樹脂、PBT樹脂、PET系樹脂、PPS系樹脂、ナイロン6、ナイロン66、ナイロン12及び液晶ポリマー等を用いることが出来る。また、D90(累積重量分率が90%に対応する粒子径)は球状または不定形粉の場合は、60μm以下(但し0は含まず)であれば100kHzの交流磁界でも渦電流損失の発生に起因する表皮効果の影響を回避できるため望ましい。また、磁性粉が金属軟磁性粉でかつ扁平粉である場合は、そのアスペクト比が1/5以上であれば反磁界係数を小さくできるためインダクタンスに起因する透磁率を確保する観点から望ましく、扁平粉の平均厚さが9μm以下(但し0は含まず)であれば射出成型時に長辺方向に扁平粉が配列し易いため望ましい。また、前記複合磁性体の成型密度が2g/cm以上であれば2以上の透磁率を確保でき、また8g/cm以下であれば射出成形のための流動性が確保し易いため望ましい。 As the thermoplastic resin, ABS resin, PBT resin, PET resin, PPS resin, nylon 6, nylon 66, nylon 12, liquid crystal polymer, and the like can be used. In addition, D90 (particle diameter corresponding to a cumulative weight fraction of 90%) is 60 μm or less (excluding 0) in the case of a spherical or irregular powder, and eddy current loss can be generated even with an AC magnetic field of 100 kHz. This is desirable because it can avoid the influence of the resulting skin effect. In addition, when the magnetic powder is a soft metal powder and a flat powder, the demagnetizing factor can be reduced if the aspect ratio is 1/5 or more, which is desirable from the viewpoint of ensuring the magnetic permeability due to inductance. If the average thickness of the powder is 9 μm or less (excluding 0), it is desirable because the flat powder is easily arranged in the long side direction during injection molding. Further, if the molding density of the composite magnetic body is 2 g / cm 3 or more, it is possible to secure a permeability of 2 or more, and if it is 8 g / cm 3 or less, it is desirable because the fluidity for injection molding is easily secured.

本発明によって、軟磁性体と金型の間の隙間や、軟磁性体の磁気ギャップが狭い場合でも確実に充填することができる複合磁性体を含む線輪部品が提供できる。   According to the present invention, it is possible to provide a wire ring component including a composite magnetic body that can be reliably filled even when the gap between the soft magnetic body and the mold or the magnetic gap of the soft magnetic body is narrow.

さらに、導電性の軟磁性体表面を確実に複合磁性体で被覆することで、確実に絶縁性を確保しつつ、高い磁気特性を持つ線輪部品を提供できる。   Furthermore, by reliably covering the surface of the conductive soft magnetic material with the composite magnetic material, it is possible to provide a wire ring component having high magnetic properties while ensuring insulation.

また、導電性の軟磁性体に設けた磁気ギャップにも確実に複合磁性体を充填できるため、磁気コアの磁気特性を精密に調整できる、すなわち特性を精密に制御できる線輪部品を提供できる。   Further, since the magnetic gap provided in the conductive soft magnetic material can be reliably filled with the composite magnetic material, it is possible to provide a wire ring component in which the magnetic characteristics of the magnetic core can be precisely adjusted, that is, the characteristics can be precisely controlled.

本発明の線輪部品における閉磁路磁気コアの斜視図。図1(a)は軟磁性体一つより構成した一例を示す斜視図、図1(b)は軟磁性体2つを高さ方向に重ねて構成した一例を示す斜視図。The perspective view of the closed magnetic circuit magnetic core in the wire ring components of this invention. FIG. 1A is a perspective view showing an example composed of one soft magnetic body, and FIG. 1B is a perspective view showing an example composed of two soft magnetic bodies stacked in the height direction. 本発明の線輪部品における閉磁路磁気コアの構成を説明する斜視図。The perspective view explaining the structure of the closed magnetic circuit magnetic core in the wire ring components of this invention. 図2の閉磁路磁気コアにおけるa面の断面図。Sectional drawing of the a surface in the closed magnetic circuit magnetic core of FIG. 本発明の線輪部品における軟磁性体と金型の構成の一例を示す断面図。Sectional drawing which shows an example of a structure of the soft-magnetic body and metal mold | die in the wire ring components of this invention. 本発明の線輪部品における軟磁性体と金型の構成の他の例を示す断面図。Sectional drawing which shows the other example of a structure of the soft-magnetic body and metal mold | die in the wire ring components of this invention. 本発明の線輪部品における別の閉磁路磁気コアの斜視図。The perspective view of another closed magnetic circuit magnetic core in the wire ring components of this invention. 本発明の線輪部品における複合磁性体片と金型の構成を示す断面図。Sectional drawing which shows the structure of the composite magnetic body piece and metal mold | die in the wire ring components of this invention.

本発明について、図面を基に説明する。   The present invention will be described with reference to the drawings.

図1は本発明の線輪部品における閉磁路磁気コアの斜視図であり、図1(a)は軟磁性体一つより構成した一例を示す斜視図、図1(b)は軟磁性体2つを高さ方向に重ねて構成した一例を示す斜視図である。   FIG. 1 is a perspective view of a closed magnetic circuit magnetic core in a wire ring component according to the present invention. FIG. 1 (a) is a perspective view showing an example composed of one soft magnetic body, and FIG. It is a perspective view which shows an example which overlapped and comprised one in the height direction.

図1(a)において閉磁路磁気コア3は、導電性の軟磁性体1の表面が複合磁性体2により被覆され、軟磁性体1の磁気ギャップ11も複合磁性体2により充填されている。閉磁路磁気コア3の磁路を周回する巻き線は、図示を省略する。   In FIG. 1A, the closed magnetic circuit magnetic core 3 has the surface of the conductive soft magnetic body 1 covered with the composite magnetic body 2, and the magnetic gap 11 of the soft magnetic body 1 is also filled with the composite magnetic body 2. The windings that circulate around the magnetic path of the closed magnetic path magnetic core 3 are not shown.

図1(a)では、軟磁性体1が磁気ギャップ11を備えたトロイダルコアであり、閉磁路磁気コア3もトロイダルコアとなっているが、本発明はこれに限定されず、閉磁路を構成している限りはロの字型コアでもEI、EEコア等であっても本発明が適用できる。また、磁気ギャップ11を複数備えていても良く、また備えていなくても本発明が適用できる。   In FIG. 1A, the soft magnetic body 1 is a toroidal core provided with a magnetic gap 11, and the closed magnetic circuit magnetic core 3 is also a toroidal core. However, the present invention is not limited to this, and a closed magnetic circuit is configured. As long as this is the case, the present invention can be applied to a rectangular core, EI, EE core, or the like. Further, the present invention can be applied even if a plurality of magnetic gaps 11 may be provided or not provided.

複合磁性体2に用いられる磁性粉は、軟磁性粉であればNiZnフェライト粉、MgZnフェライト粉、MnZnフェライト粉、FeSi金属軟磁性粉、FeSiAl金属軟磁性粉などが、硬質磁性体粉であればBaフェライト粉、Srフェライト粉、NdFeB金属磁性粉、SmCo金属磁性粉などが用いられる。   If the magnetic powder used for the composite magnetic body 2 is soft magnetic powder, NiZn ferrite powder, MgZn ferrite powder, MnZn ferrite powder, FeSi metal soft magnetic powder, FeSiAl metal soft magnetic powder, etc. are hard magnetic powder. Ba ferrite powder, Sr ferrite powder, NdFeB metal magnetic powder, SmCo metal magnetic powder and the like are used.

複合磁性体2に高絶縁性が求められる場合は磁性粉自体に絶縁性のあるフェライト粉を用いるのが望ましい。また、昇圧回路等に用いられる高い直流重畳特性が求められるチョークコイルやリアクトル等の用途向けには、複合磁性体2の軟磁性粉として、高い飽和磁化を持つFeSi等の金属磁性体を球状もしくは球状に近い形状の粒子形状を持つ金属軟磁性粉に加工したものを用いるのが望ましい。また、ノイズフィルタ等に用いられるチョークコイルには、磁気コアに高い透磁率が求められることから、複合磁性体2の軟磁性粉として、高い透磁率を持つFeSiAl等の金属磁性体を扁平状の粒子形状を持つ金属軟磁性粉に加工したものを用いるのが望ましい。   When the composite magnetic body 2 is required to have high insulation properties, it is desirable to use an insulating ferrite powder for the magnetic powder itself. In addition, for applications such as choke coils and reactors that require high DC superposition characteristics used in booster circuits and the like, a metallic magnetic material such as FeSi having a high saturation magnetization is used as a soft magnetic powder for spherical or It is desirable to use a metal soft magnetic powder processed into a spherical particle shape. In addition, since a high magnetic permeability is required for the magnetic core of a choke coil used for a noise filter or the like, a metal magnetic material such as FeSiAl having a high magnetic permeability is used as a soft magnetic powder of the composite magnetic material 2 in a flat shape. It is desirable to use a metal soft magnetic powder having a particle shape.

なお、複合磁性体2に、さらにD50(累積重量分率が50%に対応する粒子径)が2μm以下の窒化ホウ素やグラファイト等の電気絶縁性の高い熱伝導材粉を複合磁性体2射出時の流動性を損ねない範囲内で添加することにより、磁気コア3内部からの放熱性を高め、かつ複合磁性体2の剛性が高まることで、磁気コア3の内部磁場の時間変化に起因した軟磁性体における磁気ギャップ部より発生する騒音を抑制することもできるため、望ましい。なお、磁気ギャップ部より発生する騒音とは、巻き線への通電により、磁気ギャップ部に面する磁性体に、互いに磁気的な引力が働くことでコア加振力が発生することで起こる。そこで図1(b)のように軟磁性体を高さ方向に複数重ね、軟磁性体1の磁気ギャップと、別の軟磁性12が高さ方向で隣接するように配置することで、巻き線への通電による磁気的な引力は磁気ギャップ部11と高さ方向に隣接する軟磁性体12の間にも生じるため、磁気的な引力が分散され、 磁気ギャップ部11より生じる騒音を抑制することができるため、望ましい。また、磁気ギャップ部11に高さ方向で隣接する軟磁性体12は複合磁性体2よりも剛性があり、磁気ギャップ部11を強固に固定していることからも、磁気ギャップ部11より生じる騒音を抑制している。   In addition, when the composite magnetic body 2 is injected, a heat conductive material powder having a high electrical insulating property such as boron nitride or graphite having a D50 (particle diameter corresponding to a cumulative weight fraction of 50%) of 2 μm or less is added to the composite magnetic body 2. Is added within a range that does not impair the fluidity of the magnetic core 3, thereby improving the heat dissipation from the inside of the magnetic core 3 and increasing the rigidity of the composite magnetic body 2, thereby softening due to the time change of the internal magnetic field of the magnetic core 3. This is desirable because noise generated from the magnetic gap portion in the magnetic material can be suppressed. Note that the noise generated from the magnetic gap portion is caused by the generation of a core exciting force due to mutual magnetic attraction acting on the magnetic bodies facing the magnetic gap portion by energizing the winding. Therefore, as shown in FIG. 1B, a plurality of soft magnetic bodies are stacked in the height direction, and the magnetic gap of the soft magnetic body 1 and another soft magnet 12 are arranged adjacent to each other in the height direction, thereby winding the winding. The magnetic attractive force due to the energization of the magnetic field is also generated between the magnetic gap portion 11 and the soft magnetic body 12 adjacent in the height direction, so that the magnetic attractive force is dispersed and noise generated from the magnetic gap portion 11 is suppressed. Is desirable. Further, the soft magnetic body 12 adjacent to the magnetic gap portion 11 in the height direction is more rigid than the composite magnetic body 2, and the noise generated from the magnetic gap portion 11 is also because the magnetic gap portion 11 is firmly fixed. Is suppressed.

複合磁性体2に用いられる熱可塑性樹脂としては、ポリプロピレン、ポリエチレン、ポリアミド、PPS(ポリフェニレンサルファイド樹脂)等の結晶性樹脂が望ましく、特に高い磁気特性が求められる用途ではナイロン、より望ましくはナイロン12(ラウリルラクタムを開環重縮合したポリアミド)が磁性粉とのなじみが良く好適である。また、線輪部品を回路基板等にリフローで実装する場合は、PPSが好適である。   The thermoplastic resin used in the composite magnetic body 2 is preferably a crystalline resin such as polypropylene, polyethylene, polyamide, or PPS (polyphenylene sulfide resin), and is particularly nylon for applications where high magnetic properties are required, more preferably nylon 12 ( Polyamides obtained by ring-opening polycondensation of lauryl lactam) are preferred because they are compatible with magnetic powder. In addition, PPS is suitable when the ring component is mounted on a circuit board or the like by reflow.

図2は、本発明の線輪部品における閉磁路磁気コアの構成を説明する図である。図2に示すように、軟磁性体1の磁気ギャップ部分へ最初に磁性粉として金属軟磁性粉を用いた複合磁性体21を充填し、次に軟磁性体1及び複合磁性体21の表面を軟磁性粉としてフェライト粉を用いた複合磁性体22で被覆することで、磁気ギャップ部分における高い磁気特性と磁気コア3表面の高い絶縁性を兼ね備える構成としても良い。この場合、磁気ギャップ部分に充填される複合磁性体21の熱変形温度を軟磁性体1の表面を被覆する複合磁性体22よりも高くすることで、複合磁性体21が複合磁性体22の射出成形時に混ざり込むことを防ぐことができるため、望ましい。また、軟磁性体1の磁気ギャップ部分へ磁気ギャップ幅よりも薄い、厚み方向に磁力を発生させる磁石板を予め貼り付けておき、磁性粉が硬質磁性粉である複合磁性体21を充填すると、磁石板による磁場で複合磁性体21の硬質磁性粉の磁化の向きが整列し、高い磁力を磁気コア3に作用させることができる。   FIG. 2 is a diagram illustrating the configuration of a closed magnetic circuit magnetic core in the wire ring component of the present invention. As shown in FIG. 2, the magnetic gap portion of the soft magnetic body 1 is first filled with the composite magnetic body 21 using the metal soft magnetic powder as the magnetic powder, and then the surfaces of the soft magnetic body 1 and the composite magnetic body 21 are filled. It is good also as a structure which combines the high magnetic characteristic in a magnetic gap part, and the high insulation of the magnetic core 3 surface by coat | covering with the composite magnetic body 22 which used ferrite powder as soft-magnetic powder. In this case, the composite magnetic body 21 is injected from the composite magnetic body 22 by making the thermal deformation temperature of the composite magnetic body 21 filled in the magnetic gap portion higher than that of the composite magnetic body 22 covering the surface of the soft magnetic body 1. This is desirable because it can prevent mixing during molding. When a magnetic plate that is thinner than the magnetic gap width and generates a magnetic force in the thickness direction is attached in advance to the magnetic gap portion of the soft magnetic body 1 and the composite magnetic body 21 in which the magnetic powder is hard magnetic powder is filled, The direction of magnetization of the hard magnetic powder of the composite magnetic body 21 is aligned by the magnetic field generated by the magnet plate, and a high magnetic force can be applied to the magnetic core 3.

図3は、図2の閉磁路磁気コアにおけるa面の断面図であり、閉磁路磁気コア3の磁路に垂直なa面の断面構成を説明する図である。軟磁性体1の表面を軟磁性粉の含有率が高い複合磁性体221が覆い、さらにその表面を軟磁性粉の含有率が低い複合磁性体222が覆っている構成となっている。   FIG. 3 is a cross-sectional view of the a-plane in the closed magnetic circuit magnetic core of FIG. 2, and is a diagram illustrating a cross-sectional configuration of the a-plane perpendicular to the magnetic path of the closed magnetic circuit magnetic core 3. The surface of the soft magnetic body 1 is covered with a composite magnetic body 221 having a high content of soft magnetic powder, and the surface of the soft magnetic body 1 is further covered with a composite magnetic body 222 having a low content of soft magnetic powder.

図4は本発明の線輪部品における軟磁性体と金型の構成の一例を示す断面図、図5は本発明の線輪部品における軟磁性体と金型の構成の他の例を示す断面図である。図3の複合磁性体を形成するには、まず、図4及び図5に示す金型41と、金型41の蓋となる金型42を準備する。なお、金型41には軟磁性体1を支持するピン431、432を設けている。   FIG. 4 is a cross-sectional view showing an example of the configuration of the soft magnetic body and the mold in the wire ring component of the present invention, and FIG. 5 is a cross section showing another example of the configuration of the soft magnetic body and the mold in the wire ring component of the present invention. FIG. In order to form the composite magnetic body shown in FIG. 3, first, a mold 41 shown in FIGS. 4 and 5 and a mold 42 serving as a lid of the mold 41 are prepared. The mold 41 is provided with pins 431 and 432 for supporting the soft magnetic body 1.

次に、金型41と金型42によって形成される密閉空間の壁面を熱伝導率の低い0.1mm〜0.5mmのエポキシ樹脂やポリイミド等で覆う(図示せず)。   Next, the wall surface of the sealed space formed by the mold 41 and the mold 42 is covered with an epoxy resin or polyimide having a low thermal conductivity of 0.1 mm to 0.5 mm (not shown).

さらに複合磁性体の厚さが1mm以上である場合は、金型41と金型42を複合磁性体中の熱可塑性樹脂の熱変形温度より30℃低く、かつ室温以上の温度に保つ。なお、この際軟磁性体1は熱可塑性樹脂の熱変形温度より高い温度にしておくことで射出時における複合磁性体の流動性が高まるため望ましいが、軟磁性体1と複合磁性体の間にも絶縁性を確保したい場合は熱可塑性樹脂の熱変形温度より30℃低く、かつ室温以上の温度にしても良い。   Furthermore, when the thickness of the composite magnetic body is 1 mm or more, the mold 41 and the mold 42 are kept at a temperature 30 ° C. lower than the thermal deformation temperature of the thermoplastic resin in the composite magnetic body and at a temperature of room temperature or higher. At this time, it is desirable that the soft magnetic body 1 has a temperature higher than the thermal deformation temperature of the thermoplastic resin, so that the fluidity of the composite magnetic body at the time of injection is increased. However, the soft magnetic body 1 is between the soft magnetic body 1 and the composite magnetic body. However, if it is desired to ensure insulation, the temperature may be 30 ° C. lower than the thermal deformation temperature of the thermoplastic resin and higher than room temperature.

熱可塑性樹脂の熱変形温度より30℃低く、かつ室温以上の温度に保たれ、熱伝導率の低い物質で覆われた金型41と金型42の表面を可塑の状態にある複合磁性体が流動する際、熱伝導率の低い物質に複合磁性体2中の熱可塑性樹脂が接し、冷却されることで固化してゆくが、軟磁性粉は複合磁性体内部の流れに引きずられ、流動してゆくため、結果的に金型壁面側に面する複合磁性体は電気絶縁性の高い熱可塑性樹脂の割合が多くなる。従って、金型壁面側に面する複合磁性体の絶縁性を高めることができる。さらに、金型壁面側に面する複合磁性体の表面に軟磁性粉が露出せず、なめらかな面になるため、巻き線工程の際に巻き線の絶縁皮膜に与えるストレスを最小限に留めることができる。   A composite magnetic body in which the surfaces of the mold 41 and the mold 42, which are kept at a temperature 30 ° C. lower than the thermal deformation temperature of the thermoplastic resin and kept at a temperature higher than room temperature and covered with a material having low thermal conductivity, is in a plastic state. When flowing, the thermoplastic resin in the composite magnetic body 2 comes into contact with a substance having low thermal conductivity and solidifies when cooled, but the soft magnetic powder is dragged by the flow inside the composite magnetic body and flows. Therefore, as a result, the composite magnetic body facing the mold wall surface side increases the proportion of the thermoplastic resin having high electrical insulation. Therefore, the insulation of the composite magnetic body facing the mold wall surface can be enhanced. Furthermore, since the soft magnetic powder is not exposed on the surface of the composite magnetic material facing the mold wall surface, it becomes a smooth surface, so that the stress applied to the insulating film of the winding during the winding process is kept to a minimum. Can do.

なお、複合磁性体の体積抵抗率が1×10Ω・cm以上ある等の理由で巻き線との絶縁性が充分確保でき、かつ複合磁性体を1mm以下の厚さで被覆したい場合は、金型41と金型42の温度を、複合磁性体中の熱可塑性樹脂の熱変形温度を上限として30℃以内の範囲に保ってもよい。 If the volume resistivity of the composite magnetic material is 1 × 10 9 Ω · cm or more, it is possible to ensure sufficient insulation from the winding, and the composite magnetic material is to be coated with a thickness of 1 mm or less. The temperatures of the mold 41 and the mold 42 may be kept within a range of 30 ° C. or less with the upper limit of the thermal deformation temperature of the thermoplastic resin in the composite magnetic body.

次に金型41に軟磁性体1をセットし、金型42で蓋をした上で、金型41と金型42によって形成される密閉空間を0.1気圧以下にまで真空引きした上で、図4に示すように金型42に設けた軟磁性体1より外周側に軟磁性体1の高さ方向に向くよう配置した射出口51または、図5に示すように軟磁性体1より内周側に軟磁性体1の高さ方向に向くよう配置した射出口52より複合磁性体を射出する。なお、複合磁性体の軟磁性粉として扁平状の金属軟磁性粉を用いた場合でも、軟磁性体1の表面に沿って複合磁性体が流動するため、扁平状の金属軟磁性粉の長辺方向は流動の向きに沿い、金属軟磁性粉の長辺方向は軟磁性体1の表面に沿うこととなるため、透磁率の高い金属軟磁性粉の長辺方向と軟磁性体1表面の磁束が平行となる部分が大多数を占めることになる。なお、射出口51、52の向きを軟磁性体1の高さ方向より軟磁性体1の外周部もしくは内周部表面に沿って傾けても良い。   Next, the soft magnetic body 1 is set in the mold 41, covered with the mold 42, and the sealed space formed by the mold 41 and the mold 42 is evacuated to 0.1 atm or less. 4, the injection port 51 arranged on the outer peripheral side of the soft magnetic body 1 provided in the mold 42 so as to face the height direction of the soft magnetic body 1, or the soft magnetic body 1 as shown in FIG. 5. A composite magnetic body is ejected from an ejection port 52 arranged on the inner peripheral side so as to face the height direction of the soft magnetic body 1. Even when flat metal soft magnetic powder is used as the soft magnetic powder of the composite magnetic body, the composite magnetic body flows along the surface of the soft magnetic body 1, so that the long side of the flat metal soft magnetic powder is used. The direction is along the direction of flow, and the long side direction of the metal soft magnetic powder is along the surface of the soft magnetic body 1, so that the long side direction of the metal soft magnetic powder with high permeability and the magnetic flux on the surface of the soft magnetic body 1 are used. The majority of the parts are parallel to each other. The direction of the injection ports 51 and 52 may be inclined along the outer peripheral portion or inner peripheral portion surface of the soft magnetic body 1 from the height direction of the soft magnetic body 1.

複合磁性体の射出口が軟磁性体1に向くよう配置すると、軟磁性体1に複合磁性体の射出によるストレスが加わる可能性があるため、前述のように、複合磁性体の射出口は軟磁性体1に直接向かないように配置するのが望ましい。なお、複合磁性体が金型41、金型42、軟磁性体1による密閉空間内に均等に充填されるよう、射出口は軟磁性体1の周回距離に対して均等に3点配置するのが望ましい。例えば、軟磁性体1がトロイダルコアであった場合は、円周方向に対して120度おきに射出口が配置されているのが望ましい。また、複合磁性体全体が完全に固化した際に、射出口の部分に突起が生じた場合は、巻き線へのストレスを避けるため、折り取るか、削り取るのが望ましい。従って、複合磁性体表面の射出口であった部分には若干の凹みが生じる。   If the composite magnetic body is disposed so that the exit of the composite magnetic body faces the soft magnetic body 1, stress may be applied to the soft magnetic body 1 due to the injection of the composite magnetic body. It is desirable to arrange the magnetic body 1 so that it does not face directly. It should be noted that the injection ports are equally arranged at three points with respect to the circumferential distance of the soft magnetic body 1 so that the composite magnetic body is uniformly filled in the sealed space of the mold 41, the mold 42, and the soft magnetic body 1. Is desirable. For example, when the soft magnetic body 1 is a toroidal core, it is desirable that the injection ports are arranged every 120 degrees with respect to the circumferential direction. In addition, when a projection is generated at the exit portion when the entire composite magnetic body is completely solidified, it is desirable to fold or scrape it to avoid stress on the winding. Therefore, a slight dent is generated in the portion of the composite magnetic material surface which is the injection port.

以上のようにして作成した磁気コア3の表面を熱硬化樹脂等で覆っても良い、例えば熱硬化樹脂としてシリコーンを用いた場合は、磁気コア3の表面が柔軟性を持つため、巻き線に熱応力等の負荷がかかった場合でも、絶縁皮膜に与えるストレスを最小限に留めることができる。また、熱硬化樹脂としてエポキシ樹脂を用いた場合は、耐腐食性、高温耐湿性などの樹脂の架橋化学結合による安定性の効果がある。大気圧に近い低い圧力で塗布または成形可能なため磁芯全体への衝撃が小さい。   The surface of the magnetic core 3 prepared as described above may be covered with a thermosetting resin or the like. For example, when silicone is used as the thermosetting resin, the surface of the magnetic core 3 is flexible, so Even when a load such as thermal stress is applied, the stress applied to the insulating film can be minimized. Further, when an epoxy resin is used as the thermosetting resin, there is an effect of stability due to cross-linking chemical bonding of the resin such as corrosion resistance and high temperature and humidity resistance. Since it can be applied or molded at a pressure close to atmospheric pressure, the impact on the entire magnetic core is small.

図6は、本発明の線輪部品における別の閉磁路磁気コアの斜視図である。図6のように、磁路の約半周分の軟磁性体表面を複合磁性体で被覆した磁気コア片31、32を対向させ、磁気コア片31と磁気コア片32の間の磁気ギャップに該当する箇所を、望ましくは局部的に複合磁性体片23の熱変形温度より高い温度に加熱しておき、磁気コア片31、32間の磁気ギャップに該当する箇所に複合磁性体片23を挟み込み、磁気コア片31、32より加圧することで接合して磁気コア3を作成しても良い。なお、磁気コア片31、32における磁気ギャップに該当する箇所の複合磁性体は、予め削り取るなどして、内部の軟磁性体を露出させておくと、複合磁性体片23の透磁率や磁力が磁気コア3に有効に作用するため望ましい。   FIG. 6 is a perspective view of another closed magnetic circuit magnetic core in the wire ring component of the present invention. As shown in FIG. 6, the magnetic core pieces 31 and 32 in which the surface of the soft magnetic material corresponding to about a half circumference of the magnetic path is covered with the composite magnetic material are opposed to each other, and the magnetic gap between the magnetic core piece 31 and the magnetic core piece 32 is satisfied. The part to be heated is preferably heated locally to a temperature higher than the thermal deformation temperature of the composite magnetic piece 23, and the composite magnetic piece 23 is sandwiched in a place corresponding to the magnetic gap between the magnetic core pieces 31 and 32, The magnetic core 3 may be formed by bonding by applying pressure from the magnetic core pieces 31 and 32. Note that the magnetic permeability and magnetic force of the composite magnetic piece 23 can be reduced by exposing the composite magnetic body at the portion corresponding to the magnetic gap in the magnetic core pieces 31 and 32 in advance to expose the internal soft magnetic body. This is desirable because it effectively acts on the magnetic core 3.

図7は、本発明の線輪部品における複合磁性体片と金型の構成を示す断面図である。四角形平板状の複合磁性体片23の磁性粉として扁平状の金属軟磁性粉を用いる場合は、図7のように、配向磁石441及び配向磁石442を複合磁性体片23の厚み方向で対向するように配置した金型44に、熱可塑の状態にある複合磁性体を射出し形成することで、複合磁性体の流動の向きに垂直方向にランダムに向いていた扁平上の軟磁性金属粉が、配向磁石441及び配向磁石442による磁場によって整列し、複合磁性体片23の厚み方向に透磁率を最大限引き出すことができるため、望ましい。なお、複合磁性体片23の磁性粉として硬質磁性粉を用いた場合も同様にして、複合磁性体片23の厚み方向に硬質磁性粉の磁化を配向させることで、複合磁性体片23の厚み方向に磁力を発生させることができる。   FIG. 7 is a cross-sectional view showing the structure of the composite magnetic piece and the mold in the wire ring component of the present invention. When flat metal soft magnetic powder is used as the magnetic powder of the rectangular flat plate-shaped composite magnetic piece 23, the oriented magnet 441 and the oriented magnet 442 are opposed to each other in the thickness direction of the composite magnetic piece 23 as shown in FIG. By injecting and forming the composite magnetic body in a thermoplastic state on the mold 44 arranged as described above, the soft magnetic metal powder on the flat which is randomly oriented in the direction perpendicular to the direction of flow of the composite magnetic body This is desirable because it can be aligned by the magnetic field generated by the orientation magnet 441 and the orientation magnet 442, and the magnetic permeability can be maximized in the thickness direction of the composite magnetic piece 23. Similarly, when the hard magnetic powder is used as the magnetic powder of the composite magnetic piece 23, the thickness of the composite magnetic piece 23 is aligned by orienting the magnetization of the hard magnetic powder in the thickness direction of the composite magnetic piece 23. Magnetic force can be generated in the direction.

本発明を実施した一例を以下に述べる。   An example of carrying out the present invention will be described below.

表1に示す熱可塑性樹脂と磁性粉よりなる複合磁性体を、同じく表1の通りの複合磁性体に対する磁性粉の体積含有率で配合し、熱可塑性樹脂がPPSであればシリンダ温度を295℃以上395℃以下、金型温度をPPSの熱変形温度260℃よりも30℃以上低い130℃に保持しつつ金型に射出し、熱可塑性樹脂がナイロン12であればシリンダ温度を200℃以上240℃以下、金型温度をナイロン12の熱変形温度170℃よりも30℃以上低い110℃に保持しつつ金型に射出し、複合磁性体の成形品を得て複合磁性体の軟磁気特性の評価を行った。表1中の磁性粉の粒子形状で、粒状とあるのは、粒度分布D50が10μm以上20μm以下、D90が50μm以上60μm以下の磁性粉を示し、扁平とあるのは、アスペクト比(粉末の長径/短径)の平均値が1/10以上1/5以下、厚さが1μm以上9μm以下の磁性粉を示している。なお、複合磁性体は軟磁気特性の評価を行うために外径12.8mm、内径7.5mm、厚さ5mmに成形し、25から35ターン巻き線し、周波数1MHzの電流を巻き線に通電して測定したインダクタンス値より透磁率を求めた。複合磁性体の飽和磁化については、直流カーブトレーサーで数十秒かけて1周の磁束密度と印加磁界との履歴で測定することにより求めた。そのときのリング磁芯の形状は、外径59.85mm、内径34.85mm、高さ15mmである。   A composite magnetic material composed of the thermoplastic resin and magnetic powder shown in Table 1 is blended at the volume content of the magnetic powder with respect to the composite magnetic material as shown in Table 1, and if the thermoplastic resin is PPS, the cylinder temperature is 295 ° C. When the thermoplastic resin is nylon 12, the cylinder temperature is 200 ° C. or higher and 240 ° C. or higher, and the mold temperature is maintained at 130 ° C., which is 30 ° C. lower than the heat deformation temperature 260 ° C. of PPS. Injected into the mold while maintaining the mold temperature at 110 ° C., which is 30 ° C. or more lower than the heat deformation temperature of 170 ° C. of nylon 12 to obtain a molded product of the composite magnetic material. Evaluation was performed. The particle shape of the magnetic powder in Table 1 indicates that the particle is a particle having a particle size distribution D50 of 10 μm or more and 20 μm or less, and D90 is 50 μm or more and 60 μm or less. / Minor axis) shows a magnetic powder having an average value of 1/10 or more and 1/5 or less and a thickness of 1 μm or more and 9 μm or less. In order to evaluate the soft magnetic properties, the composite magnetic body is formed to have an outer diameter of 12.8 mm, an inner diameter of 7.5 mm, and a thickness of 5 mm, wound by 25 to 35 turns, and a current of 1 MHz is passed through the winding. The magnetic permeability was obtained from the measured inductance value. The saturation magnetization of the composite magnetic material was determined by measuring the history of the magnetic flux density and the applied magnetic field over one tens of seconds with a DC curve tracer. The shape of the ring magnetic core at that time is an outer diameter of 59.85 mm, an inner diameter of 34.85 mm, and a height of 15 mm.

Figure 2011258608
Figure 2011258608

表1の結果より、磁性粉の粒子形状が粒状であれば、粒子形状が扁平である場合よりも複合磁性体に対して磁性粉を充填できるため、飽和磁化Bsを高めることができ、同時に透磁率μ’は粒子形状が扁平である場合よりも低い値となることから、昇圧電源回路などに用いられるチョークコイルの磁気ギャップ充填などに好適に用いることができる。   From the results shown in Table 1, if the particle shape of the magnetic powder is granular, the magnetic powder can be filled into the composite magnetic body as compared with the case where the particle shape is flat. Since the magnetic susceptibility μ ′ has a lower value than when the particle shape is flat, it can be suitably used for filling a magnetic gap of a choke coil used in a boost power supply circuit or the like.

一方、磁性粉の粒子形状が扁平である場合は、透磁率が高いため、磁気コアに高い透磁率が求められるノイズフィルタ用途の線輪部品などに好適に用いることができる。   On the other hand, when the particle shape of the magnetic powder is flat, since the magnetic permeability is high, the magnetic powder can be suitably used for a wire ring part for noise filters and the like that require high magnetic permeability in the magnetic core.

また、磁性粉がフェライト粉である場合と、粒状の金属軟磁性粉である場合とを比較すると、透磁率に大きな差は認められないが、飽和磁化は粒状の金属軟磁性粉のほうが大きい。従って、磁気コアの表面を被覆する複合磁性体の磁性粉として、電気絶縁性の高いフェライト粉を用いるのが好適であることが分かる。   Moreover, when the magnetic powder is a ferrite powder and when it is a granular metal soft magnetic powder, a large difference in magnetic permeability is not observed, but the saturation magnetization is larger in the granular metal soft magnetic powder. Therefore, it can be seen that it is preferable to use ferrite powder having high electrical insulation as the magnetic powder of the composite magnetic body covering the surface of the magnetic core.

さらに表1における実施例13,14,15,16について、体積抵抗率、曲げ強度、衝撃強度(IZOD)、成形密度を測定した結果が表2である。なお、体積抵抗率は、アジレント社製4339B、16008Bを使用し、チャージ時間は60秒、押え圧は5kg、複合磁性体は100mm×100mm×3mmの形状に成形し、厚さ方向に100V印加してIEC60093に準拠して測定を行った。   Table 2 shows the results of measuring volume resistivity, bending strength, impact strength (IZOD), and molding density for Examples 13, 14, 15, and 16 in Table 1. The volume resistivity is 4339B and 16008B manufactured by Agilent, the charge time is 60 seconds, the presser pressure is 5 kg, the composite magnetic body is molded into a shape of 100 mm × 100 mm × 3 mm, and 100 V is applied in the thickness direction. The measurement was performed according to IEC 60093.

Figure 2011258608
Figure 2011258608

表2の結果からは、複合磁性体の熱可塑性樹脂としてナイロン12を用いたほうが、複合磁性体の強度が高いことが分かる。なお、実施例10では複合磁性体の磁性粉に金属軟磁性粉を用いているが、充分な体積抵抗率を確保している。   From the results in Table 2, it can be seen that the strength of the composite magnetic body is higher when nylon 12 is used as the thermoplastic resin of the composite magnetic body. In Example 10, a metal soft magnetic powder is used as the magnetic powder of the composite magnetic material, but a sufficient volume resistivity is ensured.

なお、上記実施例に加えて、実施例16の複合磁性体は磁性粉として硬質磁性粉である粒状のNdFeB粉とSrフェライト粉を体積が1:1となるように配合し、樹脂としてナイロン12を用い、複合磁性体に対する磁性粉の体積含有率を70%とすることで、400mT程度の磁力と1×10Ω・cm以上の抵抗率を確保することができた。 In addition to the above examples, the composite magnetic body of Example 16 was prepared by blending granular NdFeB powder, which is hard magnetic powder, and Sr ferrite powder as magnetic powder so as to have a volume of 1: 1, and nylon 12 as resin. By setting the volume content of the magnetic powder with respect to the composite magnetic material to 70%, a magnetic force of about 400 mT and a resistivity of 1 × 10 5 Ω · cm or more could be secured.

1 軟磁性体
11 磁気ギャップ
12 別の軟磁性体
2 複合磁性体
21 複合磁性体
22 複合磁性体
221 複合磁性体
222 複合磁性体
23 複合磁性体片
231 複合磁性体片
232 複合磁性体片
3 磁気コア
31 磁気コア片
32 磁気コア片
41 金型
42 金型
431 ピン
432 ピン
44 金型
441 配向磁石
442 配向磁石
51 射出口
52 射出口
6 磁気配向型
7 電線
I 電線への通電電流の向き
DESCRIPTION OF SYMBOLS 1 Soft magnetic body 11 Magnetic gap 12 Another soft magnetic body 2 Composite magnetic body 21 Composite magnetic body 22 Composite magnetic body 221 Composite magnetic body 222 Composite magnetic body 23 Composite magnetic body piece 231 Composite magnetic body piece 232 Composite magnetic body piece 3 Magnetic Core 31 Magnetic core piece 32 Magnetic core piece 41 Die 42 Die 431 Pin 432 Pin 44 Die 441 Oriented magnet 442 Oriented magnet 51 Injection port 52 Injection port 6 Magnetic orientation type 7 Electric wire I Direction of current flow to electric wire

Claims (9)

閉磁路を構成する磁気コアと、前記磁気コアの磁路を周回する巻き線を備え、前記磁気コアは、導電性の軟磁性体と、前記軟磁性体の表面を被覆する熱可塑性樹脂と磁性粉を含む複合磁性体を備え、前記複合磁性体は、前記軟磁性体よりも体積抵抗率が高いことを特徴とする線輪部品。   The magnetic core comprises a magnetic core constituting a closed magnetic path, and windings that circulate around the magnetic path of the magnetic core. The magnetic core includes a conductive soft magnetic material, a thermoplastic resin that covers a surface of the soft magnetic material, and a magnetic material. A wire ring component comprising a composite magnetic body containing powder, wherein the composite magnetic body has a volume resistivity higher than that of the soft magnetic body. 前記磁気コアにおける前記軟磁性体は磁気ギャップを有し、前記磁気ギャップに前記複合磁性体が充填されていることを特徴とする請求項1記載の線輪部品。   The wire ring component according to claim 1, wherein the soft magnetic body in the magnetic core has a magnetic gap, and the magnetic gap is filled with the composite magnetic body. 前記磁性粉はフェライト粉を含み、前記フェライト粉は前記複合磁性体中に60体積%以下(但し0は含まず)含有し、前記複合磁性体の体積抵抗率が1×10Ω・cm以上であることを特徴とする請求項1または2に記載の線輪部品。 The magnetic powder contains ferrite powder, and the ferrite powder is contained in the composite magnetic body in an amount of 60% by volume or less (however, 0 is not included), and the volume resistivity of the composite magnetic body is 1 × 10 9 Ω · cm or more. The wire ring component according to claim 1, wherein the wire ring component is a 前記複合磁性体に前記磁性粉は70体積%以下(但し0は含まず)含有し、前記磁性粉は体積含有率が50%以下(但し0は含まず)の金属磁性粉と、体積含有率が50%より大きく100%より小さいフェライト粉よりなり、前記複合磁性体の体積抵抗率が1×10Ω・cm以上であることを特徴とする請求項1または2に記載の線輪部品。 The composite magnetic body contains the magnetic powder in an amount of 70% by volume or less (excluding 0), the magnetic powder has a volume content of 50% or less (excluding 0), and a volume content The wire ring component according to claim 1, wherein the composite magnetic body has a volume resistivity of 1 × 10 5 Ω · cm or more. 前記磁気コアにおける前記複合磁性体の軟磁性体に面する部分を除く表面は、前記複合磁性体の内部及び軟磁性体に面する表面よりも磁性粉の含有率が低いことを特徴とする請求項1から4のいずれかに記載の線輪部品。   The surface of the magnetic core excluding the portion facing the soft magnetic body of the composite magnetic body has a lower magnetic powder content than the inside of the composite magnetic body and the surface facing the soft magnetic body. Item 5. A wire ring component according to any one of Items 1 to 4. 前記磁気コアにおける前記複合磁性体の表面における前記磁気コアにおける磁路を三等分した箇所の前記磁気コアの内側端部または外側端部に凹みがあることを特徴とする請求項1から5のいずれかに記載の線輪部品。   6. The inner end portion or the outer end portion of the magnetic core at a portion obtained by dividing the magnetic path in the magnetic core into three equal parts on the surface of the composite magnetic body in the magnetic core has a recess. A wire ring component according to any one of the above. 前記複合磁性体表面が熱硬化樹脂で覆われていることを特徴とする請求項1から6のいずれかに記載の線輪部品。   The wire ring component according to any one of claims 1 to 6, wherein the surface of the composite magnetic body is covered with a thermosetting resin. 前記熱可塑性樹脂はABS系樹脂、PBT樹脂、PET系樹脂、PPS系樹脂、ナイロン6、ナイロン66、ナイロン12及び液晶ポリマーのいずれかを含む樹脂であり、前記磁性粉のD90(累積重量分率が90%に対応する粒子径)は球状または不定形粉で60μm以下(但し0は含まず)であり、前記複合磁性体の成型密度が2g/cm以上8g/cm以下であることを特徴とする請求項1から7のいずれかに記載の線輪部品 The thermoplastic resin is a resin containing any of ABS resin, PBT resin, PET resin, PPS resin, nylon 6, nylon 66, nylon 12, and liquid crystal polymer, and D90 (cumulative weight fraction) of the magnetic powder. The particle diameter corresponding to 90%) is a spherical or irregular shaped powder of 60 μm or less (excluding 0), and the molding density of the composite magnetic material is 2 g / cm 3 or more and 8 g / cm 3 or less. The wire ring component according to any one of claims 1 to 7, 前記熱可塑性樹脂はABS系樹脂、PBT樹脂、PET系樹脂、PPS系樹脂、ナイロン6、ナイロン66、ナイロン12及び液晶ポリマーのいずれかを含む樹脂であり、前記金属磁性粉は扁平粉で平均厚さは9μm以下(但し0は含まず)、短辺/長辺で定義されるアスペクト比は1/5以下であり、前記複合磁性体の成型密度が2g/cm以上8g/cm以下であることを特徴とする請求項4から7のいずれかに記載の線輪部品。 The thermoplastic resin is a resin containing any of ABS resin, PBT resin, PET resin, PPS resin, nylon 6, nylon 66, nylon 12, and liquid crystal polymer, and the metal magnetic powder is a flat powder with an average thickness. The aspect ratio defined by the short side / long side is 1/5 or less, and the molding density of the composite magnetic body is 2 g / cm 3 or more and 8 g / cm 3 or less. The wire ring component according to claim 4, wherein the wire ring component is provided.
JP2010129317A 2010-06-04 2010-06-04 Wire ring parts Active JP5593127B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010129317A JP5593127B2 (en) 2010-06-04 2010-06-04 Wire ring parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010129317A JP5593127B2 (en) 2010-06-04 2010-06-04 Wire ring parts

Publications (2)

Publication Number Publication Date
JP2011258608A true JP2011258608A (en) 2011-12-22
JP5593127B2 JP5593127B2 (en) 2014-09-17

Family

ID=45474520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010129317A Active JP5593127B2 (en) 2010-06-04 2010-06-04 Wire ring parts

Country Status (1)

Country Link
JP (1) JP5593127B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013153025A (en) * 2012-01-24 2013-08-08 Sumitomo Electric Ind Ltd Reactor, converter, and power converter
JP2014168038A (en) * 2013-02-04 2014-09-11 Nec Tokin Corp Magnetic core, inductor, and module having inductor
WO2016039518A1 (en) * 2014-09-11 2016-03-17 주식회사 이노칩테크놀로지 Power inductor and method for manufacturing same
EP3193343A4 (en) * 2014-09-11 2018-06-20 Moda-Innochips Co., Ltd. Power inductor
EP3179489A4 (en) * 2014-08-07 2018-06-20 Moda-Innochips Co., Ltd. Power inductor
US10573451B2 (en) 2014-08-07 2020-02-25 Moda-Innochips Co., Ltd. Power inductor

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59132111A (en) * 1983-01-19 1984-07-30 Kijima Musen Kk Core in winding part
JPH09306715A (en) * 1996-05-15 1997-11-28 Tokin Corp Electronic device and method of fabricating the same
JP2001210523A (en) * 2000-01-25 2001-08-03 Matsushita Electric Ind Co Ltd Toroidal coil and its manufactuaring method
JP2002093627A (en) * 2000-09-14 2002-03-29 Sht:Kk Toroidal coil and manufacturing method therefor
JP2003168610A (en) * 2001-11-29 2003-06-13 Toko Inc Inductance element
JP2003188023A (en) * 2001-12-20 2003-07-04 Toko Inc Electronic circuit module
JP2003217941A (en) * 2002-01-22 2003-07-31 Toko Inc Inductance element
WO2006022262A1 (en) * 2004-08-23 2006-03-02 Nippon Kagaku Yakin Co., Ltd. Method for manufacturing magnetic core component
JP2007042678A (en) * 2005-07-29 2007-02-15 Tdk Corp Coil and filter circuit
JP2011129728A (en) * 2009-12-18 2011-06-30 Sumitomo Electric Ind Ltd Core for magnetic component, reactor, and core block
JP2011205052A (en) * 2009-07-29 2011-10-13 Sumitomo Electric Ind Ltd Reactor
WO2011148458A1 (en) * 2010-05-25 2011-12-01 トヨタ自動車株式会社 Reactor

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59132111A (en) * 1983-01-19 1984-07-30 Kijima Musen Kk Core in winding part
JPH09306715A (en) * 1996-05-15 1997-11-28 Tokin Corp Electronic device and method of fabricating the same
JP2001210523A (en) * 2000-01-25 2001-08-03 Matsushita Electric Ind Co Ltd Toroidal coil and its manufactuaring method
JP2002093627A (en) * 2000-09-14 2002-03-29 Sht:Kk Toroidal coil and manufacturing method therefor
JP2003168610A (en) * 2001-11-29 2003-06-13 Toko Inc Inductance element
JP2003188023A (en) * 2001-12-20 2003-07-04 Toko Inc Electronic circuit module
JP2003217941A (en) * 2002-01-22 2003-07-31 Toko Inc Inductance element
WO2006022262A1 (en) * 2004-08-23 2006-03-02 Nippon Kagaku Yakin Co., Ltd. Method for manufacturing magnetic core component
JP2007042678A (en) * 2005-07-29 2007-02-15 Tdk Corp Coil and filter circuit
JP2011205052A (en) * 2009-07-29 2011-10-13 Sumitomo Electric Ind Ltd Reactor
JP2011129728A (en) * 2009-12-18 2011-06-30 Sumitomo Electric Ind Ltd Core for magnetic component, reactor, and core block
WO2011148458A1 (en) * 2010-05-25 2011-12-01 トヨタ自動車株式会社 Reactor

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013153025A (en) * 2012-01-24 2013-08-08 Sumitomo Electric Ind Ltd Reactor, converter, and power converter
JP2014168038A (en) * 2013-02-04 2014-09-11 Nec Tokin Corp Magnetic core, inductor, and module having inductor
EP3179489A4 (en) * 2014-08-07 2018-06-20 Moda-Innochips Co., Ltd. Power inductor
US10541075B2 (en) 2014-08-07 2020-01-21 Moda-Innochips Co., Ltd. Power inductor
US10541076B2 (en) 2014-08-07 2020-01-21 Moda-Innochips Co., Ltd. Power inductor
US10573451B2 (en) 2014-08-07 2020-02-25 Moda-Innochips Co., Ltd. Power inductor
WO2016039518A1 (en) * 2014-09-11 2016-03-17 주식회사 이노칩테크놀로지 Power inductor and method for manufacturing same
EP3193343A4 (en) * 2014-09-11 2018-06-20 Moda-Innochips Co., Ltd. Power inductor
EP3196900A4 (en) * 2014-09-11 2018-06-20 Moda-Innochips Co., Ltd. Power inductor
EP3193344A4 (en) * 2014-09-11 2018-07-04 Moda-Innochips Co., Ltd. Power inductor and method for manufacturing same
US10308786B2 (en) 2014-09-11 2019-06-04 Moda-Innochips Co., Ltd. Power inductor and method for manufacturing the same
US10508189B2 (en) 2014-09-11 2019-12-17 Moda-Innochips Co., Ltd. Power inductor

Also Published As

Publication number Publication date
JP5593127B2 (en) 2014-09-17

Similar Documents

Publication Publication Date Title
JP5593127B2 (en) Wire ring parts
JP5617461B2 (en) Reactor and manufacturing method of reactor
US10483029B2 (en) Core member, reactor, and method for manufacturing core member
JP2012204440A (en) Magnetic element for wireless power transmission and manufacturing method of the same
JP5561536B2 (en) Reactor and converter
WO2002021543A1 (en) Permanent magnet, magnetic core having the magnet as bias magnet, and inductance parts using the core
JP6165115B2 (en) Soft magnetic composite material and magnetic core, reactor and reactor manufacturing method using the same
TW201203293A (en) Laminated magnetic component and manufacture with soft magnetic powder polymer composite sheets
JP2017037888A (en) Magnetic powder mold coil and method of manufacturing the same
US20160343486A1 (en) Coil electronic component and method of manufacturing the same
JP6795979B2 (en) Reactor
JP2004193215A (en) Electronic component and method of manufacturing the same
JP2011129593A (en) Reactor
US11615913B2 (en) Coil molded article and reactor
WO2020235246A1 (en) Resin composition for magnetic member formation and method for producing magnetic member
JP6974282B2 (en) Reactor
JP7127366B2 (en) Resin composition for molding magnetic member, magnetic member, coil, method for manufacturing magnetic member, and kit for molding magnetic member
WO2016052257A1 (en) Magnetic core component and chip inductor
CN107924750B (en) Composite material molded body and reactor
JP6247252B2 (en) Reactor using soft magnetic composite material and method of manufacturing reactor
JP2011238716A (en) Reactor and manufacturing method of the same
JP6809440B2 (en) Reactor
CN111344822B (en) Electric reactor
JP6809439B2 (en) Reactor
JP2008270438A (en) Inductor, and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140804

R150 Certificate of patent or registration of utility model

Ref document number: 5593127

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250